
Compositionality of Aspect Weaving

Florian Kammüller and Henry Sudhof

Technische Universität Berlin
Insititut für Softwaretechnik und Theoretische Informatik

Abstract. One approach towards adaptivity is aspect-orientation. As-
pects enable the systematic addition of code into existing programs. In
order to provide safe and at the same time flexible aspects for such adap-
tive systems we address the verification of the aspect-oriented language
paradigm. This paper first gives an overview of our aspect calculus and
summarizes previous results. Then we present a new compositionality
lemma prerequisite for so-called run-time weaving. The entire theory
and proofs are carried out in the theorem prover Isabelle/HOL.

1 Introduction

An important research subject concerning networks of highly autonomous com-
ponents in distributed systems is adaptability. Systematic code adaptation is a
necessity for the reliability and the deployment on a large scale of autonomous
component systems. Adaptability requires that new artifacts may be dynami-
cally added as a prerequisite for deployment or quality of service requirements of
an instance, but also during the entire life cycle of a software component. More-
over, the realization of partially autonomous components, that can, for example,
defend themselves automatically against attacks, demands as well that the no-
tion of adaptability is well understood, easily implemented and modelled. By
providing a set of aspects a toolset can be constructed from which autonomous
components can select aspects to adapt to current needs.

Automated formal analysis with proof assistants provides a strong support for
the analysis of safety properties of programming languages [6]. Our approach to
support the verification of adaptive systems consists of providing a fully formal-
ized basis for aspect-oriented programming in Isabelle/HOL [4]. We construct a
core calculus of objects and aspects with types as an instance of the generic the-
orem prover Isabelle/HOL. The resulting framework serves to experiment with
language features – for example, weaving functionality and pointcut selectors
– and properties – for example, type safety and compositionality. At the same
time, our results have mathematical precision and are mechanically verified.
Moreover, we try to keep the formal model of the aspect calculus as constructive
as possible. Thereby, we can extract executable prototypes for evaluators and
type checkers from the Isabelle/HOL framework. In this paper we first give in
Section 2 a short introduction to necessary prerequisites for our work. In Section
3 we present our calculus of aspects summarizing previous results on confluence
and type safety. Section 4 then presents in detail the compositionality theorem
for ςAsc, followed by Section 5 closing with a discussion.

2 F. Kammüller, H. Sudhof

2 Preliminaries

Aspects enable the systematic and efficient adaptation of existing programs by
adding (weaving) code segments (advice) at user-defined points (pointcuts). For
example, a given implementation for a secure group communication in a network
could be adapted to support only authenticated channels by weaving in an advice
that implements user authentication prior to any remote method call.

Our DFG-funded project Ascot [4] mechanizing aspect-orientation has pro-
duced some important first results [5, 7–9] forming a sound basis for security-
critical applications of aspect-orientation. More specifically, we have constructed
a full formalization of the ς-calculus in Isabelle/HOL, proved confluence, and
extended the base calculus to ςAsc, a calculus for aspects and weaving. More
prominently, we have defined a type system for aspects on ςAsc and proved type
safety [8]. The basic idea of our calculus of aspects is similar to the theory of
aspects [10] but we start from the Theory of Objects, unlike the former that
is based on the λ-calculus. To model aspects we introduce labels in the base
program. These labels represent so-called join-points, i.e. points at which advice
might be woven in. Given these labels, we can quite naturally define weaving:
advice is given as a function applicable to a labelled term, replacing the original
term. So, given an aspect as a pair of pointcuts L and an advice that shall be
applied at all join-points specified by L, weaving can be constructed by function
application, as illustrated in the following example (weaving is represented as
⇓).

〈L.λ x. e〉 ⇓ (v1 + l1〈v2〉)
l1∈L−→ v1 + e[v2/x]

We next introduce the prerequisites for the ςAsc calculus.

2.1 The ς-calculus

In a Theory of Objects[1] Abadi and Cardelli developed the ς-family of calculi to
formally study object-orientation. These calculi are widely accepted as concep-
tual equivalents of the λ-calculus for objects, since the objects can be directly
used as a basic construct without having to be simulated through λ-expressions.
In the ς-calculi, an object is defined as a set of labelled methods. Each method
is a ς-term in its own right and has a parameter self, in which the enclosing ob-
ject is contained. There are three flavors of primitives from which to build such
terms: object definitions, method invocation and field update, which are presented
in Figure 1. Methods not using the self parameter are considered to be fields.

Let o ≡ [li = ς(xi)bi
i∈1..n] (li distinct)

o is an object with method names li and methods ς(xi)bi

o.lj → bj{xj ← o}(j ∈ 1..n) selection / invocation

o.lj ⇐ ς(y)b→ [lj = ς(y)b, li = ς(xi)b
i∈(1..n)−j
i](j ∈ 1..n) update / override

Fig. 1. The primitive semantics of the ς-calculus as introduced in [1]

Compositionality of Aspect Weaving 3

2.2 Isabelle/HOL

Isabelle [11] is an interactive ML-based theorem prover. It was initially developed
by Lawrence Paulson at the University of Cambridge and is today maintained
there and at the TU Munich. Unlike many other interactive provers, Isabelle was
written to serve as a framework for various logics, so-called object-logics. Today,
mostly the object-logic for Higher-Order-Logic (HOL) and – on a smaller scale
– the one for Zermelo-Fraenkel set theory are in widespread use. Isabelle has a
meta-logic serving as a deductive framework for the embedded object-logics. This
meta-logic is itself a fragment of HOL solely consisting of the universal quantifier
and the implication. Isabelle features a powerful simplifier, and automated proof
strategies. For this paper, Isabelle/HOL was used, e.g. Isabelle in its instantiation
to HOL. In Isabelle/HOL automatic code generation is possible for constructive
parts of a formalization, like datatypes and inductive definitions (see below), but
also for constructive proofs.

A very generic parser enables application-specific definition of concrete syn-
tax (so called mixfix syntax) making Isabelle formulae and proofs almost iden-
tical to pen-and-paper formalizations. In general, Any Isabelle/HOL specific
syntax that we will be using throughout the paper is going to be explained when
we use it.

2.3 De Bruijn Indices

One known hard problem [12] in the formalization of language semantics is
the representation of binders, e.g. the operator λ in the λ-calculus that binds a
variable x over a term t in which x may occur. More precisely, the actual problem
lies in the complexity created by isomorphic terms that differ only in the choice
of variable names: α-conversion.

De Bruijn indices overcome the problem of concrete variable names, and thus
α-conversion, by simply eliminating them. A variable is replaced by a natural
number that represents the distance — in terms of nesting depth — of this
variable to its binder. Thereby terms contain only numbers, no variable; α-
conversion becomes obsolete. This is a considerable advantage as α-conversion
is a difficult problem both from a practical point of view and for mechanical
proofs. An example for illustrating the use of de Bruijn indices is given by the
following simple λ-term.

λx.λy.(λz. x z)y = Abs(Abs(Abs(V ar 2)$(V ar 0))(V ar 0))

Note that, different variables may be represented by the same number, e.g., z
and x both are V ar 0 . De Bruijn indices relieves one from having to deal with
α-conversion: for example both λx.x and its α-equivalent λy.y are represented by
Abs(V ar0). The disadvantage of de Bruijn indices is that substitution, normally
used for the definition of application, is difficult to construct. A term has to
be “lifted”, that is, his “variables” have to be increased by one, when it moves
into the scope of an abstraction in the process of substitution. We will see these
operations when we introduce our ςAsc-calculus in the next section.

4 F. Kammüller, H. Sudhof

3 A Theory of Aspects in Isabelle/HOL

3.1 Terms of the ςAsc Calculus
datatype dB = Var nat

| Obj (label ⇀ dB) type

| Call dB label

| Upd dB label dB

| Asp Label dB ("_ 〈 _ 〉")
The constructor Var builds-up a new term dB from a nat representing the de
Bruijn index of the variable. An object is recursively defined by a finite map from
label, the predefined types of “field names”, to arbitrary terms of type dB. The
second argument of type type to the dB-constructor Obj is the Object’s type.
We insert the type with an object in order to render the typing relation unique.
The cases Call and Update similarly represent, field selection and update of
an object’s field. The field constructor Asp enables the insertion of aspect labels
into object terms. These labels will not be assigned any semantics until the point
where we define weaving in Section 3.5. The annotation behind the constructor
in quotation marks defines the mixfix syntax: we can use the notation l〈t〉 as
abbreviation for Asp l t.

3.2 Lifting and Substitution

As de Bruijn indices discard the use of formal parameters, substitution has to be
performed by adapting the numbers representing variables when a term is moved
between different layers of the nested scopes of abstraction. This movement
occurs precisely when a variable has to be substituted by a term containing a free
variable inside the scope of an abstraction. Therefore the notion of substitution
is chained with the notion of lifting. We declare the following two constants
in Isabelle/HOL. We define two operators lift and subst using mixfix syntax
again to write t[s/n] to express that in a term t the variable represented by n
shall be replaced by s. Before defining the semantics of substitution we need to
define the lifting of a term. A lifting carries a parameter n representing the cut
between free and bound variable numbers in the term that shall be lifted. The
operation lift is defined by the following set of primitive recursive equations
describing the effect of lifting over the various cases of object terms.
liftVar: lift (Var i) k = (if i < k then Var i else Var (i + 1))

liftObj: lift (Obj f) k = (Obj (map (λ x. lift x (k + 1)) f))

liftCall: lift (Call a l) k = Call (lift a k) l

liftUpd: lift (Upd a l b) k = Upd (lift a k) l (lift b (k + 1))

A variable is only lifted when it is free, i.e. when its representing number is
greater or equal to the “cut” parameter. The “cut” parameter is increased in
the recursive call when an abstraction scope is entered. This is the case when
the lift function enters inside a method in an object, and when a field is updated
by a method. Note that we increase only on the right side of an update because
the left side will always be an object seen as a reference whereas the right side
is a method.

Based on the definition of lift, substitution can be defined as follows.

Compositionality of Aspect Weaving 5

subst_Var: Var i [s/k] =

if k < i then Var (i - 1) else if i = k then s else Var i

subst_Obj: Obj f [s/k] = Obj (map (λ x. x[(lift s 0)/(k+1)]) f)

subst_Call: Call a l [s/k] = Call (a [s/k]) l

subst_Upd: Upd a l b [s/k] = Upd (a [s/k]) l (b [lift s 0 / k+1])

The idea is that a term s is lifted if it is substituted inside an abstraction
scope, i.e., inside an object and at the right side of an update. The lifting is
always initiated with “cut” parameter 0 as initially the outermost free variable
when entering a scope. The decrementing in the equation for Var in cases of
free variables greater than the “cut” parameter is necessary to cancel out the
previous effects of lifting.

3.3 Evaluation of Terms

Given the Isabelle/HOL definition of substitution for ς-terms as t[s/n] meaning
substitute n by s in t using mixfix syntax, we define a small step operational
semantics by a relation →β using an inductive definition.

inductive →β

intros

beta: l ∈ dom f f =⇒ Call (Obj f) l →β the(f l)[(Obj f)/0]

upd : l ∈ dom f =⇒ Upd (Obj f T) l a →β Obj (f (l 7→ a) T)

sel : s →β t =⇒ Call s l →β Call t l

updL: s →β t =⇒ Upd s l u →β Upd t l u

updR: s →β t =⇒ Upd u l s →β Upd u l t

obj : J s →β t; l ∈ dom f K
=⇒ Obj (f (l 7→ s) T) →β Obj (f (l 7→ t) T)

asp : s →β t =⇒ l 〈 s 〉 →β l 〈 t 〉

The rules represent quite closely the original semantics of ς. The substitution
[(Obj f T)/0] in the rule beta replaces the self parameter for the outermost
variable in the object’s lth field f l. The operator the selects an α-element in
an option datatype when it is defined, i.e. unequal to None. There is no case for
labels because the semantics is attached to labels later by weaving.

3.4 Aspects

An aspect can be simply defined as a selection of pointcuts and an advice. Since
our model is in Higher Order Logic, where sets are isomorphic to predicates,
we can assume that our selection of pointcuts is a set of labels. The advice is
a ς-term not enclosed in an object, because an advice is applied to the sub-
expression of a ς-program that is marked by a label returning another ς-term as
a result. Hence, in Isabelle/HOL aspects can be simply defined as follows.

datatype aspect = Aspect (Label list) dB ("〈 _, _ 〉")

The first element is the pointcut set L and the second element the advice to be
applied to all points matching the pointcut description, i.e. being member of L.
The mixfix syntax at the righthandside enables to annotate an aspect as 〈L, a〉.

6 F. Kammüller, H. Sudhof

3.5 Weaving

Given a base program in the ς-calculus readily labelled with aspect labels and
given some aspects, the weaving function now only has to step through the term
while applying the aspect. We consider this approach to resemble static weaving,
but given the functional nature of our calculus, we consider the result to be
valid for dynamic approaches as well. Therefore we define a function “weave”
represented as ⇓ that takes a ς-program and an aspect and returns a ς-program.
The second operator weave option is an auxiliary function that is needed to
“map” the weaving function over the finite maps representing objects.

weave :: [dB, aspect] ⇒ dB ("⇓")
weave_option :: [dB option, aspect] ⇒ dB option ("⇓opt")

We define the weaving function for the simple case of applying one aspect to a
program. The general case is later derived by repeated application. The definition
of the simple case is given below in a mutual recursive definition defining the
semantics of weave and weave option by simple equations. In case of weaving
an aspect onto a variable Var n the advice has no effect. The case l〈t〉 is the
interesting one because now the ς-term for aspects, Asp, is finally equipped
with semantics. In case that the label is in the pointcut specified by the first
component of the aspect then the aspect matches. Consequently the advice part
of the aspect a is applied to the current term t. Otherwise the aspect has no
effect. The label is not eliminated during the weaving process to enable repeated
weaving.

primrec

(Var n) ⇓ 〈L, a〉 = Var n

l 〈 t 〉 ⇓ 〈L.a〉 = if l ∈ set(L) then l 〈 a[(t ⇓ 〈L, a〉)/0] 〉
else l 〈 t ⇓ 〈L, a〉 〉

The Isabelle/HOL projection set transforms a list (here of labels) into the set
of all elements contained in the list.

The next two equalities for Call and Upd simply define that the weave process
is to be passed through to the corresponding sub-terms.

(Call s l) ⇓ A = Call (s ⇓ A) l

(Upd s l t) ⇓ A = Upd (s ⇓ A) l (t ⇓ A)

The primitive recursive equations defining the semantics for Obj is now the
point where the recursion changes to the auxiliary operator weave option. The
auxiliary operator enables the pointwise definition of advice on the fields of the
object by lifting the weaving function over the λ to argument position. In the
defining equations for weave option (⇓opt) we see the benefit gained by using
the option type: we can explicitly use pattern matching to distinguish the case
for unused field labels (None) and actual object fields matching out the field
value with Some.

(Obj f T) ⇓ A = Obj (λ l. ((f l) ⇓opt A)) T

None ⇓opt A = None

(Some t) ⇓opt A = Some (t ⇓ A)

Compositionality of Aspect Weaving 7

4 Compositionality and Run-Time Weaving

An important question for aspects and their practical usability is the compo-
sitionality of weaving. In aspect parlance compositionality corresponds to the
possibility of run-time weaving. Figure 2 illustrates this question for AspectJ
graphically: when does this diagram commute? (index sc stands for source, bc
for bytecode, p for program, and ptc and adv for pointcut and advice.) In more

(psc, ptcsc, advsc)

〈comp,ptccomp,comp〉

��

weave sc // p′sc

comp

��
(pbc, ptcbc, advbc)

weave bc // p′bc

Fig. 2. do compile-time and run-time weaving commute?

foundational terms this questions represents that aspect weaving is respected by
compilation or evaluation of a program. Alternatively, we can say that aspect
weaving is compositional.

We have made a major step forward in tackling the compositionality question
by proving the following central lemma.

Lemma 1 (Distribution of weave over subst). Let a be a well-formed as-
pect, i.e. containing just one free variable, and s be a closed subterm (no free
variables) of program t. Then weaving distributes over substitution.

justoneFV(adv a) ∧ noFV s =⇒ t[s/n] ⇓ a = (t ⇓ a)[(s ⇓ a)/n]

Considering the main rule beta of the operational semantics in Section 3.3, i.e.
Call (Obj f) l →βthe(f l)[(Obj f)/0] we see the significance for compo-
sitionality. This substitution represents function application in the language;
weaving is based on function application as well. Hence, the lemma defines that
weaving distributes over function application which is the essence of composi-
tionality.

5 Conclusions

We have motivated the use of aspects for self-adapting systems and argued that a
sound basis is prerequisite for safely constructing such systems. After an overview
of our mechanized calculus ςAsc for aspects we have addressed compositionality.

Compositionality is a very central property for any kind of software system
because only compositionality enables to apply divide-and-conquer style of con-
struction which is at the basis of most algorithmic solutions. Compositionality is
often very hard to get by. Many properties of interest, like security for example,
are not compositional – hence, the importance of our small result. We showed
a central lemma that clears up the distributivity between function application,
i.e. substitution, and weaving, the main drivers of the operational semantics of

8 F. Kammüller, H. Sudhof

the ςAsc calculus. In general, we are aiming at using a mechanized framework
like Isabelle/HOL to build a sound core calculus with as much good proper-
ties as possible. We want to increase the understanding of the basic principles
of aspect-orientation through adding stepwise specific constructs and thereby
defining precise borderlines.

We have used de Bruijn indices in the formalization of our aspect calculus.
As a final thought of this paper we would like to contemplate their significance.
De Bruijn indices are often criticized because they differ from the intuitive no-
tion of names. Recent approaches on nominal techniques [13] offer alternative
techniques that are unfortunately not yet sufficiently developed for our appli-
cation. However, there are other very recent techniques, like locally-nameless,
that are based on de Bruijn indices and seemingly simpler to apply. We believe
that certain results are easier proved with de Bruijn indices. For example, the
compositionality result is quite easily derived with de Bruijn indices.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer, New York, 1996.
2. H. P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-

Holland, 1984.
3. L. Henrio and F. Kammüller. A Mechanized Model of the Theory of Ob-

jects. Accepted at 9th IFIP International Conference on Formal Methods for
Open Object-Based Distributed Systems, FMOODS 2007. Vol. 4468, LNCS,
Springer, 2007.

4. S. Jähnichen and F. Kammüller. Ascot: Formal, mechanical founda-
tion of aspect-oriented and collaboration-based languages. Web-page at
http://swt.cs.tu-berlin.de/∼flokam/ascot/index.html Project with
the German Research Foundation (DFG), 2006.

5. F. Kammüller. Exploring New OO-Paradigms in HOL: Aspects and Collabo-
rations. Theorem Proving for Higher Order Logics, TPHOLs’05, 2005.

6. F. Kammüller. Interactive Theorem Proving in Software Engineering. Habil-
itationsschrift (habilitation thesis), Technische Universität Berlin, 2006.

7. F. Kammüller and H. Sudhof. A Mechanized Framework for Aspects in
Isabelle/HOL. 2nd Informal ACM SIGPLAN Workshop on Mechanizing
Metatheory, Universität Freiburg, 2007.

8. F. Kammüller and H. Sudhof. Composing Safely — A Type System for As-
pects. 7th International Symposium on Software Composition, SC’08. Satellite
to ETAPS’08. Vol 4954 LNCS Springer, 2008.

9. F. Kammüller and M. Vösgen. Towards Type Safety of Aspect-Oriented Lan-
guages. In Foundations of Aspect-Oriented Languages, AOSD’06, 2006.

10. J. Ligatti, D. Walker, and S. Zdancewic. A type-theoretic interpretation of
pointcuts and advice. Science of Computer Programming: Special Issue on
Foundations of Aspect-Oriented Programming. Springer 2006.

11. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant
for Higher-Order Logic, Springer LNCS, 2283, 2002.

12. The POPLmark challenge. http://alliance.seas.upenn.edu/ ∼plclub/
cgi-bin/ poplmark. July 2007.

13. C. Urban et al. Nominal Methods Group. Project funded by the German
Research Foundation (DFG) within the Emmy-Noether Programme, 2006.

