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Abstract: - Having fast and efficient motion estimation is crucial in today’s advance video compression 
technique since it determines the compression efficiency and the complexity of a video encoder. In this paper, a 
method which we call semi-hierarchical motion estimation is proposed for the Dirac video encoder. By 
considering the fully hierarchical motion estimation only for a certain type of inter frame encoding, complexity 
of the motion estimation can be greatly reduced while maintaining the desirable accuracy. The experimental 
results show that the proposed algorithm gives two to three times reduction in terms of the number of SAD 
calculation compared with existing motion estimation algorithm of Dirac for the same motion estimation 
accuracy, compression efficiency and PSNR performance. Moreover, depending upon the complexity of the 
test sequence, the proposed algorithm has the ability to increase or decrease the search range in order to 
maintain the accuracy of the motion estimation to a certain level. 
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1 Introduction 
Motion estimation is extensively used in most 
standard video encoder as a means to exploit 
temporal redundancy by removing the redundant 
pixels in temporal domain between frames of video. 
The key step in removing temporal redundancy is 
the prediction of motion vector (MV) between the 
current frame and the reference frame. The most 
reliable Motion Estimation (ME) algorithm is the 
Full Search Block Matching Algorithm (FS-BMA) 
where prediction of motion vector is performed 
under block-by-block basis and it is widely used in 
the reference software as a benchmark. However, 
FS-BMA requires huge computational load since it 
attempts to match every possible candidate using a 
certain type of cost function in the given search 
window size making it impractical for a real-time 
video encoding. The larger the search window size, 
the higher number of computation would be 
required. The total number of computation required 
is (2w+1)2 where w is the size of the search window. 
Over the past decade, many fast and efficient block 
matching algorithms (BMA) have been proposed in 
order to achieve the accuracy and speed at the same 
time. Among them, some of the well known 
algorithms are the three-step search (TSS) [1], the 
new three-step search (NTSS) [2], the four-step 

search (FourSS) [3], the Diamond Search (DS) [4], 
the Adaptive Rood Pattern Search (ARPS) [5], the 
Adaptive Irregular Pattern Search (AIPS) [6] and 
Fast and Robust Search [7] etc.. Most recently, 
Multi-Direction Cross-Hexagonal Search 
Algorithms was proposed [8], in which search 
pattern is based upon the hexagonal shape instead of 
using traditional square and diamond shape patterns. 
The goal of these algorithms is to reduce the number 
of search points at the expense of motion estimation 
accuracy and compression efficiency. With the use 
of these algorithms, the number of cost function 
calculation is greatly reduced with a certain level of 
accuracy. However, most of these algorithms were 
tested on the platform independent IPPPP… Group 
of Picture (GOP) structure and a complete algorithm 
which can be applied to a functional video encoder 
with any types of video formats and GOP structure 
is still required. From among the fast BMAs, the 
adaptive search algorithms [5][6][9] become 
increasingly popular because of their flexibility in 
choosing the center of search location adaptively. 
Since there is no limitation on their search range, 
adaptive based search algorithms can tack the global 
minimum quite accurately. There are several 
methods in predicting the center point of search 
location. Most commonly used methods are the 
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spatial prediction where center search point of 
current block is predicted from the adjacent left, top 
and top left blocks, the temporal prediction where 
center point is predicted from the corresponding 
block of the previous encoded frame and the 
hierarchical prediction where center point is 
predicted from the corresponding block location of 
the previous hierarchical layer.  

The current release of the Dirac encoder [10] 
employs fully hierarchical motion estimation for all 
types of inter frames (both P and B) coding causing 
the encoder practically impossible to apply in real 
time encoding especially for High Definition (HD) 
video sequences. The main objective of this paper is 
to propose the fast and efficient motion estimation 
strategy which combine modified adaptive search 
algorithm and semi-hierarchical approach where 
hierarchical motion estimation is considered only 
for a certain type of inter frame encoding. 

The rest of the paper is organized as follows. 
Section 2 describes the motion estimation strategy 
in current release of Dirac and the proposed fast 
motion estimation algorithm using semi-hierarchical 
approach is detailed in Section 3. Results and 
discussion followed by conclusion are presented in 
Section 4 and 5 respectively. 
 
 
2 Motion Estimation in DIRAC 
In its hierarchical motion estimation, Dirac first 
down converts the size of the current and reference 
of all types of inter frames (both P and B) using the 
12 taps down conversion filter. The number of down 
conversion levels depends upon the frame format 
and can be calculated using equation 1 as follow. 

2 2min log ,log
12 12

⎛ ⎞⎛ ⎞ ⎛ ⎞= ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

width heightlevel
  

(1) 

According to equation 1, the number of down 
conversion levels is 4 and 6 for the frame format 
CIF and HD (1920×1080) respectively. In the down 
conversion process, the dimension (both height and 
width) of the frames are reduced by the factor of 
two in each levels. The motion estimation is 
performed first in the lowest resolution (smallest 
frame) level and gradually increased to the higher 
resolution levels until it reaches the original frame 
size. The search pattern used in lowest level is 
Diamond shape with the search range 5 and all other 
levels higher than lowest use square shape search 
pattern with search range 1. Fig. 1 shows both 
search patterns where there are altogether 61 search 
points in Diamond shape and 9 points in square 
shape.  

 

Fig. 1. Search Patterns of Driac 
 
First of all, candidate lists which are the lists to 

be searched are generated. A candidate list consists 
of a number of points to be searched, which follows 
a certain pattern either diamond or square as shown 
in Fig. 1 and centered at a predicted MV. The 
predicted MV can be either zero, spatially predicted 
or guide MV. Spatially predicted motion vector is 
the medium vector of block number 1, 2 and 3 or 
mean vector of block 1 and 2 as shown in Fig. 2, 
depending upon the location of the current block 
where motion estimation is carried out. Guide vector 
is the best motion vector at the corresponding block 
location of the adjacent lower hierarchical level and 
it is not available for the lowest level. 

 

 
 

Fig. 2. Spatially Predicted Motion Vector of Dirac, 
the current block is the block where ME is being 

performed 
 

In Fig. 3, for lowest level search, two candidate 
lists are generated centered at zero motion vector 
and spatially predicted motion vector respectively 
with the diamond search pattern. Sum of the 
Absolute Difference (SAD) is used here as the cost 
function. At the initial search step, the SAD 
calculation is carried out only for the center point of 
diamond pattern in each list and finds the list which 
gives the minimum cost. The candidate lists to be 
searched are chosen by multiplying the minimum 
cost with 1.5 and choose all the lists which give the 
cost less than 1.5 times minimum costs. So, there 
can be at most two candidate lists and 122 search 
points can be involved in lowest level search if there 
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is no overlapping between the two lists. In the refine 
step, SAD calculation is carried out for all chosen 
candidate lists on their corresponding search points 
and the coordinate of the point which gives the 
minimum cost, is recorded as the best MV. 

 
 

Fig. 3. Dirac’s Four levels Hierarchical Motion 
Estimation for CIF video format, where w is search 

range 
 
The search procedure is basically the same for all 

other levels except the addition of one more 
candidate list which is centered at the guide vector. 
So, there are three candidate lists in these levels 
with the square search pattern as shown in Fig. 1 
and the maximum number of search points can be at 
most 27 in each level if there is no overlapping 
between the lists. 

After going through all these levels, the pixel 
accuracy motion vectors for each block are 
obtained. Dirac provides the option to find the 
motion vectors up to 1/8 pixel accuracy. In order to 
achieve this, motion estimation undergoes subpel 
refine process where the current and references 
pictures are up converted by 2, multiply the pixel 
accuracy motion vector by 2 and search around the 
pixel accuracy motion vector block to get ½ pel 
accuracy motion vector. The above procedure is 
repeated until it gets the require accuracy. 

After getting the required accuracy motion 
vectors for each block, the last stage of motion 
estimation, mode decision is carried out by using 
RDO motion estimation matrix. The metric consists 
of a basic block matching metric which is SAD plus 
some constant times a measure of the local motion 
vector smoothness. The smoothness measure is 
based on the difference between the candidate 
motion vector and the median of the neighboring 
previously computed motion vectors. The total 
metric is a combination of these two metrics. Given 
a vector V which maps the current frame block P to 
a block R=V(P) in the reference frame, the metric is 
given by, 

( ) ( ), .max ,48λ+ − + −x x y ySAD P R V M V M .  (2) 

In mode decision, Dirac considers the total of 12 
modes which includes the combination of 3 Macro 
Block (MB) splitting levels as shown in Fig. 4 and 4 
prediction modes.  A MB consists of a 4× 4 array of 
blocks, and there are three possible ways of splitting 
a MB: 
Splitting level 0: no split, a single MV per reference 
frame for the MB; 
Splitting level 1: split into four sub-macroblocks 
(sub-MBs), each a 2x2 array of blocks, one MV per 
reference frame per sub-MB; 
Splitting level 2: split into the 16 constituent blocks. 
 

 
 

Fig. 4. MacroBlock Splitting Modes 
 
At the same time, the best prediction mode for 

each prediction unit (block, sub-MB or MB) is 
chosen. There are four prediction modes available: 
INTRA: intra coded, predicted by DC value; 
REF1_ONLY: only predict from the first reference; 
REF2_ONLY: only predict from the second 
reference (if one exists); 
REF1AND2: bi-directional prediction. 
 
 
3 Semi-Hierarchical Fast ME 
In the existing ME search strategy of Dirac, even 
though the algorithm could locate the minimum 
SAD point with a certain level of accuracy, the 
whole process takes too long to complete because of 
the usage of multiple levels of hierarchies for all 
types of inter frames, i.e. for both P and B frames. 
For example, encoding a CIF format video sequence 
would require the algorithm to generate four levels 
of hierarchy for both current and reference frames. 
The algorithm search the optimum motion vector in 
each by calculating the SAD of each point using the 
corresponding pattern as shown in Fig. 1.  After 
completing these four levels, the final search is 
carried out again in the original frame level itself 
with the square search pattern. Obviously, it is the 
most time consuming stage and requires 
approximately 80% of total encoding time. So it is 
required to find the faster ME search strategy, which 
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could give the same accuracy or even better if 
possible.  
     The proposed strategy is based upon the 
extension and optimization of the existing method. 
More predicted MVs (i.e. more candidate lists) are 
added at the initial search in order to find the most 
probable minimum point as quickly as possible. So, 
the initial search now includes six predicted MVs 
instead of three, which are zero, three spatially 
predicted (MVPrediction1, MVPrediction2 and 
MVPrediction3), guide and temporally predicted 
motion vectors. 
     MVPrediction1 is the spatially predicted MV 
used in the existing ME algorithm of Dirac. The 
other two spatially predicted MVs, MVPrediction2 
and MVPrediction3 which are the best MVs from 
left and top blocks respectively, are added in the 
proposed method in order to get the better prediction 
for the horizontal and vertical camera panning. The 
idea of zero and guide motion vectors are the same 
as existing algorithm but the last motion vector 
which is predicted temporally is added to the list in 
order to exploit the temporal redundancy of the 
video sequence. This is the vector resulting from the 
motion estimation of the previous successive frame 
at the corresponding block location. 
 

 
Fig. 5. Temporal MV Prediction for P and B frames 
 

Fig. 5 shows the prediction of temporal MV for 
the different types of frames either P or B. Note that 
there is no temporal predicted MV available for the 
first P and B frames. Again, the best MVs from the 
P frame cannot be used as the temporal predicted 
MV for the successive B frame since the prediction 
structure of the P and B are different as shown in 
Fig. 5.  Furthermore, the prediction of the temporal 
MV for B frames requires scaling up or down since 
the temporal distances to the references for a 
particular reference type (either reference 1 or 2) are 

different for B frames. For example, in the temporal 
MV prediction of B2 frame, the temporal distance 
for B1 to its 1st reference, which is I1, is 1 but the 
distance for B2 to its 1st reference, which is also I1, is 
2. So, it is required to multiply the best MV of B1 to 
its 1st reference by 2 in order to get the proper 
predicted temporal MV for the 1st reference of B2. 
The same reason applies for the 2nd reference. It is 
important to note that the temporal predicted MV is 
available only for the level 0 motion estimation. 
 

 
 

(a) Motion Estimation for P frame 

 

(b) Motion Estimation for B frame 
Fig. 6. Proposed Semi-Hierarchical Fast Motion 

Estimation for CIF video format 
 

In order to reduce the level of complexity, the 
hierarchical motion estimation is employed only for 
P frame. The idea of unequal level of motion 
estimation for P and B frames or semi-hierarchical 
motion estimation comes from the following facts. 
According to the nature of GOP structure, the 
reference for P frames are typically far away (e.g. 
three to six frames in temporal separation for IBBP 
GOP structure) from the current frame and clearly it 
is unlikely to find the best match near the vicinity of 
the current block. So, it is required either to increase 
the search range or to introduce the hierarchical way 
of motion estimation. Another factor is that the 
quality of the P frame plays an important role in 
getting the lower residual error weight in the motion 
estimation of B frames. The only way to maintain 
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the quality of the P frame without losing the 
compression efficiency is to increase the accuracy 
of the motion estimation in order to reduce the 
residual error weight. 

Fig. 6 shows the proposed semi-hierarchical fast 
motion estimation scheme for P frame and B frame 
in CIF format. There are altogether four candidate 
lists to be searched initially (except guide and 
temporal MV) in level n (where n = 4 for CIF video 
format) of P frame since the MVs of the rest two 
candidate lists are not available. In addition to this, 
the guide MV is added in levels (n-1) to 2 (which 
are level 3 and 2 in CIF format) so that the total 
number of lists in these levels becomes five. Zero 
MV is removed in level 1 since it is not required to 
search the MV of stationary object in all levels. In 
level 0, MVPrediction1 is replaced with temporal 
MV leaving only four essential candidate lists in 
highest resolution frame level.  For one level B 
frame search, it includes altogether five candidate 
lists except guide MV since there is no hierarchical 
way of motion estimation. 

Fig. 7 shows the detail algorithm flow chart. The 
search pattern used in proposed method is small 
diamond (SD) with search window, w which is set 
to 1 for all cases.  Depending upon the level of 
hierarchy, the number of candidate lists to be 
searched initially for P frame can be varied as 
shown in Fig. 6 (a). But the initial number of 
candidate list to be searched in B frame is constant, 
i.e. 5 candidate lists excluding temporal. Similar to 
the existing algorithm of Dirac, at the initial search 
stage, the cost is calculated only at the center point 
of SD search pattern in each candidate list and finds 
the minimum list i.e. the list which gives minimum 
cost. The group of lists to be searched at the next 
stage can include more than one list if two or more 
lists give the same minimum cost. An early stopping 
criterion is incorporated in all cases, which allows 
the algorithm to skip the refine search stage when 
the minimum SAD cost at the initial search is less 
than the number of coefficients in a block (1st 
threshold).  

At the refine search stage, the center MVs from 
each list are extracted one by one, set as the center 
MV and find the best cost which is minimum cost, 
around this MV by using SD search pattern. If the 
best cost point is not at the center, set the current 
best cost point as the center, increase the number of 
loop by one and search again its surrounding 4 
points. The same procedure continues until the 
stopping criteria is met, which is either the best cost 
point is at the center or best cost is less than two 
times the multiplication of width and height of the 
block (2nd threshold) or the number of looping is 

more than five. Once the stopping criteria is met, the 
corresponding MV is saved to the best_MV_list[] 
array. The looping continues until there are no more 
MVs to be set as the center MV in the list to be 
searched. Finally, choose the best MV from the 
best_MV_list[] by comparing their corresponding 
cost. 

 

 
 

Fig. 7. The Proposed Semi-Hierarchical Fast ME 
Algorithm flow chart 
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4 Results and Discussions 
In order to evaluate the performance of the proposed 
algorithm, several test sequences ranges from slow, 
medium to high motion in CIF formats were used. 
As for the test platform, Dirac version 0.6 from [10] 
has been employed. The GOP length is set to 36 
which means the number of P frames is 11 and P 
frame separations is 3 forming IBBPBBP GOP 
structure. 

Table 1 shows the motion estimation results from 
both Dirac 0.6 and proposed fast ME algorithm for 
different test sequences in CIF format. In table 1, 
weight refers to the average residual error frame’s 
weight for the whole sequence and the lower weight 
reflects the higher accuracy in the corresponding 
motion estimation algorithm. 

Table  1. The Comparison of ME Results for CIF 
Video format 

SequenceAlgorithm SAD Weight File Size 
(bytes)

PSNR-Y
 (dB) 

Akiyo Dirac 0.6 12.48 4.45 237959 39.97 
Fast ME 3.76 4.45 238538 39.97 

 

Foreman Dirac 0.6 32.46 8.24 614303 34.63 
Fast ME 14.78 8.18 609187 34.67 

 

Bus Dirac 0.6 34.33 9.10 636695 31.50 
Fast ME 15.04 8.69 590205 31.68 

 

Football Dirac 0.6 40.39 9.46 275735 33.03 
Fast ME 23.28 9.43 274491 32.91 
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Fig. 8.  Comparison of ME results for Dirac 0.6 and Proposed Fast ME, Akiyo in CIF format 
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Fig. 9.  Comparison of ME results for Dirac 0.6 and Proposed Fast ME, Foreman in CIF format 
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Fig. 10.  Comparison of ME results for Dirac 0.6 and Proposed, Bus in CIF format 
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Fig. 11.  Comparison of ME results for Dirac 0.6 and Proposed Fast ME, Football in CIF format 
 
It is the division of the combination of absolute 

value of the coefficients in residual error frame by 
frame dimensions and the number of frames in the 
sequence. Basically, a motion estimation algorithm 
can be evaluated by determining the accuracy and 
complexity of the algorithm. In this research, the 
accuracy and complexity are represented in terms of 
the residual error frame’s weight and the average 
number of SAD calculation per block, respectively. 
Fast ME algorithm gives the average weight which 
is slightly lower than Dirac 0.6 in all sequences 
except Akiyo. In terms of compression efficiency, 
again the proposed algorithm gives approximately 
equal or smaller file size for all test sequences and it 

is more significant especially in the Bus sequence. 
PSNR for Y component is used to compare the 
objective quality of the reconstructed frames. As 
shown in table 1, all the test sequences give 
approximately the same value of PSNR for both 
algorithms. 

But there is significant improvement in proposed 
one as far as the speed of the algorithm is 
concerned. There is a huge saving, at least two folds 
in average number of SAD calculation per block for 
all test sequences. Reduction in the number of SAD 
calculation is much more significant in relatively 
static sequence (e.g. Akiyo) where the required 
number of SAD calculation per block in proposed 
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algorithm is more than one third of Dirac 0.6. It is 
simply because of the application of early 
termination method after the initial search in 
proposed algorithm. An early stopping criterion 
allows the algorithm to skip the refine search stage 
when the minimum SAD cost at the initial search is 
less than the number of coefficients in a block. In 
static sequences, the chances of meeting the early 
stopping criterion is quite high for most of the 
blocks since the displacement of both background 
and foreground objects are not much significant 
between the adjacent frames. On the other hand, 
dynamic motions sequences (e.g. Football) require 
refine search stage since initial search results are not 
good enough to stop the algorithm for most of the 
blocks, requiring more number of SAD calculation 
compared with the less dynamic sequences. In 
Dirac, the number of reference frames to be 
searched for motion estimation is 2 and so the 
average number of required SAD calculation for one 
block per one reference frame is approximately half 
of the given values in table 1. 

Fig. 8 to 11 show the number of SAD calculation 
per block and PSNR-Y of each frame for all test 
sequences shown in Table 1. As expected, the 
average number of SAD calculation per block in P 
frames using proposed algorithm is much higher 
than that of B because of the application of semi-
hierarchical motion estimation, resulting the wider 
band of SAD calculation difference between P and 
B compared with Driac 0.6 as shown in figures 8(a) 
to 11(a). But it is interesting to note that the 
proposed algorithm has the ability to increase or 
decrease its search range depending upon the 
complexity of the test sequence. For example, in 
Fig. 9(a), the average number of SAD calculation in 
proposed algorithm is lower while the motion is 
relatively static in Foreman sequence for the first 
four GOPs. Then, the algorithm increase its search 
range once it detects the dynamic motion giving 
higher number of SAD calculation per block in the 
fifth and sixth GOP in order to maintain the level of 
accuracy in motion estimation.    

Again, the algorithm reduces its search range for 
the remaining frames which have less dynamic 
motions giving lower number of SAD calculation. 
The application of double thresholds system, one in 
the initial search and another one in the refine 
search stage serves as the complexity detection 
mechanism, controlling the accuracy of overall ME 
accuracy effectively. Unlike the proposed algorithm, 
there is no such adaptation in the motion estimation 
of Dirac 0.6 giving relatively constant number of 
search in all type of sequences. 

Even though the proposed algorithm uses un 
equal level of motion estimation between different 
frames types, the PSNR level of each frames are 
approximately the same and sometime even slightly 
higher than Driac 0.6 as shown in Fig. 8 (b) to 11 
(b). PSNR results in Fig. 8(b) to 11 (b) confirm that 
the proposed fast ME algorithm can still maintain 
the same accuracy even with the non-hierarchical 
way of coding for intra-non-reference (B) frames. 
This result can be further confirmed by comparing 
the weight of the residual error frame for both ME 
algorithms in Fig. 12.  Since weight can be 
represented as the accuracy of corresponding ME 
algorithm, getting approximately equal weights for 
B frames coding in Fig. 12 confirm the above 
statement.  

The above discussion has already proved the 
importance of P frame coding in the IBBP GOP 
structure. Getting high level accuracy in P frame 
coding is crucial since P frame also serves as the 
reference frame for intra non-reference (B) frames 
coding. As discussed in section 3, according to the 
structure of GOP, the reference frames of P are very 
much further compared with B, requiring wider 
search window or hierarchical way of searching in 
order to maintain the optimum accuracy. Again, 
higher accuracy of ME in P frame coding yields 
better picture quality which in turn gives lower B 
frame weight in motion compensation process.    
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Fig. 12.  Comparison of Weights for each frame, 
Football Sequence, CIF format 

 
Table 2 shows the motion estimation results from 

both Dirac 0.6 and proposed algorithm for two types 
of HD sequences. While the value of PSNR, 
compression efficiency (in terms of encoded file 
size) and accuracy of ME (in terms of residual error 
frame’s weight) are approximately the same, the 
proposed fast ME algorithm requires very much 
lower number of SAD calculation compared with 
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existing algorithm in Driac 0.6. Again, there is at 
least two fold reductions in the number of SAD 
calculation for the HD sequences. The results in 
Table 2 also show that the reduction in SAD 
calculation is higher in the relatively static sequence 
(Night Shields) and the more dynamic motion 
sequence (Pedestrian Area) gives approximately two 
folds reduction only.    

Fig. 13 and 14 show the number of SAD 
calculation per block and PSNR-Y of each frame for 
both HD test sequences shown in Table 2. Again, 
the results in these figures are very much similar to 
the CIF results in Fig. 8 to 11. 

Table  2. The Comparison of ME Results for HD 
Video format 

Sequence Algorithm SAD Weight File Size 
(bytes)

PSNR-Y
 (dB) 

Night Shields
729x1280 

Dirac 0.6 29.80 5.87 7473176 35.66 
Fast ME 12.81 5.87 7346537 35.66 

 
Pedestrian 
Area  
1080x1920 

Dirac 0.6 31.09 10.22 7424520 38.09 

Fast ME 16.98 9.98 7334674 38.16 
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Fig. 13.  Comparison of ME results for Dirac 0.6 and Proposed, Night Shields, HD 729x1280 
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Fig. 14.  Comparison of ME results for Dirac 0.6 and Proposed Fast ME, Pedestrian Area, HD 1080x1920 
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5 Conclusion 
In this paper, an algorithm using semi-hierarchical 
way of motion estimation is proposed. It is the 
modification of the existing one with the addition of 
more initial search points in both temporal and 
spatial domain. By using unequal level of hierarchy 
for the different types of inter frames, the algorithm 
reduces the overall complexity effectively. The 
proposed strategy outperforms very well compared 
with the existing Dirac 0.6 version as shown in 
Table 1 and 2. It offers huge saving, at least two 
folds, in terms of the average number of SAD 
calculation per block for motion ranging from 
medium to high and more than one third saving for 
the static motion sequence. Moreover, the proposed 
algorithm has the ability to increase or decrease the 
search range depending upon the complexity of the 
motion in order to maintain the accuracy of the 
motion estimation to a certain level. Finally, it is 
obvious to see that the application of the proposed 
semi-hierarchical way of motion estimation will 
certainly reduce the complexity of the motion 
estimation algorithm and can be used in any type of 
standard video encoder. 
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