
ELECTRONIC WORKSHOPS IN COMPUTING

Series edited by Professor C.J. van Rijsbergen

D. J. Duke , University of York, UK and A.S. Evans, University of Bradford,
UK (Eds)

2nd BCS-FACS Northern Formal Methods Workshop

Proceedings of the 2nd BCS-FACS Northern Formal Methods
Workshop, Ilkley, 14-15 July 1997

Foundations of the Unified Modeling
Language
A.S. Evans and T. Clark

Published in collaboration with the
British Computer Society

©Copyright in this paper belongs to the author(s)

Foundations of the Unified Modeling Language

Tony Clark, Andy Evans
Formal Methods Group,

Department of Computing,
University of Bradford, UK

Abstract
Object-oriented analysis and design is an increasingly popular software development method. The Unified Modeling
Language (UML) has recently been proposed as a standard language for expressing object-oriented designs. Unfor-
tunately, in its present form the UML lacks precisely defined semantics. This means that it is difficult to determine
whether a design is consistent, whether a design modification is correct and whether a program correctly implements
a design.

Formal methods provide the rigor which is lacking in object-oriented design notations. This provision is often
at the expense of clarity of exposition for the non-expert. Formal methods aim to use mathematical techniques in
order to allow software development activities to be precisely defined, checked and ultimately automated. This paper
aims to present an overview of work being undertaken to provide (a sub-set of) the UML with formal semantics. The
semantics will facilitate the use of the UML in the software development process by allowing development steps to
be defined and checked.

1 Introduction

The ‘Unified Modeling Language’ (UML) [2] is a language for modelling object systems based on a unification of
Booch, Rumbaugh and Jacobson’s popular object-oriented modeling methods. It is rapidly emerging as a de facto
standard for the modelling of such systems. The UML provides many of the diagrammatical modelling techniques
found in most modern object methods, such as object diagrams, state diagrams and object interaction diagrams. How-
ever, the aim of the UML is to provide a standardised, conformant language, which can be used in preference to
the plethora of notations, diagrams, and other presentation conventions that have emerged in the object-oriented and
structured methods domain in recent years.

There are good reasons for believing that the UML may achieve its aims of providing a standard notation for OO.
Already, there is significant and widespread momentum growing within industry towards its adoption: most CASE
vendors are already tailoring their tools to support it, whilst much of the new OO literature is seeking to make itself
“UML compliant”. In addition, the UML has recently been submitted to the Object Management Group as a candidate
for standardisation, where it is widely believed it will be accepted.

One interesting aspect of the UML, is the recognition by its authors of the need to provide a precise description
of its semantics. Their intention is that this should act as an unambiguous description of the language, whilst also
permitting extensibility so that it may adapt to future changes in object-oriented analysis and design. The approach
used to describe these semantics is to give a meta-model of the UML. Thus, UML notations are used to describe UML
semantics. In the present version (1.0), the meta-model consists of five core UML concepts: Common concepts (basic
types); Structural Elements (types and relationships); Behavioural Elements (state machines and interactions); View
Elements and Standard Elements.

By recognising the importance of formality the UML authors have clearly made a revolutionary step forward; never
before has rigour played such an important part in the development of an industrial modelling method or language.
Given the standing of the UML and its authors, not only are the semantics likely to be widely used and accepted as a
consequence, it also likely to encourage the future use of such descriptions as a part of all method development.

Another advantage of providing the UML with a formal description is that may also provide the basis for the
introduction of other valuable verification and validation techniques previously only enjoyed by formal specification

2nd BCS-FACS Northern Formal Methods Workshop 1

Foundations of the Unified Modeling Language

notations such as Z, B and VDM. These are some of the ways in which the UML could benefit from a formal founda-
tion:

Clarity : To act as a reference - if at any point, there is confusion over the exact meaning of a particular UML
component, reference can be made to the formal description to verify its semantics;

Equivalence and Consistency- To provide an unambiguous basis from which to compare and contrast the
UML with other techniques and notations, and for ensuring consistency between its different components

Extendability : To enable the soundness of any extensions to the UML to be verified (as encouraged by the
UML authors);

Refinement: To allow correctness of design steps in the UML to be verified and precisely documented. In
particular, it should enabledesign patterns1 to be checked for correctness. Once checked, a particular pattern
can be used again and again without having to re-check it;

Proof: To allow justified proofs and checks of important properties of a system described in the UML, for
example safety and liveness properties. Within an industrial context, this could form a basis for automatic proof
techniques.

Unfortunately, the current UML semantics are not sufficiently formal to realize many of these benefits. Although
much of the syntax of the language has been defined, and some static semantics given, dynamic semantics are mostly
described using lengthy paragraphs of often ambiguous informal English, or are missing entirely. Furthermore, little
consideration has been paid to important issues such as proof, compositionality and rigorous tool support. Another
problem is the large scope of the language, all of which must be dealt with before the language is completely defined.

Given the UML’s intended role as a modelling notation standard it is imperitive that its has a well-founded seman-
tics. Only once such a semantics is provided can the UML be used as a rigorous modelling technique. Moreover, the
formalization of UML constructs can lead to a deeper understanding of OO concepts in general, which in turn can
lead to the more mature use of OO technologies. Such insights can be gained by exploring consequences of particular
interpretations, and by observing the effects of relaxin and/or tightening constraints on semnatic models.

The aim of this paper is to present recent work, embarked on in a collaborative project, on the formalization of the
UML. Part of the long term objectives of this project are to develop areference manualfor the UML. This will give
a precise description of core components of the language and provide inference rules for analyzing their properties.
This will then form a foundation for answering more general questions regarding the rigorous use of the UML by:

� providing a set of sound rules for manipulating UML diagrams in a precise and formal way;

� determining when a particular UML diagram is a valid refinement of another diagram;

� permiting non-trivial proofs of UML diagrams. These proofs should be automat-able using a model checking
tool or theorem prover;

� offering compliancy with other emerging industry standard models, such as the Core Object Model.

This paper presents an initial attempt to provide a suitable formal model for the UML based on the identification of
some of the core UML concepts. The next section begins by exploring and introducing the UML in an informal way to
determine its underlying semantic foundation. A formal description is then presented in section 3. Issues surrounding
the development of the formal model are then presented and other work reviewed.

2 An Informal Tour of the UML

The Unified Modelling Language (UML) is defined as a collection of graphical models which express different prop-
erties of an object-oriented design. The two most important types of model are thestructuralandbehaviouralmodels.

1Design patterns are characteristic structures of classes or objects which can be reused to achieve design goals in a very elegant manner.

2nd BCS-FACS Northern Formal Methods Workshop 2

Foundations of the Unified Modeling Language

2.1 Structural Models

The structural model expresses information about the structure of classes and objects (instances) within the system,
such as their relationships to one another, their attributes and their constraints. The most important structural model,
and indeed the central model of the UML, is theclass diagram. A class diagram is a two dimensional graph containing
the following components:

� a collection oftypesor classes2 from which a set of object instances can be drawn.

� a set of distinctvaluesthat the instances of a class may take.

� descriptions of the operations owned by classes and their parameters.

� a set ofassociationrelationships which link and constrain the cardinality of instances.

� generalisationhierarchies between classes or types. This relationship allows new classes to be defined as ex-
tensions of existing classes. A class which is extended is referred to as asuper-classand the class which is the
extension is referred to as itssub-class. Instances of a class may also be viewed as instances of its super-classes.

The following is given as a small example of a class diagram, in which the classesPolygon; PointandGraphicsBundle
are related to each other by two associations, one of which is named. Here, the named associationContainsrelates
exactly one instance ofPolygonto three or more (ordered) instances ofPoint. The unfilled diamond denotes that the
association is anaggregationand represents a whole/part relationship between the classes. The other association is a
composite association, which once created cannot be changed.

Essentially, a class diagram serves to constrain the possible collection of legal system configurations. Any program
which implements the design must be in a legal system configuration at all times.

2.2 Behavioural Models

The Behavioural model expresses information about thedynamicbehaviour of the program which is being designed.
Typically, this model describes behaviour in terms of state change and message passing, which must occur in response
to some system event. There are two important types of dynamic model:collaboration diagramsandstate transition
diagrams; together these diagrams express the required behaviour of the system.

A collaboration diagram expresses information about themessage interactionswhich occur betweenobject in-
stancesas viewed by an external observer. It is an external view because it does not define the internal state changes
which occur at each of the collaborating objects. Typically, a collaboration diagram will express a sequence of mes-
sages which will occur due to one of the participating objects receiving a particular message. Messages may only be
sent between objects which are somehow related. For example, the following diagram gives an example of a collabo-
ration diagram for part of a diagram editor. Here, messages between instances are denoted by arrows. The messages
that implement an operation are numbered along with the operation they implement.

2The distinction made between types and classes in the UML is that a class represents a “realisation” of a type. However, for our purposes it is
sufficient to assume that types and classes are semantically equivalent - a class inherits all properties of a type. The terms ‘instances’ and ‘object
instances’ are also used interchangebly.

2nd BCS-FACS Northern Formal Methods Workshop 3

Foundations of the Unified Modeling Language

A state transition diagram expresses information about the internal state changes which occur at a particular class
of objects. At any instant in time, an object is in a particular state and may receive a message from another, related,
object. The particular state and message will determine the action which is taken by the receiver and its new state.
Again, the following diagram gives a simple example a typical UML state diagram with message passing:

2.3 Core Semantics

Given the above models, it is possible to informally identify some of the core components of the UML model. These
will be examined in a more formal context later in the paper. At the core of a UML design is the description of a
collection of classes, their instances and the relationships between them. These relationships will correspond to a
number of distinct components of a concrete implementation including:

� the relationship between an object instance and its value.

2nd BCS-FACS Northern Formal Methods Workshop 4

Foundations of the Unified Modeling Language

� the relationship between a class and its instances and a class and its super-classes.

� the relationship between instances which are involved in an association

� the relationship between a class and the operations it offers

� the relationship between an operation and its signature (parameters)

� the relationship between a class and its behaviour. This can be expressed in terms of the effect the operation has
on the values of its instances and the messages it passes.

Legal states are determined by a number of constraints which prevent a state from expressing an impossible situa-
tion. These constraints are:

1. messages may only be sent between objects which are related. Intuitively, this corresponds to the restriction
that, in order for one object to send another object a message, the sender must be able to reference the target.
The reference may occur through an attribute, through a method parameter, or though an association.

2. all objects must be the instance of at least one class. An object may be the instance of multiple classes when
they are related by inheritance.

3. all instances of the same class must have values belonging to the set of possible values of the class.

Overall, UML designs are inherently state based. Each state contains information about object instances and their
current attribute values. As execution proceeds, the values of the attributes may change as a result of messages being
passed between objects and operations being executed. A state change, or transition, can occur as a result of the
following:

� the value of an object is changed. In this case the relation defining the object’s current value must be changed.

� a message arrives at an object. In this case there may be parameter values which are related to the target of the
message for the duration of the message activation.

� an object is created. In this case the object must be related to its initial attribute values.

� an object is destroyed. In this case the object must be removed from all the relations in which is participates.

� a reply is sent. In this case the parameter values are (possibly) no longer related to the target of the message and
the sender of the message becomes related to the reply value.

3 Formalization

This section present work currently being completed by the group on developing a usable formal model for the UML.
Its aim is to answer the question: what is the simplest, smallest and most convincing formal model, that captures the
essential properties of the UML? The model presented is hopefully a step in this direction. It is intended to make it
small and simple by recognising that many of the modelling techniques used by the UML simply present different
‘views’ of the same underlying object model. For example, object interaction diagrams simply capture the order of
operation invocation between object instances.

The specification presented here is anextensionof the Core Object Model specification developed by Houston and
Josephs [8], which has been written in Z [13]. This has been chosen because it captures a precise description of the
Object Manamgement Group’s emerging standard for objects. Assuming the UML is accepted for standardisation by
the group, it is likely that compliancy will be required between the core model and the UML meta-model. Thus, by
showing compliancy with this important industry standard it is hoped to make the UML model convincing.

Houston’s and Joseph’s model is essentially a description of the syntax of a simple object model. It imposes a
number of requirements on compliant systems. Such a system must be able to maintain a class library in which:

2nd BCS-FACS Northern Formal Methods Workshop 5

Foundations of the Unified Modeling Language

� there are a number oftypesavailable to the system;

� operationsare associated with each type;

� the types form ahierarchy;

� inheritanceof operations from supertypes takes places

As mentioned above, it is the intention of our work to describe acoreUML model as opposed to every aspect of
the UML meta-model. Based on the informal semantics identified in the previous section, the following additional
requirements are identified. These require that:

� each type is associated with a set of possiblevalues. In the case of object types these values will represent the
objectinstancesof the type.

� types are related byassociations.

� operations are associated withbehaviours, and also permit message passing.

Each of the above concepts will be considered in turn. The result will be aZ schemafor the Core UML Model that
includes seven schemas that correspond to the above concepts.

CoreUMLModel
Types
Instances
Values
Operations
Behaviours
Associations
Hierarchy
Inheritance

The overall approach to describing thesemanticsis to give a denotation to each of the concepts in Z. This will
facilitate the formalization of important concepts such as behaviour, which is modelled as a set of state changes
(transitions).

Taken together these concepts broadly capture the intent of the following parts of the UML Semantics document:
section 4 (Common Types); sections 5 and 6 (Structural Elements - Types, Classes, Instances and Relationships);
section 11 (Behavioural Elements: Interactions).

3.1 Types

First, the object types that are available are specified as presented in [8].
It is assumed that there is a given set:

[TypeName]

from which the names of all types can be drawn.
The types available in the model consist of object types, non-object types (e.g. numbers) and abstract types. To

express this three finite sets of typeTypeNameare declared in the schemaTypes:

Types
oTypes; nTypes; abstract: F TypeName

disjoint hoTypes; nTypesi
abstract� oTypes

The two constraints in the predicate-part of the schema state that:

2nd BCS-FACS Northern Formal Methods Workshop 6

Foundations of the Unified Modeling Language

� an object type cannot have the same name as non-object type.

� any abstract types must be object types.

3.2 Instances

Having introduced types, the meaning of an instance can be described.
It is assumed that there is a given set:

[Instance]

from which the identities of all instances can be drawn.
An instance is an instantiation of a type, and has a unique identity:

Instances
oTypes: F TypeName
oInstances: F Instance
instances: TypeName 7! F Instance

dom instances= oTypesS
(ran instances) = oInstances

8 i; j : dom instancesj i 6= j �
instances(i) \ instances(j) = ;

The constraint of the schema states that each instance is associated with exactly one type.

3.3 Values

A type defines the values of its constiuent instances. The value of an instance consists of the value of its attributes at
some point in time.

To express this the following given sets are assumed:

[Attribute;V]

from which the set of all attributes and values of interest can be drawn.
A Valueassociates attributes to values:

Value== Attribute 7 7! V

The value of each instance must belong to those defined for its owning type:

TypeValues
Instances
tValues: TypeName 7! F Value
iValue : Instance 7! Value

dom tValues= oTypes
dom iValue= oInstances
8 t : oTypes�

fi : instances(t) � iValue(i)g � tValues(t)

Of these values, some will represent the set of initial values that a particular object type may be permitted to have
when created:

2nd BCS-FACS Northern Formal Methods Workshop 7

Foundations of the Unified Modeling Language

InitialValues
TypeValues
tInitial : TypeName 7! PValue

dom tInitial = oTypes
8o : oTypes�

tInitial(o) � tValues(o)

TheValuesof the model are described by the conjunction of the above schemas:

Valuesb= TypeValueŝ InitialValues

3.4 Operations

The given-set:

[OpName]

is assumed, from which the names of all operations can be drawn.
The signature of an operation consists of the operation’sname, the types of itsparametersand the types of its

returnedvalues. This is the same as in [8].

Signature
name: OpName
parameters; returned: seqTypeName

It is now possible to define a schemaOperations1. This expresses the fact that every object type provides an
interface, consisting of a set of signatures:

Operations1
oTypes: F TypeName
interface: TypeName 7! F Signature

dom interface= oTypes

Unlike the Core Object Model, the UMLdoespermit overloading of operations, and therefore there are no further
constraints required oninterface.

The behaviour of an object type is now described as an extension to the Core Object Model. Object behaviour is
modelled as a set of transitions that denote the progression of an object from one value to another. Transitions consist
of a 6-tuple consisting of input and output parameters, an operation name, a transition from a before value to an after
value and a message denoting the operation’s external interaction.

It is firstly assumed there is the given-set:

[Message]

from which the set of all messages can be drawn. No further detail regarding the structure and meaning of messages
are given here.

Transition
in; out : seqValue
opname: OpName
before; after : Value
message: Message

2nd BCS-FACS Northern Formal Methods Workshop 8

Foundations of the Unified Modeling Language

The following schema describes the relationship between an object type and its behaviours:

Operations2
Values
interface: TypeName 7! F Signature
behaviour: TypeName 7! PTransition

dom behaviour= oTypes
8o : oTypes�

8 t : behaviour(o) �
ft:before; t:afterg � tValues(o)

8o : oTypes�
8 s : interface(o) �

ran(s:parametersa s:returned) � oTypes

The two constraints state that:

� each transition of an object type must belong to its set of possible values.

� the signature of an operation must contain valid types.

The completeOperationsschema is specified thus:

Operationsb= Operations1 ^ Operations2

4 Relationships

The UML describes two types of relationships:associations, which model relationships between instances of types
andgeneralizations, which model supertype/supertype hierarchies. Although the UML supports n-ary associations
only binary associations will be considered here.

4.1 Binary Associations

It is assumed that there are the given sets:

[AssociationName; RoleName]

from which the names of associations and roles can be drawn. The following enumerated is introduced to represent
boolean values:

Bool ::= t j f

A role connects the end of an association to a type:

Role
name: RoleName
owner: TypeName
multiplicity : PN

isAggregate; isChangeable: Bool

isChangeable= t) isAggregate= t

Each role has a name, an owning type and multiplicity which denotes the range of allowable cardinalities that an
association role may have. A multiplicity is a subset of the natural numbers. The boolean valuesisAggregateand

2nd BCS-FACS Northern Formal Methods Workshop 9

Foundations of the Unified Modeling Language

isChangeableindicate whether the role represents the whole (owning) part of a aggregation or composite aggregation.
The constraint of the schema states that a composite aggregation is also an aggregation, but not necessarily the reverse.

The schemaAssociationsexpresses the relationship between associations and roles.

Associations1
Values
associations: F AssociationName
aRoles: AssociationName7! seqRole

dom aRoles= associations
8a : associations�

#(aRoles(a)) = 2 ^

fn : N � (aRoles(a)(n)):ownerg � oTypeŝ
#fn : N j (aRoles(a)(n)):isAggregate= tg � 1

The constraints state that:

� An association has exactly two roles (as required by a binary association)

� Roles must be owned by object types.

� At most one role can belong to an aggregation.

The meaning of an association is a relation between object instances:

AssociationsMeaning1
Associations1
aValues: AssociationName7! Instance$ Instance

dom aValues= associations
8a : associations; r1; r2 : Rolej

r1 = (aRoles(a)(1)) ^
r2 = (aRoles(a)(2)) �

0 2 r1:multiplicity) ran(aValues(a)) � instances(r2:owner) ^
0 =2 r1:multiplicity) ran(aValues(a)) = instances(r2:owner) ^
0 2 r2:multiplicity) dom(aValues(a)) � instances(r1:owner) ^
0 =2 r2:multiplicity) dom(aValues(a)) = instances(r1:owner)

The second constraint of the schema describes the relationship between the instances it associates and the instances
of the types it links. If the multiplicity of particular role contains a ‘0’ then it is optional whether the instances of the
opposite role may participate in the association. If the multiplicity is conditional (contains no ‘0’) then the instances
of the opposite role must participate in the association.

The second schema describes the semantic implication of associations in terms of the instances they relate.

2nd BCS-FACS Northern Formal Methods Workshop 10

Foundations of the Unified Modeling Language

AssociationsMeaning2
AssociationsMeaning1

8a : associations�
aValues(a) 2

ff : Instance$ Instancej
(8 x : dom f �
#fy : ran f j x f yg 2 (aRoles(a)(2)):multiplicity) ^
(8 y : ran f �
#fx : dom f j x f yg 2 (aRoles(a)(1)):multiplicity)g

8a : associations; n : N �

(aRoles(a)(n)):isChangeable= t)
(aRoles(a)(n)):multiplicity = f1g

The first constraint of the schema is just a way of saying that the multiplicity of an association constrains the
number of object instances which may participate in it. The second constraint captures the requirement made in the
UML that the multiplicity of a composite aggregation must equal one.

The schemaAssociationsis the conjunction of the above schemas:

Associationsb=
Associations1 ^
AssociationsMeaning1 ^
AssociationsMeaning2

4.2 Hierarchy

There is a distinguished type calledObject:

Object: TypeName

The schemaHierarchyexpresses the supertype relationship between object types, and is that given in [8]:

Hierarchy
oTypes: F TypeName
oSuperTypeOf: TypeName$ TypeName

oSuperTypeOf2 (oTypes$ oTypes)
oSuperTypeOf� (j fObjectg j) = oTypes
disjoint hoSuperTypeOf+; oSuperTypeOf+�i

The constraint of the schema are just a way of saying that the collection of object types forms a directed acyclic
graph with rootObject.

4.3 Inheritance

Finally, a type inherits all the operations supported by its supertypes:

2nd BCS-FACS Northern Formal Methods Workshop 11

Foundations of the Unified Modeling Language

Inheritance
oTypes: F TypeName
oSuperTypeOf: TypeName$ TypeName
interface: TypeName 7! F Signature

8S; T : oTypes�
S 7! T 2 oSuperTypeOf̂
(interface(S)) � (interface(T))

It is not clear from the UML whether a type also inherits all the behaviour supported by its supertypes. If so, this
could be written as follows:

Inheritance1
Inheritance
Values
behaviours: TypeName 7! PTransition

8S; T : oTypes�
S 7! T 2 oSuperTypeOf̂
(behaviours(S)) � (behaviours(T))

4.4 Compatible Extensions

A key aim of the UML is that it should permit “extensibility”. However, it is not made clear how an extension to the
UML can be proven valid. In [8] the following simple law for proving that one object model is a compatible extension
to another is given:

OM ` ExtendedOM� OM

Every type structure that meet the requirement of the object modelOM must meet those of the extended object
model. ExtendedOMis assumed to declare everything thatOM does, but the constraints ofOM may be relaxed and
new concepts added.

Clearly, the UML model presented in this paper can be proven to be a valid extension of the Core Object Model,
as only new concepts have been added and one property relaxed (overiding).

Similarly, once our Core UML Model is complete to our satisfaction, it will be possible to use it to validate further
extension to the UML as they emerge. In this case, the property to be proved will be:

CoreUMLModel̀ ExtendedUMLModel� CoreUMLModel

5 Formalization Strategies

The formalization strategy presented in this paper is one of two approaches that are being investigated in relation to
the UML. The approach adopted in this paper is aimed at describing the UML at themeta-level. The advantages of
this approach is that it will be particulary useful for investigating ambiguities in the UML meta-model and as a means
of developing general rules and techniques for constructing, manipulating and refining UML diagrams.

The other approach we are investigating is thetranslationalapproach [6]. This attributes a semantics to each
UML diagram by translating it to a formula in a modal logic. Since the modal logic has a well defined semantics, the
translation provides a semantics for each diagram. Proof techniques have been developed for modal logics and can
therefore be applied to the resulting formula. This approach will be useful for proving properties about the systems
expressed by UML diagrams (as opposed to properties of the UML diagrams themselves).

Clearly, the two approach express common information; although at this stage we believe that the approaches are
sufficiently different in nature to warrant investigating both.

2nd BCS-FACS Northern Formal Methods Workshop 12

Foundations of the Unified Modeling Language

Finally, another approach we are investigating is the use of diagrams to directly express mathematical properties
of systems.

6 Conclusion

This paper has presented our motivation for formalizing the Unified Modeling Language (UML). The objective of
our efforts is to make the UML a precise modeling notation, which can be used as the basis for rigorous software
development. The benefits of this are:

� It will lead to a deeper understanding of OO concepts, which can in turn lead to more mature use of technologies.

� The UML models become amenable to rigorous analysis.

� Rigorous refinement techniques can be developed.

As an initial step in this direction, we have identified and formalized some core components of the Unified Mod-
eling Language (UML). By concentrating on a small subset of the UML, we aim to develop a more understandable
and manageable description of the language. A Z specification of some of the key components of aCore UML Model
has been presented, based on an extension of the Core Object Model. Of particular benefit, is the ability to prove that
future extensions of the UML are valid extensions of the current meta-model. It is intended to further enhance the
specification to cover other important aspects of the UML, such as message passing. Already, a number of ambiguities
and omissions have been found in the UML document during the development of the specification, which we are
currently in the process of documenting.

There is considerable research interest in unifying formal and object-oriented development methods [11]. For
example, [7] shows how message flow diagrams (equivalent to UML collaboration diagrams) can be given a semantics
in terms of partial orders on events; [4] shows how the specification language Larch can be used to give a formal
semantics to static object diagrams; and, [10] shows how LOTOS can be used to produce an executable object-oriented
design.

All the above work is very important in developing a more precise understanding of emerging software devel-
opment techniques and concepts. However, much of it is not particularly accessible to practitioners who have little
knowledge of discrete mathematics. Instead, it is important that the theory is expressed in a language that is accessible
to practitioners. In the case of the UML, the specifications presented here should be used to help clarify the emerging
UML meta-model.

We intend to continue the work by developing case studies on UML designs and their formal counterparts. In
particular, it is recognized that a compositional semantics will be needed in order to develop practical means of
analysing UML models. Work is also currently ongoing on the development of a reference manual for the UML,
which we hope will provide an powerful reference source and tool for users of the UML in industry.

References

[1] J. Bicarregui, K. Lano, T. Maibaum. Towards a Compositional Interpretation of Object Diagrams. Technical
Report, Department of Computing, Imperial College of Science, Technology and Medicine, 1997.

[2] G. Booch, J. Rumbaugh, I. Jacobson. The Unified Modeling Language 1.0, Technical Report, Rational Software
Corporation, 1997.

[3] G. Booch. Object-Oriented Analysis and Design with Applications, 2nd ed. Benjamin/Cummings Publishing
Company, Inc. 1994.

[4] R. Bourdeau, B. Cheng. A Formal Semantics for Object Model Diagrams. IEEE Transactions on Software Engi-
neering 21(10) 1995.

2nd BCS-FACS Northern Formal Methods Workshop 13

Foundations of the Unified Modeling Language

[5] A. Bryant, A. Evans, A formal basis for specifying object behaviour, In object-oriented behavioural specifica-
tions, chpt 2, eds H. Kilov and W. Harvey, Kluwer, 1996.

[6] A.Clark, A.Evans. Foundations of the UML with Modal Logic. Presented at Workshop on ‘Making OO Methods
More Rigorous’, Imperial College, 24th June, 1997.

[7] W. Citrin, A. Cockburn, J von Kanel, R. Hauser. Formalized Temporal Message Flow Diagrams. Software Prac-
tice and Experience 25(12) 1995.

[8] I. Houston and M. Josephs. The OMG’s Core Object Model and compatible extensions to it, Computer Standards
and Interfaces, vol 17, nos 5-6, 1995.

[9] I. Jacobson. Object-Oriented Software Engineering – A Use Case Driver Approach. Addison-Wesley, 1992.

[10] A. Moreira, R. Clark. Adding Rigour ro Object-Oriented Analysis. Software Engineering Journal, September
1996.

[11] A. Ruiz-Delgado, D. Pitt, C. Smythe. A Review of Object-Oriented Approaches in Formal Specification. The
Computer Journal, 38(10), 1995.

[12] J. Rumbaugh, Object-Oriented Modeling and Design, Prentice Hall, 1991.

[13] J.M.Spivey, The Z Reference Manual, Prentice Hall, 1992.

[14] J. Woodcock, J. Davis. Using Z Specification, Refinement and Proof. Prentice Hall, 1996.

2nd BCS-FACS Northern Formal Methods Workshop 14

