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Decision Feedback Detection for MIMO-ISI Channels:
Design Using Fixed and Adaptive Constraints

Xuan Huan Nguyen and Jinho Choi

Abstract— In this correspondence, we investigate the decision feedback
detection for multiple-input multiple-output intersymbol interference
(MIMO-ISI) channels. Firstly, a novel constrained symbol-by-symbol
decision feedback detector (CS-DFD) is proposed, in which a constraint
on the feedback filter (FBF) provides robustness against error propaga-
tion and outperforms the conventional decision feedback detector (DFD).
However, we find that an error floor is observed at high signal-to-noise
ratios (SNRs) if a fixed constraint is used. To resolve this problem, we
then propose an iterative symbol-by-symbol decision feedback detector
(IS-DFD) in which an adaptive constraint is implicitly used to update the
DFD’s coefficients. Simulation results show that the error floor problem
is overcome and the performance becomes satisfactory at high SNRs
through iterations.

Index Terms— Multiple-input multiple-output intersymbol interference
(MIMO-ISI) channel, decision feedback detection, error propagation,
constrained optimization, iterative processing.

I. INTRODUCTION

The idea of using past decisions to mitigate intersymbol interfer-
ence (ISI) is successfully used in the decision feedback equalizer
(DFE) and the decision feedback detector (DFD) [1, ch. 10]. How-
ever, the decision errors from the equalizer/detector may result in
erroneous cancellation of the postcursor ISI through the feedback
filter (FBF) [2] and consequently degrade the overall performance.
There have been some ad hoc techniques proposed to deal with
the error propagation problem by using erasures [3], error decision
threshold [4] or a soft decision device [5]. In [6], some constraints
were used in deriving the feedforward filter (FFF) to monitor decision
error and ensure ISI cancellation.

In multiple-input multiple-output intersymbol interference (MIMO-
ISI) channels, a severe self-interference problem occurs due to ISI
as well as co-antenna interference (CAI). Thus, the error propagation
becomes more serious and its mitigation has to be considered when
designing the MIMO DFD.

The main contributions of this correspondence are as follows:
1) We propose a constrained symbol-by-symbol DFD (CS-DFD)

under the minimum mean square error (MMSE) criterion for MIMO-
ISI channels via directly solving a convex optimization program. This
proposed CS-DFD outperforms the conventional DFD at moderate
signal-to-noise ratios (SNRs). However, we find that a fixed constraint
(which was also used in [6]) cannot guarantee an optimal trade-off
between minimizing the mean square error (MSE) of the detected
symbols and mitigating the error propagation. Particularly at high
SNRs, where less decision errors occur, the fixed constraint becomes
problematic as it limits the capability of the DFD in minimizing the
MSE. As a consequence, an error floor eventually appears at high
SNRs. To resolve this problem, we consider an iterative DFD as
follows.

2) The proposed iterative symbol-by-symbol DFD (IS-DFD) iter-
atively updates its coefficients based on the severity of the decision
error. By finding the variance of the decision error which can be seen
as an adaptive constraint, an optimal MMSE DFD can be derived
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taking into account the error propagation. As a result, satisfactory
performance (without suffering the error floor problem at high
SNRs) is eventually obtained as the predicted signal-to-noise-plus-
interference ratio (SINR) converges to the true value through several
iterations. In addition, as opposed to the block-iterative approaches
[9], [10], the proposed IS-DFD performs symbol-by-symbol detection
which can avoid the requirement of a large amount of memory to
store previous decisions.

II. BACKGROUND

A. MIMO-ISI system model

Assume that there are Mt and Mr transmit and receive anten-
nas, respectively. Quadrature phase-shift keying (QPSK) is used
for signalling with the constellation set Q = {±1/

√
2 ± j/

√
2}.

Denote by bmt(n) ∈ Q the data symbol transmitted from the mtth
transmit antenna with 1 ≤ mt ≤ Mt. Assume that the data symbols
{bmt(n)} are equally likely (with mean zero and variance one).
Let b(n) = [b1(n), b2(n), ..., bMt(n)]T ∈ QMt×1 and y(n) =
[y1(n), y2(n), ..., yMr (n)]T ∈ CMr×1 denote the transmitted and the
received signal vectors, respectively, where n represents time index.
Note that QI×J and CI×J denote the set of all I×J matrices whose
entries belong to Q and C, respectively, where C is the set of complex
numbers. Denote by hmr,mt(p) the pth multipath complex coefficient
of the MIMO-ISI channel from the mtth transmit antenna to the
mrth receive antenna with 1 ≤ mr ≤ Mr . Assuming all channels
have finite impulse responses of the same length denoted by P and
letting [H(p)]mr,mt = hmr,mt(p), then a MIMO-ISI system model
is written as

y(n) =

P−1∑
p=0

H(p)b(n− p) + w(n) (1)

where H(p) ∈ CMr×Mt and w(n) = [w1(n), w2(n), ..., wMr (n)]T

is assumed to be a mean-zero Gaussian noise vector with covariance
matrix E[w(n)wH(n)] = σ2

wI. Defining

bn = [bT (n),bT (n− 1), ...,bT (n−N + 1)]T ∈ QNMt×1,

yn = [yT (n),yT (n− 1), ...,yT (n− L + 1)]T ∈ CLMr×1,

wn = [wT (n),wT (n− 1), ...,wT (n− L + 1)]T ∈ CLMr×1

where N = L + P − 1 and L denotes the length of the FFF, the
system model in (1) can then be rewritten as

yn = Hbn + wn. (2)

Here, H represents the channel filtering matrix of size [LMr×NMt]
given by

H =




H(0) · · · H(P − 1)
. . . · · · . . .

H(0) · · · H(P − 1)


 . (3)

B. MMSE DFD for a MIMO-ISI system

Consider a DFD (see Fig. 1) consisting of an FFF and an FBF
to equalize a MIMO-ISI channel. Both the FFF and the FBF have a
finite number of taps. To detect the transmitted signal with a delay
of (D − 1) symbols, we use the output of the DFD as follows:

d(n) = [d1(n), d2(n), ..., dMt(n)]T

=

L−1∑
u=0

GH(u)y(n− u)−
N−1∑
v=D

FH(v)b̂(n− v)

= GHyn − FH b̂n,2 (4)
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Fig. 1. Block diagram of decision feedback detector.

where the superscript (·)H denotes the Hermitian transpose and
b̂n,2 denotes the tentative hard-decision vector of bn,2 = [bT (n −
D),bT (n−D−1), ...,bT (n−N +1)]T ∈ Q(N−D)Mt×1. The FFF
and FBF weight matrices, G and F, respectively, are defined as

G = [GT (0),GT (1), ...,GT (L− 1)]T ∈ CLMr×Mt ,

F = [FT (D),FT (D + 1), ...,FT (N − 1)]T ∈ C(N−D)Mt×Mt

where G(u), u = 0, 1, ..., L− 1, is the (u + 1)th (Mr ×Mt) filter
matrix of the FFF, and F(v), v = D, D+1, ..., N−1, is the (v−D+
1)th (Mt×Mt) filter matrix of the FBF. As mentioned above, d(n)
can be considered as an estimate of b(n−D+1). Through the FBF,
the detected past signal vectors, {b̂(n−D), b̂(n−D−1), ..., b̂(n−
N + 1)}, are used to cancel the postcursor ISI components. Under
the MMSE criterion, G and F can be found so as to minimize the
MSE cost function given as

ψ(G,F) = E
[‖d(n)−b(n−D + 1)‖2] . (5)

Assuming the feedback decisions are correct1 and the channel is
perfectly known, the conventional solutions of FFF and FBF [8] are
obtained as

Gc = (H1H
H
1 + σ2

wI)−1HD, (6)

Fc = HH
2 Gc (7)

where H1 is the LMr × DMt submatrix of H obtained by taking
the first DMt columns, H2 is the LMr × (N − D)Mt submatrix
of H obtained by taking the last (N − D)Mt columns and HD is
obtained by taking the last Mt columns of H1.

III. CONSTRAINED SYMBOL-BY-SYMBOL DECISION FEEDBACK

DETECTION

Practically, we can have erroneous decisions in the DFD, i.e.,
b̂n,2 6= bn,2. This can increase the chance of introducing an error in
estimating the next symbol vector b(n−D +1). This is called error
propagation and it causes a sequence of errors in detecting future
symbols when the present decision is erroneous.

Assuming the FBF is conventionally given as F = HH
2 G, we will

optimize the FFF to mitigate the effect of error propagation. With
erroneous decisions, the MSE cost function in (5) can be rewritten
as

ψ(G) = E
[∥∥∥GHH1bn,1 + GHH2en,2 + GHwn

−b(n−D + 1)‖2] (8)

where

bn,1 = [bT (n),bT (n− 1), ...,bT (n−D + 1)]T ,

en,2 = bn,2 − b̂n,2.

We can see that the FBF coefficient matrix F = HH
2 G becomes

the weight on the error term such as GHH2en,2 in (8). However,

1This assumption leads to the fact that the MMSE DFD has no immunity
against the error propagation.

if perfect feedback is obtained (i.e., en,2 = 0), this error term is
annulled, and (8) becomes

ψ̃(G) = E

[∥∥∥GHH1bn,1 + GHwn − b(n−D + 1)
∥∥∥

2
]

.

Similar to [6] where a constraint is imposed on the FFF of the DFE to
avoid excessive noise enhancement, we impose a quadratic inequality
constraint on the FBF to directly restrict the impact of the error term
GHH2en,2. Assuming that the decision errors are uncorrelated at
different time instants and uncorrelated from different transmitters
and their mean-square values towards different transmitters are equal,
the constraint on the FBF can then be expressed as

tr
{
GHH2H

H
2 G

}
≤ γMt (9)

where tr {.} denotes the trace of a matrix and γ is the constraint
level (γ > 0). If decision errors occur frequently, the constraint
needs to be tight and thus γ should be close to zero. On the other
hand, a larger value of γ can be taken if less decision errors are
expected. It is difficult to choose the optimal γ which closely depends
on the operating SNR. However, from our simulation observation, a
reasonable choice of γ falls approximately in the range 0.5 < γ < 1
for moderate SNRs. Letting α = γMt, the constrained MIMO
MMSE-DFD problem can be written as

Gop = arg min
G

ψ̃(G) (10)

subject to tr
{
GHH2H

H
2 G

}
≤ α.

In [6], the author did not directly solve the optimization problem.
It is observed that (10) is a convex quadratic optimization program.
Using the Lagrangian multiplier method, we obtain

Gop = arg min
G

max
λ≥0

{
ψ̃(G) + λ

(
tr

{
GHH2H

H
2 G

}
− α

)}

= arg min
G

max
λ≥0

φ(G,λ) (11)

where

φ(G,λ) = tr
{
GHA(λ)G

}
− tr

{
GHHD

}

− tr
{
HH

DG
}

+ Mt − λα,

A(λ) = H1H
H
1 + λH2H

H
2 + σ2

wI

and λ is a Lagrange multiplier. Since GHA(λ)G is a positive
semidefinite matrix, the duality can be applied to (11) [7, ch. 5],
thus leading to the solution of λ as

λop = arg max
λ≥0

min
G

φ(G,λ)

= arg max
λ≥0

φ(Gm(λ),λ) (12)

where
Gm(λ) = arg min

G
φ(G, λ) = A−1(λ)HD. (13)

Once λop is found, the FFF solution is obtained by

Gop = Gm(λop).

In order to solve for λop, we look back at the convex quadratic
optimization problem in (10) and it can be observed that the FFF
solution can only be one of the two following options. The first option
is

Gop = arg min
G

ψ̃(G) = Gc, i.e., λop = 0

if Gc satisfies the constraint tr
{
GH

c H2H
H
2 Gc

} ≤ α. In the case
of this constraint not being satisfied, the solution becomes

Gop = Gm(λop)
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where λop is the solution of tr
{
GH

m(λop)H2H
H
2 Gm(λop)

}
= α.

To find out λop, we consider

f(λ) = tr
{
GH

m(λ)H2H
H
2 Gm(λ)

}

= tr
{
HH

DA−1(λ)H2H
H
2 A−1(λ)HD

}
.

Since A(λ) is a Hermitian matrix and its diagonal elements are
proportional to λ, f(λ) is a monotically decreasing function of λ.
When λ = λ0 = 0, the solution becomes a conventional DFD.
Generally we have f(λ0 = 0) ≥ α. If we have λ1 ≥ λ0 such that
f(λ1) ≤ α ≤ f(λ0) then we know λop must satisfy λ0 ≤ λop ≤
λ1. Thus, a well known golden section search (GSS) algorithm is
applicable to iteratively search for λop. From our observation, the
optimal λop falls between λ = 0 (i.e., the conventional DFD) and
λ = 1 (i.e., the FFF is the linear MMSE filter solution). As shown
in Fig. 2 (the simulation parameters are given in Section V-B), λop’s
obtained in the CS-DFD scheme for three values of γ = 0.5, 0.6
and 0.7 are far smaller than 1. The choice of λ1 = 1 is therefore
confirmed to be large enough for the GSS algorithm.

Fig. 2. The optimal λop obtained by the GSS algorithm in the CS-DFD
scheme with γ = 0.5, 0.6, and 0.7 and channel length P = 6.

IV. ITERATIVE SYMBOL-BY-SYMBOL DECISION FEEDBACK

DETECTION

In the CS-DFD approach, the value of the constraint parameter γ
is fixed. Thus, if γ is found to be good for low SNRs (more decision
errors), it would be unsatisfactory for higher SNRs (less decision
errors). In other words, the trade-off between the degree of freedom
(to minimize the MSE) and the degree of constraint (to mitigate
the error propagation) in solving the optimization problem would
not be optimally satisfied with a fixed constraint. Our design in this
section is inspired by how severe the decision error is. The constraint
parameter γ should adapt to the decision error rate and, therefore,
should generally be an increasing function of SNR. However, it is
difficult to find out the optimal γ which depends on the operating
SNR. Fortunately, instead of finding γ, we have an alternative way to
cope with the error propagation by incorporating the variance of the
decision error in the design of the DFD. To some extent, the variance
of the decision error plays a crucial role in the CS-DFD approach via
λ and this will be explained later in the section. Note that the variance
of the decision error is needed to determine the DFD coefficients but,

at the same time, the estimation of the variance of the decision error
is based on the DFD coefficients. We solve this “circle” problem
by employing an iterative scheme in which convergence is obtained
when the predicted variance of the decision error approaches the
true value. In this section, we use the notation diag(X) to denote a
diagonal matrix whose diagonal is the diagonal of matrix X, and use
diag(x) to denote a diagonal matrix whose diagonal is vector x.

Assume that the FBF is still conventionally obtained (i.e., F =
HH

2 G). Denoting by ei(n) = bi(n) − b̂i(n) the decision error of
symbol bi(n), i = 1, 2, ..., Mt, we make the following assumption

(AS1) : E[ei(n)e∗i′(n
′)] = σ2

ei
δ(n− n′)δ(i− i′)

where σ2
ei

is the variance of ei(n), δ(·) is the Kronecker delta, and
(·)∗ denotes complex conjugation. Denoting by Q = E[en,2e

H
n,2] the

autocorrelation matrix of decision errors and from (AS1), we have

Q = diag([qT
1 ,qT

2 , ...,qT
N−D]T )

where q1 = q2 = ... = qN−D = [σ2
e1 , σ2

e2 , ..., σ2
eMt

]T . Thus, the
solution of the FFF can be obtained by

G = arg min
G

ψ(G)

= (H1H
H
1 + H2QHH

2 + σ2
wI)−1HD. (14)

Note that if σ2
e1 = σ2

e2 = ... = σ2
eMt

= σ2
e , then Q = σ2

eI. In
this case, the solution in (14) is equivalent to the solution in (13)
with λ = σ2

e . If there are more decision errors, σ2
e (i.e., λ) should

be larger. Therefore, the variance of the decision error can be seen
as an adaptive constraint used in the CS-DFD, where we assume
that the error probabilities of symbols transmitted from different
antennas are the same (i.e., σ2

e1 = σ2
e2 = ... = σ2

eMt
). However,

this may not always be the case as channel characteristics from each
transmit antenna can be different. This turns out to be crucial in
designing the optimal DFD as our simulations (not included here
due to the space limitation) have shown that the variances {σ2

ei
}

are significantly different when the channel impulse responses are
randomly generated. Thus, instead of using a single constraint as
in the CS-DFD approach, we employ the solution in (14) with the
estimate of the autocorrelation matrix of decision errors Q.

Now, we attempt to find σ2
ei

. Note that

σ2
ei

= E[ei(n)e∗i (n)]

= E[(bi(n)− b̂i(n))(bi(n)− b̂i(n))∗]

= 2(1− E[bi(n)b̂∗i (n)]) (15)

where the correlation E[bi(n)b̂∗i (n)] can be either theoretically
approximated as E[bi(n)b̂∗i (n)] = 1−Ps,i (for QPSK signalling) [9]
where Ps,i is the error probability of symbol bi(n) or numerically
found using the input-decision correlation method described in [10].
The output of the DFD can now be rewritten as

d(n) = GHHDb(n−D + 1) + GHH1,Dbn,D

+ GHH2en,2 + GHwn

= Db(n−D + 1) + v(n) (16)

where H1,D is a submatrix of H1 obtained by deleting the last Mt

columns, bn,D is the subvector of bn,1 obtained by deleting the last
Mt elements, D = diag(GHHD), and

v(n) = (GHHD −D)b(n−D + 1) + GHH1,Dbn,D

+ GHH2en,2 + GHwn. (17)
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Letting

Rv = E[v(n)vH(n)]

= GH(H1,DHH
1,D + H2QHH

2 + σ2
wI)G

+ (GHHD −D)(GHHD −D)H

= GHHD −GHHDDH −DHH
DG + DDH ,

the SINR of the detector output, di(n), becomes

SINRi =
(gH

i hD,i)
2

[Rv]ii
(18)

where gi and hD,i are the ith columns of G and HD , respectively,
and [Rv]ij denotes the (i, j)th element of matrix Rv . Since [Rv]ii =
gH

i hD,i − (gH
i hD,i)

2, we can further simplify (18) as

SINRi =
gH

i hD,i

1− gH
i hD,i

. (19)

As in [9], in order to find out Ps,i, the noise-plus-interference term
v(n) is assumed to be Gaussian. From this, we have [1, p. 269]

Ps,i = 1−
(
1−Q(

√
SINRi)

)2

(20)

where Q(x) = 1√
2π

∫∞
x

e−t2/2dt.
We can now apply an iterative algorithm for estimating a set of

error variances {σ2
ei
} and obtain the coefficients G, as follows (we

use the subscript (l) to denote the lth iteration):

1. For the first iteration:
• Set initial σ2

ei
= 1 for all i = 1, 2, ..., Mt, and therefore, Q(1) =

I. Thus, for the first iteration, the FFF solution G(1) is a linear
MMSE equalizer.

• SINRi,(1) and Ps,i,(1) are now available from (19) and (20),
respectively.

2. For the lth iteration (l ≥ 2):
• Update σ2

ei,(l) = 2(1− E[bi(n)b̂∗i (n)](l−1)).
• G(l), SINRi,(l) and Ps,i,(l) are available from (14), (19), and

(20), respectively.

Initially the variance of the decision error σ2
ei

is set to 1, thus the
resultant FFF solution is the linear MMSE solution. The value of σ2

ei

will then decrease and be closer to its true value after each iteration.
Since SINRi in (19) is a monotonically decreasing function of σ2

ei
, it

will increase as σ2
ei

decreases. The convergence is obtained when the
predicted SINRi approaches the true value. Note that the iterative
algorithm is used only to obtain the optimal coefficients of the DFD,
and the DFD still works on online signal processing basis (symbol-
by-symbol detection). This avoids the significant amount of memory
required to store the decisions from previous iteration as is usually
the case for the block-iterative approaches (see [9], [10]).

V. PERFORMANCE EVALUATION

A. Complexity performance: CS-DFD versus IS-DFD

The complexity of the DFD includes the pre-processing complexity
of the coefficients G, F and the on-line processing complexity for
filtering/recovering the signal symbols. As the latter is the same
for both the CS-DFD and IS-DFD, we focus on the pre-processing
complexity only. The CS-DFD requires one update of G, F and f(λ)
while the IS-DFD requires the update of G, F, and SINR for each it-
eration. The computation of G and F requires [·]−1

LMr
+MtL

2M2
r and

L(N−D)MrM
2
t complex multiplications (CMs), respectively, where

[·]−1
LMr

denotes the complexity of the inversion of an LMr × LMr

matrix. The numbers of CMs required for the computation of f(λ)
and SINR are [·]−1

LMr
+(Mt+1)L2M2

r and LMrMt, respectively. So,
assuming N1 and N2 iterations are required for the GSS algorithm

Fig. 3. BER performance comparison of the proposed decision feedbacks
detectors (DFDs) with conventional DFD, DFD in [6] and ideal feedback DFD
when channel length P = 6.
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CS−DFD with γ = 0.6
CS−DFD with γ = 0.9
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DFD proposed in [6]
DFD with id. feedback

Fig. 4. BER performance comparison of the proposed decision feedbacks
detectors (DFDs) with conventional DFD, DFD in [6] and ideal feedback DFD
when channel length P = 12.

and the IS-DFD, respectively, a complexity comparison for the CS-
DFD and IS-DFD is summarized in Table I.

If we approximate [·]−1
LMr

≈ L3M3
r and let L = D = P = 6,

Mt = Mr = 4, N1 = 5 (according to our simulation, the GSS
algorithm generally converges after 5 iterations), it is seen from Table
I that the IS-DFD requires more computation than the CS-DFD does.

B. Numerical simulation

In our simulation, we apply the proposed DFD designs to a MIMO-
ISI system employing QPSK modulation. The channel impulse re-
sponse with a length of P = 6 and 12 has been randomly generated.
We assume that hmr,mt(p) is a complex zero-mean Gaussian random
variable with variance one and spatially and temporally uncorrelated.
The SNR is defined as

SNR =

Mt−1∑
mt=0

P−1∑
p=0

E
[|hmr,mt(p)|2]

σ2
w

.
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TABLE I
COMPARISON OF PRE-PROCESSING COMPLEXITY: CS-DFD VERSUS IS-DFD

Algorithm Complex multiplications N2 = 7 N2 = 10 N2 = 15

CS-DFD (N1 + 1)[·]−1
LMr

+ (Mt + N1Mt + N1)L2M2
r + L(N −D)MrM2

t 101568 101568 101568

IS-DFD (N2)[·]−1
LMr

+ N2MtL2M2
r + N2L(N −D)MrM2

t + N2LMrMt 127008 181440 272160

Let L = D = 6 and Mt = Mr = 4 be used. For the CS-DFD, two
fixed constraint values γ = 0.6 and 0.9 are used. For the IS-DFD,
the set of coefficients {G(l), F(l)} obtained after the lth iteration is
used for the DFD, thus the resulting bit error rate (BER) behaviour
after each iteration can be observed. BERs are obtained using 200×
(3 × SNRdB + 1) simulation runs where SNRdB is the value of
SNR in dB. Note that a new channel impulse response and a new set
of 4000 transmitted QPSK symbols are regenerated after each run.

Figures 3 and 4 shows the BER performances of the proposed
detection schemes with channel length of P = 6 and 12, respectively.
The DFD with ideal feedback and the DFD using the method
proposed by Tian in [6] are also shown for comparison. We applied
Tian’s method, where both equality and quadratic inequality con-
straints are imposed on the FFF to preserve the signal energy and to
avoid excessive noise enhancement, to the same MIMO-ISI channel.

Figure 3 shows that the CS-DFD scheme outperforms the conven-
tional DFD at a range of moderate SNRs (i.e., 8-24dB). For example,
a difference of 3dB between the conventional DFD and the CS-DFD
(with γ = 0.9) is found at the BER of 10−3. As we impose constraint
on the FBF which directly restricts the weight of error term in the
feedback, our proposed CS-DFD is slightly better compared to Tian’s
method. However, when the simulation is carried out at high SNRs
(≥ 24dB), the BER error floor is observed for both the CS-DFD and
Tian’s method as the fixed constraints are no longer efficient. In other
words, an effective constraint at a moderate SNR can be an improper
constraint at a high SNR. In this case, the IS-DFD scheme must be
chosen as it implicitly adapts to the severity of the decision errors as
shown by the converged BER performance (at the 7th iteration).

It is worth noting that the proposed schemes perform better with
larger channel length. The assumptions made to (9) in the CS-DFD
scheme are more well-justified with larger P . The performance of
iterative DFD in the IS-DFD scheme is less dependant on the par-
ticular channel realization as the predicted SINR can better converge
to the true value when the number of taps of the FFF and FBF filter
is large (i.e., large P ). This is shown in Fig. 4 that the performance
of the proposed schemes with P = 12 is closer to the ideal-feedback
performance when comparing to the case P = 6 in Fig. 3.

Figure 5 shows the BER performance of the IS-DFD scheme
after each iteration. At high SNRs, the performance of the IS-DFD
scheme is satisfactory (no error floor). Fig. 6 further illustrates the
convergence behaviour through the average SINR from the output
of the IS-DFD scheme with different SNRs. This average SINR
is obtained as (1/Mt)E

[∑Mt
i=1 SINRi

]
. The expectation here is

replaced by the average value when running a number of realizations.
From Fig. 6, we also observe that convergence is obtained after the
7th iteration.

VI. CONCLUSION

We have proposed novel symbol-by-symbol MMSE DFD designs
for MIMO-ISI channels. By solving a convex optimization program,
the CS-DFD was introduced with robustness against error propagation
at moderate SNRs, which was verified by the superior BER perfor-
mance compared to the conventional DFD. However, to resolve the
error floor problem at high SNRs, from which the CS-DFD suffers,
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Fig. 5. Convergence behaviour of the iterative symbol-by-symbol DFD (IS-
DFD) with channel length P = 6.

Fig. 6. Average output SINR (with different SNRs) in the IS-DFD approach
with channel length P = 6.

we proposed the IS-DFD where its coefficients were iteratively
updated by considering the severity of the decision error. Simulation
showed that the IS-DFD provides a better BER performance at an
expense of higher computational load required for iterations.
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