
Using Functional Active Objects to Enforce

Privacy

Florian Kammüller (flokam@cs.tu-berlin.de)∗

Abstract: In this paper we present an important step towards a language based modular
assembly kit for security. This kit aims at supporting analysis of information �ow security for
distributed systems. As a distributed language we use functional active objects in ASPfun.
The contribution of the paper is an implementation concept based on ASPfun for information
�ow control by hiding and an argument that this device enforces security. This hiding device
illustrates a privacy enhancing technique for distributed languages and motivates the need
for a systematic analysis of noninterference properties from a language based perspective.
A language based property assembly kit for distributed systems seems a desirable means to
that end. The hiding mechanism is one device for security enforcement.

Keywords: Active Objects, Noninterference, Type Systems

1 Introduction

A formal statement of con�dentiality is noninterference. One might even say that noninter-
ference is the natural way of formally encoding con�dentiality in a system. Over the years
there has been a vast amount of di�erent notion of noninterference nicely summarized by
Mantel's modular assembly kit for security (MAKS) [Man02].

The language ASPfun [HK09b] is a small language intended to support the study of
the foundations of active objects; we can consider ASPfun as a calculus of functional
active objects. The language and a classical type system of ASPfun are formalized in
the interactive theorem prover Isabelle/HOL [NPW02]; type safety is proved completely
using this tool. By type safety we mean preservation and progress. For the special case
of distributed objects this directly implies deadlock-freedom [HK09b]. We furthermore
provide an ASPfun implementation in Erlang [FK10] that serves as an environment for
experimenting with privacy enhancing techniques, particularly for asynchronous languages
based on future evaluation.

The contribution of this paper is an explicit hiding operator for ASPfun and a proof
that hiding implies information �ow control. We furthermore provide a vision on how such
an operator contributes to a global understanding of information �ow properties.

In this paper we �rst introduce brie�y the language ASPfun (Section 2) giving its
formal semantics. The application of the language is then illustrated on the classical
Webtax example that has originally been used to motivate the decentralized label model
(DLM) by Andrew Myers' [ML00] (Section 3). Next, we introduce the hiding operator for
ASPfun by means of example showing how it introduces privacy into the Webtax example

∗ Technische Universität Berlin
Institut für Softwaretechnik und Theoretische Informatik

Florian Kammüller (flokam@cs.tu-berlin.de)

configuration

request queue
t

activity

active object
α

...

...

...

E [fk]

request queue
t'

β

...

...

...

t'.l(s)

Fig. 1: ASPfun: a con�guration

(Section 4). After introducing the formal security notion of noninterference for ASPfun, we
show that hiding implies security of private data for ASPfun (Section 5). After considering
some related work, we �nally give a global picture of how the hiding operator �ts into a
global picture of information �ow control and show future directions (Section 6).

2 Functional Active Objects in ASPfun

The language ASPfun [HK09b] is a computation model for functional active objects. Its lo-
cal object language is a simple ς-calculus [AC96] featuring method call t.l(s), and method
update t.l := ς(x, y)b on objects (ς is a binder for the self x and method parameter y).
Objects consist of a set of labelled methods [li = ς(x, y)b]i∈1..n (attributes are considered
as methods with no parameters). ASPfun now simply extends this basic object language
by a command Active(t) for creating an activity for an object t. A simple con�guration
containing just activities α and β within which are so-called active objects t and t′ is
depicted in Figure 1. This �gure also illustrates futures, a concept enabling asynchronous
communication. Futures are promises for the results of remote method calls, for example
in Figure 1, fk points to the location in activity β where at some point the result of the
method evaluation t′.l(s) can be retrieved from. Futures are �rst class citizen but they
are not part of the static syntax of ASPfun, that is, they cannot be used by a program-
mer. Similarly, activity references, e.g. α, β, in Figure 1, are references and not part
of the static syntax. Instead, futures and activity references constitute the machinery
for the computation of con�gurations of active objects. ASPfun is built as a conceptual
simpli�cation of ASP [CH05] � both languages support the Java API Proactive [Pro08].

The semantics of the ς-calculus is simply given by the following two reduction rules
for calling and updating a method (or �eld) of an object. We use a concise contextual

Using Functional Active Objects to Enforce Privacy

local

s→ς s′

α[fi 7→ s ::Q, t] :: C →‖ α[fi 7→ s′ ::Q, t] :: C

active

γ /∈ (dom(C) ∪ {α}) noFV(s)
α[fi 7→ E[Active(s)] ::Q, t] :: C →‖ α[fi 7→ E[γ] ::Q, t] :: γ[∅, s] :: C

request

fk fresh noFV(s)
α [fi 7→ E[β.l(s)] ::Q, t] :: β[R, t′] :: C →‖ α [fi 7→ E[fk] ::Q, t] :: β [fk 7→ t′.l(s) ::R, t′] :: C

self-request

fk fresh noFV(s)
α [fi 7→ E[α.l(s)] ::Q, t] :: C →‖ α [fk 7→ t.l(s) :: fi 7→ E[fk] ::Q, t] :: C

reply

β[fk 7→ s ::R, t′] ∈ α[fi 7→ E[fk] ::Q, t] :: C

α[fi 7→ E[fk] ::Q, t] :: C →‖ α[fi 7→ E[s] ::Q, t] :: C

update-AO

γ /∈ (dom(C) ∪ {α})
noFV(ς(x, y)s) β[R, t′] ∈ (α[fi 7→ E[β.l := ς(x, y)s] :: Q, t] :: C)

α[fi 7→ E[β.l := ς(x, y)s] :: Q, t] :: C →‖ α[fi 7→ E[γ] :: Q, t] :: γ[∅, t′.l := ς(x, y)s] :: C

Tab. 1: ASPfun semantics

description with contexts E de�ned as usual.

call

li ∈ {lj}j∈1..n

E
[
[lj = ς(xj , yj)bj]j∈1..n.li(b)

]
→ς

E
[
bi{xi ← [lj = ς(xj , yj)bj]j∈1..n, yj ← b}

]
update

li ∈ {lj}j∈1..n

E
[
[lj = ς(xj , yj)bj]j∈1..n.li := ς(x, y)b

]
→ς

E
[
[li = ς(x, y)b, lj = ς(xj , yj)b

j∈(1..n)−{i}
j]

]

The semantics of ASPfun is built over the local semantics of the ς-calculus as a reduction
relation →‖ that we call the parallel semantics (see Table 1). In the following example
(an extension of the motivating example of [HK09b]) a customer uses a hotel reservation

Florian Kammüller (flokam@cs.tu-berlin.de)

service provided by a broker.

customer[f0 7→ broker.book(name, date, limit), t]
‖ broker[∅, [book = ς(x, (name, date, limit))

hotel.room(name, date), . . .]]
‖ hotel[∅, [room = ς(x, name, date)bookingref, . . .]]

→∗
‖ (request, local)

customer[f0 7→ f1, t]
‖ broker[f1 7→ hotel.room(name, date), . . .]
‖ hotel[∅, [room = ς(x, name, date)bookingref, . . .]]

→∗
‖ (request, local)

customer[f0 7→ f1, t]]
‖ broker[f1 7→ f2, . . .]
‖ hotel[f2 7→ bookingref, . . .]

→∗
‖ (reply∗)

customer[f0 7→ bookingref, t]
‖ broker[f1 7→ f2, . . .]
‖ hotel[f2 7→ bookingref, . . .]

The last step summarizes two reply rule applications: the broker �rst replies the future
reference f2 to the customer as a result of f1; second, the hotel replies the value bookingref
directly to customer as result of f2 without passing it to broker.

The update for functional active objects in ASPfun (see rule update-AO in Table 1)
has been designed prolonging the central concept of a functional language by leaving the
active object contained in an activity immutable. Otherwise, the semantics would create
the possibility to use objects as a store and the update as an assignment. Since activities
are persistent inside a con�guration, their active objects need to be immutable, i.e. no
change can ever happen. Intuitively, the active object inside an ASPfun active object may
be seen as a �local program code� that is only ever invoked on method calls. These calls
invoked as new entries on the activities request queue may change. To accommodate at
the same time some update also for active objects, we designed the ASPfun semantics such
that the update actual happens on a copy of the original active object; the original active
object is preserved inside the original activity; a new activity with the updated active
object is created and the reference in the calling activity that has invoked the update are
replaced with the new activity reference.

This update might at �rst sight seem ine�cient but it has its use in applications.
We have already investigated its implications for concurrency by implementing Lamport's
distributed consensus algorithm Paxos in ASPfun [HK09a]. This experiment shows that
in the language ASPfun whenever there is a concurring situation � as for example two
simultaneous update requests on one active object � the ASPfun update implicitly resolves
this by creating two copies corresponding to two possible outcomes of the concurring
requests.

Using this feature, we motivate our ASPfun update by examples from (Web) services
where for various requests from customers individual service instances are created by a
central server customizing these services to clients' data. This example relies on the mech-
anism of automatic copies created by active object updates for an e�cient implementation
of customization (this example is part of the newly extended version of [HK09b]).

In this paper we will show up another even more exciting use of the active object

Using Functional Active Objects to Enforce Privacy

ω.taxcalc(τ)

[mydata = ...,
 tax_decl = ...]

[privatedata = ... ,
publicdata = ...]

ω

β

[taxcalc(y) =
Active(somecalc(y)),

...]

τ...

f0

[mydata = ...,
 tax_decl = ...]

[privatedata = ... ,
publicdata = ...]

ω

β

Active(somecalc(τ))

[taxcalc(y) =
Active(somecalc(y)),

...]

τ...

f0

[mydata = ...,
 tax_decl = ...]

[privatedata = ... ,
publicdata = ...]

ω

β

Active([result = ...])

[taxcalc(y) =
Active(somecalc(y)),

...]

τ...

f0

[mydata = ...,
 tax_decl = ...]

ω

β

f1

[taxcalc(y) =
Active(somecalc(y)),

...]

[privatedata = ... ,
publicdata = ...]

τ...

[result = ... ,]

ρ

Fig. 2: The Webtax example in ASPfun in a series from left top to bottom right.

update where it is used to overwrite by empty � and thus hide � data of an active object.

3 The Webtax Example

Privacy enforcement for object oriented programming has been revolutionized by Andrew
Myers' work on the Decentralized Label Model (DLM) [ML00]. We give a very short
description only to motivate the scenario. We then pick up one of his motivating examples
and show how ASPfun can be used to implement it.

The Decentralized Label Model (DLM) enables a role based approach to enforcing
security in programs [ML00]. The main idea in DLM is to have explicit labels in the
program modelling the actors that have access to labelled program parts. Owners and
readers can be speci�ed for each data item enabling a �ne tuned control over distributed
entities.

Myers uses the motivating example of an Webtax program: Bob wants to make his
tax declaration; Preparer o�ers a Web application called Webtax that can be applied to
Bob's data to produce as output the tax declaration [ML00]. However, Bob as well as
Preparer have their security anxieties. Bob naturally wants to protect his private data
while Preparer wants to prevent that any information about his secret algorithm is shed
onto the output generated in from of a tax declaration.

As an illustration of the scenario and to show how ASPfun is applied consider the steps
depicted in Figure 2, where activity β represents Bob, activity τ his (tax) data, and ω the
Webtax program supplied by Preparer.

Florian Kammüller (flokam@cs.tu-berlin.de)

4 Hiding Information with ASPfun

In this section we describe how the Webtax example can be implemented in a slightly
di�erent way in ASPfun in order to hide the private information. We illustrate by this
second version the special feature of active object update.

The implementation of Webtax in ASPfun seen in the previous section does not support
privacy at all: any object may access any data of any other active object. On the other
hand it is fairly simple to protect access to objects by prescribing access rights on the
object level. Since the access to objects is only possible via method calls we just need
to use access control mechanism to protect data contained in objects. However, if we
need to give away data objects to others, like in the above example, we must give access
to the objects and its content otherwise we cannot use the service. Naturally, we could
now employ a �ner grained policy � similar to Myers' DLM � to assign a policy that
di�erentiates private from public parts of an object. But, why don't we just delete the
private data? Normally we refrain from doing this to prevent loss. However, in ASPfun we
can just use an update that deletes the private information and then proceeds as before.
Figure 3 shows how the adapted version works. Here, the initial call to Webtax uttered
by Bob, contains the method invocation τ.privatedata = [] on the tax data object τ
passed as parameter to taxcalc of ω. Now, due to the semantics of update the overwrite
automatically creates a copy τ ′ of the original data object τ . It is this copy that is passed
on to ω instead of τ � thus, intuitively quite clear, there is no private information revealed.

The procedure used to protect the information is some kind of hiding because the
original object is preserved and thus no data is lost. We can generalize this procedure
into a hiding operator and we can then generally show that it provides noninterference
(see following section). Based on the syntax of ASPfun it is not di�cult to generalize
the cancellation by method overwrite to all objects by a primitive recursive de�nition of
a hiding operator \. In brief, t \ ∆ passes through the ASPfun term t and performs the
above seen operation x = [] on all x that are contained in ∆.

5 Hiding Enables Information Flow Control

In order to generally justify that the hiding operator provides security we �rst introduce
a formal notion of information �ow for ASPfun: noninterference.

Intuitively, noninterference means that an attacker cannot learn anything about private
data by regarding public parts of a program. To arrive at a formal expression of this idea
for ASPfun, we �rst de�ne a relation of indistinguishability, often also called L-equivalence
because in this relation L-terms have to be equal.

We use here the notion of types informally because this su�ces to disambiguate the
following bijection. Indeed, ASPfun has a safe type system [HK09b] that can serve here
but is omitted for brevity [HK09a].

De�nition 5.1 (Typed Bijection) A typed bijection is a �nite partial function σ on
activities α (or futures fk respectively) such that

∀ a : dom(σ). ` a : T =⇒ ` σ(a) : T

(where T is given by an activity type Γact(a) or a future type Γfut(a) respectively).

Using Functional Active Objects to Enforce Privacy

ω.taxcalc
(τ.privatedata = [])

[mydata = ...,
 tax_decl = ...]

[privatedata = ... ,
publicdata = ...]

ω

β

[taxcalc(y) =
Active(somecalc(y)),

...]

τ...

ω.taxcalc(τ')

[mydata = ...,
 tax_decl = ...]

ω

β

[taxcalc(y) =
Active(somecalc(y)),

...]

...
[privatedata = ... ,
publicdata = ...]

τ

[privatedata = [],
publicdata = ...]

τ'

f0

[mydata = ...,
 tax_decl = ...]

[privatedata = [] ,
publicdata = ...]

ω

β

Active(somecalc(τ'))

[taxcalc(y) =
Active(somecalc(y)),

...]

τ'...

f0

[mydata = ...,
 tax_decl = ...]

[privatedata = [] ,
publicdata = ...]

ω

β

Active([result = ...])

[taxcalc(y) =
Active(somecalc(y)),

...]

τ'...

f0

[mydata = ...,
 tax_decl = ...]

ω

β

f1

[taxcalc(y) =
Active(somecalc(y)),

...]

[privatedata = [] ,
publicdata = ...]

τ'...

[result = ... ,]

ρ

Fig. 3: Similar procedure as in Figure 2 � but now hiding the private information.

Florian Kammüller (flokam@cs.tu-berlin.de)

The intuition behind typed bijections is that dom(σ) designates all those futures or activity
references that are or have been visible to the attacker. We cannot assume the names in
di�erent runs of programs, even for low elements, to be the same. Hence, we relate those
names via a pair of bijections. These bijection are typed because they relate activities
and futures that are all of type L. The following de�nition of indistinguishability uses the
typed bijection in this sense.

We de�ne (low)-indistinguishability as a relation ∼σ,τ parameterized by two typed
bijections one over activity names and one over futures. It is a heterogeneous relation as
it ranges over elements of di�erent types, for example activities and request queues. We
leave out the types as they are indicated by our notational convention. By Tσ,τ we denote
the term (or type) T where all occurrences of activity names a or futures f are replaced
by their counterparts σ(a) or τ(f), respectively, given they are in the domain, otherwise
unchanged.

De�nition 5.2 (Indistinguishability) An indistinguishability relation is a heterogeneous
relation ∼σ,τ , parameterized by two isomorphisms σ and τ whose di�erently typed subre-
lations are as follows. The types are indicated implicitly by variable names, i.e. t, t′ for
base terms, αi for activity references, fj for futures, Rαk

for request lists, and �nally Cn

for con�gurations.

t ∼σ,τ t′ ≡ tσ,τ = t′

α0 ∼σ,τ α1 ≡ τ(α0) = α1

fk ∼σ,τ fj ≡ σ(fk) = fj

[Rα0 , tα0] ∼σ,τ [Rα1 , tα1] ≡ Rα0 ∼σ,τ Rα1 ∧ tα0 ∼σ,τ tα1

Rα0 ∼σ,τ Rα1 ≡ dom(σ) ⊆ dom(Rα0) ∧ ran (σ) ⊆ dom(Rα1)∧
∀ fk, fj .fk ∼σ,τ fj =⇒ Rα0(fk) ∼σ,τ Rα1(fj)

C0 ∼σ,τ C1 ≡ dom(τ) ⊆ dom(C0) ∧ ran (τ) ⊆ dom(C1)∧
∀α0, α1. α0 ∼σ,τ α1 =⇒ C0(α0) ∼σ,τ C1(α1)

We repeat here the remark made by the designers of this kind of indistinguishability
de�nition [BN03]: �The above exploits the convention that equations involving partial
functions are interpreted as false when the function is unde�ned.� Thus, α0, α1 (or fk, fj ,
respectively) are in the relation ∼σ,τ if and only if (α0, α1) is in τ (or (fk, fj) ∈ σ,
respectively) because otherwise (τ(α0) = α1) = false (or (σ(fk) = fj) = false). In
case of α0 /∈ dom(τ), for example, C(α0) ∼σ,τ C(α1) could be true or false illustrating the
partiality of the de�nition of indistinguishability. The entire high part of the program is not
relevant for L-indistinguishability and thus not recorded at all in the corresponding typed
bijections. That is, �H-indistinguishability� really corresponds to �indistinguishability not
de�ned�.

Based on the notion of indistinguishability we can now de�ne noninterference as �low�
indistinguishability preservation. This is equivalent to saying that the indistinguishability
relation is a bisimulation over the semantics.

Using Functional Active Objects to Enforce Privacy

De�nition 5.3 (Noninterference) Indistinguishability of terms is preserved by the se-
mantics, i.e. any two terms of the same security level according to policies σ and τ that are
indistinguishable remain so under evaluation. Formally, noninterference holds for a secu-
rity policy represented by σ, τ , if for any two ASPfun terms t0 and t1 such that t0 ∼σ,τ t1
and t0 →‖ t′0 there exists t′1 such that t1 →∗

‖ t′1 and t′0 ∼σ,τ t′1.

Given the hiding operator de�ned in the previous section we can prove that for ASPfun

programs hiding enforces security. The following theorem shows that hiding according to
a security policy implies noninterference.

Theorem 1 Let t and ∆ be arbitrary ASPfun terms representing a program and some
private data. Let furthermore, σ, τ be policies such that ∆ is equal to all data assigned as
private by σ, τ . For some value t′, if t →∗

‖ t′ and t \∆ →∗
‖ t′ then noninterference holds

for σ, τ .

Proof. Unfolding De�nition 5.3 for noninterference, the proof is a straightforward case
analysis over the semantics after applying induction. 2

The theorem assumes that t \∆ terminates and that it terminates with the same value as
t. A way to automatically verify this condition is given by static analysis: classical type
safety implies that a well typed program does not get stuck. Thus, the ASPfun type system
we proved to be type safe [HK09b] can be used to statically ascertain the conditions for
security of hiding.

Corollary 5.4 Let t and ∆ be arbitrary well-typed ASPfun terms, such that t \∆ is well-
typed like t, then for any security policy σ, τ , in which ∆ is equal H, noninterference for
σ, τ holds.

Other generalizations of Theorem 1 are not theorems: not for all programs t that are
secure, i.e. noninterfering with respect to some suitable policy σ, τ can we delete ∆. The
program might crash or its semantics changed that it produces other outputs than t.

Nevertheless, as we have seen, in combination with classical safe typing, hiding enables
noninterference enforcement for a given policy on an ASPfun program.

6 Conclusion

In this paper we have presented a hiding operator for ASPfun programs, illustrated its use
on a privacy critical example, and justi�ed its security properties formally.

6.1 Related Work

Myers and Liskow augmented the DLM model with the idea of information �ow control
as described in the papers [ML00]. Further works by Myers have been mostly practically
oriented, foundations only considered later. Initially, he implemented a Java tool package
called JFlow that implements the DLM and information �ow control [Mye99]. The ex-
tensions given by the DLM to the standard noninterference notions lead to undecidable
typing. That is, typing cannot be completely performed at compile time but has to be
partly done at run-time � which is costly and risky. In more recent work, still along the
same lines, Zheng and Myers [ZM07] have gone even further in exploring the possibilities

Florian Kammüller (flokam@cs.tu-berlin.de)

to dynamically assign security labels while still trying to arrive at static information �ow
control. Whereas Myers earlier publication are rather pragmatic solution to designing a
decentralized model of security classes, he concentrates on concepts of downgrading val-
ues. This is, however, nothing else than �casting� values to a subtype. It is only later that
Myers and his colleagues identify type systems as the appropriate model for static analysis
with the DLM [ZM07].

One very popular strand of research towards veri�cation of security has been static
analysis of noninterference using type checking. Brie�y, this means that type systems are
constructed that encode a noninterference property. When a program passes the type
check for that system then we know that it has a certain security type. The security type
can be for example an assignment of program data to security classes. The type check
then guarantees that the information �ows are only those allowed by the assignment of
the data to the security classes. A good survey giving an introduction to the matter and
comparing various activities is given by Sabelfeld and Myers [SM03].

For distributed systems the noninterference property becomes more di�cult. Already
Volpano and Smith show that concurrency produces new security risks. They resolve
these risks by strong restrictions of the type system [SV98]. Even though later some
generalisations could soften up these strong restrictions, concurrency and distribution
remain a challenge to information �ow control [BC01, MBC07].

A great advantage of type systems is that their support with interactive theorem
provers is fairly advanced these days, e.g. [Kam08], enabling reliable analysis and deriva-
tion of prototype type checkers. Our next goal is in fact to apply the static analysis
technique of type systems to support a language based framework for security � as de-
scribed next.

6.2 Language Based Modular Assembly Kit for Security

As we have seen in the previous section, formal notions of security are complex and di�cult
to understand. Therefore, it is indispensable to have systematic support. A constructive
way to support noninterference analysis is by providing a set of basic properties that can
be combined to build various forms of noninterference. H. Mantel's work since his PhD has
mainly focused on providing such a logical tool box [Man00, Man02]. One very important
goal is compositionality: if two parts of a system have each individually some security
property, what is the security property of the composed system? Does it stay the same,
or is it at least also some composite property of the individual components properties.
Another possibility are emergent system properties, i.e. properties that � when systems
are composed � become augmented.

Mantel provides in his work a precise characterization of the most important known
properties and categorizes them in his assembly kit. For example, the classical security
property noninterference as �rst de�ned by Goguen and Meseguer [GM82] is a determinis-
tic property that has a naturally been followed by the de�nition of nondeterministic non-
interference. The quest for compositionality motivated the notion of restrictiveness which
turned out to be a specialisation of nondeterministic noninterference. However, later the
security property correctability has been found to be another compositional security prop-
erty between restrictiveness and nondeterministic noninterference. The great innovation
of Mantel's work is the identi�cation of basic security predicates that enable the con-
struction of many existing information �ow properties. Thereby, he arrives at comparing

Using Functional Active Objects to Enforce Privacy

these properties systematically and supporting decomposition and proof of corresponding
theory, like unwinding theorems and zipping lemmata, that support a systematic analysis.

Mantel's work is based on the formal system model of event systems. All the proper-
ties are based on abstract trace models. Naturally, this view abstracts from more re�ned
di�erences between system behaviours disabling the contemplation of security at a �ner
scale. We want to use a language based approach and the more �ne grained bisimulation
view to support information �ow control. We aim at using functional active objects as
a language calculus and build a logical tool set for compositional properties. Since al-
ready on the simpler trace models the de�nition and theory development for a MAKS is
an intrinsically complex task, we additionally employ Isabelle/HOL as a veri�cation envi-
ronment to support us. The derived LB-MAKS security properties shall be transformed
into security type systems � in the sense as described in the previous section � to derive
practically useful static analysis tools from our mechanized LB-MAKS. We are only at the
beginning of this project. The presented hiding device of ASPfun is a �rst member that
will feature in our LB-MAKS toolbox as an enforcement method for noninterference.

To our knowledge no one has considered the use of futures in combination with con�ne-
ment given by objects as a means to characterize information �ow. The major advantage
of our approach is that we are less abstract than event systems while being abstract enough
to consider realistic distributed applications.

References

[AC96] Martín Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, New
York, 1996.

[BC01] Gérard Boudol and Ilaria Castellani. Noninterference for concurrent programs.
In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors, ICALP,
volume 2076 of Lecture Notes in Computer Science, pages 382�395. Springer,
2001.

[BN03] A. Banerjee and D. A. Naumann. Stack-based access control for secure infor-
mation �ow. Journal of Functional Programming, 15(2), 2003.

[CH05] Denis Caromel and Ludovic Henrio. A Theory of Distributed Objects. Springer-
Verlag New York, Inc., 2005.

[FK10] A. Fleck and F. Kammüller. Implementing privacy with erlang active objects. In
5th International Conference on Internet Monitoring and Protection, ICIMP'10.
IEEE, 2010.

[GM82] J. Goguen and J. Meseguer. Security policies and security models. In Symposium
on Security and Privacy, SOSP'82, pages 11�22. IEEE Computer Society Press,
1982.

[HK09a] L. Henrio and F. Kammüller. Functional active objects: Noninterference and
distributed consensus. Technical Report 2009/19, Technische Universität Berlin,
2009.

Florian Kammüller (flokam@cs.tu-berlin.de)

[HK09b] L. Henrio and F. Kammüller. Functional active objects: Typing and formalisa-
tion. In 8th International Workshop on the Foundations of Coordination Lan-
guages and Software Architectures, FOCLASA'09, ENTCS. Elsevier, 2009. Also
invited for journal publication in Science of Computer Programming, Elsevier.

[Kam08] F. Kammüller. Formalizing non-interference for a small bytecode-language in
coq. Formal Aspects of Computing, 20(3):259�275, 2008.

[Man00] H. Mantel. Possibilistic de�nitions of security � an assembly kit. In Computer
Security Foundations Workshop, pages 185�199. IEEE, 2000.

[Man02] H. Mantel. On the composition of secure systems. In Symposium on Security
and Privacy, 2002.

[MBC07] Ana Almeida Matos, Gérard Boudol, and Ilaria Castellani. Typing noninterfer-
ence for reactive programs. J. Log. Algebr. Program., 72(2):124�156, 2007.

[ML00] A. C. Myers and B. Liskov. Protecting privacy using the decentralized label
model. ACM Transactions on Software Engineering and Methodology, 9:410�
442, 2000.

[Mye99] A. C. Myers. J�ow: Practical mostly-static information �ow control. In 26th
ACM Symposium on Principles of Programming Languages, POPL'99, 1999.

[NPW02] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL � A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer-Verlag, 2002.

[Pro08] ProActive API and environment, 2008. Available at http://www.inria.fr/

oasis/proactive (under LGPL).

[SM03] A. Sabelfeld and A. C. Myers. Language-based information-�ow security. Se-
lected Areas in Communications, 21:5�19, 2003.

[SV98] Geo�rey Smith and Dennis M. Volpano. Secure information �ow in a multi-
threaded imperative language. In POPL, pages 355�364, 1998.

[ZM07] L. Zheng and A. C. Myers. Dynamic security labels and static information �ow
control. International Journal of Information Security, 6(2�3), 2007.

