
A pattern based approach to defining
translations between languages

Girish Maskeri1, James Willans1, Tony Clark2, Andy Evans1, Stuart Kent3, Paul Sammut1
Contact: girishmr@cs.york.ac.uk

Abstract. The 2U Consortium have recently submitted a proposal for the definition of the
UML 2.0 infrastructure. This uses a innovative technique of rapidly “stamping out” the
definition using a small number of patterns commonly found in software architecture. The
contribution of this paper is to introduce the idea of reusability of mappings between
languages and defining some of the reusable mapping templates. This paper also illustrates
how these templates can be used to stamp out mapping between languages by stamping out
a mapping between UML and Java.

1. Introduction

Crucial to successful software development is the ability to translate between different
representations. The most prolific illustration of this is the compilation of high-level
languages into assembler. With the increasing trend of modelling designs of software prior
to its implementation using languages such as UML, there is also a need to provide
translations between software models and their implementation. A desirable characteristic of
these modelling languages is that they abstract from a particular implementation, but can be
translated into any implementation. Consequently, it is necessary to provide (and prove)
many translations and provide new translations to mirror the development of new languages.
The current approach to creating these translations (often referred to as mappings) is to
bespoke each one in view of the two languages being translated. This is a time consuming
and error-prone process. In this paper we propose that an alternative approach is to
construct models of different languages by using patterns, and to automatically derive
translations between languages by using predefined translations between these patterns.

This work forms part of a larger project that is defining a submission for UML 2.0 [1]. An
issue with UML is not only the translation (and an assurance of the integrity of the
translation) between models and an implementation, but also different models (profiles) as it
is widely expected that UML2.0 will be a family of languages [2]. The submission for UML
2.0 [3] draws heavily on the philosophy that well formed languages exhibit recurring
structures, and reuses a small set of patterns (encapsulated into templates) to “stamp out” the
whole of the UML 2.0 infrastructure. The pattern based approach to defining the UML infra
structure can also be applied to models of other languages. This paper exploits the fact that
different modelling languages (collected together in profiles) are produced using common
patterns (a library of templates). We define the mapping between the elements of the

1 Department of Computer Science, University of York, UK

2 Department of Computer Science, Kings College, London, UK

3 Department of Computing, University of Kent, Canterbury, UK

template library and use these mappings to automatically derive the mapping between the
profiles.

2. Overview

The principle idea behind the approach presented in this paper is that models of languages
can be built from a set of patterns describing concepts, and translations between the
concepts. Consequently, the predefined mappings enable translations to take place between
languages with ease. For instance, a common pattern is the description of the inheritance
mechanism. For some languages this will be described as a singular inheritance pattern, for
others multiple inheritance pattern. It is common to want to translate between languages that
support multiple inheritance and languages that support singular inheritance, therefore a
mapping is provided between the two realisations of the inheritance mechanism. When a
language uses multiple inheritance (C++), it can be translated to a language that uses singular
inheritance (Java) by invoking this mapping. This is illustrated in figure 1.

Figure 1. Overview of translation approach

3. Templates approach to language definition

The work described in this paper is an extension of the 2U consortiums submission to
defining the infrastructure for UML 2.0 [3]. In this section we briefly describe the
approach in order to provide a context for the contribution of the paper.

One of the distinguishing characteristics of the 2U consortiums approach [4] is to
clearly separating the syntax and the semantics of languages. The syntax of models and
their semantics are described as distinct entities related by a mapping (semantic
mapping). In the infra structure definition, the syntax is described as abstract, the
abstract syntax will be mapped to a concrete syntax within the super structure (i.e.
boxes and lines).

It is generally considered that good software architectures exhibit recurring structural
patterns [5].

Patterns for
language type A

(i.e. multiple
inheritance)

Patterns for
language type B

(i.e. singular
inheritance)

Translation between
patterns

Instance of
language A (i.e

C++)

Instance of
language B (i.e

Java)

"stamp out" language B
pattern for a language

"stamp out" language A
pattern for a language

automatically
derive

translation

Figure 2. Contains Template

The 2U approach identifies this and uses an innovative technique of “stamping out” the
infrastructure using patterns commonly found in software architecture. These patterns
are encapsulated into reusable libraries called package templates that are described
using precise class diagrams [3] and the OCL (object constraint language). The use of
class diagrams and OCL enables a high degree of perspicuity compared to traditional
formal representations of semantics (i.e. denotational semantics using Lamda calculus).
Therefore, using a small library of templates [3], complex languages (including the
UML 2.0 infrastructure) can be rapidly “stamped out” and understood with minimal
effort. Moreover, since templates are a rich form of reuse, “stamped out'” language are
known to be correct in view of the correctness of the templates. An example of a
common pattern is shown in figure 2. This describes how one element (the container)
conceptually contains another (the contained). The philosophy behind this approach
has been proved by way of a powerful meta-modelling tool (MMT) [6].

This paper illustrates how the template-based approach can be extended for defining
and reusing mapping between languages. The mappings between patterns (mapping
templates) are encapsulated into packages (mapping package). These mapping can then
be “stamped out” along with the languages being defined.

4. Relations concept for defining mapping

The essence of a translation is a function from one representation to another. Illustrated
in figure 3 is a template which captures this function.

Figure 3. Generic mapping template

Contains (Container, Contained)

<Container> <Contained>
<container>

<contained>s1

*

Element1 Element2Element1xElement2
pair

Element1Element2
Relation

Domain RangePairs* **

1
1Element1

element2

Element1 and element2 represent the set of elements in the domain and range
respectively. The Element1XElement2 Pair encapsulates the mathematical idea of a pair
and is a tuple of Element1 and Element2. The Element1Element2Relation encapsulates
the mathematical concept of relations as a set of ordered pairs. It has a number of
methods to reflect the type of function (i.e image(), inverseImage(), isFunctional(),
isTotal(), isBijection() e.t.c). Constraints are applied on Element1Element2Relation
object to define the relationship between the elements.

We have extended the generic relations template to make it generative [map template
Appendix A]. That is, methods are defined to generate the range elements given the
domain elements. All other translation templates extend this basic generative template.
This property of the templates can be utilised by tools to automatically generate the
target model from the source model.

5. Defining Mappings
5.1 Approach
In this section, we extend the generic template presented previously to derive a
template that maps between structures commonly found in modelling and programming
languages. Two important structures are the container pattern (illustrated in figure 2)
and the generalisation pattern. Here we define a mapping between these patterns which
will be used in section 5.2 to stamp out the mapping between fragments of two
languages: UML and Java. The process of defining a mapping between the container
pattern of modelling languages and container pattern in programming languages using
the generic mapping template (figure 3) is illustrated in figure 4.

Figure 4. Mapping contains pattern in modelling and programming languages.

The Contains template/pattern on the left side shown in figure 3 can be used to derive
containment structures in modelling languages like UML (classes contain attributes,
and so on) and the template on the right can be used to derive corresponding structures
in programming languages like Java. The ContainerMap template is a mapping
between the containers and extends the generic mapping template as shown in figure 4.
In addition to the classes and association, well formedness rules expressed as OCL

pattern in modelling
languages

(UML)

pattern in programming
languages

(Java)

Container

Contained

Container

Contained

contains contains

ContainerMap
Template

generic mapping
template

constraints are used to express properties and constraints on the mappings. The
complete definition is presented in Appendix A in textual format.

A template that maps a multiple inheritance pattern to a delegation pattern is as shown
in figure 5.

Figure 5. mapping generalisation patterns in modelling and programming languages

The left hand side of figure 5 shows the most common generalisation pattern in
modelling languages and on the right hand side is one of the generalisation patterns
found in programming languages and is the delegation model [7,8]. Element3 delegates
to element2, this is achieved through the uses and implements relation. The
delegationInheritanceMap template maps these two patterns. Again, in addition to the
classes and association, well formedness rules expressed as OCL constraints are used to
express properties and constraints on the mappings. The complete definition is
presented in Appendix A in textual format.

Other Patterns in languages have been identified and defined as templates by the 2U
consortium [4].

5.2 Example

By combining the ContainerMap template and the DelegationInheritanceMap template
defined in the previous section, we can derive a mapping package for mapping between
multiply inherited containers in one language to delegated, inherited containers in
another. This mapping is entirely reusable and can be applied between any pairs of
languages where this property holds. Of course, there are many other ways in which
multiple inheritance in one language can be translated into single inheritance structures
[9]. However, this pattern identifies a commonly used approach – subclass delegation.

Applying this template to UML and Java results in the general mapping shown in figure
6.

Element1 Element2

Element3

Element1'

Element2'

Element1''

Element2''

Element3' Element3''

implements

implements

implements

uses

One of the Generalisation patterns in
programming languages

 uses

Generalisation pattern in
modelling languages(UML)

Generic mapping
template

DelegationInheritance
Map Template

Figure 6. Generalisation models in UML and Java

In UML both sublassing as well as subtyping is achieved through inheritance. In Java
one of the schemes is to use delegation for subclassing and interfaces for subtyping.

The substitutions required to “stamp out” the UML-Java mapping package using the
ContainerMap and DelegationInheritanceMap templates is illustrated in figure 7. Here,
UMLClass is substituted for the Container to be mapped, whilst UMLAttribute is its
Contained element. JavaClass and JavaAttribute are substituted into the same structure
in the target of the mapping. The stamped out mappings package as viewed in the
MMT [5] (the meta modelling tool) is shown in figure 7. Note that for brevity, all the
stamped constraints and translation methods have been omitted.

Figure 7. Part of the stamped Mapping package to map UML and Java

UMLclass1 UMLclass2

UMLClass3

JavaClass1

JavaClass2

JavaInterface1

JavaInterface2

JavaClass3 JavaInterface3

implements

implements

implements

uses

UML Generalisation
Model

Equivqlent Java
Generalisation model

 uses

C o n ta in e rM a p d e le g a tio n In h e r ita n c e M a p

U M L -J a v a M a p p in g

U M L C la s s J a va C la s s R e la t i
o n /C o n ta in e rR e la t io n ,

U M L C la s s /C o n ta in e r1 ,

U M L A ttr ib u te /C o n ta in e d 1 ,

A ttrR e la tio n /
C o n ta in e d R e la t io n ,

J a v a C la s s /C o n ta in e r2 ,

J a v a A ttr /C o n ta in e d 2 ,

U M L C la s s /G E le m 1 ,
U M L C la s s J a v a C la s s R e la t io n /

g e n e ra lis a b le R e l,

J a v a C la s s /G E le m 2 ,

U M L C la s s J a v a A ttr ib u te R e la t io n /
s u b c la s s R e l,

J a v a A ttr /s u b C la s s in g E le m ,

U M L C la s s J a v a In te rfa c e R e la t io n /
s u b T y p e R e l,

J a v a In te rfa c e /s u b T yp in g E le m ,

Im p le m e n ts /
G E le m 2 s u b T yp in g E le m R e l,

Figure 8. The stamped out UML-Java mapping package as viewed in the MM

6. Discussion

This paper has described some of the first attempts by the 2U group to address the
challenge of reusing mappings between languages. We began by motivating the need
for reusing mappings between languages, as they are essential to so many aspects of
software engineering. The approach we used to achieve this goal has been to define a
generic relations template (as a model-level concept) and to utilise this to describe
mappings between common structures in languages. We have claimed that we can
derive the mapping between two languages from the pre-defined mappings between the
patterns of the two languages. We have illustrated this by deriving a simple mapping
between UML and Java from the generic mapping templates. This mapping implements
a common approach to relating multiple inheritance and single inheritance containers.

Clearly, there is much work to be done to show the scalability of the approach. For
example, whilst the relations approach is clearly advantageous in terms of its
mathematical properties, stamping out relations at the model level can result in quite
verbose models (see Figure 7). We are therefore investigating the definition of relations
as a first class UML modelling construct. Such a construct would share many of the

properties of an association, but would also permit properties such as the nesting of
relations to be expressed as well.

Finally, we believe that the ability to reuse patterns of mappings is an essential first step
towards realising the OMG’s vision for MDA (Model-Driven Architecture) [10]. MDA
is fundamentally based on the ability to rapidly generate mappings between platform
independent and platform dependent modelling languages. Currently, the bespoke
approach used by vendors to define mappings is simply too time consuming and error
prone to realise this goal.

Acknowledgments
This work has been generously funded by the TCS (Tata Consultancy Services), India.

References

[1] UML 2.0 Infrastructure Request for Proposals. Available from www.omg.org/UML
[2] Clark A.,Evans A. Kent S. Profiles for language definition. Presented to ECOOP
pUML workshop, Nice.
[3] Clark A.,Evans A. Kent S. (2001) Initial submission to the UML 2.0 Infrastructure
RFP. Available at www.cs.york.ac.uk/puml/papers/uml2submission.pdf
[4] 2U Consortium Web-site. www.2uworks.org
[5] Gamma E., et al., Design patterns, Elements of Reusable Object-Oriented Software.
Professional Computing Series 1995: Addison Wesley
[6] Meta Modelling Tool. Description at [4]
[7] L. Stein. Delegation Is Inheritance. OOPSLA ,87 Conference Proceedings.
[8] J. Viega, P. Reynolds, B Tutt, R Behrends , Multiple inheritance in class Based
Languages.
[9] Rodriguez J., Crespo Y., Marques J. : On transformation strategies from multiple
inheritance to single inheritance. A comparative approach
[10] OMG Model Driven Architecture. (www.omg.org/mda)

Appendix A: Mapping Templates
A.1. Pair template

Package Pair(A,B)

class <<A>> end

class <> end

class <<A + "x" + B>>
<<A>> : Pair::<<A>>;
<> : Pair::<>;

end
end

A.2. Relation Template

package Relation(R,A,B) extends (Relations::Pair)(A,B)
class <<R>>

pairs : Set(Relation::<<A + "x" + B>>) ;
dom : Set(Relation::<<A>>) ;
ran : Set(Relation::<>) ;

<<"lookup" + A>>(b:Relation::<>):Set(Relation::<<A>>)
self.pairs->select(p | p->at(1) = b)->collect(p | p->at(0))

end

<<"lookup" + B>>(a:Relation::<<A>>):Set(Relation::<>)
if self.pairs = Set{}

then Set{}
else

self.pairs->select(p | p->at(0) = a)->collect(p | p->at(1))
endif

end

image():Set(Relation::<>)
self.pairs->collect(p | p->at(1))

end

inverseImage():Set(Relation::<<A>>)
self.pairs->collect(p | p->at(0))

end

isFunctional():DataTypes.Boolean
self.pairs->forAll(p | self.pairs->forAll(q |q->at(0) = p->at(0)
implies p=q))

end

isInverseFunctional():DataTypes.Boolean
self.pairs->forAll(p | self.pairs->forAll(q | q->at(1) = p-
>at(1) implies p=q))

end

isInjection():DataTypes.Boolean
self.isFunctional() and self.isInverseFunctional()

end

isOnto():DataTypes.Boolean
if self.image() = self.ran

then true
else

false
endif

end

isTotal():DataTypes.Boolean
self.inverseImage()=self.dom

end

isBijection():DataTypes.Boolean
self.isInjection() and self.isOnto()

end
end

end

A.3. Map Template

package Map(R,A,B) extends (Relations::Relation)(R,A,B)

class <<R>>
<<"to" + B>>(a:Map::<<A>>):Map::<>

let cached = self.<<"lookup" + B>>(a)
in

if not cached->isEmpty
then cached.selectElement()

else
let b = Map::<>.new(Seq{})
in

self.pairs := (self.pairs->including(Seq{a,b})) []
b

end
endif

end
end

end
end

A.4. ContainerMap Template

package ContainerMap (containerRelation, Container1, Contained1,
ContainedRelation, Container2, Contained2)

extends
(Templates::Contains)(Container1,Contained1),
(Templates::Contains)(Container2,Contained2),
(Relations::Map)(containerRelation,Container1,Container2),
(Relations::Map)(ContainedRelation,Contained1,Contained2)

class <<containerRelation>>
<<ContainedRelation>> : ContainerMap::<<ContainedRelation>> ;

init(s:Seq(Instance)):Object

self.<<ContainedRelation>>:=(ContainerMap::<<ContainedRelation>>
.new(Seq {})) [] self end

<<"to"+Container2>>(a:ContainerMap::<<Container1>>):ContainerMap::
<<Container2>>
let b = super.run(a)
Contained2s = a.<<Contained1 + "s">>->collect(b |

self.<<ContainedRelation>>.<<"to" + Contained2>>(b))
in b.<<Contained2 + "s">> := Contained2s [] b end

end
end

end

A.5. DelegationInheritanceMap Template

package DelegationInheritanceMap (GElem1, generalisableRel, GElem2,
subclassRel, subClassingElem, subTypeRel, subTypingElem,
GElem2subTypingElemRel)

extends
(Relations::Map)(generalisableRel,GElem1,GElem2),
(Relations::Map)(subclassRel,GElem1,subClassingElem),
(Relations::Map)(subTypeRel,GElem1,subTypingElem),
(TemplateLibrary::Generalisable)(GElem1),
(TemplateLibrary::Generalisable)(subTypingElem),
(TemplateLibrary::RelatedManyToMany)(GElem2,GElem2subTypingElemR

el,subClassingElem)

////Each class in UML maps to a class in Java. It displays a bijective
relation

class generalisableRel
inv isBijective

self.isBijective() = true
fail: "java model not proper"

end

end

//// The elements of the domain are UMLclasses
////elements of range are Java attributes.
////According to the figure 3, a UML class is associated with a java
attribute because of the delegate relation. The class is associated
with an attribute only if the umlclass has at least one parent. There
are always root classes in any model hence it is partial function.

class subclassRel
inv isPartialInjective

self.isInjective() = true and self.isTotal = false
fail: "java model not proper"

end
end

<<"to" + GElem2>>(a:DelegationInheritanceMap::<<GElem1>>)
if (a.parents)
then

super.run(a)
endif

end

////To capture the subtyping information every umlclass gives rise to
a javaInterface. The java interface extends the interface derived from
the parent of the UMLclass as shown in figure 3. It is bijective.

class subTypeRel
inv isInjective

self.isInjective() = true
fail: "java model not proper"

end
end

end

