
The Design of a Storage Architecture for Mobile
Heterogeneous Devices

Glenford Mapp
Networking Research Group

School of Computing Science
Middlesex University

Email: g.mapp@mdx.ac.uk

Dhawal Thakker
Networking Research Group

School of Computing Science
Middlesex University

Email: d.thakker@mdx.ac.uk

David Silcott
Networking Research Group

School of Computing Science
Middlesex University

Email: d.silcott@mdx.ac.uk

Abstract—Mobile computing devices such as smart PDAs
and ultra-light laptops with several networking interfaces are
becoming commonplace. The provision of networked data storage
facilities will greatly extend their use. This paper looks at
the design of a storage architecture for such devices. A two-
level structure is proposed in which one component, the mobile
memory cache (MMC), moves when the node is mobile. A
prototype MMC was designed and evaluated. Preliminary results
are presented which show that the system should be able to
provide a high-performance service.

I. INTRODUCTION

Mobile computing devices such as smart PDAs and ultra-
light laptops are becoming commonplace. In addition, these
devices now have several networking interfaces including
high-speed LAN, WLAN (802.11a/g) and 3G networks. Users
of these devices will expect to be always connected, with
seamless switching between available systems. This is be-
ing made possible by the development of an architectural
framework for heterogeneous networking with support for
vertical handovers [1]. Global, ubiquitous access will allow
new services to be delivered to these devices, enhancing the
lives of their users.

One area of interest is the provision of network data storage
to mobile devices. There are several reasons for this: the
first is security. Data held on mobile devices is inherently
insecure as these devices can be easily lost or stolen. System
administrators are therefore very reluctant to allow data of
any significance to be held on these devices especially if the
use of these devices is not restricted to specific geographical
locations. With access to data storage using a secure link,
nothing is compromised if the end device is lost or stolen since
the device need not contain persistent storage. The second
major reason is ecological. Laptops can easily carry hard
disks; however, this tends to significantly increase their power
requirements, noise profile and price. In addition, good quality
storage using solid state disks is still prohibitively expensive.
Finally, access to data networks must be available to the global
population to enhance the economic development of poorer
countries. Presently, laptops and other mobile computing de-
vices are simply too expensive for the masses in the Third
World. Access to global storage using fast interfaces will allow
cheaper and more reliable devices to be built.

This research direction is also justified by the development
and deployment of high-speed networks. Network interfaces of
1Gbps are now commonplace and are fairly inexpensive. Work
is now proceeding to bring 10Gbps to the desktop. Secondly,
we are seeing the deployment of faster wireless network inter-
faces. For example, most devices now have 802.11g interfaces
which have over-the-air (OTA) rates of 54 Mbps with Media
Access Control Layer, Service Access Point (MAC SAP) rates
of 25 Mbps. However, the next generation wireless technology,
802.11n, is being developed. This promises to deliver over
540 Mbps OTA speeds and MAC SAP speeds of 200Mbps
[2]. It should be noted that at these speeds, it is commonly
faster to get data from the memory of a remote machine than
from a local hard disk [3]. Finally, we are finally seeing large
investments in broadband access networks which will allow
over a 100 Mbps to residential networks. This has facilitated
a greater demand for flexible working patterns, making support
for mobility a key requirement of future systems and services.

Substantial research in distributed storage systems concen-
trated on the use of storage servers connected via a fast local
area network. This has given way to commercial systems such
as NFS or iSCSI [4]. We have also seen the development of
Storage Area Networks (SANs). It should be pointed out that
these systems whilst useful in a local area network do not
usually scale well over wide-area networks, resulting in poor
performance in these environments. Hence a key requirement
is therefore to allow mobility while trying to maintain good
performance.

A new development in this area is the ability to support
the migration of lightweight services. This has been made
possible by the specification of the Context Transfer Protocol
(CXTP) detailed in RFC 4067 [5]. This new facility has been
backed up by the increasing use of machines acting as network
management servers. These servers tend to have a significant
amount of memory and or disk storage. This deployment is
now taking place in the home as home networking becomes
commonplace.

This paper looks at the design of a storage architecture for
mobile heterogeneous devices and tries to address some of the
challenges detailed above. What is being proposed is a two-
level service architecture in which one component is a mobile
memory cache (MMC). The MMC makes use of persistent



storage servers (PSS) to provide persistent storage. We detail
the implementation of a MMC running over a 1Gbps network
and preliminary performance results are given. The rest of the
paper is outlined as follows: Section II examines the design
choices for the storage infrastructure while Section III details
the key design structures required to implement the system.
Section IV highlights the current work being done including
the Middlesex testbed. Section V displays preliminary results
and Section VI discusses related work. The paper concludes
in Section VII looking at future work.

II. THE DESIGN CHOICES FOR THE STORAGE
INFRASTRUCTURE

There were some key decisions in the design of a storage
architecture. These are discussed below:

File vs Block Storage: Since we are interested in a portable
system, it was felt that the actual service provided by the
server should be as simple as possible. This meant that system
should be storing blocks of data and not files. It was also
felt that managing blocks gave the system the best flexibility
in terms of client access as no access abstraction, such as
a file abstraction, is imposed which must be supported at
the server end. The storage system will have no idea how
data in the blocks is being used or accessed; this is the
responsibility of the client. So if the client was a file system,
the actual file system would run on the client and not the
server. This decision also meant that blocks would have to
be independently identified and that there must be a way of
maintaining and guaranteeing the identity of a block.

Support for Mobility: A key requirement is that the users
should not experience a significant loss in performance when
they are mobile. This will require that users are always
connected to the storage facilities and that there is a way
to maintain performance of the system. The authors believe
that this is possible by dividing the architecture into two
components. The first is the use of an MMC which runs on
a network server in the same network as the heterogeneous
device. When the device enters a new network then the
MMC is migrated to the local network so as to maintain
the performance of the network. The second component is
the use of a Persistent Storage Server or PSS. These servers
provide permanent backup for the Mobile Memory Cache. In
fact an MMC can backup data to two or more PSS machines
so providing system redundancy.

An Independent Interface: It was decided to use an
independent interface rather than to structure access to the
server by clients using a specific interface, such as a SCSI
interface. The main reason for this is flexibility. Since the
system will be used by applications as well as system utilities
such as file systems, if there is some benefit in additional
structure of access, this would be known by client of the
system and a suitable wrapper could be written.

Support for encryption: In order to support a secure
system, there needs to be support for transporting encrypted
data. In a two-level system in which there is an MMC
on the local network, a lower level of encryption may be

required between the MMC and the mobile node if the LAN
is considered secure. However, strong encryption is required
to move data from the MMC to the Persistent server and vice-
versa as this involves going over a wide-area network.

Support for Reliable Multicast Transport Services: As
we want to back up blocks using more than one Persistent
server at the same time, then we need support for reliable
multicast mechanisms. So when the MMC needs to store a
block it makes a multicast call which simultaneously contacts
all the relevant servers.

Sharing: In order for clients to build distributed systems
using this infrastructure, for example a distributed file system,
there needs to be some support for sharing. We believe that
support for this should be efficient but minimal at the block
level. Hence at the block level, the system should support
owner, read and write privileges. The owner of a block can
read, write and delete the block. In order to read a block by
someone who is not the owner, a read capability is required.
Similarly, a write capability is required to write to the file by
someone who is not the owner.

Coherency Algorithms: These are services on the client
that help the client implement cache coherency. When a client
wishes to share an object with a group of users, it asks for
system to generate read and write capabilities for the object.
A very simple scheme has been initially proposed in which
readers or writers are given a specific time to read or to write
to the object.

III. DESIGN STRUCTURES

This section looks at key design structures required to
implement the system described above.

A. Block Structure

Since it was decided to use blocks, the block structure is
discussed in this section. A block of data on an MMC is
represented as a unique 64-bit entity called the BlockID. The
first 48-bit of the BlockID identifies the block while the next
16 bits is a security tag. The security tag is generated using
several components including random bits and the time the
object was created. All the blocks of an object have the same
allocation information including the same security tag. The
security tag is used by the MMC to check that the BlockID has
not been changed. Read and write capabilities are generated
for the object using another random function with the security
tag of the object as the input as shown in Fig. 1.

Each client of the system has a unique ClientID which is
used to identify itself to the service. The ClientID must be used
in all calls to the MMC server to create, read from, write to and
delete objects, which are represented by sets of BlockIDs. The
client which creates an object is designated the owner of the
object. Clients can also read and write to individual blocks of
the object. Only the owner of an object can also ask the system
to delete all or part of an object. In order to share objects with
other users, owners can also ask for read and write capabilities
to be created for an object. Similarly owners can revoke the
read and write capabilities for an object it possesses. Finally, it



Fig. 1. Showing the BlockID Structure and Derived Read and Write
Capabilities

is possible to pass to ownership of an object to another client
of the system.

B. Support for Mobility

In this section, we show how mobility is supported. We
first look at some common scenarios. Fig. 2 shows the basic
environment at work. The mobile device is on the LAN or
WLAN. A machine with a lot of memory call a Network
Memory Server [6] is located on the same LAN or WLAN
and hosts the MMC on behalf of the mobile. The Network
Memory Server simultaneously stores blocks belonging to the
mobile node on two Persistent Storage Servers. PSS1 is located
on a high-speed SAN to which the Network Memory Server is
also attached. PSS2 is a persistent storage server on a Remote
Storage Site and is used to provide redundancy. If local storage
servers fail, the remote storage server is used to service the
mobile node while local services are restored.

Let us now imagine that the mobile node is moved to
another environment; the employee moves from his office at
work to home where he resides. When the mobile node is
turned on it recognises that it is at home, it contacts the mobile
node and initiates a memory cache transfer from the Network
Server to the Home Server as shown in Fig. 3. The movement
of the MMC to the local area network or a network close to
the mobile ensures that the system can maintain a high level
of performance. However, the same persistent storage servers
are used so that data can always be accessed from these two
sites.

1) Using the Context Transfer Protocol: In this section
we show how the Context Transfer Protocol (CXTP) is used
when the mobile node detects that it is on a different network
compared to the location of its Mobile Memory Cache. It finds
a Network Memory Server on its local network to host its
MMC. The memory cache program is started on the New
NMS if it is not already running. The mobile node then
issues a Context Activation Message (CTAR) to the new NMS
authorizing the transfer of blocks belonging to the mobile
node. The new NMS sends a Context Transfer (CT) request
to the old NMS requesting the data blocks belonging to the
mobile node. The old NMS sends a Context Transfer Data
(CTD) message to the new NMS with all the blocks belonging

Fig. 2. Basic Work Scenario

Fig. 3. Mobile Node Moves to Home Network

Fig. 4. Moving the Memory Cache to a Network Memory Server

to the client. The new NMS sends a Context Activation Reply
(CTAR) message back to the mobile node signalling that the
transfer has occurred. The entire sequence is shown in Fig. 4.

2) Using Mobile IPv6 to Provide Continuous Service:
With the deployment of faster wireless networks, the use of
Mobile IPv6 [7] will be used to provide continuous use of the
data storage system. This is because the mobility management
mechanisms in Mobile IPv6 will allow the mobile node to
easily detect that it has moved to a new network and initiate
the Context Transfer. In this context the mobile node will
always be connected to a Mobile Memory Cache so the MMC
is treated as a Corresponding Node or CN. The sequence is
shown in Fig. 5.



Fig. 5. Showing how continuous service is provided using Mobile IPv6

When the mobile node moves to a new network and acquires
a new Care-of-Address (COA). This is shown as Step 1 in Fig
5. It sends a Binding Update (BU) to all its CNs including the
MMC (Step 2). When it gets a Binding Acknowledgement
(BA) it checks to see whether it is from its current MMC
(Step 3). If this is so it finds a new network memory server
on the new network and sends a Context Activation Message
(CTAR) to the new MMC (Step 4) which results in the blocks
of the mobile node being transferred to the new MMC (Step
5) using the Context Transfer protocol described above.

C. The Design of the Mobile Memory Cache (MMC)

The MMC has been designed with the following core
properties: Firstly, the mobile nodes viewpoint, all actions
performed by its MMC are atomic. This means that calls to the
MMC either succeed completely or fail completely. Secondly,
the MMC operates in a stateless manner. It does not keep
track of former requests from the mobile node. Hence, it is
the software on the mobile node which must maintain relevant
state information. It is assumed that the MMC works over a
reliable transport protocol. At present TCP/IP is used.

All references returned by the MMC should be regarded as
immutable and must not be changed. The security tag in the
BlockID structure will be used to detect when a BlockID has
been modified. Such design decisions made the implementa-
tion of the MMC quite simple. The core operations supported
by the MMC were creating and deleting ClientIDs, creating
and deleting data blocks, and reading from and writing to data
blocks using BlockIDs.

D. The Design of the Persistent Storage Server (PSS)

The design of the Persistent Storage Server is similar to the
MMC. However, MMCs are the only clients of a PSS, its ser-
vices are not directly available to mobile nodes. All operations
performed by a PSS on behalf of a client should be regarded as
atomic by the client. The PSS operates in a stateless manner
and so keeps no record of previous interactions. It is also
assumed that the PSS runs over a reliable transport link. Thus
the operations of a PSS are to create and delete clients as well
as to store, retrieve and delete BlockIDs. However, while the
MMC uses the memory on a network server, the PSS uses disk

blocks on a hard disk to provide persistent storage and so must
run a file system in order to achieve this. We have therefore
written a simple file server known as the Block File System
(BFS). The BFS takes a BlockID, a PSS ClientID and maps
it to disk blocks on the hard disk. It maintains these mappings
in the meta-data part of the system.

IV. CURRENT WORK

This section examines the current work being done to
implement the storage infrastructure.

A. The Middlesex Testbed

In order to investigate the design of the architecture detailed
above a small testbed was set up. It consists of 4 Linux
machines connected on a 1Gbps network. A prototype MMC
was designed and tested using the machines in the testbed. The
mobile node interacted with the MMC using a pseudo network
device. This allowed the blocks on the MMC to appear as a
fast hard disk to the mobile node. The OS on the mobile node
was totally unaware that the MMC was being used. Every call
to read and write file blocks was passed to the pseudo driver
which went over the network to the MMC to store or retrieve
the data. At present, we are experimenting with an MMC that
can cache around 200 MBs of data. In the near future we want
to support an MMC with 4 GBs of cached storage.

In order to test the system, an ext2 filing system was run
on the mobile node and Iozone [8], a well-known file system
benchmark, was used to test the performance of the MMC.
Iozone was also run on the local hard disk in order to compare
the results. The disk had a 60 GB capacity, a 2 MB internal
buffer, spinning at 7200 rpm with a seek latency of 9 ms and
an average latency of 4.1 ms.

For our tests we created a 200 MB partition and built an
ext2 filing system on it. The size of a file block was set to the
default value of 1024 bytes. The network memory server was
an Intel processor-based Linux machine, running at 2.4211
GHz supporting 2 virtual CPUs using Hyper-threading. It had
a cache size of 512 KBs and a total memory of 512 MBs. The
system uses TCP and standard UNIX socket programming.
Both the pseudo device driver and MMC were written as
kernel modules which can be dynamically loaded.

V. PRELIMINARY RESULTS

Some preliminary results using the Iozone Benchmark is
given below.

A. Read Results

Fig. 6 shows the read results using different file sizes
during the IOzone test. In MMC-RAW, each request to read
and write blocks is immediately sent over the network. The
results for MMC-RAW and the hard disk suggest that the new
architecture is able to give comparable read performance.



Fig. 6. Showing the Read Results between MMC and the Hard Disk

Fig. 7. Showing the Write Results between MCC and the Hard Disk

Fig. 8. TCP Netpipe Results for different Send Buffer Sizes

B. Write Results

The write results are shown in Fig. 7. Here the MMC-
RAW underperforms the hard disk. An investigation into
the phenomenon was done and a TCP Netpipe [9] test was
performed on the Gigabit Network. The results, shown in 8,
indicate that only writing a block of data (1024 bytes or 1KB)
does not provide significant network performance (only 60
Mbps).

In order to improve the write results a 100 KB buffer was
used to store several blocks on the mobile node. Instead of
writing each block back across the network, it is first written
to the write buffer. When the buffer is full, the data is then
written back to the MMC. In addition a write-back thread is

employed which writes back if the buffer is not full so that
the data on the MMC is kept up-to-date. The result, denoted
by MMC-W100 in Fig. 7, shows a significant performance
improvement over the hard disk and MMC-RAW.

Work is also being carried out to provide an analytical
model of network memory servers [10]. This will help the
understanding of some of the relevant performance issues
which are still to be addressed.

VI. RELATED WORK

Distributed Storage systems have been developed and built
over many years. Perhaps the best known work in this area is
OceanStore [11], which looked at providing ubiquitous global
storage based on the use of untrusted servers. Hence the data
had to be protected through redundancy and cryptographic
techniques. It also looked at usage patterns and adaptive
algorithms to cope with regional outages and denial-of-service
attacks. OceanStore pre-dated the rise of the Mobile Internet
with wireless infrastructure and mobile devices so the thrust of
that effort was different compared with this effort. In addition,
the support of mobility using the migration of services via
the Context Transfer Protocol and Mobile IPv6 allows the
development of a high-performance, ubiquitous system to be
developed whereas OceanStore scalability is limited. Another
major effort was the Serverless Network Filing System [12] or
xFS, which looked at using a set of machines in a peer-to-peer
fashion to provide storage for other machines over a wide-
area network. Like the Andrew File System (AFS) [13], the
xFS design attempted to make extensive use of both memory
caches and local on-disk cache at the client nodes and used
clustering as well as sophisticated cache coherency algorithms
to eliminate the need for a central server at the core of the sys-
tem. Since our mobile devices do not have a local disk, some
of the work is not relevant, however as we are making use
of large write buffers on the mobile client, some of the cache
coherency protocols are very relevant to this work and will
be adopted. The SAMSON (Scalable Active Memory Server
on a Network) project [14] built a Network Memory Server
specifically to do remote paging based on Myrinet hardware
[15]. This involved interfacing to the virtual memory system
of the client and using memory mapped techniques to page
in required pages as page faults occurred. Like most projects
in this area, SAMSON used special hardware which provide
lower network to obtain good performance. We eschew the
use of special hardware as we believe that it is important to
attempt to build the system using off-the-shelf components in
order to reduce cost. This paper has showed that commodity
hardware with local buffering aided by sophisticated caching
algorithms as used in xFS is probably the best way of building
a commercial system. Finally, the use of the Context Transfer
protocol to migrate lightweight services in order to support
mobile devices is increasing. It was used in [16] to support
a Virtual Network Computing (VNC) environment [17] as
mobile nodes were used to view a remote screen using VNC
techniques. As the mobile mode moves to a new network, a
VNC proxy server is also migrated to the new network in



order to provide sustainable performance. We believe the use
of such techniques is an effective way to support the provision
of services for mobile clients.

VII. CONCLUSIONS AND FUTURE WORK

In this paper the design of a storage system for mobile
devices was outlined. The system uses a two-level approach
consisting of Mobile Memory Caches and Persistent Storage
Servers. The Mobile Memory Cache uses Mobile IPv6 and
the Context Transfer Protocol (CXTP) to ensure that it is in
close proximity to the mobile node as it moves around. A
testbed was built to evaluate the performance of the MMC.
It was shown that the introduction of a write buffer greatly
improves the write performance of the MMC, guaranteeing
sustainable performance. This overcomes the need for special
hardware which was extensively used in previous systems. We
are debugging our implementation of the Persistent Storage
Server and are in the process of evaluating the performance
of the system over a wireless network. Work has also begun
to specify a new multi-service transport protocol called X4 to
replace TCP which can better support wireless environments
with much lower latency. In addition since data is going
over wide-area networks support for very fast encryption and
decryption algorithms will be required. Multicast transport
services must also be included. The authors recognize that
there is much to do and so would welcome feedback on this
paper.

REFERENCES

[1] G. Mapp, D. Cottingham, F. Shaikh, P. Vidales, L. Patanapongpibul,
J. Balioisian, and J. Crowcroft, “An architectural framework for het-
erogeneous networking,” in The International Conference on Wireless
Information Networks and Systems, August 2006, pp. 5–12.

[2] “A definition of 802.11 technologies,”
http://en.wikipedia.org/wiki/IEEE 802.11.

[3] E. Felton and J. Zahorjan, “Issues in the implementation of a remote
memory paging system,” University of Washington, Tech. Rep., March
1991.

[4] P. Radkov, L. Yin, P. Goyal, P. Sarkar, and P. Shenoy, “A performance
comparision of nfs and iscsi for ip-networked storage,” in The 3rd Usenix
Conference on File and Storage Technologies (FAST 2004), April 2004.

[5] J. Loughney, M. Nakhjiri, C. Perkins, , and R. Koodli, RFC 4067 -
Context Transfer Protocol (CXTP), IETF, July 2005.

[6] G. Mapp, D. Thakkar, and D. Silcott, “Network memory servers: An
idea whose time has come,” in Multi-Service Networks (MSN), Coseners
House, Abington, UK, July 2004.

[7] D. Johnson, C. Perkins, and J. Arkko, RFC 3775 - Mobility Support in
IPv6., IETF, June 2004.

[8] “The iozone filesystem benchmark,” http://www.iozone.org.
[9] “Netpipe,” http://www.scl.ameslab.gov/netpipe.

[10] O. Gemikonakli, G. Mapp, D. Thakker, and E. E, “Modelling and
performability analysis of network memory servers,” in 39th Annual
Simulation Symposium, April 2006.

[11] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and Z. B, “Oceanstore:
An architecture for global-scale persistent storage,” in Proceedings of
ACM ASPLOS, November 2000.

[12] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang,
“Serverless network file systems,” in 15th Symposium on Operating
Systems Principles, ACM Transactions on Computer Systems, 1995.

[13] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan,
R. Sidebotham, and M. West, “Scale and performance in a distributed
file system,” ACM Transactions on Computer Systems, 1988.

[14] “The samson project,” http://bsd7.cs.sunysb.edu/ samson/design-
1999/overview.html#overview.

[15] “An overview of myrinet,” http://www.myri.com/myrinet/overview.
[16] L. Patanapongpibul, G. Mapp, and J. Hopper, “An end-system approach

to mobility management for 4g networks and its application to thin-client
computing.” in ACM SIGMOBILE Mobile Computing and Communica-
tions Review, July 2006.

[17] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper, “Virtual
network computing,” IEEE Internet Computing, pp. 33–38, January
1998.


