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Abstract

Privacy is an issue of increasing concern to the Inter-
net user. To ensure the continued success of distributed
information systems, a reliable information flow must be
established in certified but immediately evident ways. We
begin with basic consideration of the privacy problem in
the general setting of database enquiries. From there, we
develop a simple solution, which we illustrate with a simple
implementation in the programming language Erlang. We
first provide an informal security analysis that is then
developed into a formal definition of a type system for
noninterference.
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1. Introduction

Privacy has become an important issue in public e-
business. In order to protect their customers, commercial
services have to provide electronic privacy, which is ap-
proximated by anonymity using pseudonyms. However, it
has been long known that chaining transactions quickly
reveals the identities behind pseudonyms. Even more cru-
cially, applications that appear secure from a superficial
point of view may well contain numerous covert channels.
Some of these covert channels – the ones inherent in the
logic of programs – can be identified by a painstaking
information flow analysis [10]. Such an analysis verifies a
formal notion of security over different data domains, so-
called noninterference [12], for all possible control flow
of programs. Even without this classical but cumbersome
method, some kind of formal language would appear to be
necessary for a thorough analysis of security risks.

Several formal languages have been proposed to encode
privacy policies. The Platform for Privacy Preferences (P3P)
is just one example of a language that enables enterprises to
communicate their privacy policies to customers. The cus-
tomers may then decide whether they are willing to accept

a policy prerequisite for their database enquiry. Apparently,
even with means such as P3P, it is not easy to determine
whether in-house enforcement policies meet their published
P3P privacy promises [4].

In this paper, we first provide a simple formal specifica-
tion of an obvious requirement for such privacy promises
illustrating that it is virtually impossible to expect such
policies to work. From this, we devise a simple idea of a
different database enquiry that achieves privacy. We illustrate
this solution using a prototype in the parallel programming
language Erlang (Section 2). Efficiency is the price to pay
for the privacy gained. We further illustrate how parallelism
in Erlang helps to overcome this drawback. We then justify
our claim with an informal security argument (Section 3).
Once given the intuition how such an analysis of infor-
mation flow works we introduce the formal approach to
noninterference. We further define a type system that enables
the static analysis of Erlang programs for covert channels
(Section 4). Finally, we briefly contrast our Erlang solution
for private data searches with alternative approaches using
active objects or Java, and offer our conclusions (Section 5).
This paper is an extended version of an earlier conference
paper [19]: the formal approach to security by an original
noninterference type system for Erlang contained in Section
4 is novel.

1.1. Privacy Policies

The enforcement of privacy policies within an enterprise
constitutes an interesting problem in itself. However, if we
ignore for a moment the actual implementation issue and
try to establish a precise requirement specification for some
of the problems involved, we can identify data retention
as conflicting with privacy. By retention, we mean the
requirement that user data provided for the identification of
services only be retained a specified period after which the
data must no longer be stored in the enterprise’s database.

Formally, we can identify two operations copy and delete
simply denoting that a data item is copied at the enterprises
site and that it is deleted in order to regain some privacy. We
assume the following algebraic properties of copy, delete,



and run, a process representing all possible behaviours.

copy; delete = id

copy; run = run; copy

Using a specification formalism like CSP [14], we could now
specify what is meant by the fact that a system P does not
retain data d for any alphabet A of possible system events,
as follows.

copy(d); run(A \ copy(d)); delete(d) v P

Here, the refinement order relation v constrains the be-
haviour of P in that the specification spec on the left-
hand side is only implemented by such processes P that
implement a behaviour contained in spec.

The expression run(A \ copy(d)) specifies that between a
copy(d) and the corresponding action delete(d) any sequence
of events of A may happen, except another copy of d.
The specification thus prohibits excessive copies and hence
unauthorized retention of data d.

The interesting question is whether we can guarantee such
a behaviour. In principle, the answer is yes if we can observe
every sequence of actions in a server of which we require a
service. Pondering this for a moment, we realize that the
above retention specification is unrealistic for real-world
scenarios: no service will lay open all its internal action
traces.

Starting from this discouraging – but highly compelling
insight – we develop a different type of database enquiry that
differs from the usual service architecture model. Instead of
disclosing our incentives, i.e. private data, we perform the
kernel action on the data offered by a service ourselves.
Clearly, there will be a loss of efficiency but we will gain
security. Since the data we wish to keep private is contained
in our kernel service action, the service provider has no
access to it.

There are cryptographic schemes addressing similar prob-
lems. The most general, oblivious transfer, by Rabin [30],
follows ideas similar to the original “Conjugate coding” by
Stephen Wiesner now so popular through quantum cryptog-
raphy. The scheme of private information retrieval [7] is
closely related. This scheme abandons perfect secrecy for
the sake of efficiency – the solution protects against attackers
bound by complexity theory.

The approach we investigate here is the only one that
guarantees privacy in an information theoretic sense but is
deemed “practically unacceptable” because of the communi-
cation overhead [7]. We illustrate this approach in Erlang and
show how massive parallelization may be used to minimize
the effort.

2. An Erlang Implementation of Database En-
quiries

A database enquiry is a service that is usually provided
by a server through the transfer of a search key to the
server, e.g. Google. In the respective service the server
performs a search action on the data, e.g. the Internet, that
is in its data domain. Unfortunately, this efficient standard
solution implies that we must trust the server not to make
unauthorized copies of our search key, i.e. the private data
we wish to keep confidential. For example, we might need
to input our name, address and some incentive in order to
find the required services in our neighbourhood.

Instead of disclosing our personal information, we can
demand access to some larger relevant data domain and
perform the selection, i.e. the search corresponding to our
profile or key, in our private secure domain. We will illustrate
this type of database enquiry on a concrete implementation
in the parallel programming language Erlang [1]. We begin
with a short introduction to Erlang.

2.1. Erlang

The programming platform Erlang/OTP provides the in-
frastructure for programming open distributed telecommuni-
cation (OTP) systems. The language Erlang [1] was devel-
oped by the Ericsson corporation to address the complexity
of developing large-scale programs within a concurrent and
distributed setting. The platform Erlang/OTP consists of the
functional language Erlang – with support for communica-
tion and concurrency – and the OTP middleware.

The most important features of Erlang include the follow-
ing.

• Erlang variables are immutable: their value is assigned
once only; no multiple assignments are allowed.

• Erlang processes do not share memory space; interac-
tion is through explicit message passing.

• Erlang’s process creation speed is much faster than the
operating system’s processes, much like thread creation
[1][Section 8.4].

The programming style of Erlang resembles that of the
ML language [28]. Recursive functions may be defined in
a fairly intuitive way. For example, the factorial function is
defined as follows.

fact 0 -> 1;
fact N -> N * fact(N-1).

Processes may be created by the spawn command, which
takes the processes’ function and initial arguments as pa-
rameters. The value of a spawn command is the process
identifier Pid of the created process. Message passing be-
tween parallel processes is, for sending, simply written as
Pid ! message – in our example the process identifier Pid.
Reception of messages in processes is organized through a



mailbox in each process that can be read by the receive
command. Using pattern matching, receive-statements can
be written concisely and elegantly. The main data types
are (untyped) lists and records, e.g. {green, apple}. Any
lower-case name is interpreted as a constant, and higher-
case names are variables. These various language features
are used below when considering our database enquiry.

2.2. A Simple Database Enquiry

To simplify matters, we assume that the database is a file
of already structured data. We do so to focus our attention
on the communication necessary for the enquiry, leaving out
the complexity of a realistic data analysis. In brief, the basic
database enquiry program implements a server providing the
database and our privacy-aware client that orders the data
and performs a search on it. We explicitly model the server
to provide a basis for the subsequent security analysis. To
model a real world scenario, we provide simple programs
for these two components. Later, we will see how we
can improve the system through parallelization to enhance
performance.

The server listens on a port for the opening of a socket
and accepts the socket. After accepting it, the server closes
the listening socket which does not affect the existing
connection but merely prevents new connections. The Erlang
package gen_tcp optimally supports the implementation
of such distributed systems based on the tcp-protocol. We
omit some parameters so as not to overload the exposition.
The complete program code can be downloaded from the
authors’ website 1.

start_server() ->
{ok, Listen} = gen_tcp:listen(2345, ...),
{ok, Socket} = gen_tcp:accept(Listen),
gen_tcp:close(Listen),
loop(Socket).

The loop procedure repeatedly reads data units from the
database accessible to the server. To facilitate the example,
databases are simply represented as files. The socket is
opened and closed by the client. The server opens the
database, represented by the file specified by the client,
and delegates processing of the stream transfer to the
send_stream procedure.

loop(Socket) ->
receive
{tcp, Socket, FileB} ->

FileS = binary_to_term(FileB),
{ok, S} = file:open(FileS, read),
ok = send_stream(Socket, S),
loop(Socket);

{tcp_closed, Socket} -> ok
end.

1. http://www.swt.cs.tu-berlin.de/∼flokam/research

The data is sent by the procedure send_stream to the socket
in a repeated read action from the opened file stream S until
end of file eof is reached.

send_stream(Socket, S) ->
case io:read(S, ’’) of
{ok, X} ->

gen_tcp:send(Socket, term_to_binary(X)),
send_stream(Socket, S);

eof ->
file:close(S),
gen_tcp:send(Socket, term_to_binary(eof)),
ok

end.

The client now opens the socket and transmits the database
we wish to investigate, represented by a file. Here, we use
a generic name host, representing some actual hostname.
The actual reception of the file’s contents is delegated to the
procedure client_receive. The search results are returned
by this procedure as a result list Res and are immediately
output.

client_eval(Key, FileS) ->
{ok, Socket} =
gen_tcp:connect("host", 2345, ...),

ok = gen_tcp:send(Socket, term_to_binary(FileS)),
{eof, Res} = client_receive(Key,Socket,self(),[]),
io:format("Client result: ~p~n", Res),
gen_tcp:close(Socket).

The database’s contents arrive at the client and are imme-
diately analyzed corresponding to the search key Key. The
actual data analysis is, for clarity’s sake, reduced to a simple
pattern matching on the received data items. Only matching
contents are assembled in the result list Res.

client_receive(Key, Socket, From, Res) ->
receive
{tcp, Socket, Bin} ->
Val = binary_to_term(Bin),
case Val of
eof -> From! {eof, Res};
{Key, X} ->
client_receive(Key, Socket, From, [X|Res]);
Any ->
client_receive(Key, Socket, From, Res)

end
end.

Two processes, one for the server and one for the client,
can now be started independently by compiling the code
presented above on two separate sites running Erlang. Invok-
ing the function start_server() on the first, the server’s
site, while calling client_eval(key,"file.dat") on the
client site has the following effect on the latter

Client result: "Ottostr 38, 10999 Berlin"
ok

where the key was drugstore and file.dat contains,
amongst other arbitrarily structured data, an item

{drugstore, "Ottostr 38, 10999 Berlin"}.



The server site only reports ok after successful termination
of the process.

2.3. Efficiency by Parallelization

The simple client server introduced in the previous section
represents the desired security solution but it is clearly
not efficient because all data has to be transferred from
the server to the client before the actual selection takes
place. Generally, security does not come for free, so we
can see this as the price to be paid. However, the com-
munication overhead may constitute a crucial bottleneck in
an application. One of the strong points of Erlang is the
possibility to create a large number of parallel processes.
To show that our approach scales up to realistic application
scenarios, we present below an extension to the previous
basic program which significantly enhances performance.
In fact, this extension is a standard way of using Erlang.
We therefore only show the extensions to the basic program
presented in the previous section to explain the principle,
but also go on to discuss some important practical issues.

The main clue to parallelizing the server is to start a new
parallel process in start_server whenever a new connec-
tion is provided by a client through gen_tcp:accept. Note,
that the listening socket is, unlike the sequential server, not
closed down as we accept new connections.

start_par_server() ->
{ok, Listen} = gen_tcp:listen(...)
spawn(fun() -> par_connect(Listen) end).

par_connect(Listen) ->
{ok, Socket} = gen_tcp:accept(Listen),
spawn(fun() -> par_connect(Listen) end),
loop(Socket).

loop(..) -> % as above

On the client site, we use the same principle to make parallel
client processes each communicating with a parallel server.

par_client(Key, FFile) ->
{ok, S} = file:open(FFile, read),
ok = client_par_eval(Key, S).

client_par_eval(Key, S) ->
case io:read(S, ’’) of
{ok,FileS} ->

spawn(fun() -> client_par_eval(Key,S) end),
client_eval(Key, FileS);

eof -> file:close(S),
ok

end.

The input of the file names of the files to be searched is
provided by an input file FFile on the client site. The
gradual selection of new source files for a goal-directed
search may be integrated (see Section 5).

This parallel server can potentially create thousands of
connections. Performance is thus significantly enhanced, al-

though clearly the bandwidth of the communication channels
is strained. For a more sophisticated implementation, we can
limit the maximum number of simultaneous connections by
simply keeping count of new connections and finished ones.

3. Informal Security Analysis

3.1. Security Assumptions

A security analysis starts with a two-sided model com-
prising (a) the attacker and (b) the security policy, or
security goals. We cannot achieve 100% security because
(a) there always is the all-powerful attacker and (b) we
cannot generally achieve all security goals for all involved
parties because they may conflict. Usually, when investigat-
ing privacy, we use a multilateral security model [36] that
enables consideration of differing protection goals of several
involved parties.

Nevertheless, we analyze the privacy of the client using
a typical multi-level security model (MLS) [9] because we
are, in this paper, only interested in the privacy of the client’s
data. We therefore assume, for the security policy, that the
user – or, in our case, the client process – has a higher
security level than the server side, the potential attacker. Let
this security level be H , or high, for the client, and L, or
low, for the server. We further extend the security policy
by assuming that the local host is a secure domain, i.e. that
its data and internal communication are secure. All other
communication channels outside the client, and all data on
the server, is assumed to be visible to the attacker.

3.2. Information Flow Security

The first to formalize information flow in a program
were the Dennings [10]. The most natural way to formalize
confidentiality as a property of information flow have been
Goguen and Meseguer by their notion of noninterference
[12]. There are quite a few different definitions of noninter-
ference [32], mainly because it is a relation over behaviours
of programs (it it sometimes characterized as a bisimulation
property). Thus, the underlying computation model – leading
to different notions of behaviour – results in different notions
of noninterference. Without giving a formal introduction to
this notion, we attempt to provide a basic understanding of it.
We adopt a state-based view: program behaviour is viewed
as a transition between vectors of variable values.

The basis of noninterference is a relation of indistin-
guishability of program states based on a similar relation
on the program variables: high variables are all indistin-
guishable, but low variables are only if they have equal
values. Informally, the indistinguishability between states
during a program run is defined extensionally over the
indistinguishability of its components, the state variables.



Given an indistinguishability relation on program states,
we can say that noninterference is defined as low-
indistinguishability. In other words, given a security policy
that assigns high and low to all data variables, a program
is non-interfering iff any two program runs remain low-
indistinguishable throughout the program behaviour if they
have been so from the start.

The important implication of noninterference is that the
attacker, who can only read low values, is thus unable to
learn anything about the values of high variables, even if he
can observe different runs of the same program on different
– but indistinguishable – data.

To show noninterference with respect to a given security
policy in practical terms, we have to analyze all control
flows of a program and ensure that there are no information
flows from high to low variables. In practice, this process
is often supported by a static analysis with specialized
noninterference type systems [18], [32] (see Section 4).

3.3. Informal Security Analysis of Privacy-
Enhancing Database Search

Although we do not yet intend to provide a formal
analysis according to some notion of noninterference here,
we already wish to use its essential idea in an informal
argument. Let our security policy be an assignment that
assigns high to the variables Key, Any, and Res. All other
data may be assigned low; most of the variables, like
Socket, S, and FileS, must be low because they have
to be communicated between the insecure server and the
confidential client. To show noninterference, we have to
analyze all control flows in our program and exclude all
explicit and implicit information flows from Key, Any and
Res to any other (low) variable.

An explicit flow is either given by an assignment from
one variable to another, which is impossible in Erlang
as it is functional (all variables are only assigned once),
or it is given by a function call, whereby a value can
then be assigned as the initial value of the receiving pro-
cess. The Key variable is passed on from client_eval
to client_receive, and from client_receive again to
itself in two separate recursive calls. In both invocations,
Key is again assigned by pattern matching to the variable
Key, which is also high, so there is no illegal explicit flow
there. These are all explicit flows from Key to any other
variable.

An implicit information flow is given when the control
flow can branch, e.g. at an if statement: according to the
value of the first variable, the tested variable, a second
variable in one of the branches receives a value, depending
on the value of the first. Again, such an implicit flow should
not lead from a high to a low variable. The only possible
branching of the control flow is the case statement in
client_receive. Here, there are implicit flows from Key

to Any and Res: depending whether Val matches Key one
of the two “non-eof” branches is selected. Consequently, X
– containing matching data – is added to the result list Res
if the Key match is successful otherwise nothing is added
to Res. Therefore, Res has to be marked as H as well. In
addition, the variable Any must be H because – if it were
L – we could work out Key: the difference between the
original file contents and those matched with Any gives just
those data items containing Key as first element: Bingo!

The variable Any is not used in any further function calls,
so there are no explicit flows from it to any other variable.
Considering, finally, the variable Res, we see that, here too,
there are no flows from it to any low variable, neither explicit
nor implicit. The final output of the value of receive by
the io:format call must be considered secure because it
happens inside the secure domain of the client and has no
effect on other low variables. To summarize, the privacy-
enhancing database search is non-interfering with respect to
our security policy.

4. Formal Security Analysis

In this section, we use the ideas already provided in
the previous section in the informal security analysis and
make them formal. In detail, we present the syntax and
semantics of Erlang – more precisely, a small subset of
the original Erlang language, Core Erlang, sufficient for
many applications, including ours. Then, we provide a novel
type system that encodes the legal information flows and
define a notion of indistinguishability. Finally, we show that
programs that are accepted by the type system are secure.
This proof implies that programs, for which a type can be
inferred according to our type system and over an initial
security policy, do not leak information.

In order to define formal semantics, it is always advisable
to use a reduced language set cutting out, on one side,
syntactic sugar, while still enabling, on the other side, the
full power of the language. There have been a few attempts
to define a Core Erlang language that serves exactly this
purpose, e.g. [6]. Several other papers, in particular those
concentrating on formal aspects of the Erlang language, e.g.
[17], [25], define semantics also in a more formal way. This
is a prerequisite for a formal analysis.

One way to take advantage of these earlier works is
to use a rigorous translation from Erlang to some formal
calculus and to exploit means for a security analysis. In
[19] we proposed such a strategy for a formal analysis: use
a translation of Erlang to the π-calculus [25] to represent
our application in a calculus that is more easily accessible
to a formal analysis. This would enable the use of existing
formalizations of noninterference for the π-calculus [15]
to demonstrate information flow security. However, after
some consideration of information flow analysis in the π-
calculus we decided to follow a different but much simpler



approach based on language based noninterference by Vol-
pano, Smith, and Irvine [35], [34], [33].

In this section, we base our presentation on the syntax and
semantics for Erlang following Huch [17], present, then, an
original noninterference type system for this language, to
prove that a well-typed program does not contain illegal
flows. We finally illustrate experimentally the use of our
Erlang noninterference type system by showing how it is
used to check our program in a process of inferring security
types based on some initial security policy.

4.1. Syntax of Core Erlang

In the presentation of the syntax and semantics of Core
Erlang we directly model the asynchronous communication
and the message queues of Erlang. This is in difference
to some models that base the formal models of Erlang on
operational models of the π-calculus or CCS, unnecessarily
complicating the situation by mapping the asynchronous
communication of Erlang to synchronisation in π or CCS,
respectively.

The syntax of Core Erlang is defined as follows where c
denotes constructors and φ may denote any built-in or user
defined function or constructor.

p ::= f(X1, . . . , Xn) -> e. | p p

e ::= φ(e1, . . . , en) | X | pat=e | self |
e1,e2 | e1!e2 | case e of m end

receive m end | spawn (f,e)

m ::= pat1-> e1; . . . ;patn-> en

pat ::= c(pat1, . . . ,patn) | X

These are the known Erlang constructors. To express the
semantics we need to define also constructors for pattern
matching but these we treat differently as they are only
needed as an “internal representation” of the most natu-
rally expressed pattern matching expressions used in (Core)
Erlang. We distinguish three different cases for matching
match, casematch, and queuematch for simple patterns,
patterns in case statements and in queues, respectively. The
semantics of these patterns is given in the Appendix.

4.2. Core Erlang Semantics

Next, we introduce the operational semantics of the lan-
guage Core Erlang. Usually, that is, in all the major intro-
ductory texts, e.g. [2], [1], but also in scientific descriptions
of Core Erlang, e.g. [6], [25] the semantics of Erlang is just
informally described. For our purposes, this is not sufficient.
Hence we need to re-engineer a formal semantics. We do
so closely following Huch [17] but significantly simplifying
this original contribution as we do not need the same level
of detail.

The semantics, we present, follows the idea of a struc-
tural operational semantics which means that we define a
reduction relation −→Erl that gives rules for all cases of
possible syntax structures of Core Erlang programs. The
reduction represents possible one-step evaluations of an
Erlang program. The parallel program state is represented
as a set of Erlang processes Π where each single process
term is a triple (p, t, q) where p is the process identifier
of this process, t is the sequential Erlang term representing
the process in its current state of computation, and q is the
current message queue of the process. The entire operational
semantics is presented in Table 1. We will explain the
meaning of these rules, including special notation we use
in the following explanations.

We use reduction contexts E [11] to have a succinct
representation of the semantic rules and enable determining
a reduction strategy. Defining the reduction contexts as
follows, we define the operational semantics as a leftmost
innermost operational semantics.

E ::= [] | φ(v1, . . . ,vi, E, ei+2, . . . , en) | E,e | pat=E

spawn(f,E) | E!e | v!E | case E of m end

These reduction contexts are used in the rules to identify
where a reduction may take place. The nonterminal [] is
called the “hole” and marks the point of the next compu-
tation. We write E[e] for the context E where the hole is
replaced by the term e that is reduced next. In each of the
reduction rules we reduce the set of current Erlang processes
Π. We introduce Π

·
∪(p, t, q) as a map represented by triples:

Π
·
∪(p, t, q) = Π ∪ (p, t, q) if ∀ x, y. (p, x, y) /∈ Π else Π.
The sequential reduction rules define the evaluation inside

Erlang processes. The first one specifies that a sequence
of terms, juxtapositioned by comma, v,e reduces to the
second argument, if the first one is a reduced value v.
Next, a sequential term can be evaluated by replacing the
semantics FA of a predefined function F by its definition.
The constant self may be replaced by the process identifier
p representing the current process. Note, that – by using
self and assigning this semantics to it – we do not need
an explicit recursion in the semantics, instead iteration is
mapped to invocation of processes. Finally, the sequential
rules define that a function can be replaced by its function
body.

The next set of three rules defines how matchings are
evaluated; the functional definitions of the matching function
are contained in the Appendix. Their definitions are quite
complex and for the current context it suffices to anticipate
the intuitive meaning of the matching results. A simple
match leads to a pointwise match ρ of all variables in v
according to pattern pat and can be applied to the entire
sequential program E[v]. Similarly, a list of matches in
a casematch results in a matching case i and a match
ρ that can be applied in a case clause to evaluate the



SEQUENTIAL REDUCTION

Π
·
∪(p, E[v, e], q) −→Erl Π

·
∪(p, E[e], q)

F predefined function

Π
·
∪(p, E[F (v1, . . . , vn)], q) −→Erl Π

·
∪(p, E[FA(v1, . . . , vn)], q)

Π
·
∪(p, E[self], q) −→Erl Π

·
∪(p, E[p], q)

f(X1, . . . ,Xn) -> e. ∈ program

Π
·
∪(p, E[f(v1, . . . ,vn), q) −→Erl Π

·
∪(p, E[e[v1/X1, . . . ,vm/Xm]], q)

MATCHING
match(pat,v) = ρ

Π
·
∪(p, E[pat = v], q) −→Erl Π

·
∪(p, ρ(E[v]), q)

casematch((pat1, . . . , patm), v) = (i, ρ)

Π
·
∪(p, E[case v of pat1 -> e1; . . . ;patm -> em end], q) −→Erl Π, (p, ρ(E[ei]), q)

queuematch((pat1, . . . , patm), (v1, . . . , vu)) = (i, j, ρ)

Π
·
∪(p, E[receive pat1 -> e1; . . . ; patm-> em end], (v1, . . . , vj , . . . , vu))

−→Erl Π
·
∪(p, ρ(E[ei]), (v1, . . . , vj−1, vj+1, . . . , vu))

CONCURRENT REDUCTION
f(X1, . . . ,Xn) -> e. ∈ program and p′a new pid

Π
·
∪(p, E[spawn(f, [v1, . . . , vn])], q)

−→Erl Π
·
∪(p, E[p′], q), (p′, e[v1/X1, . . . , vn/Xn], ())

v1 = p′ ∈ Pid

Π
·
∪(p, E[v1!v2, q), (p′, e, q′) −→Erl Π

·
∪(p, E[v2], q), (p′, e, q′@[v2])

Table 1. Operational semantics of Core Erlang

case construct while simultaneously replacing the matching
values in ei. The queuematch, finally, produces – besides
the matching – the selection of the right clause i in a
receive construct and the selection of the message vj in
the message queue of the process which is subsequently
removed from it.

For the parallel semantics, we define the semantic rules
CONCURRENT REDUCTION that entail a rule for spawning a
new process and one for message dispatch with ! between
processes where @ denotes list append.

4.3. Security Type System

Given the operational semantics of the Core Erlang lan-
guage we can now define a type system assigning security
types τ ∈ {L,H} to Core Erlang program terms. This will
then enable to prove that there are no illicit information flows
in well-typed Core Erlang programs. However, this statement
will be dependent on the proper behaviour of the program
according to the semantics. As Erlang is not a strongly typed
language we would need to first provide a classical type
system and prove type safety, i.e. progress and preservation
for this classical type system. As this would go well beyond
the scope of this paper and, moreover, such classical type
systems are provided by others, e.g. [20], [27], we will just
use these results without further introduction by implicitly
assuming the additional hypothesis, “program p is classically
well-typed”.

Our security type system is a language based type system
assigning L (low) and H (high) security types to terms of
Core Erlang programs. We want to assign these classes to

the parameters and results of Erlang processes in order to
avoid explicit flows from H to L that may happen when
a H process replies to a L process with ! or when a H
process spawns a process that is of class L passing H
values as parameters. To forbid such flows, we can guard
the corresponding program terms by type constraints to
expressions, like process identifiers, and to parameters. In
addition, we use the subtype relation ≤, i.e. L ≤ H . To
type entire terms – like a function that is being spawned
– we introduce the type constructor cmd. Now, programs
can have type H cmd or L cmd; intuitively, a program of
type H cmd cannot transmit information to L processes. For
example, if a function has type H cmd it can only be applied
to parameters of type H . The case of a function f : H cmd
applied to an L parameter is possible because – due to
subtyping L ≤ H – the parameter is also of type H . How
do we exclude the forbidden case f : L cmd and parameter
of type H despite subtyping? In our type system, the type
τ cmd is neither contravariant – as in other type systems
[33], [5] – nor covariant; it is simply not related. Still, the
flow from L to H is enabled – as pointed out above, and
the flow from H to L disabled because an L cmd cannot be
upgraded (as it would be the case with covariance). However,
as Erlang is a functional language – in contrast to the simple
imperative languages considered in [33], [5] – we need to
be able to use arbitrary expressions as arguments. That is,
terms can be supplied as arguments to functions or sent to
processes. To accomodate the necessary transformation of
terms of type τ cmd to argument terms of type τ we add a
type transformation rule (C-VAL).

The typing of identifiers, like variables and simple terms,



and processes is encoded in type maps γ for identifiers
and Γproc assigning a security type to each process. More
precisely, we introduce different categories of types; the base
types τ are used to assign security types to variables and
constants, and the constructed types τ cmd to assign types
to terms.

τ ::= L | H
ς ::= τ | τ cmd

γ : Id ⇒ τ

Γproc : Pid ⇒ τ cmd

The typing rules define inductively the typing relation
Γproc, γ ` t : ρ where Γproc, γ are type environments,
maps assigning types to base terms under which the actual
typing t : ρ is valid. Table 2 summarizes the entire type
system; it is explained in the following in detail. In the type
rules, we use the type variable ς as a “meta”-variable, i.e.
ς ∈ {L,H,L cmd,H cmd}. We further use the following
operator

◦
∪ that enables extension of type maps according to

equalities induced by pattern matches,

τ
◦
∪ρ = τ ∪ (τ ◦ ρ)

where the operator ◦ is relational composition. Rules IDENT
and PIDENT state that the typings encoded in the type
maps Γproc and γ can be transformed into typings with
`. Simple terms may have some fixed type assigned to it
– as is encoded in rule SIMPLE TERMS. Together, the first
three rules provide the means to input a security policy
to the type analysis. The following three rules COMPOSE,
FUNCTION, and APPLICATION encode that arguments of
suitable type can be plugged into the term constructors for
composition, function definition and application of Erlang.
The next three rules PATTERN, CASE, RECEIVE all deal with
pattern matching. The assumption set ρ assigns variables to
their matched terms which is included by

◦
∪ into the type

maps. If the patterns have suitable type τ , the statement
using the pattern can be typed correspondingly by τ cmd
because it will not contain a subterm lower than τ . The
rules SPAWN and SEND control the communication: SPAWN
demands that the arguments to a spawn conform to the
security bound of the spawned function and SEND states
that a process v1 of level τ cmd can receive messages
of type τ (or higher, because of rule SUBTYPE). The rule
CONFIGURATION is the main rule that lifts the typing of the
rules to the level of a configuration by dividing the typing
to single process terms. Finally the rules BASE, REFL, C-
VAL, and SUBTYPE determine the ordering on the set of
types, transform cmd-terms to simple terms to allow terms
as parameters to functions and as messages, and enable
subsumption, i.e. elements of a type are also elements of
its supertypes.

4.4. Indistinguishability

We provide key properties that will be used in the sub-
sequent section to prove that well-typed programs have the
noninterference property. In addition, we use this section to
introduce the notion of indistinguishability that is the core
of the definition of noninterference.

Lemma 4.1 (Confinement): Let ` Π : Γproc and
(p, t, q) ∈ Π with Γproc(p) = Hcmd. Then, Γproc, γ ` t :
H cmd and for all subterms t0 and corresponding contexts
E with t = E[t0] we have that Γproc, γ ` t0 : H cmd, i.e.
all subexpressions are H as well.

Proof: By induction over the typing rules on the struc-
ture of t.
The following theorem is a sanity check; it shows that
the types are preserved by the semantics. If they were not
preserved any properties encoded in the types would be
destroyed.

Theorem 1 (Subject Reduction):

`Π:Γproc ∧Π −→Erl Π′ ⇒ ∃ Γ′
proc. `Π′ :Γ′

proc

where Γproc ⊆ Γ′
proc.

Proof: The proof is by induction and a straightforward,
albeit long, case analysis.
Next, we introduce a notion of equivalence of configura-
tions that will enable the definition of noninterference. As
already explained in the previous section when introducing
noninterference informally, the intuition is that an attacker
cannot see any difference of H values when regarding L
values. This equivalence needs to be shown over arbitrary
program runs. Hence, we need to define what it means for
two program states to be indistinguishable for the attacker.
As we have a dynamic set of processes, represented by Pid,
that needs to be compared we use a technique seen in [3]
that uses typed bijections to that end.

Definition 4.2 (Typed Bijection): A typed bijection is a
finite partial function σ on process identifiers p such that

∀ p : dom(Π). ` p : T ⇒ ` σ(p) : T

(where T is given by Γproc(p)).
The intuition behind typed bijections is that dom(σ) desig-
nates all those processes that are, or have been, visible to the
attacker. We cannot assume the names in different runs of
programs, even for low elements, to be the same. Hence, we
relate those names via a pair of bijections. These bijections
are typed because they relate processes that are all of type
L.

The following definition of indistinguishability uses the
typed bijection in this sense. The intuitive relationship
between type L and membership in dom(σ) is only later
made formal by an invariant. We believe that this invariant
decisively ameliorates the exposition of the proofs and the
understanding of the model (compare with the proofs in
Banerjee and Naumann’s paper [3]).



IDENT
γ(x) = ς

Γproc, γ ` x : ς

PIDENT
Γproc(p) = τ cmd

Γproc, γ ` p : τ cmd

SIMPLE TERMS
Γproc, γ ` e : τ

COMPOSE
Γproc, γ ` c1 : τ cmd , Γproc, γ ` c2 : τ cmd

Γproc, γ ` c1, c2 : τ cmd

FUNCTION
Γproc, γ ∪ {X1 : τ, . . . , Xn : τ} ` e : τ cmd,

Γproc, γ ` f(X1, . . . ,Xn) -> e. : τ cmd

APPLICATION
Γproc, γ ` f(X1, . . . ,Xn) -> e. : τ cmd, ∀ i. Γproc, γ ` vi : τ

Γproc, γ ` e[v1/X1, . . . , vn/Xn] : τ cmd

PATTERN

Γproc, γ ` v : τ, Γproc, γ
◦
∪match(pat, v) ` pat : τ cmd

Γproc, γ ` pat=v : τ cmd

CASE
Γproc, γ ` v : τ, casematch((pat1, . . . , patm), v) = (i, ρ),

Γproc, γ
◦
∪ρ ` pati=v : τ cmd, Γproc, γ

◦
∪ρ ` ei : τ cmd, ∀i ≤ m

Γproc, γ ` case v of pat1 -> e1; . . . ;patm -> em end : τ cmd

RECEIVE
queuematch((pat1, . . . , patm), (v1, . . . , vu)) = (i, j, ρ),

Γproc, γ
◦
∪ρ ` pati=vj : τ cmd, Γproc, γ

◦
∪ρ ` vj : τ, Γproc, γ

◦
∪ρ ` ei : τ cmd, ∀i ≤ m

Γproc, γ ` receive pat1 -> e1 ; . . . ;patm-> em end : τ cmd

SEND
Γproc(v1) = τ cmd, Γproc, γ ` v2 : τ

Γproc, γ ` v1!v2 : τ cmd

SPAWN
Γproc, γ ` f(X1, . . . ,Xn) -> e. : τ cmd, ∀ i. Γproc, γ ` vi : τ

Γproc, γ ` spawn(f, [v1, . . . , vn]) : τ cmd

CONFIGURATION
∀ (p, t, q) ∈ Π. Γproc, ∅ ` t : Γproc(p)

` Π : Γproc

BASE
L ≤ H

REFL
ς ≤ ς

C-VAL
Γproc, γ ` e : τ cmd

Γproc, γ ` e : τ

SUBTYPE
Γproc, γ ` p : ς, ς ≤ ς′

Γproc, γ ` p : ς′

Table 2. Security type system for Core Erlang

Definition 4.3 (Indistinguishability): An indistinguisha-
bility relation is a heterogeneous relation ∼σ , parameterized
by a typed isomorphisms σ whose differently typed subre-
lations are as follows.

t ∼σ t′ ≡ tσ = t′

p ∼σ p′ ≡ σ(p) = p′

(p, t, q) ∼σ ≡ p ∼σ p′ ∧ t ∼σ t′ ∧
(p′, t′, q′) ∀ i.q#i ∼σ q′#i

Π0 ∼σ Π1 ≡
dom(σ) ⊆ dom(Π0)∧
ran(σ) ⊆ dom(Π1)∧
∀ p, p′. p ∼σ p′ ⇒ Π0(p) ∼σ Π1(p′)

The above exploits the convention that equations involving
partial functions are interpreted as false when the function
is undefined. Hence, p ∼σ p′ only if (p, p′) ∈ σ, otherwise
σ(p) = false.

The H part of the program is not relevant for L-
indistinguishability and thus not recorded at all in the
corresponding typed bijections. “H-indistinguishability” thus
corresponds intuitively to “indistinguishability not defined”.

The partial bijection approach is an elegant concept for
specification but technically proofs become cluttered with
technical detail. We explicitly mark the correspondence
between type L and the domain of the isomorphism σ. The
following invariant specifies this correspondence.

Definition 4.4 (Invariant):

p ∈ dom(σ) ≡ Γproc(p) = L cmd

We write invariant(σ) if the configurations are clear from
context.
The invariant immediately transfers to the range of σ because
it is a typed bijection.

Corollary 4.5: If the invariant holds we also have the
following equivalence.

p ∈ ran(σ) ≡ Γproc(p) = L cmd

Note, that the Invariant only specifies this correspondence.
The invariant is a tool to clarify the proof of noninterference.
Its validity for given typings and pairs of configurations has
to be established.

Lemma 4.6 (Initial Invariant): Given two indistinguish-
able initial configurations Π0,Π′

0 that are well-typed, the
isomorphism σ can be constructed such that the invariant
holds. These initial configurations are then indistinguishable
with respect to σ, i.e. Π0 ∼σ Π′

0

Note, that if the initial configurations were not indistin-
guishable, their types could be different in which case the
existence of a pair of isomorphisms fulfilling the invariant
would be impossible.

4.5. A Well-typed Program is Secure

After these preparations we are able to prove the main the-
orem. Well-typed programs are secure. This property is a so-
called bisimulation property, that is, a property over different



runs of a program showing that a relation is preserved by
the evaluation. This property will be the indistinguishability
relation. The essence of the property is that the evaluation
does not change the L-indistinguishability, therefore the
attacker cannot learn more by observing the program running
if he could not learn anything from start.

We first prove a theorem that assumes the invariant to
hold and then shows that indistinguishability is preserved.
The main result is a simple corollary from this: as we can
chose σ to verify the invariant for initial configurations,
all reachable configurations are secure. We prove a strong
version of bisimulation in which the second transition
is −→01

Erl= id ∪ −→Erl and not just −→∗
Erl (as, for

example in Volpano and Smith’s work on noninterference
of a simple multi-threaded while language [33]).

Theorem 2 (Noninterference): Let Π0 and Π1 be configu-
rations such that Π0 ∼σ Π1, ` Π : Γproc and ` Π′ : Γproc,
and the Invariant holds. If Π0 −→Erl Π′

0 then there exists
Π′

1 such that Π1 −→01
Erl Π′

1 and Π′
0 ∼σ′ Π′

1 such that
σ ⊆ σ′, and the invariant remains valid for σ′.

Proof: We proceed by case analysis and induction over
the semantics −→Erl . In each case, we define a new σ′

based on the existing σ for which the invariant holds by
assumption. The case analysis hinges on p ∈ dom(σ) rather
than L and H as in classical proofs, e.g. [33] (however, it
is important to keep in mind that this predicate corresponds
to H/L-typing in form of the proof invariant).

The high case is proved once for all cases of the
semantic reduction. Let p0 ∈ dom(Π0) and p0 /∈ dom(σ)
with Π0(p0) 6= Π′

0(p0), i.e. this process has been reduced.
Let σ′ = σ and Π′

1 = Π1. Then, Π′
0 ∼σ Π′

1 because
dom(σ′ = σ) ⊆ dom(Π0) ⊆ dom(Π′

0). The new process
that may have been introduced – in case the reduction
was with rule SPAWN – is H since, by the Invariant, from
p0 /∈ dom(σ) follows that Γproc(p0) = H cmd. In turn, by
preservation, the new process has type H cmd whereby the
Invariant remains valid and indistinguishability as well.

The other case p ∈ dom(Π0) such that p ∈ dom(σ) and
Π0(p0) 6= Π′

0(p0) entails the low cases which are proved
case by case following the semantics. Generally, we know –
since p ∈ dom(σ) – that Γproc(p) = L and that σ(p0) = p1

for some p1 ∈ dom(Π1). Furthermore, Γproc
σ
(p1) = L

because σ preserves types. We show the case for spawn as
it is one of the more interesting cases where a new process
is added and consequently changes appear. The other cases
are very similar and are omitted.

Case (SPAWN). Let f be defined in the program,
Π0(p0) = (p, E[spawn(f, [v1, . . . , vn])], q), and p′0 a
new pid, then Π′

0(p0) = (p0, E[p′0], q0) and Π′
0(p

′
0) =

(p′0, e[v1/X1, . . . , vn/Xn], ()) according to the semantic
rule SPAWN. Since we consider p0 ∈ dom(σ), which is,

due to the Invariant, equivalent to Γproc(p0) = L, thus by
rule CONFIGURATION γ(t) = L cmd, and, consequently,
by confinement, we have that γ(spawn(f, [v1, . . . , vn])) =
L cmd. Since p0 ∈ dom(σ), there is a unique
p1 with p0 ∼σ p1 and by assumption Π0(p0) ∼σ

Π1(p1), hence, for Π1(p1) = (p1, t1, q1), we have
t0 ∼σ t1 and thus, by definition of indistinguishabil-
ity, t1 = Eσ[spawn(f, [v1σ , . . . , vnσ ]))]. We can select,
Π′

1 = Π1

·
∪(p1, E[p′1], q1)

·
∪(p′1, e[v1/X1, . . . , vn/Xn], ())

where p′1 is a fresh pid. Then Π1 −→Erl Π′
1 according

to rule SPAWN as well. According to preservation, the
successor configurations are well-typed with types Γproc =

Γproc
·
∪(p0, L cmd) by typing rule SPAWN. The new pro-

cesses p′0 and p′1 have type L cmd by confinement and
rule CONFIGURATION; The new isomorphism σ′ := σ ∪
{(p′0, p′1)}, whereby the invariant remains valid. Finally, we
see that Π′

0 ∼σ Π′
1.

Corollary 4.7 (Reachable Configurations Security): Let
Π0 and Π1 be configurations reachable from some initial
indistinguishable configurations then there exist σ such that
Π0 ∼σ Π1.
The corollary follows by induction over −→Erl from
Lemma 4.6 and the Noninterference Theorem.

4.6. Experimental Evaluation

The security type system we have constructed for the
Erlang language shall guarantee statically that there are
no illegal information flows from H to L. How is this
achieved? We finally want to illustrate here the use of the
concepts developed in the current section by some simple
experiments. Going back to the informal security analysis
from where we started in Section 3.3, we reconsider the
argument we pointed out there and show up how the Erlang
type system we presented in Section 4.3 enables checking
whether a given security policy is valid for the privacy
concerns of our data base enquiry program.

Let us reconsider the critical case of the informal analysis.
There, we found out that – if we want to keep the variable
Key private, i.e. H – then Res and Any (at least) have to
be assigned H by the security policy as well. Technically,
this is realized by setting up the variable assignment γ as
mapping those variables to H . As we have seen before, Any
and Res had to be set to H as a consequence of an implicit
flow in the program – both variables depend on Key. To
test our Erlang noninterference type system let us see what
would happen if we were to set these two variables to L.

Type inference is a process of iteratively applying the
typing rules from Table 2 starting from the initial assignment
given by the security policy, here

γinit = {Key 7→ H, Val 7→ L, Any 7→ L, Res 7→ L}

reconstructing the entire program thereby constructing the
security types – which in our case should be impossible.



Indeed, at some point during this reconstruction, we need to
give a type for the crucial case statement in client_eval.
The only applicable typing rule CASE imposes in its con-
clusion – below the line – that the case construct can only
have a type τ cmd if for all matches this type τ cmd may be
constructed for all variables and the branches ei. However,
as Key is contained in {Key, X} this pattern pat2 has type
H cmd (rule MATCH). Hence, the branch e2 after the Key
clause must be of type H cmd which can only be inferred
by rules SIMPLE TERMS, FUNCTION, APPLICATION if Res
already has type H . Equally, Any must be H as well. These
two constraints are not fulfilled in our initial assumption
γinit. This leads to a failure of type inference with our Erlang
noninterference type system; the program is rejected for the
security policy γinit. A straightforward implementation of
the type rules would automatically detect the error in the
security policy. In fact, the constraints elaborated above by
the walk-through of the type rules can only be fulfilled if
the initial assignment of γinit already marks Res and Any
as H – corresponding to our informal security consideration
in Section 3.3.

Interestingly, also Val – as variable v at the head position
of the case statement – must be H according to rule
CASE. This is an additional requirement that we have not
established informally in Section 3.3. In our case, it is
not necessary but, in general, the head position of a case
statement can also be a H variable – then forcing the other
match variables to be H as well. However, this additional
requirement does obstruct neither the functioning of the
program nor the correctness of the type analysis. It is a
well-known problem that static security analysis is often too
restrictive; in fact it must be so because it is provable that
an accurate noninterference analysis is undecidable [34].

To ascertain that this over-functioning of the type system
does not go too far (i.e. typing everything as H), let us
consider just one more variable. To function well according
to our global security policy – i.e. the server is public and
only the client is our trusted component – the files, that
are on the server and on which we want to perform our
search and variables, e.g. Bin, that are related to those
files, need to be assigned L in the security policy γinit.
Now, can Bin be L? This seems surprising as it is used
in close context, i.e. direct pattern matching, with Val of
which we have just seen that it needs to be H . The crucial
pattern matching in the receive statement, i.e. term Val =
binary_to_term(Bin) represents a legal information flow
from L to H . This is reflected in our type system as follows.
As Bin is of type L it is – according to rule SUBTYPE –
also of type H . Hence, by rule PATTERN, the corresponding
pattern matching Val = binary_to_term(Bin) can be
typed H cmd because Bin can be typed H and Val can
be typed H cmd : if we assume Val initially – in γinit –
to be of type H cmd, it also is of type H because of rule
C-VAL – thus complying to the requirements of the CASE

rule seen before.2

The proof of type safety and the Noninterference theorem
generally guarantee what we have just illustrated by a walk-
through of the crucial parts of our program. Any program
that is accepted by the Erlang noninterference type system
will not leak information from variables designated as H in
the security policy. If we want to keep, like in our example,
some variable Key private, the type system shows us which
other parts of the program need to be kept confidential as
well.

5. Alternative Approaches and Conclusions

In this final section, we briefly consider alternative ap-
proaches and discuss the solution. The approach we have
presented – based on the simple idea of running the security-
sensitive part of the service on the client site – corresponds
to the concepts of common web service implementations like
Javascript, Active Server Pages and Java Applets. However,
other concepts for web services, like CGI-Scripts or Java
Servlets run on the server site. Compared to the presented,
secure, client-sited approach, running the entire service
remotely is clearly more efficient. An open question is,
whether we can provide a secure solution to this more effi-
cient way of running our security sensitive key-application
on a remote site. We illustrate this alternative approach
next using a calculus for active objects. We then sum up
relevant work in the Java sector, before we reach our general
conclusions.

5.1. Implementation with Active Objects

By adding the concept of objects, familiar from object-
oriented programming, to the existing concepts of paral-
lelism and distribution as in a functional – and hence
relatively safe – language like Erlang, we provide functional
active objects through our new calculus ASPfun [16]. Active
objects allow confidentiality by encapsulating local data.
In contrast to data locality in a process, the idea of data
encapsulation is stronger because the data is an inherent part
of an object. Such objects are activated as a whole entity
and become active objects. We can thus remotely activate
such objects without the risk of disclosing the confidential
data contained in the object.

Although we could also remotely start an Erlang function,
we still have to transmit with this activation (or spawn)
command the initial data for the process, in our case the
key we wish to keep secret. Since we cannot assume that
the communication channels are secure [31], confidentiality
of the key, i.e. privacy, cannot be established.

We can implement a database search using active objects
by starting an active object that acts as a kind of gateway

2. Flows from H to L cannot be produced: if a left hand side is a pattern
of type L cmd this has no relation to H cmd.



process. Given confinement of data in an active object,
we also achieve privacy. It is beyond the scope of this
paper to properly introduce ASPfun, but, as it is a simple
and concise calculus, we still use it here to concretize this
idea of a gateway object. We now give the – actually very
short ASPfun program – with just a very brief and informal
explanation of its functionality.

Let ∆ be the remote database we wish to search. The
following short ASPfun program, when run on a client,
activates an object containing a search method σ and the
key κ on a server.

Active([s = σ, k = κ]).s(∆)

The Active command creates a new activity that contains
our gateway object [s = σ, k = κ] as active object. The
call of s with ∆ as parameter to the then remotely active
object – notated in the object-oriented fashion as .s(∆) –
initiates the search. The result of this method call is returned
to the caller, here the client.

A security consideration for this program, or for ASPfun
in general, must assume that active objects are guaranteed
to be confined. In other words, the contents of an active
object can only be accessed through calls of corresponding
methods. This is the principle of language based secu-
rity. Although, in principle, any malicious remote run-time
system can crash our active object and get access to its
contents, language standards can guarantee that this will not
happen. An example for such language standards is bytecode
verification in virtual machines. Additionally, we need to
ensure that the invocation of an active object, through the
Active command, is secure. This means that the transfer
of the object to a remote site is done in a secure fashion.
Given such security measures, we can apply a security
policy that permits only active objects with equal or higher
security levels to call methods to an active object, thereby
guaranteeing the exclusion of illicit flows.

5.2. Java Privacy Solutions

The server sided approach using active objects with
ASPfun we have illustrated in the previous section is also
realized for the programming language Java. Andrew Myers
has provided in his PhD thesis [22] an approach called
Decentralized Label Model (DLM) that enables a rôle based
approach to enforcing security in programs. The main idea
in DLM is to have explicit labels in the program modelling
the actors that have access to labelled program parts. Myers
and Liskow augmented the DLM model with the idea of
information flow control as described in the papers [23],
[24]. Further works by Myers have been mostly practi-
cally oriented, foundations only considered later. Initially,
he implemented a Java tool package called JFlow that
implements the DLM and information flow control [21]. The
extensions given by the DLM to the standard noninterference

notions lead to undecidable typing. That is, typing cannot be
completely performed at compile time but has to be partly
done at run-time – which is costly and risky. From the point
of view of privacy policies, an interesting experiment is the
paper by Hayati and Abadi [13] in which they sketch how
privacy policies can be expressed using the DLM. Hayati
and Abadi use the Jif framework [26]– the new version of
JFlow – to outline the Jif signatures to encode purpose and
retention, two important notions for privacy policies. In more
recent work, still along the same lines, Zheng and Myers
[37] have gone even further in exploring the possibilities to
dynamically assign security labels while still trying to arrive
at static information flow control. A recent implementation
of these concepts is given by the framework called Sif –
for Servlet Information Flow – which basically represents a
new version of Jif, i.e. Jif 3.0, but has an additional layer of
Java servlets that focuses thus on the support of web-services
with server-sided applications.

The impressive amount of work by Myers and his team
pushes the idea of static analysis of information flow with
type systems very far. The DLM concept enables even
multilateral security modelling but causes troubles with de-
cidability. However, being centred around the Java world, the
work additionally has to struggle with concurrent access to
data. Using active objects, as sketched on a conceptual level
in the previous section, the clear separation of separate data
spaces grants a simpler and more natural use of distribution
in web-services.

5.3. Conclusions

Triggered by public demand, privacy in social networks
– in particular internet based ones – increasingly attracts
scientific interest. Leading European projects, like Primelife
[29] and its predecessor Prime, bundle scientific and indus-
trial competence to explore privacy in future networks and
services. Various techniques in computing have been applied
to tackle the related challenges, for example, artificial intel-
ligence and unsupervised learning [8].

We have presented an approach to a privacy-enhancing
data base enquiry that solves the problem by not disclosing
the search key but by performing the search itself. The
concept has been demonstrated by a simple implementation
in Erlang; it’s feasibility has been achieved through Erlang’s
high scale parallelism. A final security consideration shows,
informally and formally, that the security goal of keeping
the key data confidential, i.e. private, is achieved.

As briefly mentioned in Section 2.3, a sensible extension
of our parallel search program is to evaluate in each step
the results obtained in the previous step with respect to
new goals, i.e. file names, to continue the search. This is a
simple enough extension that merely needs to identify new
file names, or more generally Internet sites, to continue the
database enquiry. However, this kind of goal-directed search



raises new security issues. An observer could infer some
information about the key from the way we continue our
search because we select the file names from the matched
search results. To overcome this, we have to cover up our
search and load, as before, all possible files referenced in
the previous round. However, for the sake of efficiency,
we would only really analyze those that we know to be
interesting. Here, again, a new covert channel opens up,
that is not visible in the data flow based model we use
in Section 3: an attacker could distinguish our two ways
of treating incoming files in this “cover-up” analysis by
measuring the times between new demands for connections
with gen_tcp:send(..., FileS).

The informal security argument we have shown is not
invalidated by this consideration. In the simple implementa-
tion, we have not used information from the files. There
simply is no dependency between the files being down-
loaded. Consequently, we cannot lose any information from
them. A similar analysis of the extended “sensible” search
would reveal this illegal information flow because we would
use information from files analyzed in previous rounds to
determine the new FileS.

Our informal security analysis is first informally intro-
duced and then developed into a formal notion of informa-
tion flow for Erlang. We develop a security type system
and prove that when a program is well-typed according
to this type system then there are no (undesired) covert
channels. This approach is widely accepted for language
based security analysis; a concise overview of type-based
information flow control is given by Sabelfeld and Myers
[32]. The special challenge we have been facing here for
Erlang is that we have to address concurrency. Earlier papers
on security type systems [33], [5] for concurrent systems
already point out the following difficulty: the termination of
processes is observable by other processes. The motivating
example [5] shows that this problem is due to concurrency of
shared data. By contrast – as Erlang processes have strictly
separate data spaces – these incriminating examples cannot
be reproduced in our case; since active objects in ASPfun also
have separate data spaces this security problem is neither
relevant there.

The construction of a security type system for Erlang and
proof of noninterference for this type system – presented
in this paper – provide a general security measure that can
straightforwardly be implemented in a static type checker
for Erlang security. Extending these ideas to active objects
is current research.
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Appendix

In the rules for pattern matching, case, and receive,
we use the functions match, casematch, and queuematch
for modelling the pattern matching mechanism of Erlang.
This mechanism is more complicated than those of other
programming languages because of non-linear patterns with
multiple occurrences of the same variable.

match(X, t) := [t/X]
match(c(pat1, . . . , patn, c(v1, . . . , vn)) :=

match(pat1, v1) ∪ . . . ∪ match(patn, vn)
match( , ) := Fail, otherwise

Two derived substitutions can only be unified if the overlap-
ping parts are identical. Otherwise the matching fails.

Fail ∪ σ := Fail
σ ∪ Fail := Fail

σ1 ∪ σ2 :=

 σ1 ∪ σ2, if ∀X ∈ (dom(σ1) ∩ dom(σ2)).
σ1(X) = σ2(X)

Fail, otherwise

The function case evaluates to the expression corresponding
to the first pattern matching a given value. The function
casematch returns a tuple containing the number of the
first matching pattern and the corresponding substitution, or
Fail, if none of the patterns matches.

casematch((pat1, . . . , patn), v)

=


(i, ρ), if match(pati, v) = ρ and

match(patj , v) = Fail ∀ j < i
Fail, otherwise

The constructor receive has the same behaviour but all
values in the queue have to be considered. In Erlang, a pat-
tern is successively matched against all values in the queue
before the next pattern is matched. This is implemented in
the function queuematch which returns the match and in
addition the position of the queue value that matches.

queuematch((pat1, . . . , patn), (v1, . . . , vn))

=


(i, j, p), if match(pati, vj) = ρ and

match(pati, vk) = Fail ∀ k < j and
match(patl, vh) = Fail ∀ l < i, h ≤ n

Fail, otherwise


