
Implementing Privacy with Erlang Active Objects

Andreas Fleck and Florian Kammüller
Technische Universität Berlin
Software Engineering Group

andreasfleck@web.de, flokam@cs.tu-berlin.de

Abstract

Functional active objects are a new paradigm for the
implementation of services. They offer safe distributed eval-
uation with futures and immutable objects guaranteeing
efficient implementation of privacy while offering verified
quality assurance based on the functional paradigm and a
development in an interactive theorem prover. In this paper,
we present a novel and highly performant implementation
of functional active objects in Erlang. Besides outlining the
guiding principles of the interpreter, we show by concrete
examples how secure services can be realized.

1. Introduction

The free lunch is over – as Sutter describes so vividly in
his famous paper [12]. In all realms of modern computing,
we need to distribute to keep up performance. Active objects
combine the successful concept of object-orientation with
the necessary concepts of concurrent processes to make them
fit for this distributed world.

We present an implementation of the novel language
ASPfun of functional active objects in the programming
language Erlang. Besides the highly performant paralleliza-
tion of Erlang, this approch supports privacy enhancing
implementations for web-services. The main contributions
of this novel implementation are as follows.

• Functional active objects enable a deadlock free evalu-
ation that implies service invocation in a higher order
fashion. That is, a customer can invoke a service
without needing to provide his private data.

• The use of futures as the machinery behind method
invocation enables a flexible reply to method requests.
In particular, this reply mechanism supports the privacy
enhancing result acquisition described in the previous
point.

• Using Erlang as implementation language we present a
novel future implementation concept where each future
is represented as a process. Thereby, we can abstract
from different future evaluation strategies; the Erlang
ASPfun interpreter stays close to the original semantics
(see Section 2.1): since it is functional it is not forced
to sacrifice generality for the sake of operationality.

configuration

request queue
t

activity

active object
α

...

...

...

E [fk]

request queue
t'

β

...

...

...

t'.l(s)

Figure 1. ASPfun: a configuration

In this paper we first provide the prerequisites of this
project: brief introductions to the language ASPfun and
Erlang (Section 2). From there, we develop the concepts
of our implementation of active objects in Erlang (Section
3). We then illustrate how the language can be efficiently
used to implement secure services on three examples from
privacy reflecting our contribution (Section 4). We finally
offer conclusions and an outlook (Section 5).

2. Prerequisites

2.1. Functional Active Objects

The language ASPfun [6] is a computation model for
functional active objects. Its local object language is a simple
ς-calculus [1] featuring method call t.l(s), and method
update t.l := ς(x, y)b on objects (ς is a binder for the
self x and method parameter y). Objects consist of a set
of labelled methods [li = ς(x, y)b]i∈1..n (attributes are
considered as methods with no parameters). ASPfun now
simply extends this basic object language by a command
Active(t) for creating an activity for an object t. A simple
configuration containing just activities α and β within which
are so-called active objects t and t′ is depicted in Figure
1. This figure also illustrates futures, a concept enabling
asynchronous communication. Futures are promises for the
results of remote method calls, for example in Figure 1,
fk points to the location in activity β where at some point
the result of the method evaluation t′.l(s) can be retrieved

from. Futures are first class citizen but they are not part
of the static syntax of ASPfun, that is, they cannot be
used by a programmer. Similarly, activity references, e.g.
α, β, in Figure 1, are references and not part of the static
syntax. Instead, futures and activity references constitute the
machinery for the computation of configurations of active
objects.

The semantics of the ς-calculus is simply given by the
following two reduction rules for calling and updating a
method (or field) of an object. We use a concise contextual
description with contexts E defined as usual.

CALL

li ∈ {lj}j∈1..n

E
[
[lj = ς(xj , yj)bj]j∈1..n.li(b)

]
→ς

E
[
bi{xi ← [lj = ς(xj , yj)bj]j∈1..n, yj ← b}

]
UPDATE

li ∈ {lj}j∈1..n

E
[
[lj = ς(xj , yj)bj]j∈1..n.li := ς(x, y)b

]
→ς

E
[
[li = ς(x, y)b, lj = ς(xj , yj)b

j∈(1..n)−{i}
j]

]
The semantics of ASPfun is built over the local semantics of
the ς-calculus as a reduction relation →‖ that we call the
paralellel semantics (see Table 1). In the following example
(an extension of the motivating example of [6]) a customer
uses a hotel reservation service provided by a broker.

customer[f0 7→ broker.book(name, date, limit), t]
‖ broker[∅, [book = ς(x, (name, date, limit))

hotel.room(name, date), . . .]]
‖ hotel[∅, [room = ς(x, name, date)bookingref, . . .]]

→∗
‖ (REQUEST, LOCAL)

customer[f0 7→ f1, t]
‖ broker[f1 7→ hotel.room(name, date), . . .]
‖ hotel[∅, [room = ς(x, name, date)bookingref, . . .]]

→∗
‖ (REQUEST, LOCAL)

customer[f0 7→ f1, t]]
‖ broker[f1 7→ f2, . . .]
‖ hotel[f2 7→ bookingref, . . .]

→∗
‖ (REPLY∗)

customer[f0 7→ bookingref, t]
‖ broker[f1 7→ f2, . . .]
‖ hotel[f2 7→ bookingref, . . .]

The last step summarizes two reply rule applications: the
broker first replies the future reference f2 to the customer as
a result of f1; second, the hotel replies the value bookingref
directly to customer as result of f2 without passing it to
broker. This example illustrates how privacy can be imple-
mented through future evaluation. We see just one possible
order of evaluation; the ASPfun semantics also allows others.
The Erlang interpreter presented in this paper implements
the semantics of ASPfun in its generality but offers at the
same time the possibility to configure different evaluation
strategies that may then – like in the above example – be
used to realize privacy.

2.2. Erlang

Erlang is a concurrent-oriented functional programming
platform for open distributed telecommunication (OTP) sys-
tems developed by Ericsson corporation. It implements the
actor paradigm by providing message passing as strategy
for communication between several actors implemented as
processes. Processes run fully parallel in Erlang. Each
process has a mailbox where arriving messages are stored.
The programmer can use pattern matching for message
selection. Hence, the behavior of an actor is controllable. If
a process needs an answer its process identifier (PID) has to
be passed through the message. Since memory sharing does
not exist, neither locks nor mutexes are necessary. The code
is grouped in modules which are refered to by their name. So
modulname:functionname(args). starts a function from
a specific module.

A process is created by the spawn-command supplying it
with the process’ function and initial arguments. Erlang sup-
ports also named processes. Using register(Name,PID)
the PID is registered in a global process registry and the
process can be called by its name.

PID = spawn(Func,Args),
PID!Message,
Func(Args)...
receive
Pattern1 [when Guard1] -> Expression1;
Pattern2 [when Guard2] -> Expression2;
...
end.

Above, we show the basics of distribution in Erlang. First,
we start a new process which runs the function Func. Then,
we send a Message to the new process which is identified
by PID. The function Func implements several patterns for
incoming messages. Now, the system tries to match the
arrived message against Pattern1 (and the guard if exist).
In case of success, Expression1 is evaluated. If the first
pattern fails, the second will be used, and so on. Another
fundamental feature of Erlang is the single assignment, as
in algebra, meaning that Erlang variables are immutable.

The main data types are (untyped) lists and records,
called tuple, for example {green, apple} and atoms which
represent different non-numerical constant values. Any lower
case name is interpreted as an atom, any higher case name is
a variable. In addition, there are modules for interoperability
to other programming languages like C, Java or databases.

3. An ASPfun Interpreter in Erlang

Active objects bridge the gap between parallel processes
and object-orientation. Intuitively, we want an object to be
a process at the same time; unfortunately the two concepts
are not identical. Hence, activities are introduced as a new
notion of process containing an active object together with
its current method execution(s).

LOCAL
s →ς s′

α[fi 7→ s ::Q, t] :: C →‖ α[fi 7→ s′ ::Q, t] :: C

ACTIVE
γ /∈ (dom(C) ∪ {α}) noFV(s)

α[fi 7→ E[Active(s)] ::Q, t] :: C →‖ α[fi 7→ E[γ] ::Q, t] :: γ[∅, s] :: C

REQUEST
fk fresh noFV(s)

α [fi 7→ E[β.l(s)] ::Q, t] :: β[R, t′] :: C →‖ α [fi 7→ E[fk] ::Q, t] :: β
ˆ
fk 7→ t′.l(s) ::R, t′

˜
:: C

SELF-REQUEST
fk fresh noFV(s)

α [fi 7→ E[α.l(s)] ::Q, t] :: C →‖ α [fk 7→ t.l(s) :: fi 7→ E[fk] ::Q, t] :: C

REPLY
β[fk 7→ s ::R, t′] ∈ α[fi 7→ E[fk] ::Q, t] :: C

α[fi 7→ E[fk] ::Q, t] :: C →‖ α[fi 7→ E[s] ::Q, t] :: C

UPDATE-AO
γ /∈ (dom(C) ∪ {α}) noFV(ς(x, y)s) β[Q, t′] ∈ (α[fi 7→ E[β.l := ς(x, y)s] :: Q, t] :: C)

α[fi 7→ E[β.l := ς(x, y)s] :: Q, t] :: C →‖ α[fi 7→ E[γ] :: Q, t] :: γ[∅, t′.l := ς(x, y)s] :: C

Table 1. ASPfun semantics

In this section we describe how the concepts of activities,
active objects and futures are realized on the infrastructure
of Erlang; each concept resides in a separate module.

3.1. Activity

The first module describes the functionality of an activity.
An activity encapsulates a functional active object to prevent
direct access to it and manage requests simultaneously. In
a functional language there is no need to make a sequential
plan for execution in contrast to imperative active objects [4].
All requests are executed in parallel and run in individual
processes. In our Erlang interpreter, the activity is imple-
mented as a separate process which calls a run-function in
a loop. Following the ASPfun semantics, an activity contains
a request-queue and the functional active object which are
also the arguments to the run-function. We use the Erlang
built-in functionality for send and receive. This comes in
quite naturally to model asynchronous communication of
activities. In fact – as we will see when implementing futures
(see Section 3.3) – message passing is the correct foundation
for asynchronous communication with futures.

To hold the activity alive, the run-function is called again
after each receive. Any request has to be sent as a tuple
{Caller_PID,request,RequestFunction,Args} where
Caller_PID is the PID or registered name of the calling
process (see Section 3.3), the constant request which is
used as pattern in the receive evaluation, the name of a
requested function, and optionally the arguments as tuple
or nil. An activity is now started in Erlang by

ActiveObject_PID = activeObject:start(),
activity:start(Identifier,ActiveObject_PID).

where ActiveObject_PID is the process identifier of the
functional active object to be introduced next.

3.2. Functional Active Object

The second module specifies the functionality of func-
tional active objects. The active object stores the ς-calculus

methods. Deviating from the original notion of immutable
objects of ASPfun, our Erlang implementation is a dy-
namic ASPfun-interpreter: ς-calculus methods can be added
or deleted on the fly. Methods can also be declared at
runtime or even be specified in separate modules. In our
implementation, a functional active object is a process-in-
the-loop which communicates with its activity by message
passing. The activity requests a function using its name
and the functional active object returns the function to the
activity as a reply if it exists. This fact allows additionally
separate distribution of the activity and the active object. To
start an empty functional active object in our Erlang active
object interpreter, we just call the following function.

ActiveObject_PID = activeObject:start().

To add functionality to this initial functional active object
one can define own functions or use existing Erlang modules.

Foo = fun(Self,{arg1,arg2,...})
-> some calculation, return value

end.
ActiveObject_PID!{add_func,functionname, Foo}.

where functionname is the name which one can use in
other activities. To enable functions as return values, it is
important to add a Self-Parameter. This parameter is set
automatically by our system when distributing functions.

3.3. Future

The last module represents the implementation of fu-
tures. Futures act traditionally as placeholder for later re-
sults calculated in parallel [4]. We decided to expand the
functionality by implementing active messaging. This fact
allows us to use the future also as a kind of “proxy for
communication” between activities. In Erlang, the future is
represented by a separate process and therefore it is possible
to communicate with the future easily by using the built-
in messaging functionality to make the future active. This
happenstance allows a complete separation from the activity

activity α

activity γ

request queue

activity β

request queue

future β

future γ

t'

t''

t

p: parallel process which calculates a
specific function for a request and response
the result

request

response

scope of α

p

Figure 2. ASPfun-Erlang: communication flow

in a parallel manner and presents several advantages. The
first is the location of future creation. In our implementation,
the future is created by the enquiring activity and not by the
requested activity. This augments the privacy of activities.
No activity has to announce itself to others when remote
calculation is needed. The future asks the remote activity
for the requested calculation and waits for the response: it
is a “proxy for communication”. In Figure 2, we illustrate
this communication flow. In our opinion, this approach is the
consequent continuation of an asynchronous communication
concept (cf [11]).

In some existing approaches [4], a future is created and
immediately returned by the called activity (in pseudo-code).

Future localfuture = activity_anywhere_in_www.foo()

However, this call is not really asynchronous because the re-
mote activity might not respond immediately or the message
is lost. As a result, the local activity also blocks. A really
asynchronous solution must therfore use messages instead
of return-values [11]. Our approach works as follows.

Future localfuture = new Future,
localfuture.start(activity_anywhere_in_www.foo())

First, the future is created in the scope of a calling activity
and, then, the communication with the remote activity starts
through the future by messages in an asynchronous manner.
A new future-activity-request in Erlang may be started as
follows.

newfuture = future:start(activity,functionname,args)

This function call creates a new future, sends a request
message with the identifier of the new future, the function’s
name and the arguments to activity (see Section 3.4). The
final value of this local function is the process identifier of
the future.

Another benefit of our approach is that we can distribute a
future by its network identifier so it is unique in the complete
configuration. Therefore, there is no need to plan the update-
process because it is a one to one relation between the called
activity and the corresponding future.

3.4. Function Execution and Evaluation

All functions which are calls through activities are runing
completely parallel in their own processes. By contrast,
imperative active object systems like ProActive or others [5]
use a sequentializing process and the execution runs in the
thread of the activity. A further benefit is that activities do
not freeze in case a function execution blocks. If a function
blocks, only the future evaluation blocks. Therefore, we have
built a second argument into our evaluation function repre-
senting the maximal evaluation time. After that timespan
the evaluation returns nil. If and when the result is ready,
the requested activity, that is, the calculating process, sends
a message with the result to the calling future. The future
takes the result as a new argument for the loop-function and
waits for evaluation which starts by

Result = future:evaluate(Future, 10).

Since the evaluation can occur at any time, we have imple-
mented two different cases:

• if the result is finished, it will be returned,
• and, if the result is not ready, the evaluation-process

blocks until the future is updated (wait-by-necessity and
finished after the update).

The result for self can be an ordinary value (tuple, atom,
variable, etc.), a function (higher-order), an activity (a PID
or name) or again a future. In the first three cases, the result
is returned. If the result is itself a future, the evaluation
function calls the evaluation function of the future and
returns this result.

4. Secure Services in ASPfun

In this section, we will now come back to the running
example of a hotel-broker-service and show that our Er-
lang active object interpreter can model different possible
scenarios. Note, that these scenarios are consistent with
the ASPfun semantics given in Section 2. They define just
different strategies corresponding to various privacy goals.
We first show the classical evaluation order where service
results flow back via the invocation structure to the customer.
We then additionally sketch two refinements, where first the
actual service result is passed privately to the customer so
he can communicate directly with the hotel without passing
data through the broker. Next, we show that our Erlang active
object interpreter makes full use of the functional support:
a customer can use a service by only providing partial
information. Thereby, he can guard private information and
still get some (information about the) service.

Thus, our Erlang active object interpreter represents an
implementation of ASPfun in its broadest sense. Various
different more “operational” semantics corresponding to
different security policies can be easily implemented in our
Erlang active object framework. For professional use, the

basic machinery presented in this paper needs to be equipped
with a mechanism for a simplified control over the different
strategies (see Section 5).

4.1. Classic Service Evaluation

First, we show how the ASPfun example from Section 2
looks in “standard” form. Therefore, we define a function
room where we use the ordinary Erlang syntax including the
named specifications.
Room=fun(Self,{Name,Date})->
BookingRef= database:any_database_call(Name,Date),
BookingRef
end.

This function calls a function at a local database module.
This can take some time. Next, we create a new active object,
add the created function, and instantiate an activity named
hotel which encapsulates the active object.
AO_Hotel = activeObject:start(),
AO_Hotel!add_func,room,Room,
activity:start(ActHotel,AOHotel),

Thereafter, we define the broker in the same manner, with
the exception that the book function uses the room function
of hotel and returns a future.
Book = fun(Self,{Name,Date,Limit})->
... find a hotel by Limit -> return an activity hotel
FutBookingRef=future:start(hotel,room,{Name,Date}),
FutBookingRef
end,

The newly created future sends a message to hotel and
waits for an answer with result. Finally, we define the
customer’s wish.
FutBookHotelRoom =
future:start(broker,book,{myname,mydate,mylimit}),

BookingRef = future:evaluate(FutBookHotelRoom)

The arguments are the customer’s name, the date on
which he wants to book a room and the price limit.
The created future FutBookHotelRoom sends a message
to the activity broker which runs the function book.
The function book also creates a future FutBookingRef
to communicate with hotel and returns this to the fu-
ture of customer – similar to the first application of
the rule REPLY in the ASPfun example. After the room
function has finished, the future FutBookingRef is up-
dated. The evaluation of FutBookHotelRoom additionally
calls an evaluate at FutBookingRef which returns the
BookingRef. These two steps represent the second appli-
cation of the rule REPLY in the ASPfun example. In the
case that FutBookingRef is not updated yet, a wait-by-
necessity occurs until FutBookingRef is ready. As in the
original ASPfun example, the broker can evaluate the future
FutBookingRef too because it is in the same scope. This
means that the result is not passed directly to the broker but
there is a potential risk (see Section 5).

4.2. Private Customer Negotiation

In the first extension the customer is only prepared to
relinquish his limit and wants to keep his name and the date
hidden from the broker. To make this possible we change
the book function and add a case analysis.
Book = fun(Self,{Name,Date,Limit})->
...find a hotel by Limit -> return an activity hotel
case (Name == nil || Date==nil) of
true ->
whereis(hotel);
false ->
FutBookingRef=future:start(hotel,room,{Name,Date}),
FutBookingRef

end
end,

So, if one of the arguments Name or Date is missing, the
function returns the network identification of the activity
hotel. The customer can now communicate with hotel
directly.
FutBookHotelRoom =

future:start(broker,book,{nil,nil,mylimit}),
ActHotel =future:evaluate(FutBookHotelRoom),
FutBookingRef =

future:start(ActHotel,room,{myname,mydate}),
BookingRef = future:evaluate(FutBookingRef),

The evaluation of the future FutBookHotelRoom returns
now an activity. The customer uses this activity to call the
function room with his private data. In this example, the
broker cannot read the private arguments of the customer.

4.3. Privacy by Partial Services

In the second extension, we show another way to imple-
ment privacy, now with distributed functions. This time, the
customer shares the limit and the date. In the definition
of room, we use a local database function. However, this
fact does not allow to distribute this function. To make it
again possible, we change the code slightly using our Self-
operator. The case analysis is necessary because Erlang does
not implement currying. Using existing implementations
of currying functors, the following code could be further
improved.
Room=fun(Self,{Name,Date})->
case Name == nil of
true ->

NewFun = fun(MissingName) ->
Args ={MissingName,Date},
future:start(Self,room,Args)
end;

false ->
BookingRef= database:any_database_call(Name,Date),
BookingRef

end
end.

In case argument Name is missing, a new function is defined
which uses the existing argument Date and needs the
missing Name. This function returns a new future which

communicates also with hotel and uses both arguments
the private Name and the public Date. The customer’s wish
looks now as follows.
FutBookHotelRoom =

future:start(broker,book,{nil,mydate,mylimit}),
FunctionRoomByName=future:evaluate(FutBookHotelRoom),
FutBookingRef = FunctionRoomByName(myname),
BookingRef = future:evaluate(FutBookingRef),

The evaluation of FutBookHotelRoom returns the function
NewFun which is defined in room and awaits Name as
argument. The execution of this function returns a new future
which is evaluated by customer.

5. Conclusions

We have introduced functional active objects, their im-
plementation in Erlang, and how the Erlang active object
framework can be employed to support privacy in web-
services. In earlier work, we have used Erlang to support
privacy for data enquiries [7]. The current work spells out an
alternative approach already discussed in this earlier paper.

Our implementation of futures is – in comparison – the
most natural as we base it on message passing. Similar to the
ideas recently expressed in Ambient Talk [11], the future is
created by the asynchronous send. In other implementations,
the future is the result of a remote method invocation and
therefore not completely asynchronous: blocking can occur.
The next difference to other future implementations is the
fact that our future is more active. This means that the future
is the active communicator between activities. In addition,
this augments privacy: in the example above, the customer
is always invisible for broker and hotel. In our current
implementation, we decided to declare the future explic-
itly to show the concrete communication and information
flows. Although possible for little examples, it represents a
source of fault for complex programs. The idea to hide the
complete asynchronous communication can be implemented
as a further step. For the time being, it should be seen as a
playground for evaluating different strategies. We believe our
functional parallel approach even allows us to run activities
with circular references without deadlock (because the circle
is formed to a helix).

The three different examples show how privacy can be
implemented by using futures and active objects. As shown
above there are the possibilities to use intermediary activities
which return futures of others requests. Furthermore, the
result can be an activity allowing to break up the communi-
cation flow. In the last example, we show how functionality
can be transferred/delegated. These basic concepts allow – in
the context of web-services – to implement private services
in a new manner. For example, the use of one generic service
which can be cloned and loaded with private data by clients
allows to create a one-to-one relation between a client and
his “private” web service. The generic service and other

private services are then excluded from the communication
of one specific service client relationship [6].

In the first example in Section 4, we show a potential
risk in the current implementation. This risk can be solved
by implementing additional logic which redirects futures.
We decide to implement just the basic form to show the
given insecurity by using web services. In this example, the
customer trusts the hotel but not the broker.

As already discussed in Section 4, when presenting our
different strategies to support privacy, there is need to enable
users to specify these strategies and consequently to enforce
these privacy requirements based on our implementation.
An interesting continuation of our project is to build some
modular kit for constructing such specification, using ba-
sic concepts similar to Myers’ Decentralized Label Model
(DLM) [8]. Thereby, we could label ASPfun programs with
(parts of) security policies that could then be enforced by
our privacy strategies.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer,
New York, 1996.

[2] J. Armstrong. Programming Erlang – Software for a
Concurrent World. The Pragmatic Bookshelf, 2007.

[3] H. Baker and C. Hewitt. The Incremental Garbage Col-
lection of Processes. Symposium on Artificial Intelligence
Programming Languages. SIGPLAN Notices 12, 1977.

[4] D. Caromel and L. Henrio. A Theory of Distributed
Objects. Springer-Verlag, 2005.

[5] T. Gurrock. A Concurrency Abstraction Implemented for
C# and .NET. Bachelor Thesis. Univ. Paderborn, 2007.

[6] L. Henrio and F. Kammüller. Functional Active Objects:
Typing and Formalisation. FOCLASA’09. ENTCS, 2009.

[7] F. Kammüller and R. Kammüller. Enhancing Privacy Im-
plementations of Database Enquiries. Internet Monitoring
and Protection. IEEE, 2009.

[8] A. C. Myers and B. Liskov. Protecting Privacy using the
decentralized label model. TOSEM, 9:410–442, 2000.

[9] L. Paulson. ML for the Working Programmer. Cambridge
University Press, 1995.

[10] R. G. Lavender and D. C. Schmidt An Object
Behavioral Pattern for Concurrent Programming
http://www.cs.wustl.edu/ schmidt/PDF/Act-Obj.pdf

[11] E. Boix, T. Van Cutsem, J. Vallejos, W. De Meuter, and T.
D’Hondt. A Leasing Model to Deal with Partial Failures
in Mobile Ad Hoc Networks TOOLS, 2009.

[12] H. Sutter. The Free Lunch Is Over – A Fundamental Turn
Toward Concurrency in Software. Dr. Dobb’s Journal,
30(3), 2005.

