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Abstract. We use the technique of interactive theorem proving to develop the theory and an enumer-
ation technique for finite idempotent relations. Starting from a short mathematical characterization
of finite idempotents defined and proved in Isabelle/HOL, we derive first an iterative procedure to
generate all instances of idempotents over a finite set. From there, we develop a more precise theo-
retical characterization giving rise to an efficient predicate that can be executed in the programming
language ML. Idempotent relations represent a very basic, general mathematical concept but the
steps taken to develop their theory with the help of Isabelle/HOL are representative for developing
algorithms from a mathematical specification.
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1. Introduction

In computer science, relations over finite domains are commonly accepted as the model for operations
of hardware and software components. Idempotence of these operations is increasingly recognized as
an important property. A concrete example is the specification of components in service-oriented archi-
tectures [7]. Since invoking them once has the same effect as invoking them several times, idempotent
operations are suitable for modelling services, e.g. a cancellation service for bookings. Idempotence
has a positive effect on the robustness of service-oriented applications and thus operations should –
where possible – be idempotent [7, page 77]. This paper presents the derivation of an algorithm in Is-
abelle/HOL. The algorithm produces finite idempotent relations and their numbers. The presented work
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is an updated and extended version of [11] and [10, Chapter 2]. In Section 2, we motivate the use of
idempotent relations and illustrate their characterizing features by means of examples. The gathered in-
sights are summarized in a formal characterization of idempotents. The mechanical proof of this theorem
in Isabelle/HOL is described (Section 3). Section 4 refines the content of the idea behind the theorem
and sketches an algorithm that can be extracted from the theoretical characterization. In contrast to [11]
where this algorithm has been directly defined in ML, we examine the enumeration of idempotent rela-
tions to arrive at a more detailed characterization. Section 5 describes the development of an efficient
predicate derived as an ML program from the refined characterization in Isabelle/HOL. The predicate
defines the set of all finite idempotents for a given carrier set. Finally, in Section 6 we present the results
of the derived ML code and discuss limits. Section 7 draws conclusions with respect to this application
example of interactive theorem proving. Some sample output of idempotents for the carrier N3 created
from an automatic ML transformation to LaTeX picture is contained in the Appendix. The full code of
the algorithms, the Isabelle/HOL derivations, the LaTeX macros, and further sample output are available
at the author’s web page [8].

But, before delving into the theory of idempotents, we give in this first section an introduction to
interactive theorem proving with Isabelle/HOL as used in this paper.

Isabelle/HOL

The interactive theorem prover Isabelle [14] has foremost been constructed as a generic tool to provide a
framework for the creation of specialized theorem provers for various application logics. One of the first
papers announcing Isabelle to the scientific community [13] is entitled Isabelle: the next 700 theorem
provers.

In the overall architecture of Isabelle the core is its meta-logic, i.e. the logic providing a logical
deduction framework enabling the inference with axioms and rules given by application logics. Isabelle’s
meta-logic is itself a fragment of Higher Order Logic (HOL): it contains just implication and universal
quantification as junctors. There is no existential quantifier, no negation, no disjunction. Conjunction is
mimicked using nested implication. The following meta-logical formula is an example illustrating the
universal quantification with !!, higher order variables P and Q, and implication =⇒.

!! P Q x. [| P x; Q x |] =⇒ P x

The square brackets [| |] serve as pseudo-conjunction: they are just an abbreviation for nested impli-
cation, i.e the above is equivalent to

!! P Q x. P x =⇒ (Q x =⇒ P x)

where the round brackets could even be omitted as the meta-level implication is right-associative. The
meta-logic has its own equality == corresponding to logical equivalence.1

An embedding of an application, a so-called object-logic, into Isabelle, is realized by a theory. A
theory is a file containing new types, constants and definitions of the types and constants. Theories
in Isabelle are a very simple module concept, but there is also a concept of locales [12] that is fairly
unique in interactive provers. Locales are basically a light-weight module concept that mainly focuses
on enclosing local proof contexts, turning them into abstract, instantiatable units. It is particulary well-
suited for mathematical proof.
1It serves also as equality when defining constants during an embedding.
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Since the beginnings of Isabelle, various different object-logics have been embedded into its meta-
logic. Three object-logics, namely HOL, constructive type theory (CTT), and Zermelo-Fraenkel set
theory (ZF) are now part of the general distribution of Isabelle. Actually Isabelle/HOL, the embedding
of HOL, and Isabelle/ZF, the embedding of ZF, are the logics that are mostly used. It may seem a bit
strange that HOL, which is the basis of Isabelle’s meta-logic, is again embedded into Isabelle as an object-
logic. However, its wide application just shows that the full classical HOL is a useful means to reason
about computer science related problems. It may seem even stranger that ZF, which is presumably more
general than HOL, can be embedded at all into Isabelle. However, the formalization Isabelle/ZF uses
basically just one type i representing the class of all sets. Hence, the axiomatization is not restricted by
the type hierarchy. With respect to deciding which of these two main instantiations of Isabelle one should
choose, we cite Larry Paulson: If you prefer ML to Lisp, you’d prefer HOL to ZF. The development that
turned Isabelle into such a practical tool has been supported strongly by the entire Isabelle community
mainly in Cambridge with Paulson and in Munich with Tobias Nipkow.

HOL Example

In computer science applications, we often reason about rather simple domains, like discrete structures,
finite sets, partial recursive or primitive recursive functions. For such specialized domains, Isabelle/HOL
offers also specialized support for formalization and proof. These specializations are internally resolved
and mapped to the principles of conservative extension.

For example, the data type of lists can be defined in Isabelle/HOL using the datatype definition
package. A datatype definition resembles almost exactly the corresponding ML version.

datatype α list = Nil ("[]")
| Cons α "α list" (infixr "#" 65)

Using the polymorphism of the type system of Isabelle/HOL, the above definition introduces the type
of lists over an arbitrary type of elements. The datatype definition introduces a constructor Nil for the
empty list and a constructor Cons that given an element of type α and a list of α elements constructs
a new list. The code in brackets behind the constructors declares the pretty printing (or mixfix) syntax
enabling the use of [] for the empty list and x # l for a constructed list, very similar to the notation in
programming languages.

Among the internally generated rules for a datatype specification, there are induction rules for recur-
sive types like the above and injectivity rules for the constructors.

Functions over a datatype may be defined as primitive recursive functions. As an illustrative example,
consider the function that appends two lists to form a new list. First, we have to declare this function as
a constant in a theory.

consts
append :: "[α list, α list] ⇒ α list" (infixr "@" 65)

Next, the semantics of this function is given by two equations representing the base case of an empty list
and the recursive call for a constructed list. The names before the colon : are optional rule names for
later reference in proofs.

primrec
append_Nil: "[] @ l = l"
append_Cons: "(x # l1) @ l2 = x # (l1 @ l2)"
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The primitive recursion scheme has constraints on the way recursion can be defined to ensure that func-
tions defined in this way actually are primitive recursive. If it is possible to express a function in a
specification that way, it is certainly advisable to do so because the automatic tactics of Isabelle/HOL
are optimized for processing such definitions. Hence, in proofs where, for example, a term needs to
be transformed using equational rewriting according to a primitive recursive function definition, this is
basically performed fully automatically by Isabelle/HOL’s tactical support.

To illustrate briefly the way an interactive proof is performed in Isabelle, we consider the proof of
a simple equation that serves to determine the length of a list composed by the newly defined append
operator. We assume further as given a function length that returns the length of a list. The entire proof
script including the statement of the proof goal is as follows.

lemma length_composed: "length (l1 @ l2) = length l1 + length l2";
apply (rule_tac list = "l1" in list.induct);
by auto;

The first line states the goal to be proved. The second line advises Isabelle to apply the induction rule of
the recently created datatype of lists in a backward resolution step to the first list l1. Backward resolution
is invoked by rule tac which is a special form of backward resolution enabling the explicit setting of
rule parameters, here l1. The reply of the Isabelle system in an interactive session after this first line
consists of two new subgoals.

1. length ([] @ l2) = length [] + length l2
2. !!a list.

length (list @ l2) = length list + length l2
=⇒ length ((a # list) @ l2) = length (a # list) + length l2

These subgoals correspond to the two premises of the list induction rule instantiated to the current proof
goal. The remaining two subgoals can now be solved by rewriting with the defining equalities of the list
constructors, the definition of length (which we have omitted), and the definition of append. These steps
are all automatically performed with auto, the Isabelle tactic that subsumes other forms of automated
tacticals like simplification and the classical reasoner.

After a theorem is proved like in the above case, Isabelle responds with No subgoals! The theorem
is assigned to the name given by the user in the first line so that it can be used in future derivations.

2. Idempotent Relations

Idempotents are important in various areas of mathematics. An abstract structure is frequently able to be
represented in a particular concrete form so that each abstract element is represented as a transformation
on some underlying set and the abstract operation is represented as sequential (or functional) composition
of transformations. In some cases the idempotents (i.e. the elements e satisfying ee = e, where we follow
convention and write the algebraic operation as juxtaposition) form the basis for that representation.

Here are two examples. In analysis, a linear function on a vector space is idempotent under sequential
composition iff it is a projection onto a subspace of the vector space. That is, the foundation of spectral
resolution, in which a (say normal) linear operator is represented in terms of projections [6]. In algebra,
much of the structure theory of (abstract) semigroups [3] and some of the theory of ideals in ring theory
[4] depends on identifying the idempotents.
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In computer science, a transaction consists of a sequence t = t1; . . . ; tm of actions. Given a second
transaction u = u1; . . . ;un the idea is to perform both transactions efficiently but as if each were exe-
cuted atomically. Efficiency is achieved by interleaving the actions of t with those of u but correctness is
preserved only if the desired interleaving is obtained from the sequential composition t;u by interchang-
ing those actions that commute: ti;uj v uj ; ti. If, in doing so, two identical actions become adjacent
then one of them can be deleted if it is idempotent: ti; ti = ti. Though not common, it is important to
take advantage of such simplification whenever possible.

Linear operators, functions and actions are all special cases of relations. Whereas idempotent func-
tions are rather standard, it appears there is not much published about idempotent relations. In the
following analysis of idempotent relations, we start from a theoretical characterization and develop that
into a verified executable algorithm for idempotent relations over a given finite carrier set. Besides en-
abling the contemplation of actual instances of finite idempotents, this algorithm can also be used as a
basis for counting them.

Examples

A relation r ⊆ A × A on a given set A – with domain r ⊆ A – is idempotent if r; r = r where ; is
relational composition. Relational composition is generally defined as

r; s = {(x, y). ∃ z. (x, z) ∈ r ∧ (z, y) ∈ s} .

In Isabelle, the notation ◦ is used to express relational composition because it resembles functional
composition. However, since in the field of programming semantics the notation r; r is more common to
express relational composition, we adhere for this exposition to the latter. For simplicity, let r(x) stand
for the relational image r.(|{x}|) (where r.(|X|) = {y. ∃ x ∈ X. (x, y) ∈ r}). The characterization of
idempotents is based on fixpoints of the relation fix r, i.e. elements x of the domain with x ∈ r(x), or
equivalently (x, x) ∈ r.

The Isabelle/HOL theory for idempotent relations contains one constant definition for idempotence.
Non-recursive functions are introduced in Isabelle as constants with definitions by the constdefs device
that expects the type and the defining meta-equality as arguments.

constdefs
idempotent :: (α × α) set ⇒ bool "idempotent r == (r ; r = r)"

We give now various examples of idempotents to explain the concept and prepare the theoretical
characterizations below. The following examples illustrate idempotents by depicting the points related
by a finite idempotent relation from left to right. We consider labelled relations, i.e. the order of points
matters. To mark the labels in examples, we use subsets of the natural numbers as label set but in principle
the label set could be any other finite set. Therefore, in graphical illustrations we omit the labels. For
example, the relation consisting of three fixpoints

{(1, 1), (2, 2), (3, 3)}

is graphically represented as follows.
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The simplest way to examine idempotence is by a diagrammatic equation as depicted below. Starting
from left following the lines over the ; to the right, any point, that is reachable, is related in the resulting
relation on the right side of =. As our simple example relation is invariant under relational composition
with itself, it is idempotent.

; =

Now, consider a simple extension by relating one fixpoint with another: still idempotence is preserved.

; =
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However, if we apply a similar extension to the middle point, the resulting relation has one more edge
due to transitivity. That is, the relation on the left of the figure below is not idempotent.

; =
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The resulting relation on the right of the above figure is again idempotent as verifed below.

; =
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In general, we can see that whenever in a scenario like the above, where all points on the left are
related to themselves on the right, transitivity is not only necessary but already sufficient for idempotence.

We can already summarize this observation as a first theorem.

Theorem 2.1. Let r be reflexive and transitive. Then r is idempotent.

Proof:
It suffices to show that r ⊆ r; r. For any x and y with (x, y) ∈ r, also (x, x) ∈ r as r is reflexive, hence
(x, y) ∈ r; r . ut

This paper style proof almost directly corresponds to its representation as a proof script in Is-
abelle/HOL:

theorem 2_1: "[| trans r; refl (Domain r) r |] =⇒ idempotent r";
apply (erule trans_intrans_idemp);
apply auto;
apply (subgoal_tac "(a,a)∈ r");
apply auto;
apply (erule reflD);
by auto;
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The first line states the goal. To unfold the definition we apply the lemma trans intrans idemp which
reads

[| trans r; r ⊆ r ; r |] =⇒ idempotent r

The main proof clue is to find that (a,a) ∈ r which is given explicitly as subgoal to Isabelle. Now,
the rest can be done automatically; we only need to input the name of lemma reflD, i.e. that reflexivity
implies (a,a) ∈ r.2

Now, we are not only concerned with reflexive relations but relations in general over some domain
A. Hence, there might exist elements that are not fixpoints that come into play.

; =
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The new point on the bottom is not a fixpoint. If it is related to an element in the range of the relation, it
can only copy entire ranges of fixpoints to create its own range. Therefore we call such points hangers-
on. That is, a non-fixpoint cannot be mapped independently to elements; its range is precisely defined by
the union of ranges of fixpoints.

∀x. x /∈ range r =⇒ r(x) =
⋃

y ∈ fix r ∩ r(x). r(y)

This property holds for all finite idempotent relations r and its conclusion also holds for x if x is a
fixpoint (and thus x ∈ range r). The property is going to be proved in the following section and forms
the basis for all further constructions.

A Characterization of Finite Idempotent Relations

We characterize idempotent relations under the assumption of finiteness, and show that we cannot do
better. The characterization is given by the following theorem.

Theorem 2.2. Let r be a finite relation. Then,

idempotent r ≡

 ∀x. r(x) =
⋃

y ∈ fix r ∩ r(x). r(y)

transitive r

 .

Clearly, idempotence r; r = r implies transitivity r; r ⊆ r. We can omit x ∈ domain r in the first
conjunct and still assume it in proofs because for x /∈ domain r the equality holds trivially.

We are going to prove this theorem using the following lemmata.

Lemma 2.1. Let r be idempotent. Then

x ∈ r(x) ⇒ r(x) =
⋃

y ∈ fix r ∩ r(x). r(y) .

2If we would have added the definition of reflexivity and trans intrans idemp to the simplification sets of auto, the entire
proof would reduce to two lines: the central subgoal insertion and auto.
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Proof:
Transitivity gives us ∀y ∈ r(x). r(y) ⊆ r(x). Clearly,⋃

y ∈ fix r ∩ r(x). r(y) ⊆
⋃

y ∈ r(x). r(y)

and by transitivity of ⊆ the left-hand-side is a subset of r(x). Since x ∈ r(x), i.e. x ∈ fix r, we have
r(x) ⊆

⋃
y ∈ fix r ∩ r(x). r(y), whereby we have equality. ut

Lemma 2.2. Let r be finite and idempotent. Then,

x ∈ domain r, x /∈ r(x) ⇒ ∀z ∈ r(x). ∃ y ∈ fix r ∩ r(x). z ∈ r(y) .

Proof:
We prove that if the assumption and the negation of the conclusion hold, we get a contradiction to r being
finite. Assume for contradiction

∃ z ∈ r(x). ¬∃ y ∈ fix r ∩ r(x). z ∈ r(y) .

Since (x, x) /∈ r, we need another y0 6= x for (x, z) to be in r2 in order to have (x, y0), (y0, z) ∈ r
and thereby (x, z) ∈ r. Now, y0 6= z otherwise we had a y = z with z ∈ r(z) contradicting the
assumption. Summarizing, y0 6= x and y0 6= z. However, now y0 ∈ r(x) and y0 /∈ r(y0). By repetition
of the argument, we need a y1 with (x, y1), (y1, y0) ∈ r with y1 /∈ {x, z, y0}, and so forth — ultimately
leading to an infinite sequence of yi ∈ r(x), contradicting r being finite. ut

Now, we are prepared for the proof of the theorem.

Proof of Theorem 2.2:

Correctness (⇒): Let r be idempotent and x ∈ domain r be arbitrary. If x ∈ r(x), just apply Lemma
2.1. If x /∈ r(x), Lemma 2.2 gives us⋃

{z ∈ r(x)} ⊆
⋃

y ∈ fix r ∩ r(x). r(y) .

Since r is idempotent, it is also transitive. Hence, the right-hand-side ⊆ r(x). Since the left-hand-side is
equal to r(x) we have that

r(x) =
⋃

y ∈ fix r ∩ r(x). r(y) .

If x /∈ domain r, this is trivial.
Completeness (⇐): Let r(x) =

⋃
y ∈ fix r ∩ r(x). r(y). For any (x, y) ∈ r, y ∈ r(x). Due to

assumption, there is y′ with y ∈ r(y′) for some y′ ∈ r(y′) ∩ r(x), i.e. (x, y′) ∈ r and (y′, y′) ∈ r. Since
y ∈ r(y′), also (y′, y) ∈ r, hence (x, y) ∈ r2.

As the second conjunct of the characterization is transitivity, we have on the other hand that if (x, y) ∈
r2 then (x, y) ∈ r. 2

From the theorem, it follows immediately that if a finite idempotent relation is nonempty, then it has
a fixpoint.

Corollary 2.1. If r 6= ∅ is finite and idempotent, then ∃ x. x ∈ fix r.
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By contraposition, this implies that if there is no fixpoint, the relation must be infinite.

Corollary 2.2. If r is idempotent, r 6= ∅ and fix r = ∅, then r is infinite.

An illustrative example is the relation < on rational numbers.

Example 2.1. The relation <: Q×Q is idempotent and infinite.

The relation < is obviously transitive, and for any x and y with x < y there is an element between x and
y.

3. Mechanical Proof

We extend the Isabelle/HOL theory of idempotents already introduced in Section 2 by two more defini-
tions for fixpoints and non-fixpoints of a relation.3

fixp :: "(α × α) set ⇒ α set" "fixp r == {x. (x, x) ∈ r}"

nfix :: "(α × α) set ⇒ α set" "nfix r == {x. x ∈ Domain r ∧ (x, x) /∈ r}"

Theorem 2.2 is then proved in the scope of that theory. The relational image of a singleton set is denoted
in Isabelle/HOL by r"{x}. Otherwise, it may be noted here that the Isabelle/HOL representation is
almost exactly like the mathematical notation.

finite r =⇒ idempotent r ≡ (∀ x. r"{x} =
⋃

y ∈ fixp r ∩ r"{x}. r"{y} ∧
trans r)

Proof of Lemma 2.1

The proof of Lemma 2.1 is very simple in Isabelle. Using a lemma that infers transitivity from idem-
potence, it is just one application of the elimination rule for transitivity. The rest is done automatically
using the tactic auto.

[| idempotent r; x ∈ r"{x} |] =⇒ r"{x} =
⋃

y ∈ fixp r ∩ r"{x}. r"{y}

Proof of Lemma 2.2

This part of the proof of Theorem 2.2 is the difficult bit. What is done on paper rather casually and infor-
mally by sketching a repetitive process in which yet another element yi is needed and then concluding
that the set r(x) cannot be finite, is harder on the logical level. The repetitive process is first proved as
a lemma (see Core Lemma below). Applying this lemma in an induction, the existence of an infinite
sequence is proved. Some further theorems that generalize from the existence of this particular sequence
then provide the possibility to infer infinity from there. These theorems can then be chained together to
construct the contradiction to the assumption of finiteness.

3We have to use here fixp instead of fix as the latter is already used for the Tarski fixpoint-operator.
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Core Lemma

The core lemma describes that under the assumptions of Lemma 2.2 it is possible to infer a new element
y that is in relation r to all others so far but is not equal to any of the former ones.

[| idempotent r; x ∈ Domain r; x /∈ r"{x}; z ∈ r"{x};
¬ (∃ y. y ∈ r"{y} ∧ y ∈ r"{x} ∧ z ∈ r"{y}); z = s 0;
∀ j. j ≤ n −→ s j ∈ r"{x} ∧

∀ i. i < j −→ (s j,s i)∈ r ∧ s j 6= s i
|] =⇒ ∃ y. y ∈ r"{x} ∧ ∀ j. j ≤ n −→ (y, s j)∈ r ∧ y 6= s j

Similar to the paper style proof, it uses the properties of idempotence to infer that new “middle” element
and furthermore transitivity to establish the invariant that it is related to all previous ones. We use here a
variable s that formalizes a sequence over natural numbers used in the following to produce the infinite
sequence.

A Chain of Lemmata

The first step of the proof, leading to the conclusion that there is an infinite sequence, is an induction that
shows that, under the given assumptions of Lemma 2.2, there is such a sequence s.

[| idempotent r; x ∈ Domain r; x /∈ r"{x}; z ∈ r"{x};
¬ (∃ y. y ∈ r"{y} ∧ y ∈ r"{x} ∧ z ∈ r"{y})

|] =⇒ ∀ n. ∃ s:: nat ⇒ α . z = s 0 ∧
(∀ j. j ≤ n −→ (s j) ∈ r"{x} ∧
(∀ i. i < j −→ (s j, s i) ∈ r ∧ (s j) 6= (s i)))

This proof is an induction over natural numbers. In the induction step, the core lemma is applied to
produce the new element of the sequence s having the appropriate properties.
The conclusion of the previous step can be weakened.

∀ n. ∃ s:: nat ⇒ α . z = s 0 ∧ (∀ j. j ≤ n −→ (s j) ∈ r"{x} ∧
(∀ i. i < j −→ (s j, s i) ∈ r ∧ s j 6= s i))

=⇒ ∀ n. ∃ s. ∀ j. j ≤ n −→ s j ∈ r"{x}
∧ (∀ i. i < j −→ s j 6= s i)

The weaker set of properties of the sequence s is sufficient – abstracting over r"{x} as some set p – to
infer that p contains subsets S with cardinality strictly larger than any n.

[| ∀ n. ∃ s:: nat ⇒ α .
(∀ j. j ≤ n −→ (s j) ∈ p ∧ (∀ i. i < j −→ (s j) 6= (s i))) |]

=⇒ ∀ n. ∃ S. card S = Suc n ∧ S ⊆ p

Finally, the property derived in the previous step can be used to infer that the set p is infinite.

∀ n. ∃ S. card S = Suc n ∧ S ⊆ p =⇒ ¬ finite p

The variable p of type set can be instantiated to r"{x}. Thereby, chaining up all these lemmata, we can
put together the proof of Lemma 2.2 by producing a contradiction to the assumption of finiteness of the
relation.
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[| finite r; idempotent r |] =⇒
∀ x ∈ Domain r. x /∈ r"{x} −→
(∀ z ∈ r"{x}. ∃ y. y ∈ r"{y} ∧ y ∈ r"{x} ∧ z ∈ r"{y})

It may seem a bit odd that we have to derive first the existence of a cardinality for the sets S. However, as
infinity is just the negation of finiteness, the only way to construct a contradiction is to arrive at a property
typical for a finite set, i.e. a finite cardinality, and that clearly cannot be assumed for the sequence.

The proof of Lemma 2.2 is rather intricate similar to proofs in lattice theory, e.g. [2, 5]. It would be
much easier if a sequence could be constructed on the outside of the universal quantification over n, i.e.
∃s.∀n . . .. However, this is not possible in our case. We have to show that such a sequence exists for each
n. Fortunately, as the core lemma can be identified and applied inside the induction this sequence can be
prolonged in each step and by identifying the commonality of the sequences — that they are all contained
in some set p — we can construct the sequence of sets represented by the existentially quantified S.

Proof of the Theorem

The proof of correctness, i.e.

[| finite r; idempotent r |] =⇒ (∀ x. r"{x} =
⋃

y: fixp r ∩ r"{x}. r"{y} ∧
trans r)

just puts together Lemma 2.1 and Lemma 2.2; transitivity is simply contained in idempotence.
For completeness we can infer the property r ⊆ r; r from the first conjunct of the characterization

alone.

∀ x. r"{x} =
⋃

y ∈ fixp r ∩ r"{x}. r"{y} =⇒ r ⊆ r ; r

The other conjunct is transitivity so the inverse inclusion r; r ⊆ r is proved trivially. Finally, we put the
two parts together to finish the proof.

4. Constructing Idempotents

In [11] we present an algorithm for the enumeration of idempotents over a finite domain. This algorithm
is an ML implementation that is based on the characterization in Isabelle/HOL as seen in the previous
section and further refined to a representation of relations by the list datatype in Isabelle/HOL. However,
one of the initial question, we set out with, is to have a method for counting idempotents. Our algorithm
[11] is not suited to this end as it produces repetitions.

Ideally, we would like to have a simple formula that enables the explicit calculation of the number of
idempotents for a finite domain of size n. Counting mathematical entities is not always possible with a
simple formula: there are mathematical journals publishing new results on counting specific sequences,
e.g. [1, 15] and a dedicated web page for integer sequences [17]. From the recent publication [15] we
learn that in particular transitive relations are amongst the difficult entities. As transitivity is part of the
definition of idempotence clearly we cannot hope that idempotence is simpler.

In fact, the way these integer sequences are calculated is by specialized software [16]. It seems
that here is a field where mechanical computation is an accepted part of mathematics. To further this
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application of mechanization in science, we illustrate that theorem provers may be employed as devel-
opment tools for counting algorithms that have been proved to be correct. In that sense, formal software
engineering has found an application domain.

In the current section, we want to recapitulate the driving idea that transforms Theorems 2.1 and 2.2
into a construction algorithm. After that, we present a refined version of these theorems summarizing
the idea. In the following section, we then show in detail how the Isabelle/HOL theorems may be
transformed into executable form.

Construction Idea

Intuitively, we already know from the introductory examples how to construct all idempotent relations
over a set A:

1. select a subset F ⊆ A of fixpoints for r,

2. extend the ranges of the fixpoints with suitable4 subsets of A,

3. choose ranges for all non-fixpoints n by selecting suitable subsets of fixpoints; let n hang onto the
fixpoints’ ranges, i.e. enclose their ranges in r(n).

This is roughly the idea we used in [11] for the implementation of an enumeration algorithm. There is
one difficulty in the selection of suitable subsets of the ranges: respecting the dependency of the ranges,
as described by Theorem 2.2. This difficulty applies to the range extension of fixpoints and non-fixpoints
equally. In Step 2. when extending fixpoint ranges, we need to respect possible (mutual) dependencies
between ranges of selected fixpoints. For example, if we extend the range of a fixpoint f and select
another fixpoint f ′ to be in r(f) then we also need to incorporate r(f ′) into r(f). Similarly, if in Step 3.
a set of fixpoints is selected, all ranges of other fixpoints contained in the ranges of the selected fixpoints
are automatically included.

Whereas from a computational point of view, it is not difficult to resolve such dependencies by in-
cluding all dependent ranges, it is a problem for the mathematical goal of the enumeration. Repetitions
occur. For example, let r = {(1, 1), (1, 2), (2, 2), (2, 1)}. We want to extend for non-fixpoint 3. Whether
we choose {1}, {2}, or {1, 2} as the set of fixpoints to hang-onto, does not make any difference. Either
way, the result is the same relation rex = {(1, 1), (1, 2), (2, 2), (2, 1), (3, 1), (3, 2)}. That is, there are
three different ways in the above construction idea to arrive at the same result: we are generating repe-
titions. The repetition is inherent in this relation because (2, 1) as well as (1, 2) are part of it building a
cycle in the graph of the relation. As a countermeasure to such repetitions in the algorithm, one might
think about defining equivalence classes of fixpoints over the relation {(x, y). (x, y) ∈ r ∧ (y, x) ∈ r}
and then define free choices over connected subgraphs in the resulting factorized noncyclic graph of
the relation as differing subgraphs. However, this reduces basically to counting partially ordered sets, a
problem already encountered to be difficult [1].

Also, when considering the abstract procedure sketched above, there is another problem that remains
even after resolving those repetitions. It is best explained by example. Consider the idempotent relation
depicted in the following figure (note, there is no cyclic subgraph).

4That is, the range extensions have to respect transitivity.
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Here, the non-fixpoint in the middle, say 2, is already in the range of the top fixpoint 3. Imagine this
relation was constructed in Step 3. by extending the range of 2 with the range of the bottom fixpoint 1,
i.e. r(1) = {1}. Another possible choice — in another round of the construction — would be to extend
the range of the non-fixpoint 2 with the range of fixpoint 3, i.e. {1, 2, 3}. However, then we would map
2 to itself and it becomes a fixpoint. Thereby, we would create repetitions: for the selection of fixpoints
F = {1, 2, 3} in Step 1. the resulting idempotent relation – containing 2 as a fixpoint – would occur
again.

The repetition illustrated by this second example happens whenever a non-fixpoint is – prior to ex-
tension – already in the range of the relation. This scenario gives rise to a general observation about
idempotents summarized in the following formula.

∀ f ∈ fixp r. ∀ y ∈ nfix r ∩ r(f). r(y) ⊆ r(f)

This formula characterizes in more detail the case illustrated by the last example: non-fixpoints in the
range of fixpoints are constrained to choose their range from the former fixpoint. The above examples
show that constructing idempotents inherently bears potential for repetitions. Instead of pursuing the idea
of effectively constructing all the necessary combinations for the three cases of the naı̈ve construction
idea, we summarize the more refined observation about non-fixpoints in the following theorem.

Theorem 4.1. Let r be a finite relation. Then,

idempotent r ≡


∀ n ∈ N. r(n) =

⋃
x ∈ F ∩ r(n). r(x)

rF transitive

∀ f ∈ F. ∀ y ∈ N ∩ r(f). r(y) ⊆ r(f)


where rF = {(x, y). (x, y) ∈ r ∧ x ∈ F}, F = fixp r, and N = nfix r.

Proof:
The theorem can be proved straightforwardly using Theorems 2.1 and 2.2. The most difficult part is the
proof of transitivity for the ⇐-direction. We describe this part in a bit more detail, referring to the new
representation of idempotence given by the right hand side of the equivalence stated in Theorem 4.1 as
the new representation.

Now, given the three conjuncts described in this new representation, we have to show transitivity,
or more formally, ∀y ∈ r(x). r(y) ⊆ r(x) for all x ∈ domain r. The proof works by case analysis
over x and y being fixpoints, or not. Most cases are again straightforward. The complicated case is
y ∈ N and x ∈ N , i.e. both are non-fixpoints. We show transitivity pointwisely, i.e. for any y0 we show
y ∈ r(x) ∧ y0 ∈ r(y) ⇒ y0 ∈ r(x) . In this case, however, because of the first conjunct of the new
representation, we have a z ∈ F such that z ∈ r(x) ∧ y ∈ r(z) (see Figure 1). With the third conjunct
of the new representation, we have, because of z ∈ F and y ∈ r(z) ∩ N , that y0 ∈ r(z). To arrive at
y0 ∈ r(x), it remains to show that r(z) ⊆ r(x). However, this is implied by the first conjunct of the new
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Figure 1. Scenario x ∈ N and y ∈ N in proof of Theorem 4.1

representation applied to x, i.e. r(x) =
⋃

x0 ∈ F ∩ r(x). r(x0) – just replace r(x) in r(z) ⊆ r(x) –
which in turn is true for z as z ∈ F , z ∈ r(x), and z ∈ r(z). ut

The Isabelle proof is about 200 lines of proof script (see [8]). The new characterization given by The-
orem 4.1 is a refined version of Theorem 2.2. It partitions an idempotent relation into disjoint subsets
determined by the range extended reflexive transitive relation rF (the fixpoints and their ranges), the non-
fixpoints and their ranges for the two cases of non-fixpoints inside and outside the range of the relation.
By combining Theorem 2.1 for the reflexive part with Theorem 2.2 for the non-fixpoint part, the charac-
terization of Theorem 4.1 minimizes the property of idempotence by reducing it to disjoint partitions of
the relation. Hence, it is a predicate that is more efficient when we consider it as a procedure that checks
idempotence of a relation.

Therefore, we use this more fine grained view to derive an efficient predicate implemented in ML.

5. Efficient Predicate

In this section, we present how Theorem 4.1 is transformed from an Isabelle/HOL set representation into
an ML-like program inside Isabelle/HOL using the datatype of lists.

We first introduce our list representation for relations in Isabelle/HOL. Then, we show how the
functions representing the predicate of Theorem 4.1 can be defined as primitive recursive definitions
over that datatype representation. Finally, we give an implementation relation between relations and
their implementation as lists and sketch the refinement proofs.

Data Representation

A relation is represented in Isabelle/HOL using the datatype of lists already part of the theory database
(see Section 1). A finite relation is now represented as a list of pairs (x, r(x)) of elements x of the
domain of r and their individual range. For example, the relation

{(1, 1), (1, 2), (1, 3), (2, 2), (3, 2), (3, 3)}

may be represented as follows.

[(1,[1,2,3]),(2,[2]),(3,[3,2])]

To introduce this representation of relations properly, we define the following type abbreviation using
Isabelle’s types definition.
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types
α relation = "(α × α list) list"

Implementation

To introduce the notions of all fixpoints fixl and non-fixpoints of a relation, we first define a function
fixr restricting a relation to its fixpoint partition. From the theory database of lists, we use the map
function, the membership predicate mem, and the very elegant filter expression [x:l.P x] filtering all
elements x fulfilling a predicate P out of a list l.5

constdefs
fixr :: "α relation ⇒ α relation"
"fixr r == [x:r. (fst x) mem (snd x)]"

fixl :: "α relation ⇒ α list"
"fixl r == map fst (fixr r)"

nfixl :: "α relation ⇒ α list"
"nfixl r == map fst [x:r. ¬ ((fst x) mem (snd x))]"

The range of an individual element x of a relation, i.e. r(x), is defined as a primitive recursive function
rat. Therefore, first the constant is declared and second the definition is given by equations contained
in a primrec block.6

consts
rat :: "[α, α relation] ⇒ α list"

primrec
"rat x [] = []"
"rat x ((y,rn) # l) =

if (x = y) then (rn @ (rat x l)) else (rat x l)"

Since we possibly find differently ordered lists representing the same set, we implement some auxiliary
functions mimicking set containment lsubset and equality on the list representation lset eq.

consts
lsubset :: "[α list, α list] ⇒ bool"

primrec
"lsubset [] l’ = True"
"lsubset (x # l’) l = (x mem l) ∧ (lsubset l’ l)"

constdefs
lset_eq :: "[α list, α list] ⇒ bool"
"lset_eq l l’ == (lsubset l l’) ∧ (lsubset l’ l)"

Now, the first part of the efficient predicate represented by Theorem 4.1 states that the partition rF of
the relation r is transitive. To this end, we define the following transitivity check. We use two auxiliary
functions that perform a transitivity check pointwisely.

5Compare this notation to the rather clumsy ML filter expression.
6We use here pattern matching on the left-hand-side of a primrec equation which is a slight modification of the original Isabelle
code to enhance readability.



1016 F. Kammüller / Idempotent Relations

consts
transone :: "[α relation, α list, α list] ⇒ bool"
transpre :: "[α relation, α list list] ⇒ bool"

primrec
"transone r ry [] = True"
"transone r ry (a # l) = (lsubset (rat a r) ry) ∧ (transone r ry l)"

primrec
"transpre r [] = True"
"transpre r (ry # l) = (transone r ry ry) ∧ (transpre r l)"

Function transpre implements ∀y ∈ r(x). r(y) ⊆ r(x) (cf. Theorem 4.1). The actual transitivity check
is then realized by mapping the auxiliary function over the ranges of the relation’s domain elements.

constdefs
transp :: "α relation ⇒ bool"
"transp r == transpre r (map snd r)"

For simple hangers-on, that is, such hangers-on that are not in the range of the relation, we check the
following part of Theorem 4.1

∀ n ∈ N. r(n) =
⋃

x ∈ F ∩ r(n). r(x)

which is implemented in the following function on the list representation.

constdefs
nfone :: "[α, α relation] ⇒ bool"
"nfone n r ==
(let allrats = concat (map (λ x. (if (fst x) mem (rat n r)

then (snd x) else [])) (fixr r))
in lset_eq (rat n r) allrats)"

consts
nf_ho :: "[α relation, α list] ⇒ bool"

primrec
"nf_ho r [] = True"
"nf_ho r (n # nl) = (nfone n r) ∧ (nf_ho r nl)"

Finally, for the case of non-fixpoint hangers-on that are also in the range of the relation we implement
the last part of Theorem 4.1

∀ f ∈ F. ∀ y ∈ N ∩ r(f). r(y) ⊆ r(f)

using an auxiliary function checkn that checks r(y) ⊆ r(f) given the relation r, the range r(f) of a
fixpoint, and a list of non-fixpoints y.

consts
checkn :: "[α relation, α list, α list] ⇒ bool"

primrec
"checkn r rf [] = True"
"checkn r rf (n # nl) = (lsubset (rat n r) rf) ∧ (checkn r rf nl)"
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Using the auxiliary function checkn, we can implement the predicate in two steps: first we implement
it for just one f ∈ fixp r as the function nf rng one and then we can apply the latter conjunctively to
build the whole predicate as nf rng.

constdefs
nf_rng_one :: "[α list, α relation, α] ⇒ bool"
"nf_rng_one N r f == let ratf = rat f r in

checkn r ratf [x:N. x mem ratf]"
consts
nf_rng :: "[α list, α relation, α list] ⇒ bool"

primrec
"nf_rng N r [] = True"
"nf_rng N r (f # fl) = (nf_rng_one N r f) ∧ (nf_rng N r fl)"

Now, these predicates can be simply combined in a conjunction.

constdefs
idemp :: "α relation ⇒ bool"
"idemp r == let F = fixl r in

let N = nfixl r in
let rF = fixr r in
(transp rF) ∧ (nf_ho r N) ∧ (nf_rng N r F)"

For any relation, we can apply this predicate to its list representation to check for idempotence.

Adequacy

To prove that the predicate actually encodes idempotence, we have to define an implementation relation
[9] formally. This implementation relation relates each relation to its list representations independent of
the order of the elements in the list or repetitions. However, each list representation has a unique relation
associated with it. Hence, it can be seen as a function δ from the implementation to the specification of
relations.

δ :: "α relation ⇒ (α × α) set"

Consequently, the definition of this function in Isabelle/HOL uses list operations. An auxiliary function
δx transforms the original datatype of relations into lists of pairs.

consts
δx :: "α relation ⇒ (α × α) list"

primrec
"δx [] = []"
"δx (n, nl)# l = (map (λ x. (n, x)) nl) @ (δx l)"

Finally, the function δ uses the function set – provided by the list theory, transforming a list into a set –
thereby cancelling repetitions and discarding order of elements.

defs δ r == set(δx r)

In order to prove the adequacy of the implementation idemp, we can now use δ. As a global assumption,
we use the following well-formedness condition on the type of relations.
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a mem r =⇒ snd a = rat (fst a) r

From this assumption, we can infer the following coupling invariant [9] further specifying the implemen-
tation relation δ.

set(snd a) = δ r "{fst a}

To assert the well-formedness assumption, we define on one side a local proof context for the adequacy
proofs by a locale [12] and on the other side for the counting application we make sure that the initial enu-
meration of relations respects this constraint. We show the following auxiliary equivalences associating
the fixpoints and non-fixpoints of abstract and concrete representations.

fixp (δ r) = set(fixl r)
nfix (δ r) = set(nfixl r)

We show the following theorems corresponding to the conjuncts in the characterization of Theorem 4.1.

transp(fixr r) ≡ transitive{(x,y). (x,y)∈ δ r ∧ (x,x)∈ δ r}

[| N = nfixl r; F = fixl r |] =⇒
nf_ho r N ≡ ∀ n ∈ set N.

δ r "{n} =
⋃

x ∈ F ∩ δ r "{n}. δ r "{x}

[| N = nfixl r; F = fixl r |] =⇒
nf_rng N r F ≡ ∀ f ∈ set F. ∀ y ∈ set N ∩ δ r"{f}.

δ r "{y} ⊆ δ r "{f}

Finally, they can be grouped together and we can prove the adequacy of our Isabelle/HOL implementa-
tion of a predicate for idempotence.

finite(δ r) =⇒ idemp r ≡ idempotent (δ r)

All of the above function definitions are Isabelle/HOL definitions or primitive recursive definitions of
functions over the chosen list datatype. They correspond very closely to actual ML function definitions
and can be translated one-to-one into ML.7 The use of the resulting functions for counting idempotents
is discussed in the following section.

6. Coding Issues

The proved algorithm for checking a relation for idempotence can now be used to filter out and count
idempotents. To this end, we use a simple function suc rel (see [8]) that enumerates all relations over
{1, . . . , n} for a given n ∈ N. The fact, that we use integers as labelled points, does not impose any
restriction as the resulting relations are isomorphic to ones with arbitrary labels. The results for relations
up to six points are given in Figure 2. The whole set of idempotents with three points as produced by an
automatic transformation written in ML into diagrammatic representation in LaTeX picture is contained
in Appendix A for illustration purposes. For up to five elements, the corresponding lists may be found
on the author’s web page [8].
7Actually Isabelle/HOL offers a function codegen that automates the process of exporting fully defined executable formaliza-
tions to ML.
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Points Idempotents All relations

idemp count 2 11 16

idemp count 3 123 512

idemp count 4 2360 65536

idemp count 5 73023 33554432

idemp count 6 3494057 68719476736

Figure 2. numbers of idempotent relations

The run time of idemp count 5 is around ten minutes on a Powerbook G4 with 768 MB RAM, 1,5
GHz. The run time for idemp count 6 on a similar machine has been 63 days. For 7 the total number of
relations is 562949953421312, already getting out of reach for a normal PC.

The obvious question is whether the original algorithm presented in [11] directly constructing idem-
potents cannot be adapted so that it does not produce repetitions. As it does not count through all billions
of relations filtering out the right ones, one would expect it to be faster. In order to investigate this point
we implemented such an improved version in ML. It avoids repetitions, but in a naı̈ve way by overwriting
repeated range selections. As explained in Section 4, an effective procedure to enumerate range selection
without repetitions boils down to enumerating posets. The algorithm implemented in ML is available
at [8]. It turns out that for 5 it is twice as fast. However, already for 6 it runs into a livelock. As we
construct the idempotents in three passes the intermediate lists of relations have to be held in storage.
At some point the run time system is constantly swapping from RAM onto the hard disk not being able
to perform another computational step. Even though with greater storage one might get up a few steps,
there is a limit to the storage we can use. The clear way out of this dilemma is to avoid the three passes.
However, this results in finding an explicit non-repetitive successor function on idempotents which in
turn is equivalent to finding a simple formula to explicitly calculate their numbers.

In any case, the problem of generating all idempotents is exponential by nature: a very weak lower
bound on the number of idempotents over n labelled points is already 2n the number of simple fixpoint
relations. A little more accurately, when contemplating the numbers for up to six points in Figure 2, we
see that for n > 2 – at least up to 6 – 25(n−2)+1 is outgrown. Hence, the estimated value for 7 is above
226 and for 8 we outgrow 231 ∼ 1010. So, even if our efficient construction would overcome storage
complexity problems, for idempotents with more than 10 points we would hit the same time complexity
bounds as with the efficient predicate for the same number of idempotents.

7. Conclusions

The main purpose of this paper is to show that Isabelle/HOL can be used to analyze a mathematical entity
and infer an algorithm from a theoretical characterization. The development process takes place for the
most part in the application domain of finite relations. The refinement of the mathematical characteriza-
tion of idempotent relations leads to an abstract algorithm for constructing all idempotents over a given
carrier set (see Section 4). Unfortunately, it is not possible to refine this abstract algorithm into a precise
counting method as in building all possible combinations for each step, repetitions cannot be avoided.
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As pointed out in Section 4, it is a known difficult problem to count certain relations, e.g. partial orders.
The refinement of the idempotent characterizations of Theorems 2.1 and 2.2 into the more fine-

grained predicate given in Theorem 4.1 enables the construction of an efficient predicate that can be
used for filtering idempotents. Thereby, all idempotents over a given finite set and their numbers can be
generated in a formally verified way.

The transformation step from the refined Theorem 4.1 to the computable ML predicate on the list
representation is an illustration of the classical way of deriving an implementation. Although it is a rather
simple example, it shows how general software development theory is at last applied inside Isabelle/HOL
to refine a mathematical characterization into its implementation in ML. An interesting follow up project
would be to generalize the data refinement application inside Isabelle/HOL into a general framework.

This example shows that the effort to analyze a problem rigorously can lead to known hard prob-
lems. It also shows that some proofs that are simple on paper are intricate when done formally at the
logical level, like the proof of Lemma 2.2. However, for the analysis of an unknown problem and the
development of a new algorithm the effort is justified because there is a gain of general knowledge.

It is feasible to approach a problem with an interactive theorem prover in a straightforward way, only
if the problem domain is of a reasonably limited size and well supported by the infrastructure of the
prover as in this example of idempotents. In Isabelle/HOL the theories of sets, relations and lists are very
well supported. Consequently, the additional theory for idempotents is small.
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A. Graphical Output of Algorithm for N3

Here are the graphical representations of the output of the efficient predicate for three elements repre-
sented by N3. The construction algorithm (see [8]) produces the same relations but in different order.
The graphical representations are generated by a macro that is written also in ML and generates LaTeX
pictures [8](see there also for the graphical output for N4 and N5).
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