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Gate-limited service is a type of service discipline found in queueing theory and can
be used to describe a number of operational environments, for example, large transport
systems such as buses, trains or taxis, etc. Recently, there has been the observation that
such systems can also be used to describe interactive Internet Services which use a
Client/Server interaction. In addition, new services of this genre are being developed for
the local area. One such service is a Network Memory Server (NMS) being developed here
at Middlesex University. Though there are several examples of real systems that can be
modelled using gate-limited service, it is fair to say that the analytical models which
have been developed for gate-limited systems have been difficult to use, requiring many
iterations before practical results can be generated. In this paper, a detailed gate-limited
bulk service queueing model based on Markov chains is explored and a numerical solution
is demonstrated for simple scenarios. Quantitative results are presented and compared
with a mathematical simulation. The analysis is used to develop an algorithm based on
the concept of optimum operational points. The algorithm is then employed to build a
high-performance server which is capable of balancing the need to prefetch for streaming
applications while promptly satisfying demand misses. The algorithm is further tested
using a systems simulation and then incorporated into an Experimental File System (EFS)
which showed that the algorithm can be used in a real networking environment.

© 2010 Published by Elsevier Inc.

1. Introduction

The analysis of queueing systems has a long and interesting history. The results of this research have been used in many
practical systems, from optimal queueing strategies to serve customers at banking centres to token ring systems in high-
speed computer networks. These systems are studied to yield some important results such as the average waiting time for
a customer in the system or the average number of customers in the system as well as to address general performance
issues such as how systems respond under load, etc. Queueing systems can be defined by various parameters including the
arrival time of the customers, the service time, and the number of servers. These parameters are used to define key systems
such as the M/M/1 queue which is a single queue, served by a single server, in which the arrival rate is Poisson and the
departure rate is exponentially distributed. The M/M/1 queue has been extensively studied.

Traditionally, two types of service disciplines and their variants have been studied. The first is called exhaustive service
where the server serves everyone in the queue until the queue is empty. This means that customers arriving at the queue
while the server is at the queue are served during the current service period [1]. The second is called gated service, where
the server only serves the customers it finds in the queue at the beginning of the service period for that queue. Customers
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Fig. 1. A example of gate-limited multiserver service.

arriving during the current service period must therefore be serviced during subsequent server visits to that queue. In
exhaustive-limited and gate-limited systems, the relevant discipline is followed but only a maximum number of customers,
denoted by K , are served in any one visit to the queue. Though we have exact solutions for exhaustive and gated service
[2,3], solutions for exhaustive-limited and gate-limited system have been more difficult to obtain, with numerical solutions
requiring large amounts of computational power as the number of queues increase. Recent efforts have therefore been
focused on getting faster algorithms to compute the waiting times in these systems.

The study of multiserver systems, in which a number of servers simultaneously serve the same queue, intensified within
the computer community with the development of multiprocessors systems in the 90s [4]. With the advent of mobile com-
munications [5], multiserver systems have become more closely studied. For multiserver systems with a limited number of
servers, say K servers, the deployment of servers can also be classified as exhaustive-limited and gate-limited. In exhaustive-
service, all K servers are always deployed and so a customer can enter service at an empty server while other customers
are being served by other servers. This is also called Partial Batch Service. An example of this kind of service is a wireless
network such as 3G [6] and other mobile systems, where channels are allocated in a dynamic manner.

In gate-limited service, if the number of customers in the queue at the end of the service period is less than the
maximum K , say m, then only m servers are assigned for this service period. Customers arriving after service has begun
must be served in subsequent cycles. There are many examples of real systems which could be modelled as gate-limited
systems including bulk transport systems such as buses, trains, etc. However, with the emergence of the Internet, distributed
systems which use Client/Server semantics can also be modelled as a gate-limited bulk service. An example of such a system
is a network-based service in which applications can post requests using a network buffer. The buffer is then sent over to
the server to satisfy these requests. New requests that arrive after the buffer has been sent, must wait until replies to
previous requests have been returned to the client machine, hence this can be regarded as gate-limited multiserver system.
This arrangement is illustrated in Fig. 1.

With the development of faster Local Area Networks (LANs), services that were mostly done on the local machine can
now be done over the network. One area where there has recently been a lot of research is in the area of storage using
the memory on other machines on a local area network to store data such as the Network Memory Server (NMS) here at
Middlesex University. This effort has been focused on looking at how a server such as the NMS can be used to provide
a high-performance service such that streaming applications can stream data without stalling while promptly satisfying
demand misses to allow programs to continue their execution. Such a system can be shown to be a gate-limited system but
with the additional requirement of determining the amount of prefetching and the number of demand misses which must
be satisfied in a given cycle.

In order to investigate this further, it was first decided to develop a new model for gate-service based on Markov chains.
The analytical model was then used to develop an algorithm to balance prefetching and demand paging. This algorithm
was then tested using a simulation at the systems level. Finally, an Experimental File System (EFS) was developed to test
the algorithm on a real system. The rest of the paper is structured as follows: Section 2 examines previous approaches,
while Section 3 introduces a new analytical model based on Markov chains. In Section 4 the approach taken to arrive at a
mathematical solution is outlined. In Section 5, the issues involved in designing a high-performance server are investigated
while Section 6 details the development and testing of an autonomous algorithm. Finally conclusions are discussed in
Section 7.

2. Related work

2.1. Related work on gate-limited service

There have been several approaches used to analyse these operational environments [7]. Cyclic systems with
probabilistically-limited service were examined in [8]. The authors in [9], explored pseudo-conservation laws to exam-
ine cyclic systems with several limited service policies, including gate-limited ones. In both cases, solutions were found but
several iterations were required to yield a useable result. Recent work explored new algorithms to improve the accuracy
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Fig. 2. Partial Batch Model.

and speed with moderate success [10,11]. However, it is fair to say that practical numeric solutions for gate-limited service
remain fairly rare. In that regard, we think this paper and its explicit use of Markov chains may point to a new approach.

2.2. Multiserver exhaustive-limited service (Partial Batch Model)

We first examine the multiserver exhaustive-limited service or the Partial Batch Model (PBM) described in [12]. In this
model a server can serve up to a maximum of K requests. If there are less than K requests in the system, the server begins
to serve these requests. Furthermore, when there are less than K requests being serviced, new arrivals enter service until K
requests are served or the queue is empty. The amount of time required to service requests is an exponentially distributed
random variable with mean 1

μ .
This model is represented in Fig. 2. Each state of the model is represented in terms of n and s where n is the total

number of requests in the system and s is the number of requests being served. It can be seen from the figure that any new
arrival enters service immediately as long as there are less than K requests being served. The time taken to service those
requests is exponentially distributed to a mean value of 1

μ .
A stochastic balance equation for the model can be written as:

0 = −(λ + μ)pn + μpn+k + λpn−1 (1)

0 = −λp0 + μp1 + μp2 + · · · + μpK−1 + μpK (2)

Eq. (1) can be rewritten as:

[
μD K+1 − (λ + μ)D + λ

]
pn = 0 (3)

where pn represents the state probability and n = 0,1,2, . . . etc.
By finding the root r0 of this equation that is between 0 and 1, one can work out the mean queue length (L) and average

waiting time (W ) for the queue, using the equations below:

L = r0

1 − r0
and W = r0

λ(1 − r0)
(4)

Note that for K = 1, we have the results for the M/M/1 queue, with r0 = ρ = λ
μ . More detailed analysis is also discussed

in [13,14].

3. A new multiserver gate-limited model

We now present a Markov model for gate-limited multisever service. The model is based on Markov states represented
by the same two parameters used in the Partial Batch Model, n and s. For each cycle, we serve a maximum of K requests,
so smax = K . The model is shown in Fig. 3. We start off with the empty state (0,0). If a request arrives, the system moves
to state (1,1) as the request is immediately sent to the server. If more requests arrive before the server has returned, they
are not served until the server returns. So we can represent this by the first chain in our model. When the first request
is served, the number of people served in the next cycle will depend on the number of requests in the queue when the
service time has been completed. Thus for high instantaneous arrival rates, the system moves up the chains and for lower
instantaneous arrival rates, it descends the chains.
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Fig. 3. Markov chains for gate-limited multiserver model.

Fig. 4. Simple gate-limited model with K = 2.

3.1. A simple gate-limited model

In order to pursue this further, we look at a simple scenario, when K = 2 as shown in Fig. 4. We analyse the system by
defining two chains: Chain 1, starting from (1,1) to n,1, and Chain 2, starting from (2,2) to n,2. For simplicity, we also
assume that the size of the network buffer is infinite, the arrival rate is Poisson and the service rates are exponential.

3.2. Looking at Chain 1

Let us consider Chain 1 in Fig. 4. For Chain 1, s = 1 and for n > s i.e. n > 1, we will have:

λpn−1,1 = (λ + μ1)pn,1 (5)

This implies that for any n > 1, in Chain 1:

pn,1 = λ

λ + μ1
pn−1,1

pn,1 =
(

λ
)n−1

p1,1 (6)

λ + μ1
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Fig. 5. Imaginary Partial Batch Model for Chain 2.

And for n = s = 1, we have:

(λ + μ1)p1,1 = λp0,0 + μ1 p2,1 + μ2 p3,2 (7)

Finally, for n = s = 0, i.e. p0,0 will be:

λp0,0 = μ1 p1,1 + μ2 p2,2 (8)

3.3. Looking at Chain 2

Similarly, for Chain 2 where s = 2, we will derive equations for n = s and n > s, using Fig. 4. When n > s, we have:

(λ + μ2)pn,2 = λpn−1,2 + μ2 pn+2,2 + μ1 pn+1,1 (9)

And for n = s = 2, we have:

(λ + μ2)p2,2 = μ2 p4,2 + μ1 p3,1 (10)

In order to solve these equations, we need to be able to relate all the states of a chain back to the first element of that
chain. So for Chain 1 there is already a relationship which is represented by Eq. (6). We now need an equation for the
second chain. To do this, we first obtain an equation that has elements of Chain 2 only. We can do so by summing up the
rates of the flows into point p3,2.1

(λ + μ2)p3,2 = λp2,2 + μ2 p5,2 + μ1 p4,1 (11)

From Eq. (6), p4,1 can be expressed as ( λ
λ+μ1

)3 p1,1.
Further, from Eq. (8), μ1 p1,1 can be expressed as λp0,0 − μ2 p2,2. Therefore,

μ1 p4,1 = (λp0,0 − μ2 p2,2)

(
λ

λ + μ1

)3

(12)

Substituting the value of p4,1 into Eq. (11) and rearranging, we get:

0 = −(λ + μ2)p3,2 + λp2,2 + μ2 p5,2 + (λp0,0 − μ2 p2,2)

(
λ

λ + μ1

)3

(13)

4. Solutions approach

We can now find the roots of these equations using the same technique that was used in the Partial Batch Model. Thus
the state probabilities of Chain 2 for n � 2 can be given by:

pn,2 = rn−2 p2,2 (14)

In order to solve this equation we imagine the second chain to be identical to a Partial Batch Model represented by
Eq. (13). This is an imaginary chain as shown in Fig. 5. However, for states where n > 2, there is no real difference between
the real or imaginary chains as Eq. (14) is valid in both scenarios. This means we can use the same approach taken in the
Partial Batch Model to calculate r. Once this is done we can represent any state in the second chain by Eq. (14). In addition,
using the previous equations, it will also be possible to represent p0,0 and Chain 1 in terms of p2,2.

Using Eq. (8), we substitute for λp0,0 in Eq. (7). In addition, we note that according to Eq. (14), p3,2 = rp2,2. Rearranging,
we get: p1,1 = C1,1 p2,2 where C1,1 is given by the equation:

1 Similar techniques can be used for different points of Chain 2, e.g. p2,2, p4,2.
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C1,1 = μ2(1 + r)

(
λ + μ1

λ2

)
(15)

By substituting for p1,1 in Eq. (8), we can get an equation for p0,0 in terms of p2,2; i.e., p0,0 = C0,0 p2,2 where C0,0 is
given by:

C0,0 = μ1C1,1 + μ2

λ
(16)

4.1. Solving for p2,2

The sum of all the state probabilities must be equal to 1. Let S1 be the sum of the state probabilities for Chain 1 and S2
be the sum of the state probabilities in Chain 2. So we can write:

p0,0 + S1 + S2 = 1 (17)

where:

S1 =
∞∑

n=1

(
λ

(λ + μ1)

)n−1

p1,1 (18)

S2 =
∞∑

n=2

rn−2 p2,2 (19)

For S1, let m = n − 1 and substitute for p1,1

S1 = λ + μ1

μ1
C1,1 p2,2 (20)

Similarly for S2, let m = n − 2

S2 = 1

1 − r
p2,2 (21)

Summing to one we get:

p2,2 = 1

C0,0 + λ+μ1
μ1

C1,1 + 1
1−r

(22)

Using the value of p2,2 in Eq. (22), we can find values for p1,1 and p0,0.
The average number of people in the queue can be expressed as:

L =
∞∑

n=1

n

(
λ

(λ + μ1)

)n−1

p1,1 +
∞∑

n=2

nrn−2 p2,2 (23)

We can further obtain an exact formula for L, as detailed in the section below.

4.2. Further solving for L

From Eq. (23), we first solve for the first term on the right hand side of the equation and then second term. Let q = λ
λ+μ1

∞∑
n=1

n

(
λ

(λ + μ1)

)n−1

p1,1 =
∞∑

n=1

nqn−1 p1,1 (24)

Now, n ∗ qn−1 = d
dq qn

∞∑
n=1

d

dq
qn p1,1 = d

dq

∞∑
n=0

qn p1,1 (25)

With the final result being:

∞∑
n

(
λ

(λ + μ1)

)n−1

p1,1 = 1

(1 − q)2
p1,1 (26)
n=1
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Now solving the second term on the right hand side of Eq. (23) we have

∞∑
n=2

nrn−2 p2,2 =
∞∑

n=2

(n − 1)rn−2 p2,2 +
∞∑

n=2

rn−2 p2,2 (27)

In order to present the solution of Eq. (27) in simple form, we will again solve the terms in the right hand side one by
one, starting with the second term on the right hand side of Eq. (27).

∞∑
n=2

rn−2 p2,2 (28)

Substituting q = n − 2, we get:

=
∞∑

q=0

rq p2,2 = 1

1 − r
p2,2 (29)

Now, solve the first term on the right hand side of Eq. (27). By substituting (n − 1)rn−2 = d
dr rn−1 we get:

∞∑
n=2

(n − 1)rn−2 p2,2 =
∞∑

n=2

d

dr
rn−1 p2,2 = d

dr

∞∑
n=1

rn−1 p2,2 (30)

Substituting q = n − 1, we get:

= d

dr

∞∑
n=0

rq p2,2 = 1

(1 − r)2
p2,2 (31)

The results expressed in Eqs. (29) and (31) showed that Eq. (27) can be expressed as:

∞∑
n=2

nrn−2 p2,2 =
(

1

1 − r
+ 1

(1 − r)2

)
p2,2 (32)

∞∑
n=2

nrn−2 p2,2 = 2 − r

(1 − r)2
p2,2 (33)

From Eqs. (26) and (33), Eq. (23) can be expressed as:

L = 1

(1 − q)2
p1,1 + 2 − r

(1 − r)2
p2,2 (34)

where q = λ
λ+μ1

and r is the solution to the imaginary PBM chain.

The average waiting time in the demand queue, Wd = L
λd

.

4.3. Comparison of results

Simulation results for K = 2 were obtained for different arrival rates. The simulation was done by using a discrete event-
based system written in C++. More details are given in [15]. The simulation results are then compared with results for our
analytical model. This is shown in Fig. 6.

The two results are quite close in value over a wide operational range. These results were used to develop techniques
for prefetching and clustering using a high-performance network storage server [16,15]. It should be noted that the model
is approximate as it depends on which state of the imaginary chain is used to calculate r. This is because the solution for r
varies slightly depending on which state is used. The best results were obtained using the state (2,2) which, in this case, is
equal to K , the maximum batch size. If n = 2, we get the following equation:

(λ + μ2)p2,2 = λp1,1 + μ2 p4,2 + μ1 p3,1 (35)

Note that p1,1 comes from the imaginary PBM and not from the gate-limited service model.
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Fig. 6. Results for simple gate-limited model with K = 2.

4.4. Towards a general solution

In this section, we seek to extend the method used for K = 2 to a general value of K . So a gate-limited model, where K
is equal to the maximum number of requests that can be served at any moment, can be represented by a gate-limited model
of K series or chains. Furthermore, if we represent a given chain by m, we can express the average number of requests in
that chain, Lm , in terms of the first element of that chain, pm,m . For m < K , this sum for that chain is given by:

Lm =
∞∑

n=m

n

(
λ

(λ + μm)

)n−m

pm,m (36)

Expanding, we get:

Lm =
∞∑

n=m

(
n − (m − 1)

)( λ

(λ + μm)

)n−m

pm,m + (m − 1)

∞∑
n=m

(
λ

(λ + μm)

)n−m

pm,m (37)

Using the same technique as above and by letting rm = λ
λ+μm

, the first term can be expressed as:

∞∑
n=m

(
n − (m − 1)

)
rn−m

m pm,m =
∞∑

n=m

d

dr
rn−(m−1)

m pm,m (38)

Rearranging, we get:

∞∑
n=m

d

dr
rn−(m−1)

m pm,m = d

dr

∞∑
n=m−1

rn−(m−1)
m pm,m (39)

Let p = n − m + 1

= d

dr

∞∑
p=0

r p
m pm,m = 1

(1 − rm)2
pm,m (40)

The second term:

(m − 1)

∞∑
n=m

(
λ

(λ + μm)

)n−m

pm,m = (m − 1)

∞∑
n=m

rn−m
m pm,m (41)

Let q = n − m;

= (m − 1)

∞∑
rq

m pm,m = (m − 1)
1

1 − rm
pm,m (42)
q=0
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and thus we get the sum:

Lm = m − (m − 1) ∗ rm

(1 − rm)2
pm,m (43)

L =
K∑

m=1

Lm =
K∑

m=1

m − (m − 1) ∗ rm

(1 − rm)2
pm,m (44)

For m < K ,

rm = λ

λ + μm
(45)

For m = K , we use the imaginary PBM technique to solve for rK . Furthermore, for m < K , we can sum the probabilities in
each chain,

Sm =
∞∑

n=m

(
λ

(λ + μm)

)n−m

pm,m (46)

Let q = n − m:

Sm =
∞∑

q=0

(
λ

(λ + μm)

)q

pm,m

Sm = λ + μm

μm
pm,m (47)

If we let pm,m = Cm,m pK ,K , we can express pK ,K as:

pK ,K = 1

C0,0 + ∑m=K−1
m=1

λ+μm
μm

Cm,m + 1
1−rk

(48)

So to solve for any value of K we need to find the value of Cm,m and we can do so using the equations for the states of
pm,m in our model. For K = 2, these equations are Eqs. (7), (8) and (9). However, this effort shows that it is possible to
get fairly accurate waiting time results over a wide operational range based on this analytical model. Work is continuing on
evaluating higher orders of K .

5. Designing a high-performance storage server – the issues

5.1. Motivation

The continuous increase in network and CPU speeds is fostering the development of a new class of network applications
based on streaming, for example, YouTube and BBC iPlayer. Unlike traditional client-server applications which use best-effort
transport mechanisms, these new applications require QoS support to deliver acceptable performance. In addition, since the
access patterns of these applications are highly sequential, prefetching techniques, in which blocks of data are brought into
memory before they are needed, can be used to maintain a steady access rate and so prevent stalling.

However, for prefetching to be effective, it must be relatively inexpensive, such that the cost of bringing in additional
blocks is small compared with fetching these blocks when they are needed by the application. One of the ways to ensure
that prefetching is cheap is to use clustering in which the cost-per-block is kept low as several blocks are fetched at the
same time. It should be expected that high-performance network-based servers would make use of clustering.

Storage systems are also expected to support demand misses which occur when a block of data is needed by a program
to continue its execution. Demand misses must therefore be promptly satisfied or else applications will experience severe
execution delays. So it is necessary to balance the demands of prefetching using clustering and the need to promptly satisfy
demand misses. In order to explore the design of high-performance storage servers, a Network Memory Server (NMS) has
been developed at Middlesex University.

5.2. Characteristics of the Network Memory Server

The NMS has been designed with a number of key goals. Firstly, the actions of the NMS are regarded as atomic by its
clients. This means that calls to the NMS either succeed completely or fail completely. Secondly, the NMS is stateless. It
stores no previous interactions between client and server. Finally, the NMS is designed to be mobile and can move around
different computing environments as the user moves around. These properties tend to indicate that it is reasonable to
assume a Poisson-distribution for the arrival rate and the service rate can also assumed to be exponential since the system
is memoryless with regard to previous transactions. A more detailed presentation of the architecture is given in [17].
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5.3. Investigating clustering on the Network Memory Server

We first investigated clustering in which several blocks are fetched simultaneously using the NMS for a lightly-loaded
network and found that this can be represented by a simple equation given by:

Tnet(y) = Latnet + C y (49)

where Tnet is the time taken to fetch y blocks over the network, where Latnet is a latency cost, i.e., the cost of going up and
down the network protocol stacks on the client and server as well as the cost of transmitting and receiving packets over
the network. For very fast networks and fast processors, Latnet can be very small. Finally, C is the per-block cost. So this is
the cost of finding the block in memory and copying the data to and from the network buffer. For the NMS, C has been
measured and has a value of around 30 μs on a 1 Gbps network in a Linux environment.

5.4. Analysing the constraints

In this section, we derive equations that represent the constraints that must be satisfied in order to meet the require-
ments of prefetching and demand misses. In terms of prefetching we can represent the time to consume y block as:

Tprocess(y) = Tcpu ∗ y (50)

where Tprocess is the time taken to consume y blocks and Tcpu is the time taken to consume one block. In order to prevent
stalling for streaming applications, the time taken to fetch y blocks must be less than or equal to the time taken to consume
these blocks so:

Latnet + C y � Tcpu ∗ y (51)

Next we look at demand misses. Since demand misses must be satisfied promptly, we would like to ensure that demand
misses over the network experience better performance compared to local disk access in order to justify the use of network
storage. So we can represent this by the equation:

Tfetch(d) + Twait � Tdisk (52)

5.5. Investigating prefetching strategies

In order to continue our design, it is necessary to look at different prefetching strategies and decide which one would
be most suitable for the network memory environment. There are basically three prefetching strategies. The first is called
Aggressive prefetching. With this strategy, prefetching is done at the earliest opportunity, i.e. whenever memory and net-
work resources are available. This strategy was proposed in [18] and is based on the fact that modern computer systems
now have large amounts of memory, faster processors and can utilise higher network bandwidths.

The second strategy is called Just-In-Time or JIT prefetching. With this strategy, prefetching is done such that the block
is made available to the system just before it is required by the application. This idea was explored in a disk-centric
environment with parallel disks in [19]. The third prefetching strategy is called Prefetch-on-Demand or PonD. With this
strategy prefetching only occurs when demand misses are being satisfied. This is also known as conservative prefetching
and was explored for disk storage by Pei Cao in [20].

In order to decide which prefetching strategy was appropriate, a simulation of the effect of each prefetching strategy on
the average waiting time of demand misses was developed. The results are shown in Fig. 7 and clearly indicate that the
PonD strategy would be the best strategy over the network. Hence we concentrate on using PonD.

However, the use of PonD means that we must also modify our prefetching and demand-miss constaints because we are
fetching both prefetch and demand-miss blocks at the same time. So if p is the number of prefetch blocks and d is the
number of demand-miss blocks, then we can express the prefetch constraint in the PonD environment as:

Latnet + C(p + d) � Tcpu ∗ p (53)

Similarly we can represent the demand-miss constraint in the PonD environment as:

Latnet + C(p + d) + Twait � Tdisk (54)

where the fetch time for d blocks is L + C(p + d) and Twait is the average waiting time in the demand queue.
The environment that we are trying to support can be represented by the queueing model shown in Fig. 8. A more

detailed description of this environment is given in [21]. There are 2 queues, a demand queue and a prefetch queue with
arrival rates λd and λp respectively. Requests from both queues are clustered into a buffer, b, which is then sent over the
network to a high-performance storage server that returns the requested blocks.

In order to simplify the analysis, we first make a key assumption. Since we are in complete control of the prefetch queue,
we can determine the rate of prefetching by starting and stopping streams. Hence λp is not a random variable. In addition,
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Fig. 7. Showing the effect of prefetching strategies on demand misses.

Fig. 8. A model showing prefetch and demand queues.

for prefetching we are only interested in knowing how many blocks denoted by the variable, p, to prefetch at any instant,
such that the prefetch rate is always more than the rate at these blocks are consumed, hence preventing stalling. In this
analysis the demand miss rate is truly random. Given these observations we can therefore reduce the two-queue system to
a single server system based on demand misses. However, the service time for d demand miss blocks will also include the
time to prefetch p blocks as well. This therefore corresponds to the gate-limited analysis done earlier in the paper.

6. Developing an autonomous algorithm

6.1. Exploring an operational space

To develop an autonomous system, we need to explore an operational space. This is shown in Fig. 9. This region can
be viewed as a 3D object. The 3 axes of the space consist of the prefetch rate, represented as the number of blocks, p,
that must be prefetched to maintain a given rate (x-axis), the demand miss rate, λd , (y-axis) and the average waiting time
experienced by demand misses, Wd (z-axis).

However, it should be observed that since we cannot control the demand miss rate, λd , it is necessary to explore the
operational space as 2D slices, each slice representing a particular demand miss rate. For each miss rate we obtain a graph
with the average waiting time (y-axis) and the number of prefetch blocks being fetched for different values of demand miss
blocks, d. So for each demand miss we apply the two constraints in Eqs. (53) and (54). This is shown in Fig. 10. In this
figure, we show that average waiting times as indicated by the simulation. Note: the analytical results could have also been
used. Simulation results are used as they were easier to generate.

For the disk constraint, Tdisk , the disk access time was set at a value which modern SATA hard drive could achieve, so it
was set at 7800 μs. Once the average waiting time is less than Tdisk , then the disk constraint is satisfied. In this figure, this
constraint is satisfied for p � 17 blocks. For the prefetch constraint, the time taken to consume p blocks is Tprocess = Tcpu ∗ p.
Tcpu is different for the different video formats. For MPEG, Tcpu is 400 μs while for High-Definition (HD) the consume rate
is 200 μs. So the prefetch constraint can be shown as a line with gradient Tcpu . Hence once the time taken to consume
the blocks is above the line taken to fetch the blocks (i.e. the average access time), then the prefetch constraint is satisfied.
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Fig. 9. Exploring the operational space.

Fig. 10. Showing the two constraints and the optimal operational point for d = 2 and an inter-arrival time of 350 μs.

Hence from Fig. 10, the prefetch constraint is satisfied for p � 19 blocks. So if p � 17 blocks then both the storage and
prefetch constraints are satisfied.

6.2. Optimal operational points

Since the PonD strategy is being used, it is necessary to try and bring in the maximum number of prefetch blocks,
denoted by Popt , on every network access while satisfying the two constraints. From the observations above, this can be
expressed as:

Tcpu ∗ Popt = Tdisk = Wd (55)

This point is called an optimal operational point. There is one optimal operational point for one value of d for every
inter-arrival time which is called the opt_time. This is shown in Fig. 11. In addition, if we know Popt for a given value
of d, then we can define an optimal consume time, Topt , which is the minimum consume time for that optimal operational
point. If the consume time is less than Topt (smaller gradient), then a smaller amount or sub_optimal value of p will be
required.

Hence in order to support a smaller consumer time, i.e., a faster consume rate, using optimal operational points, it is
necessary to move to higher values of d as shown in Fig. 12.

If we are able to measure λd , and we know the consume rate for streaming applications, then it is possible to find out
the optimal value Popt and the value of d which should be used to fetch blocks from network storage.

An autonomous algorithm was developed using 20 different arrival rates for demand misses. For each arrival rate, Popt

and Topt were calculated for values of d from 1 to 7 blocks. These values were placed in a database, which was then
incorporated into a systems simulation to test whether or not the system would perform in response to changes in the
arrival rate or changes in the prefetch rate.
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Fig. 11. Showing the two constraints and the optimal operational point for d = 2 and an inter-arrival time of 450 μs.

Fig. 12. Showing optimal operational points at different values of d and an inter-arrival time of 450 μs.

Fig. 13. Showing that the prefetch rate is maintained as the demand-miss rate is varied.

Fig. 13 shows the autonomous algorithm maintains the prefetch rate at just above or equal to the required prefetch rate
as the demand-miss rate is varied while Fig. 14 shows how the disk constraint, i.e., Wd � Tdisk , is met when the prefetch
rate is varied.

6.3. Development of an Experimental File System

In order to evaluate this algorithm on a real system, an Experimental File System (EFS) was set up containing two major
directories: the SEQUENTIAL and DEMAND directories. Files in the SEQUENTIAL directory were prefetched while files in the
DEMAND directory were satisfied using demand misses. The design is shown in Fig. 15. Fig. 16 shows how data is read by
the application using the file system as well as the multiread call to the NMS.

The system was then used to play a number of MPEG videos. The demand miss rate was measured and the consume
time of the video was 400 μs per block. This was used to select Popt and d, the number of demand miss blocks that should
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Fig. 14. Showing the storage constraint is met as the prefetch rate is varied.

Fig. 15. File system design.

Fig. 16. Overall system design.

be fetched in the next network access. This was done using the multiread call. The video blocks were therefore prefetched
and hence the video did not stall. The output of the system is shown in Fig. 17. On the left of the screen, we see the system
measuring the arrival rate of demand misses and using the MPEG consume time, selects Popt and d. The video being viewed
is shown on the right of the frame. Preliminary results showed that the algorithm worked admirably on this prototype
system.
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Fig. 17. The output of the Experimental File System.

7. Conclusions

In this paper, an analytical model for gate-limited service was explored and applied to a high-performance server doing
prefetching using clustering techniques. The model shows a high level of accuracy for simple gate-limited service at opera-
tional loads. Using the concept of optimal operational points, an algorithm was developed and tested on a real system using
an Experimental File System (EFS).
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