
Under consideration for publication in Formal Aspects of Computing

Formalizing Non-Interference for a
Simple Bytecode Language in Coq
Florian Kammüller
Technische Universität Berlin

Institut für Softwaretechnik und Theoretische Informatik

Abstract. In this paper, we describe the application of the interactive theorem prover Coq to the security
analysis of bytecode as used in Java. We provide a generic specification and proof of non-interference for
bytecode languages using the Coq module system. We illustrate the use of this formalization by applying it
to a small subset of Java bytecode. The emphasis of the paper is on modularity of a language formalization
and its analysis in a machine proof.

Keywords: Formal Methods for Security, Programming Language Analysis, Modular Specification, Inter-
active Theorem Proving

1. Introduction

An important application domain of interactive theorem proving, and formal techniques in general these days,
is the analysis of programming languages and their related compilers and run-time systems, most prominently
the Java language and the related Java Virtual Machine (JVM) infrastructure. Java is a suitable target for
interactive theorem proving techniques as it is ubiquitous and therefore often applied in security and safety-
critical domains. Java is also a suitable target for formal analysis because its definition is relatively clean.
Hence, the high effort naturally coming along with a mechanical formal analysis is justified. In this paper,
we report on our work of formalizing and analyzing confidentiality properties of the Java bytecode language
with the Coq [Coq04] theorem prover. The actual confidentiality property we prove is non-interference, a
property that excludes the illegal flow of information from any confidential parts to public parts of programs,
thereby providing confidentiality.

Apart from just proving a property, this rather big case study provides the implementation of a certified
bytecode verifier for non-interference: as the Coq proof assistant is based on constructive logic, we can extract
an executable program from our mechanized proof.

In the remainder of this introductory section, we introduce theorem proving in Coq. In Section 2, we give
an account on the type safety and security verification of Java and the JVM prior to our work and explain
non-interference. Then, in Section 3, we introduce our formalization of a Coq framework for non-interference

Correspondence and offprint requests to: Florian Kammüller, TU Berlin, FR 5-6, Franklinstr. 28/29, 10587 Berlin, Germany.
e-mail: flokam@cs.tu-berlin.de

2 F. Kammüller

of bytecode that enables the extraction of a certified bytecode verifier [BK05]. The mechanization restrains
itself to a simple imperative subset of Java bytecode, but using Coq’s module concept it represents a generic
framework parameterizing the programming language and its operational semantics. The emphasis of the
exposition is on the framework, i.e. the proof of non-interference, the modular abstractions and the extraction
of a bytecode verifier rather than the extension to the full JVM bytecode.

Coq

Interactive theorem proving is more and more successfully being applied in programming language analysis.
This is due to the fact that interactive provers implement expressive logics, usually some kind of Higher Order
Logic (HOL) [Chu40]. The interactive theorem prover Coq is also a HOL system, differing, however, in quite
a few respects from classical HOL systems. The main difference from a users perspective is that the logic in
Coq is not classical. The basis for Coq is a constructive type theory that is interpreted as a logic according
to the Curry-Howard isomorphism [How80]. In this isomorphism, types are interpreted as propositions and
terms inhabiting types as proofs of those propositions. For example, a proof of an implication A ⇒ B is
a function transforming an element of type A, i.e. a proof of proposition A, into an element of type B,
i.e. a proof of proposition B. Coq represents a constructive logic. Therefore, some classical axioms like, for
example, the classical axiom called tertium-non-datur A ∨ ¬A (tnd) are not represented in Coq. That is, if
we would like to prove an implication, like A ⇒ B, we cannot – as is a common way of proving implications
– assume A ∧ ¬B and then show a contradiction. This reasoning is based on the classical view that the
implication A ⇒ B corresponds to ¬A ∨ B and the assumption of the axiom tnd.1 Instead, to prove an
implication, we have to construct a function as described above. This is just an example to illustrate the
basic ideas of constructive logic. For a comprehensive introduction to type theory and constructive logics in
its various forms, see [Tho90].

Although constructivity imposes restrictions that can be quite awkward at times, it offers one decisive
advantage: since all proofs are constructions of witnesses, they are executable as programs. Program code
may be extracted from the Coq tool automatically into the programming language OCAML. The language
OCAML is an object oriented version of ML. It is at the same time the implementation language of the Coq
system.

Another general advantage of Coq is that its type system is slightly more powerful than the simple type
theory that is the basis for classical HOL. The type system of Coq enables dependent types. In fact, the
type system has to be more powerful as Coq uses the Curry-Howard isomorphism: dependent types are
used to represent universal and existential quantification. Yet the type system is sufficiently restricted such
that it remains decidable.2 However, there are some constructions that are included in Coq that violate the
decidability: pattern matching constructions over dependent types can become undecidable.

Using the Curry-Howard isomorphism necessitates the use of a more powerful type system to represent
quantification, as we have seen above. Besides complications with respect to type checking, the increased
strength of the type system pays off with respect to expressivity. Dependent types are known to be the natural
logical representation of modules, see for example [MQu86]. Although in principle it is very simplistic to
assume that any module can be reflected into the logic as a dependent type, it is certainly true that for
structures that are of interest in the domain of reasoning it is very desirable to be able to represent them
as first-class citizens of the logic [Kam99a]. A very good example for such application domains of interactive
theorem provers, where modular structures are reflected into the logic, is abstract algebra, e.g. [KP99].
Dependent record types are the natural representation of modular structures. Coq offers dependent records
and, since recently, additionally an independent module system [Chr03].

Coq’s original foundation, the Calculus of Constructions, has been specialized to a calculus of inductive
constructions [CP90] that includes inductive definitions. Similar to a datatype definition as in a programming
language like ML, an inductive definition in Coq is defined by a set of rules describing the signature of the

1 With tnd, a contradiction to A ∧ ¬B is equivalent to ¬(A ∧ ¬B), which is equivalent to ¬A ∨B.
2 In general, type checking for dependent types is undecidable because a type could, for example, represent the Halting problem.
Coq’s typed λ-calculus, the language for types and terms, is not Turing-complete: because of the typing constraints, no general
recursion combinator can be expressed. There is a fixpoint-combinator in Coq, but it expects a termination proof for the
recursive function given to it as an argument. Similar to classical HOL, all functions are total and hence do not cover the full
class of µ-recursive functions.

Formalizing Non-Interference for Bytecode 3

constructors of the type. However, Coq’s logic is, according to the Curry-Howard isomorphism, defined by
its types. Therefore, an inductive definition may as well be used to define logical formulas. Examples for this
additional feature are given in Section 3. Different to classical datatype definitions, an inductive definition
does not even enforce a base case. Using inductive definitions for the formalization of computer science
related subjects is very natural because types defined by an inductive definition automatically contain an
induction principle and so-called exhaustion properties that enable to reason by inversion: if we need to
show a property for all elements of a type, it suffices to make a case analysis over all different manifestations
of elements of the type given by the constructors of the inductive definition.

In the early days, the usability of the Coq system was inferior to other HOL systems, but in the meantime
techniques like simplification tactics that have proved successful in other tools have been integrated into Coq.
The expressivity of Coq and its code extraction properties make it an interesting tool for the creation of
generic frameworks, i.e. abstract formalizations of practical specification and verification problems that may
be instantiated to various applications.

An excellent introduction to working with Coq is [BC04]. More concrete features of the Coq system will
be explained when we use them in the following exposition.

2. Formalizing Java Security

The Java programming language has been analyzed with various formal methods. A comprehensive survey
comparing different approaches has been published as early as 2001 [HM01]. In the meantime, these early
efforts have been partly accomplished.

Type Safety Analysis

Quite a few of these formal approaches are based on interactive theorem proving analysis. Some of these
projects have addressed type safety of the Java language, e.g. [ON99, vOh01]. Type safety is proved by an
analysis of the static type system of Java. Basically, these approaches formalize the Java language with its
type system and semantics and then show that well-typed programs do not go wrong. The notion of “do not
go wrong” has to be further refined. It depends on the semantical model that is used. In a so-called small-
step semantics [Mos99], we can explicitly reason about termination; there, “do not go wrong” corresponds
to “a well-typed program does not get stuck”. This informal notion again means that a well-formed program
always reaches a value. Here, the notion of type safety is entailed in the properties progress and preservation
as follows. A well-typed term can take a further step, according to the reduction rules of the semantics, or
it is a value (progress), and if a well-typed term takes a step of evaluation, then the resulting term is also
well-typed (preservation, sometimes called subject reduction) [Pie02].

By contrast, a big-step semantics (as, for example, used in [ON99, vOh01]) presupposes termination when
defining the evaluation rules of the structural operational semantics. Preservation is the same, but progress
differs as we already assume that a step can be taken.

The first step to prove the security of a programming language is to ensure that it is type safe. We
consider the type safety of mobile code of Java, the so-called bytecode, which is an intermediate code run
by the Java Virtual Machine.

Java Virtual Machine

Java’s run time environment is called the Java Virtual Machine (JVM). Original source code of Java is
compiled into bytecode, a format that can readily be interpreted by the virtual machine.

One of the main ideas of virtual machines is to support mobile code by providing an interpreter for any
platform on which the language might be run. Thereby, platform-independence and portability of code is
granted. The concept of a virtual machine dates back to the P-code of Pascal [Wir76, Nel79]. A virtual
machine is not only found in Java and its dialect for Smart Cards called Java Card [Che00]; it has also been
adopted by Microsoft’s .NET framework in form of the Common Language Runtime System (CLR). The
concept of a bytecode-based intermediate language has caught on – there are now even compilers to Java
bytecode from other languages, for example C++.

4 F. Kammüller

Another function of a virtual machine is to control the interaction between mobile code, so-called applets,
and the local run-time environment in order to prevent attacks from malicious applets.

Besides access control through stack inspection and sand-boxing of dynamically loaded classes, one secu-
rity function of the virtual machine’s architecture is a so-called bytecode verifier. It performs a static analysis,
i.e. a type check, on a given bytecode program. The verification process entails the assurance that the applet’s
bytecode does not attempt to perform ill-typed operations at run-time that would undermine the access con-
trol of the JVM. Potentially insecure programs are detected in the verification process prior to execution and
can be rejected. The main properties that are excluded in the verification are forging object references from
integers, illegal casting of an object reference from one class to another, calling directly private methods of
the application programmers interface (API), jumping in the middle of an API method, or jumping to data
as if it were code [Ler03]. However, in order to assure that the security functions of the bytecode verifier do
what they are supposed to do, a bytecode verifier must be verified itself. The verification of such a bytecode
verifier can be based on type systems. This verification has to show that the implementation of the verifier
implements the type check given by the type system. As the typing rules can be many and intricate, such a
verification is error-prone. It is a very well-suited application for a machine-assisted verification, the more so
as bytecode verifiers are quite likely candidates for high-level Common Criteria evaluations. The Common
Criteria are a standard for security [CC05]. The Common Criteria requirements have complex dependencies,
but in the higher evaluation assurance levels (EAL) of these criteria, formal methods are a sensible means
to achieve a certificate. The strictest level is EAL7, where a formal representation of the high-level design
and formal proofs of correspondence with the security requirements must be provided.

Klein and Nipkow [KN02] report on their verification of Java’s bytecode verification using Isabelle/HOL.
Barthe and Dufay provide a similar work in Coq but they use the following different approach of decomposing
the JVM [BD04] similar to [SSB01].3 As we have seen above, a virtual machine consists of the bytecode verifier
and an interpreter. The two parts of the original JVM are named type (or abstract) machine for the verifier,
and offensive machine for the interpreter. In order to simplify the intricate proof obligations, the task of
verifying a virtual machine is reduced to a combined so-called defensive machine. The defensive machine
is a theoretical combination of the offensive and the type machine, i.e. an interpreter that performs type
checking. The type safety verification on a defensive machine is simpler to perform as the typing information
is contained in the definition of the interpreter, i.e. a defensive machine corresponds to a typed operational
semantics.

Bytecode Verification in Coq

The method implemented in the so-called Jakarta framework in Coq [BD04] supports the process of com-
bining the two parts of the JVM to simplify the verification.

The applied method enables reasoning about the type safety of the defensive operational semantics.
However, to validate that the results actually match with the actual JVM, one has to show that the defensive
machine is implemented by the combination of offensive and type machines. This proof task is called cross-
machine validation. More precisely, this task consists of proving the following property. The offensive and
defensive machines must coincide on those programs that are accepted by the type virtual machine. This
property can be shown in two parts:

• The offensive and defensive machine coincide on all programs that do not raise a type error in the
defensive machine.

• Every program that raises a type error on the defensive machine also raises a type error on the type
machine.

Practically, the two proofs above are equivalent to showing that the offensive and type machines are sound
abstraction of the defensive machine. We concentrate in this paper on the second bullet point. The first part
has been done as well (see [Kam06]).

If the cross-machine validation is performed successfully, a bytecode verifier can be extracted from the
Coq formalization of the type machine. The advantage of Coq, its module concept and code extraction
mechanism is that a bytecode verifier can be defined by the output signature of a functor that demands as

3 Some names differ from [SSB01]: the offensive machine is called trustful, for example.

Formalizing Non-Interference for Bytecode 5

input all needed items and corresponding proofs as sketched above. Reuse of Coq formalizations and proofs
is actually possible. As we will see in the following, we can reuse the module called BCV [Duf04] that enables
a general transformation from an abstracted type system to a bytecode verifier.

The Jakarta framework provides some automated support of the sound abstractions needed as provisos
for the generation of the bytecode verifier. Given the specification of the type and offensive machine, it tries
to find the right abstraction functions and set up the soundness proofs.

The Bicolano language [Bic07] produced in the Mobius project [Mob07] is a more recent attempt to
formalize the Java bytecode language and semantics in Coq. It can be seen as an extension of the Jakarta
framework towards a standardized language and program semantics for Java bytecode. The proof results of
Jakarta are reusable for Bicolano and Mobius. In the Mobius project the concept of proof-carrying code of
Necula and Lee [NL96] is implemented for Java bytecode. Proof-carrying code is code that carries proofs
of program properties that have been mechanically verified by a proof assistant. Thereby mobile code can
be automatically verified on the end users’ devices with respect to properties that have been interactively
proved by the software provider.

The subject of the work presented in Section 3 is to complement the bytecode analysis to other security
properties than just type safety. We consider the classical property of non-interference. For the reasons of
brevity of the formalization, we restrict the attention merely to security types, leaving out classical type
information. It is feasible to extend rather than complement a classical bytecode verifier by security types
using a simple combination of classical types – like nat, bool, etc – with the security types and constructing
corresponding combined defensive and type machines. This combination is deeply rooted in the core functions
of the operational semantics and cannot be simply modularized.

Non-Interference

Non-interference is an abstract formal description of confidentiality. Confidentiality is besides integrity and
availability one of the three properties that are generally used to define security. Non-interference has first
been devised by Goguen and Meseguer in [GM82]. Based on abstract notions of a security policy and
information flow, it defines that no confidential information may flow to public parts of a system.

We use a state-based version of non-interference. That is, we define a concise abstraction of all relevant
run-time information of an execution state sufficient to express information flow, or rather the absence of
it. Therefore, we assume partition of data in high (H) and low (L) partitions. This partition is the security
policy that we consider as parameter to the system. Other work using state-based notions of non-interference
exists, e.g. von Oheimb’s Non-Leakage [vOh04]

Informally, non-interference now means that no information can flow from H to L — an attacker can
infer no H-information from the output of L-variables.

More precisely, we define first an indistinguishability relation ∼ on states as follows. H-states are all
indistinguishable, but L-states must be equal to be indistinguishable. Let further s ⇓ u be an evaluation
relation on states that holds if s is an initial state, u is a final state and s evaluates to u. Now we can define
non-interference formally.

Definition 2.1 (Non-Interference). For all states s, s′, u, and u′ such that s ⇓ u and s′ ⇓ u′, if s ∼ s′

then u ∼ u′.

The property of non-interference is the goal that we are going to prove for a given type system for Java
bytecode in Section 3. This kind of proof is usually called correctness of the type system as it shows that
a term that is well-typed does have the property encoded by the type system, here, for example, non-
interference. This property is also the subject of type systems that describe information flow security and
that have been the source for the type system we consider.

Information Flow Security

In early work on confidentiality of data in computer programs, Fenton [Fen73] and Bell and LaPadula
[BLP73] developed mandatory access control: each data expression is labelled with a security label. Security
control consists in a simultaneous computation of the dynamic flow of information with the running program.
Mandatory access control has proved to be too restrictive because of a phenomenon called label creep. As

6 F. Kammüller

this approach considers execution paths, labels increase monotonically in sensitivity throughout execution.
The results of the security computation tend to be labeled too sensitively for their intended use.

The classical idea to statically analyze the information flow in a program to ensure security is due to
Denning and Denning [DD77]. To give an intuition, consider the simple if-statement in the following pseudo-
bytecode snippet.

1: if xH = 0 then 4
2: yL = 1
3: goto 5
4: yL = 0
5: end

Assume for simplicity that both variables range over {0, 1}. If the high (confidential) variable xH contains
value 1, then the low (public) variable yL holds 0 at the end in line 5, and vice-versa: if xH is 0, then yL

contains 1. Hence, there is an information flow from xH to yL. This kind of information flow is called an
implicit flow in contrast to an explicit flow, as, for example, given by a direct assignment yL:= xH .

This is the basic idea of illegal information flows from high (H) to low (L), for which the Dennings
defined general rules for analyzing program code. The analysis with such rules appears to be a tedious task
for a human and therefore an ideal candidate for computer support. One approach to introduce machine
assistance into the static analysis process is to provide type systems for information flow security. Actually,
there is a whole bunch of different type systems for information flow analysis. A comprehensive overview is
[SM03].

Basically, an information flow type system for security encodes non-interference in a specific set of types
that are described by a set of typing rules. It is not surprising that it is possible to encode logical information
in types because this is exactly what HOL is all about.4 However, the difference in the intuition of type
systems here is that they are intended to be decidable. A type system is supposed to be used for static
analysis before compilation or interpretation of a program to automatically filter out incorrect code. This is
the same idea that is usually connected to static analysis of programs and type safety, as sketched above.

An information flow type system encoding non-interference can be used to extend the Java bytecode
verification by replacing the original type system with the information flow type system.5 Basically, such a
type system consists of security-types (simply {L,H}) that are assigned to all program variables and to all
program points.

In the type system approach, every program expression has a security type that is completely static:
unlike mandatory access control mechanism, these security labels are not computed at run time. Security
is enforced by type checking; the compiler reads a program containing security types and by type-checking
ensures that the program does not contain improper information flows. In addition to the types for program
expression, type systems for information flow analysis use type environments that are assignments from
program points to security types (usually H and L). These program-counter labels correspond to the dynamic
process sensitivity labels used in mandatory access control. They enable to exclude implicit information flows
as they can mark program regions as security sensitive (high), for example, the branches of an if that is
controlled by a high program variable. The major advantage of type environments compared to dynamic
analysis is that the label creep may be avoided. Dynamic enforcement uses only information about single
execution paths. Therefore, once a security label has crept up, for example after an if-statement, the label
has to stay up on the execution path. In a type environment, all possible execution path are reflected in
the type assigned to a program point. Hence, it is possible, for example after an if-statement, to downgrade
a program-counter’s security label, for example if it has been low before the if and the compile-time type
checking can prove that no possible execution path through the if contains an insecure assignment.

The meaning of an information flow type system is, similar to classical type systems, that if a program
is well-typed in the non-interference type system, then it is secure. A program being secure means it is
non-interfering: an attacker cannot extract high information from low outputs. Staying with the example
above: a security policy that assigns the levels H to x and L to y must assign the level H to all program

4 In fact, HOL, the simple theory of types, descends from Russell’s Theory of Types. It was Russell’s original aim to overcome
the inconsistencies of näıve set theory by introducing the notion of types representing the domains of predicates in a strict
hierarchy.
5 Clearly, the information flow type system has to entail the former classical type system in order to preserve classical type
safety.

Formalizing Non-Interference for Bytecode 7

points ∈ {1, . . . , 4} to guarantee non-interference for the code snippet. Otherwise an attacker could learn the
value of the confidential variable x from the public variable y.

An example for a type system for non-interference for a subset of the Java language is [BBR04]. It is
based on the general concepts of [BN03] using stack types to control information flow.

However, not all works concerning the verification of non-interference are based on type systems and
syntactical notions of non-interference. Joshi and Leino [JL00] base their work on a semantic notion of
security. Using a program HH (havoc on h) that sets all high values with arbitrary values, security of program
S can be defined as HH;S;HH

.= S;HH where .= denotes program equality based on total correctness and
; sequential composition in a relational model. This notion encodes that the results of S on low variables
remain the same independent of the initial assignment to high variables. Intuitively, this is the same as the
“low-equality” expressed by non-interference. Joshi and Leino argue that this semantic approach grants more
flexibility than the type-based approaches. Most prominently, they show that their characterization is more
precise (some programs that are secure and are rejected by type-based approaches are accepted here) and
there is more flexibility as their notion of security applies to any program construct that has a semantics,
unlike in type systems where the rules have to be extended for each new construct. They illustrate this
flexibility quite impressively by applying their approach to nondeterminism and exceptions. However, as
the authors also show, these advantages have their price, most importantly, various fixpoints characterizing
recursion and loops have to be found. These are severe limitations for static analysis as they limit automation.

Non-Interference in Coq

The idea to use Coq for proving non-interference for the JVM is to simulate the type system [BBR04] by
a typed operational semantics, i.e. a defensive machine. That is, the typing rules of the type system are
integrated into an evaluation function. For this typed operational semantics, we define non-interference.
Using Coq, we prove non-interference for the defensive machine. That is, we prove that for all executions an
attacker cannot learn anything about high data.

From the defensive machine we can then abstract a type machine and an offensive machine in Coq. The
type machine represents a security bytecode verifier for the JVM, i.e. a type checker that assures that a
program that is accepted does not have illicit information flows. The input to this security type verification
is a security policy consisting of an assignment of all program variables and program points to {H,L}, the
security types.

Other work formalizing non-interference for Java in theorem provers includes the works by Naumann
[Nau05] and Strecker [Str03]. In difference to the work described here, they address Java source code. Another
work that formalizes also Java bytecode is [ACL03], which considers isolation properties in Java Card. Their
work seems to address a larger fragment of the JVM than ours but they consider a very restrictive scenario
where there is no information flow between contexts.

3. Proving Non-Interference of Bytecode in Coq

In this section, we report on the formalization that the author performed at INRIA Sophia-Antipolis in
collaboration with Gilles Barthe in the Everest team [BK05]. The main ideas and some general concepts
of Coq have already been introduced in Section 1. We introduce now step by step the concrete features of
Coq as they arise when presenting the model. In this paper, we present a simple bytecode language that
can be seen as a subset of Java bytecode – which is basically a simple imperative language. The goal of the
work is to concentrate on the modularity of the specification and proof of non-interference. Extension of
this approach to object-oriented features, i.e. objects and methods, works in principle but we encounter the
usual difficulties with aliasing and nested calls. We summarize our experiences in the last paragraph of this
section.

Axiomatic Framework

The formalization makes use of the Coq infrastructure of modules to provide a framework. This means that
parts of specification and proof are performed in a generic manner.

8 F. Kammüller

More precisely, we specify on one side basic notions like program points, control dependence regions, and
operand stacks in modules that can be reused. On the other side, we provide a functor that specifies in its
input signature the constructors and their properties that are needed to derive non-interference.

The actual language that we analyze is a small subset of the Java language without objects and methods.
It is the same subset that is also considered in [BBR04]. Although this might seem not representative, it is
for the demonstration of a Coq application sufficient. Moreover, the genericity of the provided framework is
such that it can be applied to larger portions of the language. This is the axiomatic framework idea that can
be realized using modules: we provide a generic formalization of non-interference for bytecode languages. The
actual language resides in a separate module and hence is exchangeable. The framework can be applied to
different bytecode languages, and the axiomatic framework automates the non-interference proofs. The use
of axiomatic here does not mean that we assume anything without proof. It just means that the interfaces
to the actual language under consideration are given by axioms of a signature of Coq functors.

The global goal of non-interference is defined by a signature as follows.

Module Type NON_INTERFERENCE.
Parameter S: Set.
Parameter ∼ : S → S → Prop.
Parameter =se: S → S → Prop.
Parameter ⇓: S → S → Prop.
Axiom NonInt: ∀ s s’ r r’: S,

s ∼ s’ ∧ s =se s’ ∧ s ⇓ r ∧ s’ ⇓ r’ =⇒ r ∼ r’.
End NON_INTERFERENCE.

The header Module Type indicates that the following block of Coq code is a signature which can be thought
of as the type of a structure (a structure would be introduced simply by Module). A signature may also be
used to specify the target type of a functor. A functor transforms structures, i.e. modules, according to its
source signature into ones according to its target signature. The constants declared as Parameter with their
respective types represent the type of states S and predicates over states. The types Set and Prop are two
distinct predefined Coq types that form the basis of the type hierarchies of specifications and propositions.
The arrow → is the function type constructor. The predicates of the signature NON INTERFERENCE are an
indistinguishability relation ∼, an equality on the security environments representing the security policy =se,
and a big-step evaluation relation ⇓, i.e. s ⇓ r means that s is an initial state and evaluates to final state r.
The equality s =ses’ is a predicate that defines that the security environments of the two states s and s’
are identical. The definition of such a separate equality on states enables the abstraction of program points
here. Concretely, a security environment is given by an assignment of program points to security levels.

The Axiom in this functor is the definition of non-interference as introduced in the previous section with
the explicit constraint that the security policies of the states have to be identical.6 Although the main
theorem is an “axiom” this does not mean that it is blindly assumed. On the contrary, the functor concept
necessitates that this proof obligation has to be solved by a module that has this result type. The arrow
=⇒ is the Coq implication for the type Prop.7

Modular Structure

The overall modular structure of the Coq framework is depicted in Figure 1. Graphically, we have emphasized
the genericity of the non-interference proof by separating the structure in the middle. The goal of the
axiomatic framework is declared in the signature NON INTERFERENCE introduced in the previous paragraph.
We explain the structural dependencies now before presenting the actual contents of the formalization.

The functor NonInterference provides a proof for the Axiom NonInt based on its input signature
REGION PROG. The latter signature is the interface declaring the goals for the functor JVM OpSem which
contains the definition of the defensive operational semantics. It is a small-step semantics defined by an eval-
uation function over a more concrete notion of state processing single instructions. This single-step defensive
operational semantics is based on several inputs: the functor Region provides the necessary properties for

6 This additional assumption is usually implicit in the definition of non-interference. The other part of the security policy, i.e.
the security level assignment of variables, is left here as well implicit in the definition of indistinguishability.
7 Actually, this arrow is identical to the function type constructor → because types are propositions in Coq. We use this
syntactic sugar when we want to emphasize the logical content.

Formalizing Non-Interference for Bytecode 9

REGION

RGSTR_MEM

SECENV

REGION

PROG
NonInterference NON_INTERFERENCE

RegionPROGJVM

OperandStacks

JVM_OpSem

Fig. 1. Signatures (boxes), modules and functors (triangles) of axiomatic framework

control dependence regions according to the input signature REGION, the functor OperandStacks provides
a notion and basic lemmata for operand stacks, and RGSTR MEM specifies values, registers and an abstract
security policy env for registers. The input signature SECENV specifies an abstract security policy secenv
assigning H and L to program points. The security policies are left abstract because they are thought of as
parameters to the entire specification. The entire process of security bytecode verification is relative to the
security policies secenv and env representing the security type of a program. The syntactic definition of the
programming language is contained in the module JVM that is inserted into the region functor by its input
signature PROG.

In the following, we introduce in detail the major parts of this axiomatic framework.

Defensive Operational Semantics

Besides the notions of regions, the functor JVM OpSem defining the defensive machine imports, via the functor
Region, the syntax of the bytecode language we want to investigate. It also loads a theory of operand stacks
including basic lemmata.

The syntax of the bytecode is defined as instructions in a simple inductive definition (see below). For all
possible instructions, we specify their parameter types. A push takes a natural number of type nat that is
to be pushed on the stack, load and store are parameterized by a register location, given by the type locs,
and goto and ifthenelse take program points representing the jump point. The latter ifthenelse is the
simple assembler instruction: if the top of the stack is 0, then goto the next line else go to the jump point.
The remaining instructions nop, iadd, and halt take no parameters.

Inductive instr : Set :=
nop : instr

| push : nat → instr
| iadd : instr
| load : locs → instr
| store: locs → instr
| goto : P → instr
| ifthenelse : P → instr
| halt : instr.

This non-dependent inductive definition strongly resembles an ML datatype. Coq also provides automatically
induction and inversion rules for any inductive definition facilitating the use of such definitions.

A program is a function binding instructions to program points.

Definition program := P → instr.

The one step control flow relation 7→ is also defined as a simple inductive definition for a fixed but arbitrary

10 F. Kammüller

program constant p in the following expression. We just show the first clause; there are similar ones for the
other instructions.8

Inductive 7→: P → P → Prop :=
step_goto: ∀ pc l: P, p pc = goto l =⇒ pc 7→ l

| ...

Given the syntax of a programming language as specified in signature PROG, the functor REGION passes this
part of the specification on to the functor JVM OpSem that defines the operational semantics.

In JVM OpSem, we define first the notion of states as a record with four fields: a register binding rm, an
operand stack os, a program point pc , and a security environment se.
Record S : Set := { rm: env; os: stack; pc: P; se: secenv }.

A record type in Coq has projection functions automatically associated to it. For example, with se s we can
annotate the security environment component of a state s. Coq generates for every record a constructor with
the name convention Build record-name, e.g. the constructor for states is Build S. Taking into account that
records are a central feature in Coq’s rich type theory, this is comparatively weak, considering that other
HOL tools, e.g. Isabelle, have an elegant and intuitive infix constructor for records. Dependent records are
possible in Coq. They are useful for defining structures that entail proofs as components.

Next, we define the small-step defensive semantics. We are going to define a typed evaluation function
over states. As we want to accommodate type errors in this execution function, we first define a second type
of return states SR as target type for the evaluation function including a constructor that passes on the
previous state for sound executions, constructors for the errors, and a constructor to finalize an execution.
Inductive SR: Set :=

Normal : S → SR
| Abnormal: SR
| SecError: SR
| Result: S → SR.

There are two error cases: Abnormal is used for conventional type errors and SecError for errors concerning
security.

The defensive single-step execution function can now be defined as a function from S to SR in a case
analysis using Coq’s pattern matching device match over the structure of the current states instruction. The
variable p is a parameter of the current module and denotes a program. Hence, the current instruction is p
cpc, where cpc is the current state’s program point pc s.
Definition dexec (s:S) : SR:=

let crm := rm s in
let cos := os s in
let cpc := pc s in
let cse := se s in
let cin := p cpc in
match cin with

nop ⇒ Normal (Build_S crm cos (succs pc) cse)
| goto j ⇒ Normal (Build_S crm cos j cse)
| push z ⇒ PUSH z crm cos cpc cse
| load l ⇒ LOAD l crm cos cpc cse
| store l ⇒ STORE l crm cos cpc cse
| ifthenelse l ⇒ IFTE l crm cos cpc cse
| iadd ⇒ IADD crm cos cpc cse
| halt ⇒ HALT crm cos cpc cse
end.

The cases where the current instruction is nop and goto j for some program point j are simple. For nop,
nothing happens to the state other than increasing the current program point to the next one using the
successor function succs on P. The goto instruction has a similar effect just setting the program counter
to j.

A more difficult example is store l, the instruction that stores the top of the stack in register l (see
below). If the current operand stack cos is empty, identified by the constructor e st of stacks, we have an

8 We use here infix syntax as it is possible in most HOL tools for clarity of exposition different to our original Coq sources. In
principle, mixfix syntax is possible in Coq but it is difficult to use.

Formalizing Non-Interference for Bytecode 11

execution error. If the stack consists of the stack ros with top element v, i.e. p st v ros, we compare the
security level of the current program point with the security level of the register l in which the top of the
stack v shall be stored. The level of the former has to be less than or equal to the latter, which is checked
by the predicate lelev defined on the security levels {H,L}. In the positive case, we create a normal return
state by updating the register binding crm and increasing the program point. If the level of the current
program point is greater than the level of the register, i.e. lookup se cse cpc is H and lv (lookup crm
l) is L, we would have an illicit information flow. Hence, we return the error SecError.
Definition STORE (l: locs)(crm: env)

(cos: stack)(cpc: P)(cse: secenv) :=
match cos with

e_st ⇒ Abnormal
| p_st v ros ⇒

match (lelev (lookup_se cse cpc) (lv (lookup crm l))) with
true ⇒ Normal (Build_S (update crm l v) ros (succs cpc) cse)

| false ⇒ SecError
end

end.

The other cases of the defensive execution function assert in a similar way type correctness and absence of
information flow. For the full definition of the function, we refer to the author’s web page [Kam06].

Proving Single-Step Non-Interference

The functor JVM OpSem containing the definition of the defensive machine provides now the lemmata for
the small-step semantics describing the preservation of non-interference for single-step executions needed as
provisos for the global inference of non-interference in NonInterference.

Non-interference is about indistinguishability. The indistinguishability relation has to be defined for
states. As states are made up of various parts, we define indistinguishability in several steps. Values are
defined in the signature RGSTR MEM as a record containing an abstract value and a level ∈ { high, low }.
Record val: Set := { iv: value; lv: level }.

The corresponding notion of value indistinguishability is given by the following inductive definition defining
high values as generally indistinguishable and low ones only if they are equal.
Inductive val_in: val → val → Prop :=

val_in_high: ∀ v v’: value, val_in (Build_val v high) (Build_val v’ high)
| val_in_low: ∀ v v’:value, v = v’ =⇒ val_in (Build_val v low) (Build_val v’ low).

Similarly, operand stacks need an indistinguishability relation. Theirs comes in two parts. High stacks are
stacks whose members have all level high.
Inductive high_st: stack → Prop :=

high_e_st: high_st e_st
| high_p_st: ∀ v:value, ∀ s:stack, high_st s =⇒ high_st (p_st (Build_val v high) s).

If two stacks are high, they are indistinguishable as specified in the following predicate os in0.
Definition os_in0 (s s’:stack) := high_st s ∧ high_st s’.

In general, stacks are only indistinguishable if their top elements and the remainders of the stacks are
indistinguishable.
Inductive os_in: stack → stack → Prop :=

os_in0_os_in: ∀ s s’: stack, os_in0 s s’ =⇒ os_in s s’
| os_in_cons: ∀ s s’:stack, ∀ v v’:val,

os_in s s’ =⇒ val_in v v’ =⇒ os_in (p_st v s) (p_st v’ s’).

For register bindings, the indistinguishability is extensionally defined over all contained values.
Definition rm_in (rho rho’:env): Prop := ∀ l: locs, val_in (lookup rho l) (lookup rho’ l).

With these preparations, we can define the indistinguishability relation ∼ on states.
Definition ∼ (s s’: S):Prop := rm_in (rm s)(rm s’) ∧ os_in (os s) (os s’).

12 F. Kammüller

To show non-interference for arbitrary executions, we prove two lemmata that consider the preservation of
indistinguishability during single-step execution. This way of reducing non-interference to those two prop-
erties is a classical one described in [Rus90] and also already in [GM82]. There, they are called unwinding
rules.

The first one addresses two parallel single-step executions of dexec. It assumes two indistinguishable
states s and s’ that have the same security environment and are at the same program point. The relation
=pc is equality on states with respect to program points P. If those two states s and s’ are executed by the
defensive execution into normal return states, then the resulting states are also indistinguishable.9

Lemma llni: ∀ s s’ u u’: S,
s ∼ s’ ∧ s =pc s’ ∧ s =se s’ ∧ dexec s = Normal u ∧ dexec s’ = Normal u’=⇒ u ∼ u’.

The other case that is of interest is that we have a current state s whose security environment se s assigns
a high to the current program point pc s. If the entire operand stack of the current state is high and the
current state s evaluates without error to the state u in one step of the defensive machine, then the previous
and the next state are indistinguishable.
Lemma hlni: ∀ s u: S, se s (pc s) = H ∧ high_st (os s) ∧ dexec s = Normal u =⇒ s ∼ u.

In other words, llni expresses that two parallel single-step executions from the same program point preserve
indistinguishability for the post-states. The second lemma hlni expresses that in one execution thread in
a high state indistinguishability is preserved between pre-state and post-state. A high state is one whose
security environment renders high on the current program point and the entire stack is filled with high
values. Intuitively, two threads in low states stay indistinguishable only when they move synchronously
to next states (llni), whereas once they creep up to high they may move independently (hlni). In this
manner, the two main lemmata are used when proving non-interference by lifting indistinguishablity from
the single-step dexec to the many-step evaluation ⇓ in the following section.

There are a few other lemmata needed. The whole set of necessary assumptions for the global proof
of non-interference is contained in the input signature REGION PROG of the functor NonInterference. This
signature is in full contained on the author’s web page [Kam06].

Proof of Non-Interference

Based on the properties of signature REGION PROG, the proof of non-interference is constructed in the func-
tor NonInterference. This manifests itself in that the target of the functor is declared by the signature
NON INTERFERENCE (see above). Technically, in Coq a functor is realized by parameterizing a module with
a parameter list and a return signature. For our example, the first line of the module containing the global
non-interference proof is as follows.
Module NonInterference (P: REGION_PROG) <: NON_INTERFERENCE.

Practically, when developing a specification and a proof interactively such a header opens up a local proof
context. In the following, we can assume the contents of the parameter structure P as specified in the
signature REGION PROG and base our current specification and proof on it. For example, we can now use
our lemmata llni and hlni, seen above, by referencing them with P.llni and P.hlni. Once we end our
session by typing End NonInterference, Coq will check whether the output signature NON INTERFERENCE is
matched. If all proofs in the local context are finished and no assumptions remain open, the prover accepts
the functor and produces the corresponding abstract proof objects. Any time afterwards, we can reuse this
functor as a generic proof: by supplying a concrete structure, e.g. prog lang, of signature REGION PROG,
we can literally apply the functor as NonInterference(prog lang) to generate the global non-interference
proof for an arbitrary bytecode language prog lang.

Technically, the big-step non-interference proof is performed in two steps. First, we introduce an n-step
defensive semantics inductively.
Inductive evalsto : S → S → nat → Prop :=

evalsto_res: ∀ s: S, result s =⇒ evalsto s s O
| evalsto_step: ∀ s s’ s’’: S, ∀ n: nat, exec s s’ ∧ evalsto s’ s’’ n =⇒ evalsto’ s s’’ (S n).

9 We use here ∧ to accumulate assumptions. In the original file, the ∧ and the =⇒ are all represented as function arrows →,
which is logically equivalent (see Footnote 7).

Formalizing Non-Interference for Bytecode 13

The relational expression exec s s’ has to be thought of as dexec s = Normal s’. The abstraction pro-
vided by the module concept is such that we can forget unnecessary detail here at the abstract level. Tech-
nically, exec is defined in the interface signature REGION PROG as a predicate over states. The instantiation
with dexec is realized at the end of the functor JVM OpSem by the following function definition.

Definition exec := fun s rs: S ⇒ dexec s = Normal rs.

Using case analysis in a simultaneous induction over the two natural numbers n and n’, we can prove a main
lemma for n-step execution.

∀ n n’: nat, ∀: s s’ r r’: S,
s ∼ s’ ∧ s =se s’ ∧ s =pc s’ ∧ evalsto s r n ∧ evalsto s’ r’ n’ =⇒ r ∼ r’.

Now, we simply define our notion of execution ⇓ from initial to final state as

Definition ⇓ (s r: S) := pc s = start ∧ ∃ n: nat, evalsto s r n.

and can then prove the global theorem.

Theorem 3.1 (NonInt). ∀ s s’ r r’: S, s ∼ s’ ∧ s =se s’ ∧ s ⇓ r ∧ s’ ⇓ r’ =⇒ r ∼ r’.

Extracting a Bytecode Verifier

Finally, as a preparation to extracting a bytecode verifier for non-interference, we need to construct a type
machine from the defensive machine by abstracting away the computational content. First, we define the
components of the abstract state. An abstract value consists only in the level ∈ {H,L} omitting the value.

Definition tval := level.

Type stacks tstack and type register bindings tenv are the same as defensive stacks and register bindings
but over tval instead of val. Now we construct a second notion of type state ST and type return state SRT

similar to the defensive state but leaving out the computation information.

Record ST : Set := { trm: tenv; tos: tstack; tse: secenv }.

Inductive SRT : Set :=
tNormal : ST → SRT | tAbnormal: SRT | tSecError: SRT | tResult : ST → SRT .

Then, we define a typed execution function texec in analogy to dexec, which actually performs execution
just on the type states.

Definition texec (s: ST)(cpc:pcs): SRT :=
let crm:=(trm s) in
let cos:=(tos s) in
let cse:=(tse s) in
let cin:=(p cpc) in
match cin with

nop ⇒ tNormal s
| goto j ⇒ tNormal s
| push z ⇒ tPUSH z cpc crm cos cse
| load l ⇒ tLOAD l cpc crm cos cse
| store l ⇒ tSTORE l cpc crm cos cse
| ifthenelse l ⇒ tIFTE l cpc crm cos cse
| iadd ⇒ tIADD cpc crm cos cse
| halt ⇒ tHALT cpc crm cos cse
end.

The definition is very similar to that of dexec. The full definition is contained on the author’s web page
[Kam06].10 We illustrate again just the case for store below.

In comparison to STORE, the case tSTORE is almost identical: just the lookup term differs in that the
level has not to be revealed, because values are just levels and in the construction of the next state no new
program point is added.

10 For the exposition, we have factored out the cases in texec to show the similarity to dexec – the original sources differ.

14 F. Kammüller

S SR

ST × P STR
-texec

? ?

-dexec

〈α, pc〉 αRS

Fig. 2. abstracting the type machine

Definition tSTORE (l: locs)(cpc: P)(crm: tenv)(cos : tstack)(cse: secenv)
match cos with

te_st ⇒ tAbnormal
| tp_st v ros ⇒

match (lelev (lookup_se cse cpc) (tlookup crm l)) with
true ⇒ tNormal (Build_ST (tupdate crm l v) ros cse)

| false ⇒ tSecError
end

end

In the definition of the type states, the program point is left out, but in the type valuation function the
current program point cpc is introduced again as a parameter to enable the reference to the program point
in commands that need to respect the security environment.

The simple derivation of the type machine from the defensive machine is one of the advantages of the
concept of defensive, offensive and type machine. It has the additional consequence that the cross-machine
validation is rather trivial as well, as we will see next.

In order to prepare the proof of sound abstraction, we need abstraction functions to map a defensive
state to a type state.

Definition alpha_S (s:S): ST :=
match s with (Build_S crm ros cpc cse) ⇒ Build_ST (alpha_env crm) (alpha_stack ros) cse end.

The functions alpha env and alpha stack just lift the value abstraction to register bindings and stacks
pointwisely.

Soundness of abstraction corresponds to showing that the diagram in Figure 2 commutes. This reduces
to showing that every program that produces a type error on the defensive machine also produces a type
error on the type machine. For the security type error, we prove the following lemma in Coq.

Lemma dt_commutes: ∀ s: S, dexec s = SecError =⇒ texec (alpha_S s) (pc s) = tSecError.

For the type error Abnormal, a similar lemma is proved. Finally, we can reuse the functor BCV from [Duf04]
that given a type machine and the above commutation lemma generates a bytecode verifier by simple
instantiation.

To finalize the cross-machine validation, we need to show the corresponding property for the offensive
machine, i.e. that offensive and defensive machine coincide on all programs not raising type errors in the
defensive machine. To this end, we can construct the offensive machine in a similarly simple fashion by
deriving it from the defensive machine given offensive values that abstract from the security level. Again as
a consequence, the proof of the needed commutation property is rather trivial (see [Kam06]).

Statistics and Lessons Learned

The entire formalization is about 2300 lines of Coq-Code (specification and proof): 1200 lines for the defensive
operational semantics, 900 lines for the axiomatic framework (regions, operand stacks, and non-interference),
and 200 for the abstraction of the type machine.

The type system we derive in Coq as a type machine corresponds to the information flow type system in
[BBR04]. In principle, it is also possible to show the equivalence with this original type system formally in
Coq. Therefore, one needs to define a second notion of non-interference and show that the offensive machine
derived from the defensive machine is non-interfering with respect to this second notion of non-interference.
However, as our notion of non-interference is similar to standard ones, this is of interest only if we want to
mechanically verify the exposition of [BBR04].

Formalizing Non-Interference for Bytecode 15

The abstraction of the defensive machine to an offensive one can be performed in much the same way as
the abstraction of the type machine. We just need to delete the type information and keep the computational
information. An offensive machine corresponds to an interpreter for Java bytecode.

From a software engineering point of view, it is an interesting question how a non-interference framework
would work in practice. This is not the subject of the work presented here. We believe that an iterative
process of constructing the security type information is feasible. The idea is that a programmer would
provide a list of program points and variables for which he demands H. The type checker can then assume L
for everything else and can reject or accept. In the next iteration step, the type violations could be used to
arrive at a better approximation until a good security policy is found that contains the programmer’s initial
requirements. Since an “all-H” assignment is always non-interfering, this simple procedure does terminate.
It is an open question whether using type inference rather than just type checking together with possible
monotonicity of typing rules may be employed to arrive at solutions that are minimal in sensitivity.

The use of modules in Coq, finally, is rather crucial to the entire framework development. It is the use of
modules that enables reuse of entire specifications and proofs in an abstract manner. We can reuse the module
BCV of [Duf04] and we can devise the structure of our axiomatic framework such that it may be instantiated
to provide proofs and bytecode verifiers for other bytecode languages. However, Coq modules have the same
deficiencies as usual: sharing is not possible and the name spacing facilities are not very sophisticated. For
example, the specification of regions is given in the functor REGION. But as the security environment secenv
also uses regions (because the lifting of a security environment lifts entire region’s security levels), we need
to share this part of a signature when both signatures REGION and SECENV are imported into JVM OpSem.
That is, although both of the imported signatures define their own abstract parameter region, this has to
be identified now. It appears that in the current version of Coq’s modules, it is not yet possible to explicitly
set such sharing parameters. Coq produces two copies S.region and R.region for the two structures S:
SECENV and R: REGION. As a work-around, we used the possibility to assume axioms to identify the two. It
is quite disappointing to rely on such means. However, the question of sharing module parameters in general
is more sophisticated as it addresses the question whether such shared parameters can or should be found
automatically. There are cases, as above, where we want to unify similarly structured parameters further
down in the import chain, but we surely do not want this to be done generally – otherwise one could not
import different sets of parameters that coincidentally have the same type without them being identified.
How to define a good measure for this and how to integrate it into a module system technically are interesting
open questions for module development.

Extension to Object Orientation

The main question that remains to be considered is whether the approach we have presented scales up to
object orientation. We have attempted to apply our modular specification and proof to the extensions with
objects and methods (see the files JVMo.v and JVMm.v at [Kam06]). Corresponding extensions of the simple
type system [BBR04] served as a role model. We exchanged the corresponding modules JVM and JVM OpSem
and adapted the proofs in the single-step operational semantics. Unfortunately, we could not scale up the
approach. It is no problem to extend the formalization and proof of non-interference using a bijection between
object heaps (already used in [BN03] at the source code level) as an additional part of the security policy.
However, it is not any more possible to derive a simple type system in the process of cross-machine validation
because the used bijection uses references to objects. Hence, no abstraction from the dynamic evolution of
the object heap is possible any more when extracting the type system. The result would not any more be
a simple type system suitable for static analysis. We currently investigate an additional abstraction from
the concrete implementation of the object model based on pointers and heaps assigning security levels to
classes. It enables a unified security policy for objects. The abstraction is inspired by current advances in
the application of separation logic [TKN07] to similar pointer problems in type safety proofs.

4. Conclusions

In this paper, we have seen how interactive theorem proving with Coq can be used to prove information flow
security of Java bytecode. We have introduced the basic ideas and concepts of Coq before we introduced the
various building blocks of the formalization of Java security analysis. Based on the concepts of type systems

16 F. Kammüller

for information flow security, we have presented a modular formalization for analyzing non-interference for
bytecode languages. We have applied this framework to a small subset of the Java bytecode language. The
formalization is modular and can hence be applied to other bytecode languages by simple instantiation
of our constructed functor. An abstract machine is derived from the defensive operational semantics. The
formalization enables the automatic extraction of an executable bytecode verifier by applying an existing
module to the abstract machine.

We have worked in Coq. Coq is not necessarily better suited than other HOL tools for the analysis of
programming languages (see the work by Nipkow et al. in Isabelle, for example [ON99, KN02]) but we did
profit from its module system. Modularity has proved useful in the example of the axiomatic framework for
bytecode, where the entire formalization could be organized in a reusable way. If the functor for the defensive
operational semantics is exchanged by a functor formalizing an operational semantics of an extended or
different programming language, large parts of the framework can be reused. Reuse here should be read in
the most general sense: functors merely have to be applied to provide specifications and proofs automatically.
Also, the module BCV from an earlier framework could be reused to finally transform the derived type machine
into a bytecode verifier. There are some minor technical flaws we encountered when using the module concept,
as pointed out at the end of the precious section. The most part might be fixed in future releases of Coq
but a remaining conceptual problem of modularity in general is how to find a sensible way of solving sharing
of parameter structures or signatures. An interesting next experiment might be the transformation of the
presented modular proof to other HOL tools with modules, e.g. Isabelle, and its concept of locales [Kam99a],
in order to compare the module systems.

Acknowledgments

The author wishes to thank Gilles Barthe, Yves Bertot, Lucca Martini, David Naumann and Tamara Rezk
for many helpful discussions while working on this formalization at INRIA Sophia-Antipolis or at conferences.
I would also like to thank the anonymous referees that helped to greatly improve the paper.

References

[ACL03] J. Andronick, B. Chetali, and O. Ly. Using Coq to Verify Java Card Applet Isolation Properties. Theorem Proving
in Higher Order Logics, TPHOLs’03. LNCS 2758. Springer, 2003.

[Bic07] Bicolano and MOBIUS base logic. http://mobius.inria.fr/twiki/bin/view/Bicolano, 2007.
[BN03] A. Banerjee and D. A. Naumann. Stack-based Access Control for Secure Information Flow. Journal of Functional

Programming, 15(2):131–177, Cambridge University Press, 2003.
[BBR04] G. Barthe, A. Basu, T. Rezk. Security Types Preserving Compilation. Verification, Model Checking, and Abstract

Interpretation, VMCAI’04. LNCS 2934, Springer, 2004.
[BD04] G. Barthe and G. Dufay. A Tool-Assisted Framework for Certified Bytecode Verification. Fundamental Approaches

to Software Engineering, FASE 2004. LNCS 2984, Springer, 2004.
[BK05] G. Barthe and F. Kammüller. Certified Bytecode Verifier for Non-Interference. Technical Report, INRIA Sophia-

Antipolis, 2005.
[BLP73] D. E. Bell and L. J. LaPadula. Secure Computer Systems: A Mathematical Model. Technical Report MTR-2547(2),

MITRE Corp. Bedford MA, 1973. Reprinted in Journal of Computer Security, 4(2–3): 239–263, IOS Press, 1996.
[BC04] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development – Coq’art: the Calculus of

Inductive Constructions. Springer, 2004.
[Che00] Z. Chen. Java Card Technology for Smart Cards: Architecture and Programmer’s Guide. Addison Wesley, Reading,

Massachusetts, 2000.
[CC05] National Institute of Standards and Technology. Common Criteria for Information Technology Security Evalua-

tion. U.S. Dept. of Commerce, National Bureau of Standards and Technology. http://csrc.nist.gov/cc, 2005.
[Chr03] J. Chrzaszcz. Implementing Modules in the Coq System. In Theorem Proving in Higher Order Logics, TPHOLs

2003. LNCS 2758: 270–286. Springer, 2003.
[Chu40] A. Church. A Formulation of the Simple Theory of Types. Journal of Symbolic Logic, 5(2): 56–68, Association for

Symbolic Logic, 1940.
[CP90] T. Coquand and C. Paulin-Mohring. Inductively Defined Types. In P. Martin-Löf and G. Mints, editors, Interna-

tional conference in computer logic, Colog’88. LNCS 417, Springer, 1990.
[Coq04] Coq Development Team. The Coq Proof Assistant User’s Guide. Version 8.0, January 2004.
[DD77] D. E. Denning and P. J. Denning. Certification of programs for secure information flow. Communications of the

ACM, 20(7): 504–513, Association for Computing Machinery, 1977.
[Duf04] G. Dufay. Vérification Formelle de la Plate-Forme Java Card. Thèse de Doctorat. Université de Nice Sophia-

Antipolis, 2003.

Formalizing Non-Interference for Bytecode 17

[Fen73] J. S. Fenton. Information Protection Systems. PhD thesis, University of Cambridge, 1973.
[GM82] J. Goguen and J. Meseguer. Security Policies and Security Models. In Proceedings of Symposium on Operating

System Principles, SOSP’82, pages 11–22. IEEE Computer Society Press, 1982.
[HM01] P. H. Härtel and L. Moreau. Formalising the Safety of Java, the Java Virtual Machine and Java Card. ACM

Computing Surveys (CSUR), 33(4): 517–558, Association for Computing Machinery, 2001.
[How80] W. A. Howard, The Formulae-as-Types Notion of Construction. In Seldin and Hindley [SH80], pages 479–490.
[JL00] R. Joshi and K. R. M. Leino. A Semantic Approach to Secure Information Flow. Science of Computer Programming.

37: 113–138, Elsevier, 2000.
[Kam99a] F. Kammüller. Modular Reasoning in Isabelle. PhD thesis, Computer Laboratory, University of Cambridge,

Technical Report 470. August, 1999.
[Kam06] F. Kammüller. http://www.swt.cs.tu-berlin.de/∼flokam/coq/index.html.
[KP99] F. Kammüller and L. C. Paulson. A Formal Proof of Sylow’s First Theorem – An Experiment in Abstract Algebra

with Isabelle HOL. Journal of Automated Reasoning, 23(3): 235–264, Kluwer Academic Publishers, 1999.
[KN02] G. Klein and T. Nipkow. Verified Bytecode Verifiers. Theoretical Computer Science, 298(3): 583–626, Elsevier,

2002.
[Ler03] X. Leroy. Java bytecode verification: algorithms and formalizations. Journal of Automated Reasoning, Special

Issue on bytecode verification, 30(3-4): 235–269, Kluwer Academic Publishers, 2003.
[MQu86] D. B. MacQueen. Using Dependent Types to Express Modular Structures. In Proc. of 13th ACM Symposion on

Principles of Programming Languages, POPL’96. Association for Computing Machinery, 1986.
[Mob07] Mobius: Mobility, Ubiquity and Security. http://mobius.inria.fr/twiki/bin/view/Mobius, 2007.
[Mos99] P. D. Mosses. Foundations of Modular SOS. In Mathematical Foundations of Computer Science, MFCS’99. LNCS

1672, Springer, 1999.
[Nau05] D. A. Naumann. Verifying a Secure Information Flow Analyzer. Theorem Proving in Higher Order Logics,

TPHOLs’05, Oxford 2005. LNCS 3603, Springer, 2005.
[NL96] G. C. Necula and P. Lee. Safe Kernel Extensions Without Run-Time Checking. In Proc. 2nd USENIX Symp. on

Operating Systems Design and Implementation (OSDI). October 1996, pages 229–243. Operating Systems Review,
Special Issue, ACM, 1996 and USENIX Association, 1996.

[Nel79] P. A. Nelson. A Comparison of Pascal Intermediate Languages. ACM SIGPLAN Notices, 14(8): 208–213, Asso-
ciation for Computing Machinery, 1979.

[vOh01] D. v. Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety and Hoare Logic. PhD thesis, Tech-
nische Universität München, 2001.

[vOh04] D. v. Oheimb. Information Flow Control Revisited: Noninfluence = Noninterference + Nonleakage 9th European
Symposium On Research in Computer Security, ESORICS’04. LNCS 3193, Springer, 2004.

[ON99] D. v. Oheimb and T. Nipkow. Machine-Checking the Java Language Specification: Proving Type-Safety. In Jim
Alves-Foss (Ed.): Formal Syntax and Semantics of Java. LNCS 1523: 119–156, Springer, 1999.

[Pie02] B. Pierce. Types and Programming Languages. Wiley, 2002.
[Rus90] J. Rushby. Noninterference, Transitivity, and Channel-Control Security Policies. Technical Report csl-92-2, SRI,

Palo Alto, 1992.
[SM03] A. Sabelfeld and A. Myers. Language-Based Information-Flow Security. Selected Areas in Communications, 21:

5–19. IEEE Computer Society Press, 2003.
[SH80] J. P. Seldin and J. R. Hindley (eds). To H. B. Curry: Essays on Combinatory Logic. Academic Press Ltd, 1980.
[SSB01] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Definition, Verification, Validation.

Springer, 2001.
[Str03] M. Strecker. Formal Analysis of an Information Flow Type System for MicroJava (extended version). Technical

Report, Technische Universität München, July 2003.
[Tho90] S. Thompson. Type Theory and Functional Programming. Addison-Wesley, 1991.
[TKN07] H. Tuch, G. Klein, and M. Norrish. Types, Bytes, and Separation Logic. In Principles of Programming Languages,

POPL’07. ACM SIGPLAN 42(1), Association for Computing Machinery, 2007.
[Wir76] N. Wirth. Algorithms + Datastructures = Programs. Prentice Hall, 1976.

