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PLENARY PANEL: MATHEMATICS IN DIFFERENT SETTINGS     
Jeff Evans 

Middlesex University, UK 
 
When we think about the title “Mathematics in different settings”, a number of 
questions arise. For example: 

• How many mathematics are there – one or many? Is there a mathematics that 
is “prior to”, or independent of, any setting? 

• What (who) is it that makes settings “different”? And how does this relate to 
social differences among people? 

• What is an appropriate typology of different settings – for research or for 
curriculum design purposes? Relatedly, we might ask: who decides what is 
“important”? 

• What is the nature of relations among policy arrangements, research and 
educational institutional settings? 

• How are different settings represented in mathematics teaching and 
assessment?   

• What is the relationship of mathematics education researchers to any setting? 
This plenary panel will explore a range of these questions. 
MATHEMATICS: ONE OR MANY? 
We can try to answer these questions using several principles and illustrations. First, 
we acknowledge that our understanding of “mathematics” depends on the historical 
and cultural context. Thus, mathematics has changed substantially since the end of 
World War II, for example because of the availability of new technologies.  And in 
mathematics education, we have become familiar with the ideas that the different 
mathematics done in different cultural settings may exhibit radical differences in 
appearance. For example, it has been suggested that a mathematics based in a 
language, such as Maori, which is different to languages such as Portuguese or 
English may be understood as a different mathematics (Barton, 2008). 
In response to this, on the one hand, it is argued that despite the differences in 
appearance, “street mathematics” and “school mathematics”, for example, still share 
universal underlying principles (Nunes, Schliemann & Carraher, 1993; Noss, Hoyles, 
Kent & Bakker, 2010). On the other hand, some in the mathematics education 
community have taken on board ideas from social theory that different (in some 
sense) versions of mathematics are created in different sites through different social 
practices (e.g. Lave, 1988; Walkerdine, 1988). The differences in position among 
different authors, concerning the degree of construction versus representation (of 
“reality”) that one attributes to (different) mathematics, are important, and this debate 
will go on.   
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Further examples come from the types of mathematical / statistical modelling 
routinely done in industrial (e.g. quality control) and in commercial (e.g. risk 
assessment) settings, , which appear to be undertaken in very different ways from the 
ways that mathematics is produced in universities. This raises questions about seeing 
various types of mathematics as research mathematics which is then simply 
“transferred” to (or transformed) in applied and educational settings.  
What makes settings “different”?
Thus, if we take the view that there are many different mathematics – or that they are 
based in many different settings –the question moves on to how they are different. 
One answer often given is simply to name the different settings in a commonsense 
way, but this does not allow us to analyse what may be key similarities and 
differences among settings. Other answers emphasise that the different settings are 
characterised by different types of situated cognition or situated learning (Lave & 
Wenger, 1991; Watson & Winbourne, 2008), or are  constituted in different activities 
(e.g. Williams & Wake, 2007; Jaworski & Potari, 2009), or by different social 
practices in different discursive contexts which produce different meanings (e.g. 
Morgan, 2009; Evans, 2000; Hall, 1992). Or that the different settings are lived in by 
different people. Here the awareness of social differences can lead to raising 
questions of social justice (e.g. Burton, 2003). One aspect of this is the structured 
differences in the distribution of mathematics knowledge, which has been argued as 
being reproduced through differentiation within the educational system, in which 
mathematics plays a key role (Bernstein, 1990). 
A TYPOLOGY OF SETTINGS: FIELDS OF ACTIVITY  
Bourdieu’s (1998) concept of fields of activity is useful in delineating a first list of 
settings that we wish to consider in the Plenary Panel. He includes: 

• the Political and the Bureaucratic field: policy decisions and their 
implementation 

• the Scholastic field: research 
• the Cultural field: including education [“symbolic control”] 
• the Economic field: production    

And in the intersection of these, we could consider:  

• Civil society: citizenship.  
Each of these settings can provide the context for one or more different mathematics. 
Thus the economic field of production and distribution would provide the basis for 
several mathematics, including “workplace mathematics”, “financial mathematics”, 
and some “street mathematics”. Civil society would provide the context for (some) 
“street mathematics”, “everyday mathematics”, and “mathematics for citizenship”.  
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Research, institutional and policy settings 
At the same time, there are complex relations across fields – policy, educational 
institutions, research, and production. These relations involve the exercise of power, 
and concern the control of resources and the marshalling of these to promote certain 
outcomes, e.g. the way that certain mathematics is legitimised for educational 
purposes. For one early study of different stakeholders’ influence in national 
curriculum development, see Ernest (1991) – but researchers in every country can 
contribute accounts which combine elements of particularity and generality relevant 
to policy formulation (Noyes, in press). For example, much of the curriculum taught 
in classrooms depends on the relationship at a given time between policy and 
research settings, in mathematics education, and also in mathematics (Lerman & 
Tsatsaroni, 2009; Adler & Huillet, 2008; Young, 2006; Bernstein, 1990).   
REPRESENTATION OF DIFFERENT SETTINGS IN SCHOOL 
MATHEMATICS TEACHING  
Returning to the mathematics classroom, much has been written in recent years about 
the desirability of attempting to represent different settings in mathematics teaching – 
to provide motivation for students, “authenticity”, preparation for the world of work, 
and so on. A number of problems have also been outlined, and the differential 
consequences for students from different social classes outlined (e.g. Cooper & 
Dunne, 2000; Forman & Steen, 2000). 
These questions point to the problem of “harnessing” outside settings for use in the 
mathematics classroom – as illustration, motivator, or as a context for drawing out 
and generalising the reasoning skills of a competent adult (e.g. Schliemann, 1995) – 
and also to the perennially perplexing problem of “learning transfer” (e.g. Williams 
& Wake, 2007; Lobato, 2009; Evans, 2000). These issues will be taken up by several 
of the speakers. 
ROLE OF THE MATHEMATICS EDUCATION RESEARCHER  
There is clearly scope for a range of positions for the mathematics education 
researcher to take vis-a-vis the setting. These might include the following:  

• objective reporter of what is “really” going on  
• producer of ‘accounts’ from those engaged in the activities of the setting 
• advocate for social or educational change 
• activist, working alongside those engaged in trying to bring about changes  

These latter roles are generally based on ideas of social justice. Of course we must 
distinguish a researcher’s ideological self-positioning from the contradictory 
positionings that may arise within the research and teaching practices that the 
individual may be involved in.  
We expect to learn more about different possible roles, and about the way that they 
are taken up, in the National Presentation at PME-34 of Brazilian research / action 
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with disadvantaged adults. 
Organisation of the Presentation 
The introduction above suggests a number of topics for discussion in this Plenary 
Panel:   

(1) Mathematics in school, college, university, teacher development settings  
(1a) Representation of different “outside” settings in mathematics teaching  
(2) Mathematics in civil society, everyday life, citizenship   
(3) Mathematics in workplaces 
(4) Application of school or college mathematics learning to out-of-school 

settings 
(5) Social difference, mathematics and social justice  
(6) Complex relations among educational institutions, research, policy  

The four participants will together address these issues in the following ways.  
Silvia Alatorre considers mathematics in several settings – school, everyday life, 
citizenship and teacher development – and the challenges for social justice in each, in 
the context of 21st century Mexico, where issues of social inequality are particularly 
evident. She emphasises teacher development as one of the necessary ways to 
challenge the “vicious circles” that she experiences currently in the settings with 
which she is familiar.  
Henk van der Kooij reminds us of three commonly-accepted goals for (mathematics) 
education: to prepare for citizenship, for work and for further learning. He argues that 
there is only one mathematics – but with several approaches to it, and different goals 
for learning. He thereby distinguishes between mathematics for general education in 
school/college settings, and mathematics for vocational education and training (VET) 
in work settings. Henk’s emphasis on the idea of situated abstraction raises the 
question of how we can use insights from research to construct different pathways to 
different curricular goals – in a way that might be able to avoid the traditional 
hierarchical orderings between different types of school or college mathematics. 
Despina Potari considers in particular University teaching and workplace settings. 
She presents one vignette from each setting, and uses activity theory to focus on the 
way that the tools mediate the action of “making connections”, within and between 
such settings. The analysis of the two cases indicates that in both settings there is a 
network of connections between the tools that frame the invariant mathematical 
objects which are situated in the actual practice of the two communities.  
Andy Noyes describes trends in school mathematics in contemporary England, and 
considers whether future settings relevant for mathematics learned by today’s 
students can be the basis for the curriculum. He explores the value of ideas of general 
education, citizenship, and critical pedagogies, as a basis for an education in 
mathematics that might be socially empowering. He counter-poses the idea of using 
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the “immediate lived realities” of students as the key setting for mathematics 
education, on the basis that, for these students, the challenges of citizenship start now. 
Inevitably the contribution of each colleague is grounded in a consideration of goals 
for mathematics education, and for education generally. It will be clear that each of 
these colleagues is writing from her/his own national setting, but is aiming to propose 
to us ideas that will stimulate thinking about the settings that all of us inhabit and 
work in. 
In all these contributions, we can see arguments for the importance of being clear 
about what is the setting / context of each episode of activity described. It is not that 
mathematical activities in different settings are “just different”. We must 
acknowledge and describe differences in mathematics in different contexts, as they 
are structured and placed in hierarchies, based on relations of power, in ways that 
tend to be reproduced and amplified, as Silvia illustrates, by educational institutions. 
The challenge is how we can avoid reproducing such dichotomies or hierarchies that 
function to privilege one “type of mathematics” over another – usually the academic 
or the school-based, over the practical / vocational. One way is for researchers to aim 
to uncover elements in each setting that are usually unacknowledged, and which are 
necessary and efficient for the successful completion of the activity at hand. For 
example, Despina points out that “the elaborated formula used by the technician is a 
contextual transformation of a common mathematical formula” for the resistance – 
which presumably has advantages such as efficiency of use, in the setting in which 
the technician works. And Silvia calls for an alternative social model which, rather 
than considering someone as an underachiever in terms of a deficit in dominant (e.g. 
school mathematical) practices, instead accepts social difference and multiple 
practices, and seeks to represent and to build upon informal numeracy practices and 
social “funds of knowledge”. 
Thus, Henk’s paper tries to balance policy trends and (mathematics education) 
research findings, and to propose that there is sufficient common ground between the 
two sets of interests to consider the needs of two different types of mathematics 
education (curriculum) – that is, for different mathematics to be offered to 
“academic” and “vocational settings”, but without either being seen as “more” or 
“less”. Andy, in the current relative absence of similar opportunities in his national 
setting, aims to develop the potentials in the ideas of general education and 
citizenship to construct settings where mathematics education might be “reset”. 
Working in ways such as these, the mathematics education community might be able 
to exploit ideas discussed here, such as situated abstraction – based on analyses of 
“practical” (e.g. workplace) settings – so as to be able to construct discrete 
programmes of study that serve different educational goals, while valuing the 
different learners and the different settings in which they live and work. 
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WHAT IS THE RELEVANCE OF MATHEMATICS  
IN ISSUES OF SOCIAL JUSTICE? 

Silvia Alatorre  
National Pedagogical University, Mexico City 

 
Four possible settings are considered for a possible answer to the question at hand: 
school, everyday life, citizenship, and teacher development. Also considered is the 
vulnerability of different groups in these different settings. 
When we seek to comprehend a complex system of many interrelated factors, we 
must necessarily choose those factors (and their interconnections) that we consider at 
the very heart of the whole. Such is the case when we try to answer the question 
posed in the title. For that, I will consider four interrelated settings where 
mathematics plays a crucial role: school, everyday life, citizenship, and teacher 
development.  
In trying to understand the maze of interrelated vicious circles that these four settings 
produce, my starting point is of course the situation in Mexico, where I come from. 
Like in many other non-first-world countries high levels of inequity prevail; in 
education, for instance, two indicators may give a hint about this:  

• Of people aged over 15, 10% never attended school, 19% have only completed 
6 years of schooling, and only 11% have more than 12 years of schooling 
(INEGI, 2005);  

• Private schools are generally better off than public schools, but they only serve 
the more privileged 8% of students (ibid). For instance, recently published 
research about the mathematics knowledge of the university students found 
that 24% of those who had previously attended only private schools had marks 
above M+SD (i.e. more than 1 standard deviation above the mean), while that 
ratio was 10% among those who had previously attended only public schools 
(González, 2009). 

First setting: school 
Although school is envisioned by many (particularly politicians) as the social 
equalizer par excellence, it can become the basis of a vicious circle where social 
injustice can progressively be amplified. In school children who belong to 
underprivileged milieux are usually dragged into a chain of increasing disadvantage. 
Deprived conditions – such as the physical setting of the school, overcrowded 
classrooms, unfavourable health, nutritional and emotional conditions, and, not least, 
teachers with an inadequate training – lead to deprived learning, such as insufficient 
comprehension of concepts and methods, misconceptions, inability to apply the 
knowledge in everyday situations, etc. 
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One manifestation of deprived learning can be seen in a phenomenon that we have 
called “school-engendered errors” or SEE: errors that are made more often as the 
subjects’ schooling increases, at least within a certain range. For instance, in a survey 
conducted in Mexico City with adults in the street (Alatorre et al., 2002), subjects 
were given three measures of shelving (1.5m, 1.30m, 1.465m) and were asked which 
shelf was longer. The two most frequent errors are what Stacey & Steinle call the “L” 
and the “S” mistakes (see e.g. Stacey, 2005), which are incorrect ideas about how the 
string of decimals should be (“long” or “short”) to make a decimal number larger. 
The “L” mistake generally originates in reading the decimal part as an integer (thus 
saying that 1.465 is the largest and 1.5 the smallest), and in the sample it was made 
more frequently by subjects with low levels of schooling. The “S” mistake may 
originate in thinking that the longer the string, the smaller the fraction it refers to (1.5 
is the largest because it is in tenths, whereas 1.465 is the smallest because it is in 
thousandths), and in the sample the higher the subjects’ schooling (up to high 
school), the more often they made it. The “S” mistake seems to be either promoted by 
or at least not effectively corrected by the school system. Such school-engendered 
errors are also more probable within socioeconomically disadvantaged milieux. 
Second setting: everyday life  
Of course, school is not the only setting in which mathematics learning takes place, 
and everyday life is repeatedly a source of more grounded knowledge. Often, it is 
evident that schooling is neither a necessary condition nor a sufficient one for the 
ability to think mathematically, or to apply mathematical tools correctly. This was 
seen, for example, among adults to whom we posed problems of proportional 
reasoning (Alatorre & Figueras, 2005): Illiterate people usually gave correct and 
informal answers to the problems with which they were more familiar, and the more 
schooled subjects often gave incorrect answers, even when responding about familiar 
contexts.  
Everyday life is both a source of mathematical knowledge and a field where the 
mathematical knowledge is applied. Regardless of how and where we learn it, we 
must be able to know how much change is due from a $200 (200 peso) banknote after 
a purchase of $115.20, to predict how much we will pay in a purchase of 76 items 
worth $12.30 each, to figure out the amount of fabric needed for a tablecloth, to 
calculate the price of a travel ticket sold by a machine, to understand that a bargain of 
2 for $279.90 instead of the regular price of $126.40 is no bargain at all, to know that 
a 20% discount calculated after a 50% discount is not a 70% discount, to comprehend 
how much is being charged in the electricity, water or phone bill, to foresee how 
much we will be paying for credit, etc. 
Regardless of how and where we learn it, yes, but the truth is that these important 
pieces of knowledge are held all the more often by people who had at least some 
(good) schooling. Everyday life can be part of a vicious circle where less favoured 
mathematical enculturation triggers unfavourable conditions for everyday life and in 
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turn is triggered by them (Bishop, 1991). 
In Mexico (as in many other countries) there are groups of people who are especially 
vulnerable to this vicious circle: indigenous people. Their difficulties include the 
language, the fact that both the educational system and the “modern” life ignore their 
traditional culture and the mathematics imbedded in it, the divorce between the 
traditional measuring units and the metric system, etc. The understanding of this 
phenomenon lies within the field of ethnomathematics (see e.g. D’Ambrosio, 1985), 
and one of its components is the linguistic conditions in which learning and life take 
place. A framework for this has been proposed by Barwell (2005), but it does not 
include a situation that has been increasingly common in Mexico: indigenous people 
migrate looking for work to the United States, where they are treated as “Hispanic”, 
thus fostering a double or triple alienation (Bengoechea, 2010). 
Mathematics in real life can vary between being a relatively theoretical exercise to 
being a material necessity for survival (Walkerdine, 1990). Consider for instance 
these situations concerning an adult buying cheese: (a) she chooses the best quality 
regardless of the price; (b) she compares the different prices and presentations and 
chooses the best value; (c) she chooses the cheapest package; (d) she offers a couple 
of small coins and takes whatever amount of cheese she is given. Only in situations 
(b) and (c) is there actually some maths involved; buyer (a) does not need the 
mathematics although she could probably picture herself in situations (b) or (c); and 
for (d) the amount of cheese received will be insufficient anyway (she is even beyond 
using mathematics as a “material necessity for survival”). 
The vicious circle of daily life as an amplifier rather than a buffer for social 
differences need not be so. It has an ideological foundation; schooled numeracy has a 
much higher status than home or street practices, as Walkerdine (1990) and Baker & 
Street (2000) have pointed out. The latter have argued that instead of considering that 
somebody is an underachiever in terms of being deficient in dominant practices, there 
could be an alternative social model accepting social notions of difference and 
multiple practices and seeking to represent and build upon informal numeracy 
practices and “funds of knowledge”. 
Third setting: citizenship 
The setting of daily life is highly interrelated with that of citizenship. More and more 
our ability to grasp the issues relevant to our participation in society and to have a 
bearing on them depends on our ability to read, process and interact with information 
and with gadgets that are mathematical in their origin and/or in their presentation.  
Globalisation has done this for us: almost everybody in the world needs to handle 
information that has mathematical form and/or content. Almost everybody needs to 
be able to decipher a graph in the newspaper without relying on the journalist for its 
interpretation, to critically participate in major civic decisions such as the changing of 
fuel for ecologically safe energy sources, to understand the rules for electing 
representatives, to participate in discussions about the distribution of the national 
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budget, to relate “big” numbers associated to the national  affairs with their “smaller 
scale” regional or micro-regional counterparts, to understand the effects of the rise 
and fall of interest rates, to comprehend that an average income does not mean that 
everybody receives it, and so on. The numeracy issues related to citizenship are 
numerous.  
The fact that this is also a vicious circle is not surprising but needs to be said: people 
with reduced opportunities for mathematical enculturation, either from school or from 
everyday life, also are deprived of opportunities to participate in the possible change, 
through active citizenship, of precisely those conditions. Of course people who are 
able to handle information that has mathematical form and/or content are not 
protected against social injustice, but certainly those who are not able to do so are 
even less protected. 
Fourth setting: Teacher development 
I would finally like to turn to the fourth setting, which includes another vulnerable 
group: schoolteachers, particularly those at the elementary level. This group is 
positioned at a turning point in the educational cycle. In Mexico, teachers are trained 
in special schools called Escuelas Normales, which they attend after high school. The 
curriculum for the Escuela Normal does not include courses in mathematics (nor, for 
that matter, in Spanish or history or biology), except for one or two courses in the 
teaching of the subject matter. Thus, the future teacher does not have the opportunity 
to reconceptualise whatever misconceptions or incomplete learning s/he starts with, 
and from there the problems can only grow. Again, the cumulative effects are greater 
and produced more quickly in underprivileged surroundings, those where the 
Escuelas Normales receive students with less adequate knowledge of the content 
matter, and have fewer resources (human, economic, etc.) to make up the 
deficiencies.  
In recent years, some members of this community have proposed that the 
Mathematical Content Knowledge (MCK) proposed by Shulman (1986) may not be 
that important after all, and I agree that if one is thinking of a second-grade teacher 
there may be many pieces of knowledge (whether related to the teaching of 
mathematics or not) that are far more important than, say, the density of rational 
numbers. I also agree with Bishop (1991) that teachers, as the mathematical 
enculturators, should be selected according to criteria regarding their ability to 
communicate and their commitment to the mathematical enculturation process, and 
that the principles of their education should contemplate an understanding of 
Mathematics as a cultural phenomenon, its values, and its technical level, as well as 
the development of a strong metaconcept of the Mathematical enculturation process 
generally. 
Nevertheless, I would argue that elementary teachers need to master the MCK of the 
mathematics that they are supposed to teach; for instance, speaking of rational 
numbers, no teacher should think that the sequence 0.60, 0.70, 0.80, 0.90 is followed 
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by 0.100. In Mexico, some elementary teachers do. Of course, such gaps in crucial 
MCK may well be evident in other countries, too. 
Thus, it can be said that the vicious circle of teacher development is the cornerstone 
of the whole structure of problems. In Mexico, the social conditions for breaking this 
vicious circle involve many difficulties, going from the scarcity of well-qualified 
teacher educators to the corruption of the teachers’ union. 
OVERVIEW 
In a very simplified diagram, all these complex interactions may look like this, where 
the vulnerability of underprivileged people is represented by a flash icon: 

 
Evidently, breaking into these vicious circles is not an easy job. It involves a 
multiplicity of actors and a social decision to consider which entry point is more 
likely to lead to worthwhile and lasting social change. Maybe we should start with 
teacher development and include in it an effort towards what Andy Noyes calls in his 
contribution to this panel “Mathematics for social empowerment”?  
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MATHEMATICS AT WORK 
Henk van der Kooij 

Freudenthal Institute, Utrecht University, The Netherlands 
 

Official documents in many countries state that the goals of mathematics education 
are threefold: to prepare for citizenship, for work and for further learning. But in 
many educational practices, the main emphasis is still on procedural fluency, 
especially in algebra, needed for further learning. This paper describes how 
mathematics for and in work differs from mathematics learned at school and tries to 
seek for a better balanced mathematics curriculum in secondary education. 
ONE MATHEMATICS, DIFFERENT SETTINGS 
There are many research reports, based on empirical studies and other ones on more 
theoretical considerations, that discuss how mathematics embedded in work settings 
is different from the way mathematics is learned and practised in the typical 
traditional school settings (Hoyles & Noss, 1996; Forman & Steen, 2000). Different 
names, like school maths, work maths, street maths and others, seem to point to the 
fact that there are many different types of mathematics. However, I prefer to think of 
just one mathematics, with different approaches to it, depending on the goals for 
learning in a given educational setting.  
As discussed in the PISA framework (OECD, 2002), a modern view on mathematics 
as a discipline emphasizes ‘the study of pattern’ and ‘dealing with data’ (Steen, 1990; 
Devlin, 1994). This is not a traditional content-driven look at a possible mathematics 
curriculum for school, but rather a way to describe the field of interest. The choice in 
the PISA study to describe the scope of mathematics education by four overarching 
ideas: (patterns in) quantity, (patterns in) shape and space, (patterns in) change and 
relationships and (dealing with) uncertainty opens up a novel way of thinking about a 
better balanced curriculum for (secondary) education that truly takes into account the 
threefold goal (society, work and further learning). 
CHARACTERISTICS OF MATHEMATICS AT WORK 

Mathematics in the workplace makes sophisticated use of elementary mathematics rather 
than, as in the classroom, elementary use of sophisticated mathematics. (Steen, 2003) 

This phrase summarizes briefly the findings of many research studies on mathematics 
at work and other out-of-school settings. Where mathematics learned at school is 
embedded in a well-defined formal structure, the mathematics used in the workplace 
is embedded in the context of work. Practitioners at work do use situated abstraction 
in which local mathematical models and ideas are used that are only partly valid in a 
different context because they are connected to anchors within the context of the 
problem itself (Noss and Hoyles, 1996; Hoyles, Noss, Kent & Bakker, 2010). 
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The idea of situated abstraction is very helpful for understanding what happened in a 
reform project for senior high school vocational education (engineering) in the 
Netherlands (van der Kooij, 2001). The principle was that mathematics should 
become supportive for the vocational courses and therefore the mathematical subjects 
were presented in the context of engineering. Although the students  were considered 
to be low achievers in formal algebra, it was found that they could do algebra as long 
as the variables were real quantities with a meaning (time, length, speed, mass) – but 
that most of them got lost as soon as variables became abstract (x and y). An 
example: most students were able to do calculations on the pendulum equation 

  
T = 2π l

g
  with T (in s) the period, l (in m) the length of the pendulum and g (in 

m/s2), but many of them had no idea how to deal with a more general (and more 
simple, but meaningless) equation like y = 2 x . For that reason, instead of going for 
full abstraction and generalization, we emphasized transfer from one context to 
another: how is a strategy or procedure similar in a different context and what is 
different. Most of the time, this transfer is not complete – in the sense that every 
context gives rise to its own modification of the method that is ‘applied’ in that 
context (Evans, 1999).  
Some important general aspects of mathematics in context (of work) are (Bakker et 
al, 2008; Steen, 2001; Hoyles et al, 2002): 

• reading and interpreting tables, charts and graphs,  
• use of IT (like spreadsheets),  
• dealing with numbers, often not precise and with units of measurement, 
• proportional reasoning,  
• statistical process control activities,  
• representing and analysing data, 
• multi-step problem solving. 

Strangely enough, most of these aspects are not found in mathematics curricula in 
secondary education. 
COMPETENCES AND SKILLS FOR THE WORKPLACE: THE ECONOMIC 
SETTING  
Policymakers in the United States (SCANS, 1991) and Europe (European 
Communities, 2007) have described the competencies that are needed for future 
workers in a world in which "the globalization of commerce and industry and the 
explosive growth of technology on the job" (SCANS report) asks for skills that are 
different from the traditional ones learned at school. Competencies for work are 
described in the SCANS report (Steen, 2003) as the ability of people to use:  

• resources (allocating time, money, material, and human resources) 
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• information (acquiring, evaluating, organizing, maintaining, interpreting, 
communicating, and processing) 

• systems (understanding, monitoring, improving, and designing) 
• technology (selecting, applying, maintaining, and troubleshooting). 

Skills needed for such competences are split up as follows: 

• “basic” skills: arithmetic, estimation, reading graphs and charts, logical 
thinking, understanding chance  

• “thinking” skills: evaluating alternatives, making decisions, solving problems, 
reasoning, organizing, planning  

• personal qualities: responsibility, self-esteem. 
The European Union describes seven key competencies for life long learning needed 
for personal life and for work. Key competence 3 (EU, 2007): 

Mathematical competence is the ability to develop and apply mathematical thinking in 
order to solve a range of problems in everyday situations. Building on a sound mastery of 
numeracy, the emphasis is on process and activity, as well as knowledge. Mathematical 
competence involves, to different degrees, the ability and willingness to use 
mathematical modes of thought (logical and spatial thinking) and presentation (formulas, 
models, constructs, graphs, charts). 

Yet I would expect to find that neither the described aspects of mathematics in work 
nor the competences and skills described by the policymakers are found to any great 
extent in mathematics curricula for primary and secondary education in most 
countries.  
Nevertheless, the intended change to competency based education (CBE, advocated 
in the European Union as the driving force for Life Long Learning) offers 
opportunities to reconsider the kind of mathematics education that truly aims at goals 
related to the three settings: society, work and further learning. 
RECONSIDERING MATHEMATICS AT SCHOOL 
If the threefold goals of mathematics education (citizenship, work and further 
learning) are taken seriously, the claims above should be considered when rethinking 
a balanced mathematics curriculum to achieve these goals. For vocational training 
this seems more straightforward than for general education. In vocational education 
the mathematical content should be defined in terms of applicability for the 
workplace setting. For engineering, some important key aspects are: direct and 
inverse proportionality, absolute and relative numbers, relationships between more 
than two quantities with dimensions and units of measurement included, reading and 
interpreting complex graphs, logarithmic scaling, tolerances and significance, and a 
basic idea of chance in the context of uncertainty. 
For general education, the PISA framework has the potential in helping to define a 
balanced curriculum. The four overarching ideas (Quantity, Space and shape, Change 
and relationships, Uncertainty) and the eight competencies (Thinking and reasoning, 
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Argumentation, Communication, Modelling, Problem posing and solving, 
Representation, Using symbolic, formal and technical language and operations, Use 
of aids and tools) can be used to structure and design a balanced curriculum in which 
all three goals are met.   
One example of a balanced curriculum in general education can be found in the 
Netherlands: Mathematics A (de Lange, 1987), designed for a special group of high 
school students: those preparing for a study in social sciences. It was a well-balanced 
whole of statistics and chance, discrete mathematics and applied calculus with many 
applications to and starting points within the context of several disciplines.  Problem 
posing and solving activities, mathematizing and developing one’s own strategies 
were seen as at least as important as training for procedural fluency. 
DISCUSSION 

We believe, after examining the findings of cognitive science, that the most effective way 
of learning skills is "in context," placing learning objectives within a real environment 
rather than insisting that students first learn in the abstract what they will be expected to 
apply. (SCANS, 1991, viii) 

Mathematics education that starts in (real life) contexts can have, if designed well, a 
natural flow from concrete to general/abstract. As stated before, a sense-making 
learning line does not need to end in the formal, abstract world of pure mathematics 
for all students. For most students, especially those who don’t aim at college level 
study in natural sciences, situated abstraction with transfer from one context to 
another is motivating and enough to get prepared for work and for living as a 
“constructive, concerned and reflective citizen” (OECD, 2002). 
So, why are curricula in general not balanced? Maybe because of the deeply rooted 
belief that mathematics has to be learned in a linear way - from arithmetic, via 
algebra to functions (linear, quadratic, polynomials, exponential and periodic) and 
calculus, with some geometry and maybe some statistics alongside. This is how most 
curricula are designed and it does not reflect the modern view on the nature of 
mathematics (Steen, 1990; Devlin, 1994). 
One of the benefits of studying mathematics in the workplace is that we can see that 
the mathematics used in different workplace settings and in daily life is far from 
“standard” – and it is learned in these settings in different ways, many of which are 
far from “linear”. 
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MAKING CONNECTIONS IN TWO DIFFERENT SETTINGS:  
THE ROLE OF TOOLS  

Despina Potari 
University of Athens, Greece 

 
This paper addresses the issue of making connections in two different settings, the 
university mathematics teaching and the workplace. Through the analysis of two 
vignettes from each setting by using Leontev’s triadic model (activity – actions- 
operations), it attempts to indicate similarities and differences concerning this 
particular action in the two settings, by focusing on the tools and their interrelations.   
INTRODUCTION  
Making connections is at the heart of mathematical activity. In the practice of 
research mathematicians, making connections provides the wide mathematical picture 
either by relating the mathematical productions to the real world or by connecting 
different research areas and results (Burton, 1999). Boaler (2003) argues that we need 
to shift our attention from the knowledge categories to mathematical actions 
recognizing the action of making connections as central both for the development of 
mathematics and for the development of students’ mathematical meaning. Bishop 
(1988) also focuses on the construction of mathematical meaning and considers 
making connections as a way that an individual attributes meaning to a mathematical 
object. In the practice of mathematics teaching and mathematics teacher education 
Rowland, Huckstep and Thwaites (2005) in the knowledge quartet recognise 
“connection” as a category of prospective elementary teachers’ knowledge. They 
argue for the importance of this knowledge for teaching and they extend it beyond the 
structural connections within mathematics itself to the awareness of the relative 
cognitive demands of different topics and tasks. In the context of the workplace, 
making connections focuses on the translation of different representational means. 
Williams and Wake (2006) claim that this translation is important in the workplace 
and it can be facilitated especially for an outsider by making connections with more 
concrete, relatively “universal” cultural resources such as the use of metaphors and 
models. Roth and Bowen (2001) focusing on the graph related practices claim that 
professionals attribute meaning to graphs by making connections between the 
phenomena to which the graph pertains and its structure. 
In an activity theory perspective (Leont’ev, 1978) a three-tiered explanation of 
Activity is recognized focusing on its different components: activity, actions and 
operations. Human activity is always energized by a motive, actions translate 
activity-motive into reality and operations accomplish the actions instrumentally. 
Under this framework, making connections can be considered as actions undertaken 
to perform an activity while operations accomplish the actions that are mediated 
through a number of tools. These tools frame the construction of mathematical 
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meanings as a number of studies, particularly in the workplace, have demonstrated 
(eg. Pozzi, Noss & Hoyles, 1998). The study of Triantafillou and Potari (in press) 
also indicates that the persistent involvement in mathematical practices through the 
interrelation of a wide range of mathematical and non- mathematical tools leads to 
the generation of invariant mathematical concepts and processes. 
In this paper, I will try to exemplify how the actions of “making connections” are 
related to the tools employed by the participants in two different settings, the 
university mathematics teaching and the workplace. In particular, I will focus on 
similarities and differences among the tools and the way they interrelate and shape 
the mathematical practices based on the action of making connections. 
TWO EXAMPLES OF MAKING CONNECTIONS FROM TWO DIFFERENT 
SETTINGS 
I present two vignettes below. The first comes from a study in which I have recently 
been involved with a colleague, Theodossios Zachariades, and a postgraduate student, 
Georgia Petropoulou, in studying university mathematics teaching in the mathematics 
department where I have been working for the last two years. The second comes from 
the PhD work of Chrissavgi Triantafillou that I have supervised which is based on the 
study of mathematical practices in a Greek telecommunication organization.  
Vignette 1: From University teaching 
The lecturer who is both a research mathematician and a mathematics educator is 
teaching the Bolzano theorem in a Mathematical Analysis course to first year 
mathematics undergraduates: “Let, for two real a and b, a < b, a function f be 
continuous on a closed interval [a, b] such that f(a) and f(b) are of opposite signs. 
Then there exists a number x0 [a, b] with f(x0) = 0.” He sketches a graph to support 
the meaning of the theorem by pointing out to the students the continuity of the 
function and the fact that it will cross the x- axis: “We see that the graph is a 
continuous line. This means that it will cut the interval [a, b]. We need to prove it. It 
is not enough that we see that it crosses the x-axis”. Then he poses the following 
problem to the students: “Suppose we have √2 and we want to approach it by a 
sequence of rational numbers which converges to √2”. He draws a number line on the 
board and represents the numbers 1, 2 and √2. He says “√2 is between 1 and 2. What 
if we want to go closer to √2?” One student suggests the middle of the interval and 
the teacher uses this idea to construct a sequence of intervals: [1, 2]  [1. 1.5]  [1.25, 
1.5] … by comparing the square of the most recently calculated “middle number” 
with 2 so that √2 is included in each of  these intervals. This example is leading the 
students through a number of questions to the idea of nested intervals that represents 
them in the number line. By using the theorem of nested intervals he concludes that 
the intersection of the intervals [ao, bo]  [a1, b1] … [an, bn] is √2. Then he uses the idea 
of the construction of the intervals as the key idea of the proof of the Bolzano 
theorem. He carries on performing the formal proof by focusing on the construction 
of the nested intervals and by relating it to the graph of the function. 
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Vignette 2: From the workplace 
The vignette comes from an informal discussion 
between the researcher and the technician. The issue 
discussed is about the difficulties that apprentices 
face to make sense of an everyday action, that of 
locating the exact position of the fault in the local 
underground copper-wiring network. The underlying 
mathematics in this action is the proportional relation 
among three quantities the resistance, diameter and 
length of the copper wires which is expressed through 

the connection of various communicating tools such as tables, graphs, formulas. The 
technician offered an explanation of the phenomenon that could help the apprentices 
to understand it. He used the elaborated formula L= R·45·d2 to reason about the 
relation described in Fig. 1 between the diameter d of the wires and the corresponding 
distance L between the subscriber and the network headquarters. 
“If we want our resistance to be up to 350 ohms [he had explained that this is roughly 
the maximum resistance that a network can bear to have and is half the resistance in 
the loop] in the case of a wire phi 0.4 the telephone works up to two kilometres and 
five hundred meters [he calculates 350x45x0.42= 2520 m]. Now, if we want to go 
further, we change the diameter to zero point eight and now we can go up to ten 
kilometres. [He calculates 350x45x0.82 = 10080m]”. Then he makes a sketch to 
demonstrate the local lines for both cases.  
THE ANALYSIS OF THE TWO VIGNETTES 
Vignette 1  
Activity- 
motive 

Teaching Bolzano’s theorem To promote students’ 
understanding of the proof. 

Actions- 
goals 

Connecting a graph of a function to 
the conditions of the theorem. 
Providing a familiar context (the √2). 
 
 
Making connections between 
algebraic and graphical notations (use 
of number line and the graph of a 
function). 

To help students develop a 
sense of the theorem.    
To help students identify the 
key idea of the proof of the 
theorem (the nested intervals). 
To create a visual 
representation to make explicit 
to the students the steps of the 
formal proof.  

Operations 
-conditions 

Use of different communicative tools 
(mathematical symbols, metaphors, 
graphs); thinking tools (theorems, 
concepts, processes, familiar proof). 

Blending informal and typical 
mathematical tools.  

Table 1: Teacher activity related to Leont’ev’s three levels in vignette 1 

Distance (km) Diameter (mm) 

Up to 3 Φ0.4 

From 3 – 6 Φ0.6 

From 6 – 9 Φ0.8 

From 9 - 10 Φ0.9 

Fig. 1: The table representation. 
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Vignette 2 
Activity- 
motive 

Explain a mathematical relation used 
in his every day practice. 

To help the researcher and the 
apprentices to make sense of 
the phenomenon. 

Actions- 
goals 

Connecting the table, the formula and 
the actual working situation. 
 

To help the researcher and the 
apprentices develop an 
understanding of the 
proportional relation in the 
working context. 

Operations 
-conditions 

Use of different communicative tools 
(mathematical formulas, metaphors, 
diagrams – drawing, table); thinking 
tools (performing calculations, using 
algebraic relations). 

Blending the real situation to 
the representations (formula, 
table). 

Table 2: Technician’s activity related to Leont’ev’s three levels in vignette 2 

Similarities and differences between the actions of making connections in the 
two settings 
In both cases, making connections seemed to be a central action aiming to help 
newcomers (the students in the case of university teaching and the researcher and 
apprentices in the workplace case) to make sense of aspects of that practice. At the 
university, making connections is crucial to the production of mathematics and to its 
teaching, while in the case of the workplace, it is important for the technician 
completing a job efficiently with the existing resources. This is realised through a 
variety of communicative and thinking mathematical tools in the sense that Mellin-
Olsen (1987) characterises them. The communicative tools include mathematical 
symbols, metaphors, graphs and diagrams while the thinking tools are concepts and 
processes in both cases. In the mathematics teaching context of the university the 
thinking tools are more complex than in the workplace context as they refer to a 
number of mathematical objects and their relations. They are cultural products of the 
community of mathematicians over a long period of time and carry certain beliefs and 
conventions existed in this community. On the other hand, in the workplace thinking 
tools are mathematically less elaborate and do not have the decontextualised and 
general character that the mathematical tools in university mathematics have. 
Moreover, they are not recognised by some technicians as mathematical tools 
although they use them (see for example Hoyles, Noss & Pozzi, 2001). The 
communicative tools used in both cases differ in terms of the conventions that have 
been established in the historicity of the two activity systems; the one refers to the 
practice of mathematicians and the other to the particular workplace practice. In both 
practices the communicative tools are embedded in the particular activity: in the first 
case they have an impersonal character, while in the second they are idiosyncratic. 
So, in the case of the workplace activity the formulas, the tables have different 
linguistic features from the ones used in formal mathematics. For example, the 
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elaborated formula used by the technician is a contextual transformation of the 
common formula (R =ρ·L/s, where ρ represents the resistivity of the material that the 
wire is made of and s the cross-sectional area of the wire); as in the work context all 
the wires are made of the same material, the resistivity takes a particular value and 
the wires are classified according to their diameter.  
By focusing on the way that the tools are interrelated in the process of making 
connections we see two different paths. In the first case, the teacher uses less formal 
communicative tools (the sketches of graphs and of a number line) to attribute 
meaning to the more formal mathematical symbols. He also uses the structure of a 
familiar concrete case to help students understand the structure of the proof of 
Bolzano’s theorem and consider the semantic character of proof (Weber, 2005). In 
the second case, the technician bases his reasoning on the three communicative tools 
(the table, the elaborated formula and his personal drawing) by starting from concrete 
cases in the table, by applying the formula and finally by linking to the actual 
phenomenon through his drawing. In both cases the ultimate goal is to construct or 
use appropriate thinking tools in order to see the invariant mathematical object, the 
proof of the Bolzano theorem in the first case and the proportional relation in the 
second. The question that still remains is how transparent the tools employed for the 
action of making connections are for an outsider in both of the two activity systems. 
This requires an understanding of the meaning of the tools but also of other 
situational factors such as the practice of the community, its traditions and rules and 
the division of labor (Engestrom, 1999).  
CONCLUDING REMARKS 
Making connections is a central and common action in two different practices, the 
university mathematics teaching and the workplace. These practices although very 
different in motives and goals use a variety of tools that are different in a way but 
also share some common characteristics. In both cases there is a network of 
connections between the tools that frame the invariant mathematical object (see 
Nunes, Schliemann & Carraher (1993) for a discussion about the need to “understand 
the mathematical invariants as well as the particulars of the situations” (p. 139) in 
order to function well in cultural contexts). Although in the case of university 
mathematics teaching, the issues of abstraction and generalization are crucial, the 
invariant mathematical objects are situated in the actual practice of the two 
communities in the sense that they have meaning in relation to the rules, beliefs and 
traditions of each community. An outsider needs to become a participant of this 
practice to get a sense of the invariant mathematical object. So, I would agree with 
the position of Henk van der Kooij in this plenary panel that we could talk about “just 
one mathematics with different approaches to it, depending on the goals for learning 
in a given educational setting”. Moreover, by exploiting theoretical frames and 
research tools that have been used in recent decades in workplace mathematics, we 
can possibly illuminate important issues relating to mathematics teaching and 
learning in the formal education system at the university level.  
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RESETTING SCHOOL MATHEMATICS 
Andrew Noyes 

University of Nottingham, UK 
 

The aims, curricula, and pedagogies of school mathematics vary across space/place - 
nations, states, districts, schools and classrooms - and over time.  Such distinctions 
are the objectification of historic struggles for the soul of school mathematics, played 
out at various scales of activity. School mathematics is not the same as academic 
mathematics and needs to fulfil, as part of a state education system, certain social, 
political and economic functions. Particular future settings for young people strongly 
frame their experiences of school mathematics. Here I will briefly consider dominant 
and alternative settings for school mathematics.  
INTRODUCTION 
The gate keeping role of mathematics is well documented (Skovsmose, 1998; 
Volmink, 1994). In the highly performative English education system, the threshold 
for progression to advanced level study at age 16, and the many life opportunities that 
arise from that, is five or more subjects passed at grade A*-C, including English and 
mathematics. This is the point where students are broadly divided into academic and 
vocational tracks.  The most common difficulty faced by school leavers is achieving 
this grade in mathematics. It is noteworthy that students from the poorest fifth of 
households are half as likely to make the grade in mathematics as the wealthiest fifth 
and for the top two grades (A*/A) the ratio increases to over 5:1 (Noyes, 2009a).   
My ongoing research with 16 year olds suggests that for many of the most able 
students the motivation to succeed in mathematics is due, in part at least, to its 
exchange value. Moreover, at a national level, international comparisons such as 
TIMSS and PISA fuel government anxieties about educational outcomes and the 
implications for future economic prosperity in a changing global order.  The 
dominant economic rationalisation for school mathematics (Gutstein, 2009; Noyes, 
2009b) tends to reinforce particular forms of curriculum and assessment, pedagogy 
and learner experience.   
The contribution that mathematics makes to social differentiation is related to the 
economic setting that shapes curriculum and assessment.  Despite the increasing 
entanglement of the mathematical/scientific and the social in modern life there 
remains far too little attention to this in English mathematics classrooms. Embedding 
modelling and problem-solving into the curriculum has proved difficult here and 
there is negligible critical pedagogy. Student experience of mathematics is largely 
procedural and utilitarian (skills, functionality).   
A new version of our national mathematics qualification for 16-year olds is about to 
be launched in September 2010 and embodies a tension between two future settings: 



Evans, Alatore, van der Kooij, Potari, Noyes 
 

PME 34 – 2010  1-21 

training skilled workers for technical and trade work (‘functional mathematics’) and 
preparing another group of young people for academic courses of further and higher 
study (advanced level mathematics).  In trying to satisfy these quite different 
purposes the curriculum is, arguably, unfit to meet either goal.  Moreover, these two 
broad settings constrain school mathematics. 
Ernest (2004, p. 316) suggests six aims for the curriculum: 

• utilitarian knowledge  
• practical, work-related knowledge  
• advanced specialist knowledge  
• appreciation of mathematics 
• mathematical confidence 
• social empowerment through mathematics 

The political/economic settings can be seen in the first three points: maths for work 
and maths for the academy. This reflects the age-old tension between vocational and 
academic education, represented by Ernest’s ‘industrial trainers’ (points 1/2) and ‘old 
humanists’ (point 3), both groups of which have considerable influence upon 
policymaking.  I want to argue that the final setting should become a priority for 
school mathematics: mathematics for social empowerment.  
RESETTING SCHOOL MATHEMATICS 
If we reject the purely economic rationale then how might we rethink school 
mathematics? I want to outline three framing ideas that have different philosophical 
and historical origins but prioritize the social over the economic. Here the emphasis is 
on the learner of mathematics as well as learning of mathematics.  [I have considered 
these in more depth elsewhere (Noyes, 2007)] 

• education for citizenship  
• the principle of general education  
• critical pedagogies (of access and dissent) 

I start from the first aim of the National Curriculum for mathematics, which is that 
the school curriculum should 

aim to promote pupils’ spiritual, moral, social and cultural development and prepare all 
pupils for the opportunities, responsibilities and experiences of adult life. 

I do not want to explore the extent to which mathematics classrooms satisfy this aim 
but suffice to say that there is plenty of room for improvement.  Such preparedness 
for life, which must be broader than the economic productivity of work, can be 
thought of as citizenship education in its broadest sense.  
But democratic citizenship is necessarily critical.  So a critical school mathematics 
(Skovsmose, 1994) would prioritize the equipping of citizens with the capabilities to 
understand and engage with the mathematically-formatted, data-rich world around 
them.  As Gutstein argues, drawing upon the work of Paolo Freire, school 
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mathematics should encourage learners to “read and write the world with 
mathematics” (Gutstein, 2006).  Importantly, the setting for Gutstein is the immediate 
lived realities of the students with whom he works, not future work or political 
engagement.  
The German notion of allgemeinbildung, which is a general, liberal education 
befitting a modern, technological, ‘risk society’ setting, is also instructive here.  It 
develops “competence for self-determination, constructive participation in society, 
and solidarity towards persons limited in the competence of self-determination and 
participation” (Elmose & Roth, 2005, p. 21).  Mathematics must empower students to 
function in this modern setting, one in which data and mathematical technologies are 
increasingly woven into the fabric of modern living.  
Heymann (2003) details his vision for (German) school mathematics as framed by 
general education. His thesis details examples of how mathematics can be highly 
relevant to each of the six goals below. They are similar in spirit to the National 
Curriculum aim cited above: 

• preparing for later life 
• promoting cultural competence 
• developing an understanding of the world 
• promoting critical thinking 
• developing a sense of responsibility 
• practicing communication and cooperation 

These different ideas are espoused by scholars for whom the social setting of modern 
risk society is as important as economic or knowledge settings for school 
mathematics.  Although motivated by views of a better, more socially just, society, 
their political positions are more or less radical and/or liberal.  Heymann argues that 
his mathematics curriculum for general education cannot be realised in a top-down 
fashion but would better be enacted in small steps by individuals for whom this 
makes sense.  This principle is echoed by Povey (2003, p. 56) when she argues that 
“to harness mathematics learning for social justice involves rethinking and reframing 
mathematics classrooms so that both the relationship between participants and the 
relationship of participants to mathematics (as well as the mathematics itself) is 
changed”.  Such approaches are made more difficult in the current climate of 
educational managerialism, accountability measures and cultures of performativity. 
Emphasising citizenship, general education and/or critical pedagogy does not mean 
that learners shouldn’t engage with challenging mathematics for its own sake or 
future use.  Indeed, for those who are currently marginalised by school 
(mathematics), it is acutely important that a ‘pedagogy of access’, i.e. the highest 
quality teaching to achieve the best possible outcomes in high stakes tests, 
complements any critical pedagogic approach or ‘pedagogy of dissent’ (Morrell, in 
Gutstein, 2006). It would be counterproductive to develop more socially just, critical, 
‘allgemeinbildung’ approaches to school mathematics if the socially differentiated 
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attainment in traditional high stakes mathematics assessments continues to be 
reproduced.  
So, in sum, I have argued that the current framing of school mathematics, in England 
at least, is predominantly economic (in work and academic settings).  A mathematics 
for social empowerment needs to become far more prominent in both designed and 
enacted curriculum in order to equip 21st century citizens with the (mathematical) 
means of self-determination in a technological, risk-society setting. The three ideas 
discussed above – citizenship, general education, and critical education – offer useful 
existing directions of travel. Rebalancing the framing settings for school mathematics 
is critically important for young people and for future society, nationally and 
internationally. However, it is hard to see how such a frame for mathematics 
education policy and curriculum might gain high-level influence in a neo-liberal, 
market-driven education system where economics provides many of the generative 
metaphors.  Therefore, following Heymann, this paper is an appeal to those for whom 
this argument makes sense; to start acting, or to continue to act, in ways that develop 
mathematics education as a setting for social empowerment. 
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