20/11/01

A Translational Semanticsfor UML

Tony Clark
Desmond D’ Souza

1.0 Overview

We propose a very small semantic domain for UML and show how all syntactic con-
structs can trandate to this domain. The trandations are layered thereby supporting the
incremental definition of new modelling constructs whose meanings can be understood
in terms of lower level modelling constructs.

The aim isto show how an approach that extends both syntax and semantics by adding
new entities by specialization can co-exist with atrandational approach. Thisisimpor-
tant for several reasons.

» Consistency and understandability: The larger language can be understood in terms
of asmall core. UML 2.0 might turn out to be a very large language, even without
the scores of profilesthat are waiting in the wings.

* Model interchange: atool which natively supports more sophisticated language con-
structs can still exchange models with atool which understands only the simpler
translated constructs.

» Extensibility: New language constructs, whether “lightweight” or “heavyweight”,
can be defined as (@) brand new elements; (b) elements that trandate into the base
language, or (c) both, so atool can choose to use the most appropriate one.

1.1 Tableof contents

IO B @ V7= V1= SRRSO 1
20 SEMANLIC DOMAIN.......ccoiiieie ettt e e e eesraesr e e e e s e eneenaenres 1
30 A SMPIELANGUAGEccueeeee ettt ettt et enes 2
4.0 UML FEELUIES.......eie ittt sttt st e s e nnne s 2
41 L0 = 1SS TSRS 2

411 ClasS AHIDULES........cceeiiecee et er e er e e enaes 3

412 SEACINVANTANESccceiciee et s sttt r e en e e ens 4

G T O - 4 o] TSR 4

4.1.4 DYNAMIC INVANTANES......ccieeieieeie sttt e e se s e sae v s sraenaesreenen 5

415 Class CONSLANES........cciieuiiireeeie et et st et sae st ssaesraeseesteesaesseese e e eneenesneans 6

4.2 L 01 1= 7

N R 0 01 = o | 1= TSSO 7

422 Package AttHDULES..........coi e 8

423 SEACINVANTANESccceeiee e sttt s e ra e ere s 8

R @ - 1 o] 0TSSR 9

425 DYNamMIC INVANTANES.......cccoieiirieceirtie et et sr s sreenaesreenes 11

4.3 L@ o= o PSS 11

44 Package and Class EQUIVAIENCES...........ccoeiiiiierieeseiecie sttt sttt se e enaens 11

45 SEAE MACNINES......coiti ettt e ea e e e st be e e e ae e eabeeraesaaeenraenns 12

4.6 Collaboration DIAQraIMSc.ueceeiiie e e et et eet e sae s e s e sre e e e e e e e ens e e e 13

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 1

20/11/01

47 SEOUENCE DIAGIAIMSccueiiieeee ettt ettt s te et e e e e e e sr e see et e eraesaeeseesaeenaennes 13
438 Package SPeCialiZationcucue e cciiiece sttt 13
49 Q=] 00] LI =PSRRI 13

2.0 Semantic Domain

A UML model for:
* Object a container of dotswith an id and aclassifier (class).
» Sot anamed object.
» ObjectStep between two objects with the sameid.
* ObjectFilmStrip a container of object steps.
» Snapshot a container of objects with an id and a classifier (package).
» SnapshotStep between two snapshots with the same id.
» SnapshotFiImStrip a container of snapshot steps.
For each semantic domain element thereis a set of the freely constructed model ele-
ments, for example: Objects and Snapshots.

The following isamodel of the semantic domain. Some features have been simplified,
for exampleif we have amodel of name spaces then names (and possibly object identi-
ties) may be defined differently. Slots could have corresponding SotSep and SotFilnm-
Srip classes. These issues will get tidied up when this model is generated from
templates.

-value
-pre |
ObjectFilmStrip ObjectStep Object
-Post g Integer
* * *
* Slot
+name : String
-pre
SnapshotFilmStrip SnapshotStep Snapshot
-Post g Integer *
*

The above model does not show how objects are classified. All objects are linked to
their classifier via an association. The end linked to the classifier is named ‘of . In the
proposed model, since everything is an object this association goes from Object to
itself (or to a suitably specialized version of itself). Similarly, steps are linked to opera-
tions by alink named ‘ of .

The above model is incomplete. In particular it does not show the properties of film-
strips. Thisisbecause thelist of properties has yet to be finalised however we are likely
to have an initia starting state (possibly more than one?) for afilmstrip; given astate in
afilmstrip we can ask for all possible subsequent states; and given a step we can ask
for all subsequent steps.

Every object has a method *isKindOf’. The result 0.I1sKindOf(C) where o is an object
and Cisaclassifier (also an object) istrue when o.of = C or when C inherits from o.of.
The method is not defined here (but should not cause any problem).

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 2

20/11/01

3.0 A Simple Language

Objects are represented by an object expression (like an instance diagram element):

object :C name = exp; hame = exp; ...; hame = exp end

Expressions may also be OCL. All expressions denote semantic domain elements. C is
the classifier of the object (the value of the slot named ‘of’). C is an expression that
denotes an object.

4.0 UML Features

This section shows how many static and dynamic UML features can be trandated to
expressions in the simple language. In al cases we assume a simple textual language
for expressing models.

4.1 Classes

A classisan object that expresses structural and behavioural information. By default, a
class object is an instance of the meta-class named Class. The dynamic instances of a
default type of class are filmstrips that express steps between objects that are static
instances of the class.

classC C=
end object :Class
name="‘C’;
staticlnstances =
Objects->select(o |
0.isKindOf(C))
end

The class definition on the left denotes an object of type Class on the right with the
given name. All static instances of C are objects whose classifier is C. The method
‘isKindOf” permits the most specific classifier of o to be a sub-class of C.

4.1.1 Class Attributes

Attributes (aka variables) define structural features of classes. An attribute definition is

classC C=
X:Integer object :Class
end name="‘C’;

staticlnstances =
Objects->select(o |
0.isKindOf(C) and
o.glots.names->includes(‘ x’) and
0.X.isKindOf(Integer))
end

acongtraint that the instances of the class should all have the slot whose valueiis of the
appropriate type. In addition to the static instances, a class will have a slot that con-

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 3

20/11/01

tains all its attributes. Since this is quite verbose and mechanical it is shown once
below and then elided from the following examples.

classC C=
X:Integer object :Class
end name="‘C’;

attributes = Set{
object :Attribute
name = ‘x’;
type = Integer;
class=C
end;
staticlnstances =
Objects->select(o |
0.isKindOf(C) and
o.glots.names->includes(‘ x’) and
0.X.isKindOf(Integer))

end

4.1.2 Satic Invariants

A static class invariant defines a property that must hold for all static instances of the
class. A static instance of aclassis an object.

classC C=
X : Integer object :Class
static name="'C’;
self.x > 10 staticlnstances =
end Objects->select(o |
0.isKindOf(C) and
o.glots.names->includes(‘x’) and
o0.a.isKindOf (Integer) and
0.x >10)
end

A Trandational Semantics for UML 20 November 2001 (Draft in Progress)

20/11/01

4.1.3 Operations

Class operations are named. Other information about the operation is optional. The fol-
lowing example shows a simple class operation named ‘m’. An operation places con-

classC | O=
m() object :Operation

end name="‘m’;
args = Seqf };
class=C

end

C=
object :Class
name=‘C’;
operations = Set{ O} ;
dynamiclnstances =
ObjectFilmStrips->sel ect(f |
f.steps->forAll(s|
s.pre.isKindOf(C) and
s.post.isKindOf(C) and
s.pre.id = s.post.id and
s.of = 0));
staticlnstances =
C.dynami clnstances.steps.pre->union(
C.dynamicl nstances.steps.post)

end

straints on the dynamic instances of a class. Each dynamic instance is an object
filmstrip whose steps represent state changes to instances of the class. Note that the
static instances can then be derived from the dynamic instances. Like attributes, opera-
tions are represented as objects contained by the class. We do not restrict the temporal
rel ationships between object steps.

Operations may be specified in terms of pre and post conditions. Such an operation has

classC Oo=..
x:Integer; C=
m(y:Integer) object :Class
pre name="‘C’;
true operations = Set{ O} ;
post dynamiclnstances =
X = X@pre +y ObjectFilmStrips->sel ect(f |
end f.steps->forAll(s|

C.staticlnstances->includes(s.pre)and
C.staticlnstances->includes(s.post) and
s.pre.id = s.post.id and
s.of = O implies
sargNamed('y’).isKindOf(Integer) implies
s.post.x = s.pre.x + s.argNamed(‘y’)));
staticlnstances =
Objects->select(0 |

0.isKindOf(C) and

o.dlots.names->includes(‘x’) and

0.X.isKindOf (Integer))

end

instances that are steps for which the pre state must satisfy the precondition and the

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 5

20/11/01

post state must satisfy the postcondition. In general, given a precondition p and post-
condition g, the truth of the precondition implies the truth of the postcondition:

classC O=..
m() C=
prep object :Class
post q name="‘C’;
end operations = Set{ O} ;

dynamiclnstances =
ObjectFilmStrips->select(f |
f.steps->forAll(s |
C.stati clnstances->includes(s.pre)and
C.dtaticlnstances->includes(s.post) and
s.of =0 implies
p[s.pre/self] implies
g[s.post/self,s.pre/self @pre])
staticlnstances =
Objects->select(o |
0.isKindOf(C))
end

4.1.4 Dynamic Invariants

A class dynamic invariant expresses a constraint on the dynamic behaviour of the class
instances. An ObjectFilmStrip is an historical record of the behaviour of a particular
object. In order for an object filmstrip to be a well formed dynamic instance of a class
the filmstrip must satisfy the dynamic invariant of the class.

A class dynamic invariant is an OCL expression in which ‘self’ is an object filmstrip.

classC Oo=..
x:Integer; C=
m(y:Integer) object :Class
dynamic name="‘C’;
steps->forAll(s | dynamiclnstances =
s.name="‘m’ implies ObjectFilmStrips->sel ect(f |
S.post.x = s.prex + f.steps->forAll(s|
sargNamed(‘'y’)) C.dtaticlnstances->includes(s.pre)and
end C.staticlnstances->includes(s.post) and
s.pre.id = s.post.id and
sof =0

s.post.x = s.pre.x + s.argNamed(‘y’)));
staticlnstances =
Objects->select(o |
0.isKindOf(C) and
o.slots.names->includes(‘x’) and
0.X.isKindOf (I nteger))
end

The invariant can express a constraint on any part of the behaviour represented by the
filmstrip.

In general we may require a rich language of constraints on operations that allow usto
express epochs of time such as ‘ during the execution of this operation’ and ‘ before this
operation’ and ‘ between these two operations . Such language features will all translate
onto the basic notion of dynamic invariant.

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 6

20/11/01

4.15 Class Constants

There are at least two variations on the theme of constant-hood: a dot value may be
constant throughout all instances of a classifier; a slot value may not be changed
throughout the life-time of a given instance (but the value may differ between
instances). The former is similar to the static declaration in Java and the latter is simi-

classC C=
static x:Integer let x = Integer.selectElement()
end in object :Class
name="'C’;
staticlnstances =
Objects->select(o |
0.isKindOf(C) and
o.glots.names->includes(‘x’) and
0.X.isKindOf (Integer) and
0.X = X)
end
end

lar to final in Java (or const in Pascal-like languages).

The table above shows a static declaration in aclass. The value of the ot named ‘X’ in
al instances must be the same but may change over time. If any of the instances
changes the value then it changes in al instances. Note that since we don’t know the
particular value of the dot named ‘X’ then it is selected at random. We say nothing
about the dynamic instances of the class C; therefore the value of ‘x’ may change but
the static invariant must be satisfied.

A constant definition in a class must be expressed in terms of the dynamic instances:

classC C=
const x:Integer let X = Integer.sel ectElement()
end in object :Class
name=‘C’;
dynamiclnstances =
ObjectFilmStrips->sel ect(f |
f.steps->forAll(s |
s.prex = x and
S.post.x = X))
end
end

The dot named ‘X’ can be any value but the value must not change throughout the life-
time of the object. Different objects may have different valuesfor ‘x’.

4.2 Packages

A package is a container of classes and sub-packages. A package may be a specializa-
tion of another package (this issue is not addressed here). The static instances of a

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 7

20/11/01

package are snapshots that must contain instances (1+?) of (only?) the classifiers con-
tained in the package:

packageP | P=
end object :Package
name="‘P’;
staticlnstances =
Snapshots->select(s |
s.isKindOf(P))
end

4.2.1 Contents

The contents of a package are represented directly as a dot in the package object. Each
contained element must have aslot leading back to its container:

package P C=
class C end object :Class

end name="'C’;
package = P,
staticlnstances =

Objects->select(o |
0.isKindOf(C))
end

P=
object :Package
name="F’;
classes = Set{ C};
staticlnstances =
Snapshots->sel ect(s |
s.isKindOf(P) and
s.dots.names->includes(‘' C') and
s.contents->includesAll(s.C) and
s.C->forAll(c |
C.staticlnstances->includes(c)))
end

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 8

20/11/01

4.2.2 Package Attributes

Like classes, packages can have attribute definitions. This leads to appropriate sotsin
the static instances of the package as shown on the right:

package P P=
x:Integer object :Package
end name="F’;
classes = Set{};
staticlnstances =
Snapshots->select(s |
s.isKindOf(P) and
s.dots.names->includes(‘x’) and
s.x.isKindOf (I nteger))
end

The attributes of a package may be defined static and const. These are treated in the
same manner as the equivalent declarations in classes. The only difference between
class attribute and package attributes is one of scope. In a class the attributes are lim-
ited to the objects which are instances of the class. In a package attributes are available
to all the definitions in the package; therefore, instances of two otherwise non-related
classes in a package can communicate through a package-level attribute.

4.2.3 Satic Invariants

Like classes, packages can have static invariants. The invariant may apply to package
attributes as shown on the | eft:

package P P=

x:Integer object :Package
static name="F’;
x>10 classes = Set{};
end staticlnstances =
Snapshots->sel ect(s |

s.isKindOf(P) and
s.dots.names->includes(‘x’) and
s.x.isKindOf(Integer) and
s.x > 10)

end

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 9

20/11/01

package P
classC
X:Integer
end;
classD
y:Integer
end
static
C->forAll(c |
D->exists(d |
cx>dy))
end

shot.

The package definition on the left
shows how package leve static
invariants provide more expres-
sive power than class level static
invariants by themselves. The
invariant requires that in any legal
snapshot of P there must exist an
instance of D whose 'y’ -value is
lower than al the ‘x’ values of
instances of C in the same snap-

4.2.4 Operations

A package operation is essentially the same as a class operation except where a class

operation gives rise to steps betwen objects, a package operation gives rise to steps

between snapshots.

package P
m()

end

Oo=..

P=

obj ect :Package
name="‘P’;

operations = Set{ O} ;
dynamiclnstances =
SnapshotFilmStrips->select(f |
f.steps->forAll(s|
s.pre.isKindOf(P) and
s.post.isKindOf(P) and
s.of = Q));
staticlnstances =
P.dynamiclnstances.steps. pre->union(
P.dynamicl nstances.steps.post)
end

A Trandlationd Semanticsfor UML

20 November 2001 (Draft in Progress)

10

20/11/01

Package operations may be specified using pre and post conditions. They are more

(C-C@pre)->size=1
result = C - C@pre;

package P CreateC = ...
classCend; KillC = ...
createC():C P=
pretrue obj ect :Package
post name="‘P’;

classes = Set{ C};
operations = Set{ CreateC,KillC};

killC(c:C) dynamiclnstances =
pre C->includes(c) SnapshotFilmStrips->select(f |
post f.steps->forAll(s|
(C@pre- C) = Set{c} s.pre.isKindOf(P) and
end s.post.isKindOf(P) and

s.name = CreateC implies
(s.post.C - s.pre.C)->size=1 and
s.result = s.post.C - s.pre.C and
s.of = KillC implies
s.pre.C->includes(s.argNamed(‘c’))
and (s.pre.C - s.post.C) =
Set{ s.argNamed(‘c')});
staticlnstances =
P.dynamicl nstances.steps.pre->union(
P.dynamicl nstances.steps.post)

end
expressive than class level operation specifications because they can refer to the entire
snapshot rather than a single instance. The class on the left shows how creation and
deletion methods can be specified.

The following is another example of a package level operation that involves concur-
rently swapping slot values:

package P
classC
X:Integer
end;
classD
y:Integer
end;
m(c:C,d:D)
pre
C->includes(c) and
D->includes(d)
post
C->exigts(c’ | ¢'.id=c.idand
D->exists(d’ |d’.id = d.id and
¢ x=dyand
d.y =cx)))

end

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 1

20/11/01

4.2.5 Dynamic Invariants

start.C->forAll(c |
start.D->forAll(d |

on the left requires
the values of al

package P Package level C=..
classC dynamic constraints D=..
x:Integer apply to snapshot P=
end; filmstrips and can obj ect : Package
classD therefore range over name="‘P’;
y:Integer all the steps from the dynamiclnstances =
end; beginning of a com- SnapshotFilmStrips->select(f |
dynamic putation. The package f.steps->forAll(s|

s.pre.isKindOf(P) and
s.post.isKindOf(P)) and

cx=dy)and instances of C and D f.start.C->forAll(c |
subsequently(start)-> to agree on their ‘x’ f.start.D->forAll(d |
forAll(s| and 'y’ dots respec- cx =d.y)) and
s.C->forAll(c | tively. In al subse- f.subsequently(f.start)->forAll(s |
not s.D->exists(d | guent snapshots the s.C->forAll(c |
cx=dy))) values of these slots not s.D->exists(d |
end must be different. cx=dy)));
Therefore it requires staticlnstances =
something to have P.dynamicl nstances.steps.pre->union(
happenedintheinitial P.dynamiclnstances.steps.post)
step to change their end
values.
4.3 Objects

The semantic domain represents an abstract ideal. We can capture views of this ideal
on object diagrams (and activity diagrams, collaboration diagrams and interaction dia-
grams etc) in UML. Snapshots are static instances of packages. Object diagrams (the
concrete syntax for snapshots) are partial views of snapshots, and may be used as
examples, counter examples, or, with the right quantifiers, as specifications.

Given an object diagram O which claims to be an instance of a package P we can con-
struct the most specific package P such that O isamost specific instance of P then the
clamthat O:Pisjustified when P statically conformsto P. Package static conformance
is essentially signature conformance and can be defined in terms of the static conform-
ance of the package contents. This has yet to be defined.

4.4 Package and Class Equivalences

Thetrandational approach defines arelationship between syntax constructs at different
levels of abstraction. This induces relationships between syntax constructs at the same

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 12

20/11/01

level of abstraction and allows us to show whether or not two different definitions are
equivalent. The following are afew examples.

package P | Defining aclass package P

classC attribute is equiva classC
x:Integer | lent to a pair of end;
end package opera- getX(c:C):Integer
end tions. The snap- setX(c:.Cx:Integer)

shot filmstrip dynamic
operator ‘ between’ steps->forAll(s|
takes 2 args: astep s.name = ‘setX’ implies
sand a predicate between(s,nextsetX For(s.argNamed(‘ c¢')))->forAll(s' |
and returns all the s'.name = ‘getX’ implies s'.result = s.argNamed(‘x’)))
steps from s until static
the predicateis C->foral(c| c.x > 10)
true. The operator end
‘nextsetX For’

takes an object and
returns a predicate
that returns true
when suppliedwith
astep labelled with
a‘setX’ operation
whosefirst arg is

the object.
packageP | Isequivaent to: package P
classC classC
xX:Integer X:Integer
static end
x> 10 static
end C->forall(c|c.x > 10)
end end
package P I's equivalent to: package P
classC classC
x:Integer; xX:Integer
m() end;
pretrue m(c:C)
post pre C->includes(c)
X = x@pre+ 1 post
end C->exists(C' |
end c.id=c.idand
cx=cx+1
end

45 Sate Machines

Translation or desugaring may be performed in stages. for example suppose we want a
language of simple state machines. The syntactic extension on the left has a semantics
in terms of a translation to the class definition on the right. The states become boolean

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 13

20/11/01

variables and the transitions become dynamic invariants. The class definition on the
right, in turn, has a semantics in terms of an object expression.

classC classC
states sl, s2 sl:Boolean;
transitions s2:Boolean;
tl:sl->s2 static
end sl xor s2
dynamic

steps->forAll(s|
s.pre.sl and s.name= ‘t1’ implies
s.post.s2)
end

Next add guards, next add actions.

4.6 Activity Diagrams

We could use activity diagrams as the basic way to compose behavior specs (expres-
sionsin the action language) and collab and sequence diagrams as special cases.

4.7 Collaboration Diagrams
4.8 Sequence Diagrams
4.9 Package Specialization

4.10 Templates

A Trandational Semantics for UML 20 November 2001 (Draft in Progress) 14

	A Translational Semantics for UML
	1.0 Overview
	1.1 Table of contents

	2.0 Semantic Domain
	3.0 A Simple Language
	4.0 UML Features
	4.1 Classes
	4.1.1 Class Attributes
	4.1.2 Static Invariants
	4.1.3 Operations
	4.1.4 Dynamic Invariants
	4.1.5 Class Constants

	4.2 Packages
	4.2.1 Contents
	4.2.2 Package Attributes
	4.2.3 Static Invariants
	4.2.4 Operations
	4.2.5 Dynamic Invariants

	4.3 Objects
	4.4 Package and Class Equivalences
	4.5 State Machines
	4.6 Activity Diagrams
	4.7 Collaboration Diagrams
	4.8 Sequence Diagrams
	4.9 Package Specialization
	4.10 Templates

