Enhancing Privacy Implementations of Database Enquiries

Florian Kammiiller
Technische Universitit Berlin
Software Engineering Group

flokam@cs.tu-berlin.de

Abstract

Privacy is an issue of increasing concern to the Inter-
net user. To ensure the continued success of distributed
information systems, a reliable information flow must be
established in certified but immediately evident ways. We
begin with basic consideration of the privacy problem in
the general setting of database enquiries. From there, we
develop a simple solution, which we illustrate with a simple
implementation in the programming language Erlang, and
conclude by providing an informal security analysis.

1. Introduction

Privacy has become an important issue in public e-
business. In order to protect their customers, commercial
services have to provide electronic privacy, which is ap-
proximated by anonymity using pseudonyms. However, it
has been long known that chaining transactions quickly
reveals the identities behind pseudonyms. Even more cru-
cially, applications that appear secure from a superficial
point of view may well contain numerous covert channels.
Some of these covert channels — the ones inherent in the
logic of programs — can be identified by a painstaking
information flow analysis [4]. Such an analysis verifies a
formal notion of security over different data domains, so-
called non-interference [5], for all possible control flow
of programs. Even without this classical but cumbersome
method, some kind of formal language would appear to be
necessary for a thorough analysis of security risks.

Several formal languages have been proposed to encode
privacy policies. The Platform for Privacy Preferences (P3P)
is just one example of a language that enables enterprises to
communicate their privacy policies to customers. The cus-
tomers may then decide whether they are willing to accept
a policy prerequisite for their database enquiry. Apparently,
even with means such as P3P, it is not easy to determine
whether in-house enforcement policies meet their published
P3P privacy promises [2].

In this paper, we first provide a simple formal specifica-
tion of an obvious requirement for such privacy promises
illustrating that it is virtually impossible to expect such

Reiner Kammiiller
Universitit Siegen

Fakultit fiir Elektrotechnik und Informatik

reiner.kammuller @ gmail.com

policies to work. From this, we devise a simple idea of a
different database enquiry that achieves privacy. We illustrate
this solution using a prototype in the parallel programming
language Erlang (Section 2). Efficiency is the price to pay
for the privacy gained. We further illustrate how parallelism
in Erlang helps to overcome this drawback. We then justify
our claim with an informal security argument (Section 3).
Finally, we briefly contrast our solution with an alternative
approach that uses active objects, and offer our conclusions
(Section 4).

1.1. Privacy Policies

The enforcement of privacy policies within an enterprise
constitutes an interesting problem in itself. However, if we
ignore for a moment the actual implementation issue and
try to establish a precise requirement specification for some
of the problems involved, we can identify data retention
as conflicting with privacy. By retention, we mean the
requirement that user data provided for the identification of
services only be retained a specified period after which the
data must no longer be stored in the enterprise’s database.

Formally, we can identify two operations copy and delete
simply denoting that a data item is copied at the enterprises
site and that it is deleted in order to regain some privacy. We
assume the following algebraic properties of copy, delete,
and run, a process representing all possible behaviours.

copy; delete = id

copy;Tun = TUN;COpY

Using a specification formalism like CSP [6], we could now
specify what is meant by the fact that a system P does not
retain data d for any alphabet A of possible system events,
as follows.

copy(d); run(A\ copy(d)); delete(d) E P

Here, the refinement order relation T constrains the be-
haviour of P in that the specification spec on the left-
hand side is only implemented by such processes P that
implement a behaviour contained in spec.

The expression run(A \ copy(d)) specifies that between a
copy(d) and the corresponding action delete(d) any sequence



of events of A may happen, except another copy of d.
The specification thus prohibits excessive copies and hence
unauthorized retention of data d.

The interesting question is whether we can guarantee such
a behaviour. In principle, the answer is yes if we can observe
every sequence of actions in a server of which we require a
service. Pondering this for a moment, we realize that the
above retention specification is unrealistic for real-world
scenarios: no service will lay open all its internal action
traces.

Starting from this discouraging — but highly compelling
insight — we develop a different type of database enquiry that
differs from the usual service architecture model. Instead of
disclosing our incentives, i.e. private data, we perform the
kernel action on the data offered by a service ourselves.
Clearly, there will be a loss of efficiency but we will gain
security. Since the data we wish to keep private is contained
in our kernel service action, the service provider has no
access to it.

There are cryptographic schemes addressing similar prob-
lems. The most general, oblivious transfer, by Rabin [12],
follows ideas similar to the original “Conjugate coding” by
Stephen Wiesner now so popular through quantum cryptog-
raphy. The scheme of private information retrieval [3] is
closely related. This scheme adandons perfect secrecy for
the sake of efficiency — the solution protects against attackers
bound by complexity theory.

The approach we investigate here is the only one that
guarantees privacy in an information theoretic sense but is
deemed “practically unacceptable” because of the communi-
cation overhead [3]. We illustrate this approach in Erlang and
show how massive parallelization may be used to minimize
the effort.

2. An Erlang Implementation of Database En-
quiries

A database enquiry is a service that is usually provided
by a server through the transfer of a search key to the
server, e.g. Google. In the respective service the server
performs a search action on the data, e.g. the Internet, that
is in its data domain. Unfortunately, this efficient standard
solution implies that we must trust the server not to make
unauthorized copies of our search key, i.e. the private data
we wish to keep confidential. For example, we might need
to input our name, address and some incentive in order to
find the required services in our neighbourhood.

Instead of disclosing our personal information, we can
demand access to some larger relevant data domain and
perform the selection, i.e. the search corresponding to our
profile or key, in our private secure domain. We will illustrate
this type of database enquiry on a concrete implementation
in the parallel programming language Erlang [1]. We begin
with a short introduction to Erlang.

2.1. Erlang

The programming platform Erlang/OTP provides the in-
frastructure for programming open distributed telecommuni-
cation (OTP) systems. The language Erlang [1] was devel-
oped by the Ericsson corporation to address the complexity
of developing large-scale programs within a concurrent and
distributed setting. The platform Erlang/OTP consists of the
functional language Erlang — with support for communica-
tion and concurrency — and the OTP middleware.

The most important features of Erlang include the follow-
ing.

« Erlang variables are immutable: their value is assigned

once only; no multiple assignments are allowed.

« Erlang processes do not share memory space; interac-

tion is through explicit message passing.

« Erlang’s process creation speed is much faster than the

operating system’s processes, much like thread creation
[1][Section 8.4].

The programming style of Erlang resembles that of the
ML language [11]. Recursive functions may be defined in
a fairly intuitive way. For example, the factorial function is
defined as follows.

fact 0 -> 1;
fact n -> n * fact(n-1).

Processes may be created by the spawn command, which
takes the processes’ function and initial arguments as pa-
rameters. The value of a spawn command is the process
identifier Pid of the created process. Message passing be-
tween parallel processes is, for sending, simply written as
Pid ! message — in our example the process identifier Pid.
Reception of messages in processes is organized through a
mailbox in each process that can be read by the receive
command. Using pattern matching, receive-statements can
be written concisely and elegantly. The main data types
are (untyped) lists and records, e.g. {green, apple}. Any
lower-case name is interpreted as a constant, and higher-
case names are variables. These various language features
are used below when considering our database enquiry.

2.2. A Simple Database Enquiry

To simplify matters, we assume that the database is a file
of already structured data. We do so to focus our attention
on the communication necessary for the enquiry, leaving out
the complexity of a realistic data analysis. In brief, the basic
database enquiry program implements a server providing the
database and our privacy-aware client that orders the data
and performs a search on it. We explicitly model the server
to provide a basis for the subsequent security analysis. To
model a real world scenario, we provide simple programs
for these two components. Later, we will see how we



can improve the system through parallelization to enhance
performance.

The server listens on a port for the opening of a socket
and accepts the socket. After accepting it, the server closes
the listening socket which does not affect the existing
connection but merely prevents new connections. The Erlang
package gen_tcp optimally supports the implementation
of such distributed systems based on the tcp-protocol. We
omit some parameters so as not to overload the exposition.
The complete program code can be downloaded from the
authors’ website .

start_server() ->
{ok, Listen} = gen_tcp:listen(2345, ...),
{ok, Socket} = gen_tcp:accept(Listen),
gen_tcp:close(Listen),
loop(Socket) .

The loop procedure repeatedly reads data units from the
database accessible to the server. To facilitate the example,
databases are simply represented as files. The socket is
opened and closed by the client. The server opens the
database, represented by the file specified by the client,
and delegates processing of the stream transfer to the
send_stream procedure.

loop(Socket) ->
receive
{tcp, Socket, FileB} ->
FileS = binary_to_term(FileB),
{ok, S} = file:open(FileS, read),
ok = send_stream(Socket, S),
loop(Socket) ;
{tcp_closed, Socket} -> ok
end.

The data is sent by the procedure send_streamn to the socket
in a repeated read action from the opened file stream S until
end of file eof is reached.

send_stream(Socket, S) ->
case io:read(S, ’’) of
{ok, X} ->
gen_tcp:send(Socket, term_to_binary(X)),
send_stream(Socket, S);
eof ->
file:close(S),
gen_tcp:send(Socket, term_to_binary(eof)),
ok
end.

The client now opens the socket and transmits the database
we wish to investigate, represented by a file. Here, we use
a generic name host, representing some actual hostname.
The actual reception of the file’s contents is delegated to the
procedure client_receive. The search results are returned
by this procedure as a result list Res and are immediately
output.

1. http://www.swt.cs.tu-berlin.de/~flokam/research

client_eval(Key, FileS) ->
{ok, Socket} =

gen_tcp:connect("host", 2345, ...),
ok = gen_tcp:send(Socket, term_to_binary(FileS)),
{eof, Res} = client_receive(Key,Socket,self(),[]),
io:format("Client result: “p™n", Res),
gen_tcp:close(Socket) .

The database’s contents arrive at the client and are imme-
diately analyzed corresponding to the search key Key. The
actual data analysis is, for clarity’s sake, reduced to a simple
pattern matching on the received data items. Only matching
contents are assembled in the result list Res.

client_receive(Key, Socket, From, Res) ->
receive
{tcp, Socket, Bin} ->
Val = binary_to_term(Bin),
case Val of

eof -> From! {eof, Res};
{Key, X} ->
client_receive(Key, Socket, From, [X|Resl);
Any ->
client_receive(Key, Socket, From, Res)
end

end.

Two processes, one for the server and one for the client,
can now be started independently by compiling the code
presented above on two separate sites running Erlang. Invok-
ing the function start_server () on the first, the server’s
site, while calling client_eval (key,"file.dat") on the
client site has the following effect on the latter

Client result: "Ottostr 38, 10999 Berlin"
ok

where the key was drugstore and file.dat contains,
amongst other arbitrarily structured data, an item

{drugstore, "Ottostr 38, 10999 Berlin"}.

The server site only reports ok after successful termination
of the process.

2.3. Efficiency by Parallelization

The simple client server introduced in the previous section
represents the desired security solution but it is clearly
not efficient because all data has to be transferred from
the server to the client before the actual selection takes
place. Generally, security does not come for free, so we
can see this as the price to be paid. However, the com-
munication overhead may constitute a crucial bottleneck in
an application. One of the strong points of Erlang is the
possibility to create a large number of parallel processes.
To show that our approach scales up to realistic application
scenarios, we present below an extension to the previous
basic program which significantly enhances performance.
In fact, this extension is a standard way of using Erlang.
We therefore only show the extensions to the basic program



presented in the previous section to explain the principle,
but also go on to discuss some important practical issues.

The main clue to parallelizing the server is to start a new
parallel process in start_server whenever a new connec-
tion is provided by a client through gen_tcp:accept. Note
that the listening socket is, unlike the sequential server, not
closed down as we accept new connections.

start_par_server() ->
{ok, Listen} = gen_tcp:listen(...)
spawn (fun() -> par_connect(Listen) end).

par_connect(Listen) ->
{ok, Socket} = gen_tcp:accept(Listen),
spawn (fun() -> par_connect(Listen) end),
loop(Socket).

loop(..) -> % as above

On the client site, we use the same principle to make parallel
client processes each communicating with a parallel server.
The input of the file names of the files to be searched is
provided by an input file on the client site. The gradual
selection of new source files for a goal-directed search may
be integrated (see Section 4).

This parallel server can potentially create thousands of
connections. Performance is thus significantly enhanced, al-
though clearly the bandwidth of the communication channels
is strained. For a more sophisticated implementation, we can
limit the maximum number of simultaneous connections by
simply keeping count of new connections and finished ones.

3. Security Analysis

3.1. Security Assumptions

A security analysis starts with a two-sided model com-
prising (a) the attacker and (b) the security policy, or
security goals. We cannot achieve 100% security because
(a) there always is the all-powerful attacker and (b) we
cannot generally achieve all security goals for all involved
parties because they may conflict. Usually, when investigat-
ing privacy, we use a multilateral security model [15] that
enables consideration of differing protection goals of several
involved parties.

Nevertheless, we analyze the privacy of the client using
a typical multi-level security model (MLS) [4] because we
are, in this paper, only interested in the privacy of the client’s
data. We therefore assume, for the security policy, that the
user — or, in our case, the client process — has a higher
security level than the server side, the potential attacker. Let
this security level be H, or high, for the client, and L, or
low, for the server. We further extend the security policy
by assuming that the local host is a secure domain, i.e. that
its data and internal communication are secure. All other
communication channels outside the client, and all data on
the server, is assumed to be visible to the attacker.

3.2. Information Flow Security

The most natural way to formalize confidentiality is non-
interference [5]. There are quite a few different definitions
of non-interference [14], mainly because it is a relation over
behaviours of programs (it it sometimes characterized as
a bisimulation property). Thus, the underlying computation
model — leading to different notions of behaviour — results
in different notions of non-interference. Without giving a
formal introduction to this notion, we attempt to provide
a basic understanding of it. We adopt a state-based view:
program behaviour is viewed as a transition between vectors
of variable values.

The basis of non-interference is a relation of indistin-
guishability of program states based on a similar relation
on the program variables: high variables are all indistin-
guishable, but low variables are only if they have equal
values. Informally, the indistinguishability between states
during a program run is defined extensionally over the
indistinguishability of its components, the state variables.

Given an indistinguishability relation on program states,
we can say that non-interference is defined as low-
indistinguishability. In other words, given a security policy
that assigns high and low to all data variables, a program
is non-interfering iff any two program runs remain low-
indistinguishable throughout the program behaviour if they
have been so from the start.

The important implication of non-interference is that the
attacker, who can only read low values, is thus unable to
learn anything about the values of high variables, even if he
can observe different runs of the same program on different
— but indistinguishable — data.

To show non-interference with respect to a given security
policy in practical terms, we have to analyze all control
flows of a program and ensure that there are no information
flows from high to low variables. In practice, this process
is often supported by a static analysis with specialized non-
interference type systems [9], [14].

3.3. Informal Security Analysis
Enhancing Database Search

of Privacy-

Although we do not intend to provide a formal analysis
according to some notion of non-interference, we wish to use
its essential idea in an informal argument. Let our security
policy be an assignment that assigns high to the variables
Key, Any, and Res. All other data may be assigned low; most
of the variables, like Socket, S, and FileS, must be low
because they have to be communicated between the insecure
server and the confidential client. To show non-interference,
we have to analyze all control flows in our program and
exclude all explicit and implicit information flows from Key,
Any and Res to any other (low) variable.



An explicit flow is either given by an assignment from
one variable to another, which is impossible in Erlang
as it is functional (all variables are only assigned once),
or it is given by a function call, whereby a value can
then be assigned as the initial value of the receiving pro-
cess. The Key variable is passed on from client_eval
to client_receive, and from client_receive again to
itself in two separate recursive calls. In the first invocation,
Key is again assigned by pattern matching to the variable
Key, which is also high. In the first recursive call, it is
similarly assigned to the variable Key, but in the second
it is assigned to Any. This is why our policy needs to label
Any as high. The variable Any is not used in any further
function calls, so there are no explicit flows from it to any
other variable.

An implicit information flow is given when the control
flow can branch, e.g. at an if statement: according to the
value of the first variable, the tested variable, a second
variable in one of the branches receives a value, depending
on the value of the first. Again, such an implicit flow should
not lead from a high to a low variable. The only possible
branching of the control flow — where two of our high
variables Key and Any are tested to select the branch — is the
receive statement in client_receive. Here, an implicit
flow is from Key to Res, which is legal as the latter is high
as well. Considering, finally, the variable Res, we see that,
here too, there are no flows from it to any low variable, either
explicit or implicit. The final output of the value of receive
by the io:format call must be considered secure because
it happens inside the secure domain of the client and has
no effect on other low variables. To summarize, the privacy-
enhancing database search is non-interfering with respect to
our security policy.

4. Alternative Approach and Conclusions

In this final section, we briefly consider an alternative
approach and discuss the solution. The approach we have
presented — based on the simple idea of running the security-
sensitive part of the service on the client site — corresponds
to the concepts of common web service implementations like
Javascript, Active Server Pages and Java Applets. However,
other concepts for web services, like CGI-Scripts or Java
Servlets run on the server site. Compared to the presented,
secure, client-sited approach, running the entire service
remotely is clearly more efficient. An open question is,
whether we can provide a secure solution to this more effi-
cient way of running our security sensitive key-application
on a remote site. We illustrate this alternative approach next
using a calculus for active objects.

4.1. Implementation with Active Objects

By adding the concept of objects, familiar from object-
oriented programming, to the existing concepts of paral-
lelism and distribution as in a functional — and hence
relatively safe — language like Erlang, we provide functional
active objects through our new calculus ASPg, [8]. Active
objects allow confidentiality by encapsulating local data.
In contrast to data locality in a process, the idea of data
encapsulation is stronger because the data is an inherent part
of an object. Such objects are activated as a whole entity
and become active objects. We can thus remotely activate
such objects without the risk of disclosing the confidential
data contained in the object.

Although we could also remotely start an Erlang function,
we still have to transmit with this activation (or spawn)
command the initial data for the process, in our case the
key we wish to keep secret. Since we cannot assume that
the communication channels are secure [13], confidentiality
of the key, i.e. privacy, cannot be established.

We can implement a database search using active objects
by starting an active object that acts as a kind of gateway
process. Given confinement of data in an active object,
we also achieve privacy. It is beyond the scope of this
paper to properly introduce ASPy,, but, as it is a simple
and concise calculus, we still use it here to concretize this
idea of a gateway object. We now give the — actually very
short ASPg,, program — with just a very brief and informal
explanation of its functionality.

Let A be the remote database we wish to search. The
following short ASPy, program, when run on a client,
activates on a server an object containing a search method
o and the key k.

Active([s = 0, k = k]).s(A)

The Active command creates a new activity that contains
our gateway object [s = o, k = k] as active object. The
call of s with A as parameter to the then remotely active
object — notated in the object-oriented fashion as .s(A) —
initiates the search. The result of this method call is returned
to the caller, here the client.

A security consideration for this program, or for ASPs,
in general, must assume that active objects are guaranteed
to be confined. In other words, the contents of an active
object can only be accessed through calls of corresponding
methods. This is the principle of language based secu-
rity. Although, in principle, any malicious remote run-time
system can crash our active object and get access to its
contents, language standards can guarantee that this will not
happen. An example for such language standards is bytecode
verification in virtual machines. Additionally, we need to
ensure that the invocation of an active object, through the
Active command, is secure. This means that the transfer
of the object to a remote site is done in a secure fashion.



Given such security measures, we can apply a security
policy that permits only active objects with equal or higher
security levels to call methods to an active object, thereby
guaranteeing the exclusion of illicit flows.

4.2. Conclusions

We have presented an approach to a privacy-enhancing
data base enquiry that solves the problem by not disclosing
the search key but by performing the search itself. The
concept has been demonstrated by a simple implementation
in Erlang; it’s feasibility has been achieved through Erlang’s
high scale parallelism. A final security consideration shows,
informally, that the security goal of keeping the key data
confidential, i.e. private, is achieved.

As briefly mentioned in Section 2.3, a sensible extension
of our parallel search program is to evaluate in each step
the results obtained in the previous step with respect to
new goals, i.e. file names, to continue the search. This is a
simple enough extension that merely needs to identify new
file names, or more generally Internet sites, to continue the
database enquiry. However, this kind of goal-directed search
raises new security issues. An observer could infer some
information about the key from the way we continue our
search because we select the file names from the matched
search results. To overcome this, we have to cover up our
search and load, as before, all possible files referenced in
the previous round. However, for the sake of efficiency,
we would only really analyze those that we know to be
interesting. Here, again, a new covert channel opens up,
that is not visible in the data flow based model we use
in Section 3: an attacker could distinguish our two ways
of treating incoming files in this “cover-up” analysis by
measuring the times between new demands for connections
with gen_tcp:send(..., FileS).

The informal security argument we have shown is not
invalidated by this consideration. In the simple implementa-
tion, we have not used information from the files. There
simply is no dependency between the files being down-
loaded. Consequently, we cannot lose any information from
them. A similar analysis of the extended “sensible” search
would reveal this illegal information flow because we would
use information from files analyzed in previous rounds to
determine the new FileS.

Our informal security analysis is, though informally pre-
sented, based on a formal notion. We could make it fully
formal. We have, however, adopted a state-based view of
non-interference, which might seem unusual in a functional
set-up. Although the approach works well on our small
example, there is a general problem with this view of
non-interference for parallel programs: the termination of
processes is observable by other processes. Since we assume
termination for the definition of non-interference, we cannot
take this security problem into consideration. In future work,

we plan to exploit a rigorous translation from Erlang to the
7 calculus [10] to represent our application in a calculus
that is more easily accessible to a formal analysis: we can
then use existing formalizations of non-interference for the
7 calculus [7] to demonstrate information flow security.

Acknowledgements. We would like to thank Jeff Sanders
for helping us to get the initial understanding and the
anonymous referees for constructive criticism.

References

[1] J. Armstrong. Programming Erlang — Software for a
Concurrent World. The Pragmatic Bookshelf, 2007.

[2] A. Barth and J. C. Mitchell. Enterprise Privacy Promises
and Enforcement. WITS 05. ACM 2005.

[3] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan.
Private Information Retrieval. Journal of the ACM, 45(6):
965-982, 1998.

[4] D.E. Denning and P. J. Denning. Certification of programs
for secure information flow. Communication of the ACM,
20(7), 1977.

[5] J. Goguen and J. Meseguer. Security Policies and Security
Models. Proceedings of SOSP’S2, pages 11-22. IEEE
Computer Society Press, 1982.

[6] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1984.

[71 M. Hennessy. The security pi-calculus and non-
interference. The Journal of Logic and Algebraic Program-
ming. 63:3-34. Elsevier 2005.

[8] L. Henrio, F. Kammiiller and H. Sudhof. ASPfun: A
Functional and Distributed Object Calculus: Semantics,
Type-system and Formalization. INRIA Research Report
N. 6353, November 2007

[9] F. Kammiiller. Formalizing Non-Interference for A Small
Bytecode-Language in Coq. Formal Aspects of Computing:
20(3):259-275. Springer, 2008.

[10] T. Noll and C K. Roy. Modeling Erlang in the Pi-Calculus.
Erlang’05. ACM Press, 2005.

[11] L. Paulson. ML for the Working Programmer. Cambridge
University Press, 1995.

[12] M. O. Rabin. How to exchange secrets by oblivious
transfer. TR-81, Aiken CL, Harvard University, 1981.

[13] K. Rikitake and K. Nakao. Application Security of Er-
lang Concurrent Systems. Computer Security Symposium,
CSS’08. Okinawa, 2008.

[14] A. Sabelfeld and A. Myers. Language-Based Information-
Flow Security. Selected Areas in Communications, 21:5—
19. IEEE 2003.

[15] G. Wolf and A. Pfitzmann. Properties of Protection Goals
and Their Integration into a User Interface. Computer
Networks, 32:(685-699), 2000.



