Automatic Discourse Structure Generation

Using Rhetorical Structure Theory

LeThanh, H.

2004

Automatic Discourse Structure Generation

A thesis submitted to Middlesex University
In partial fulfilment of the requirements for the degree of Doctor of Philosophy

Hnong LeThanh

School of Computing Science
Middlesex University

Abstract

This thesis addresses a difficult problem in text processing: creating a system to antomatically derive rhetorical structures of text. Although the rhetorical structure has proven to be useful in many fields of text processing such as text summarisation and information extraction, systems that automatically generate rhetorical structures with high accuracy are difficult to find. This is because discourse is one of the biggest and yet least well defined areas in linguistics. An agreement amongst researchers on the best method for analysing the rhetorical structure of text has not been found.

This thesis locuses on investigating a method to gencrate the rhetorical structures of text. By exploiting different cohesive devices, it proposes a method to recognise rhctorical relations between spans by checking for the appearance of these devices. These factors include cue phrases, noun-plirase cucs, verb-phrase cues, reference words, time references, substitation words, cillipscs, and syntactic information. The discourse analyser is divided into two levels: sentence-level and text-level. The former uses syntactic information and cue phrases to segment sentences into elementary discourse units and to generate a rhetorical structure for each sentence. The latter derives rhetorical relations between large spans and then replaces cach scntence by its corresponding rhetorical structure to produce the rhetorical stricture of text. The rhetorical structure at the texi-level is derived by selecting rhetorical relations to connect adjacent and non-overlapping spans to form a discourse structure that covers the entire text. Constraints of textual organisation and textual adjacency are effectively used in a beam search to reduce the search space in generating such rhetorical structures. Expcriments carried out in this research received $89.4 \% \mathrm{~F}$-score for the discourse scgucntation, $52.4 \% \mathrm{~F}$ score for the sentence-level discourse analyser and $38.1 \% \mathrm{~F}$-score for the final output of the system. It shows that this approach provides good performance comparison with current rescarch in discourse.

Acknowledgements

1 wish to express my deep gratitude to my supervisors, Dr. Geetha Λ beysinghe and Dr. Christian Huyek, whose guidance and encouragement made this work possiblc. Gcetha Abcysinghe has been a wonderful supervisor. This work could not be finished without her support. She taught me how to write and patiently corrected my papers even when she had millions of other things waiting. I am most grateful to her. I wish to express my sincere appreciation to Christian Huyck for his helpful insights, suggestions, and feedback on many different aspects of this work, and even for all of his questions that led me to think about parts of this work in new ways.

I would like to thank my examiners, Prof. Donia Seott and Dr. Siri Bavan, for theirs detailed comments and suggestions (which have greatly improved this dissertation) on the manuscript and for a very interesting discussion during the viva.
Λ big thank you to all of the following, whose feedback was much appreciated: Dr. Wendy Wu, Dr. Dan Diaper, Prof. William Wong, Dr. Ellie Maelaren, Dr. Soodamani Ramalingam, and Prof. Manfred Stede. 1 am very grateful to them for their feedback on the draft of this thesis.

I am also indebted to the Natural Language Processing Research Group of the University of Sheffield who provides a software package named a General Architecture for Text Engineering (GATE), which was used as the infrastructure of the system implemented in this thesis. I thank for their teehnical support in using GATE.

I am grateful to the School of Computing Seience, Middlesex University, for financially supporting me during my study in the United Kingdom.

Last but not the least, I would like to thank my friends: Nan, Vivianc, KebKok, Leonard. Amala, Hanh. Duc. Duong. Yen, Hai, Hieu, Mulh, Mnita, Jenny, and Kamal. The friendslip I have with them is what kept me going on during the tough times.

This thesis is dedicated to my parents and brother, whose encouragement and unwavering support over the years spent on this work has been a source of inspiration

Contents

I INTRODUCTION 1
1.1 Problifm Statieminnt 3
1.2 Outi.Ine of Tie Thesis 5
2 LITERATURE REVIEW 8
2.1 Existing Work on Discourse Analysis 8
2.1.I • Existing Work on Generating Discourse Structures. 8
2.1.2 Existing Work on Specific Tasks of Discourse Analysis 15
2.1.3 Summary 21
2.2 Rhetorical. Structure Theory 22
2.2.1 Overview 22
2.2.2 Discussion 27
2.3 Overview of the Corpus 29
3 DISCOURSE SEGMENTATION 30
3.1 Discoursi: SEGMI:NTATION IiY Syntax - Sti: I 30)
3.1.1 Discourse Segmentation Rules. 31
3.1.2 Segmentation Algorithm 34
3.1.3 Post Segmenting Process 39
3.2 Discourse Segment^tion by Cue Pirases - Stip 2 45
3.3 Summary anid Discussion 46
4 POSITING RIIETORICAL RELATIONS BETWEEN ELEMENTARY DISCOURSE UNITS 48
4.1 The Set of Relations 48
4.2 Factors Used for Signalling Rhetoricai: Relations 50
4.2.1 Cue Plwases 50
4.2.2 Noun-Phrase C'nes and Verb-Phrase Cues 57
4.2.3 Reiterative Devices. 59
4.2.4 Combining Reiteration Devices with Reference Words 60
4.2.5 Time References 62
4.2.6 Suhstitution Words 63
4.2.7 Ellipses 63
4.2.8 Synactic Information 64
4.3 CONDI'TIONS to Posit a Riletorical. Reiation 65
4.3.1 Scoring /fewristic Rules 65
4.3.2 Criteria to Recognise Relations 67
4.4 Prociedurie to Posit Rietorical Relations 73
4.5 Summary and Discission 75
5 CONSTRUCTING RHETORICAL STRUCTURES 77
5.1 Positing Relations Betwein Large Spans 77
5.2 CONSTRUCTING DIscourse Tri:I:S at TII: SI:NTIENCIE-IEVI:I. 84
5.3 Constructing Discoursie Trie:s at the Text-ıeve: 86
5.3.1 Search Space Reduction. 87
5.3.2 Discourse Analysing Algorithm 92
5.4 SUMNIARY 106
6 EVALUATION Ios
6.1 Description of thie Experiments 108
6.2 DISCUSSION 111
6.2.1 Performance of the Disconrse Segmenter $1 / 2$
6.2.2 Performance of the Sentence-level Discowse Analyser. 117
6:2:3- -Performance of DAS 120
6.3 SiJMmARY 121 121
7 * CONCLUSIONS 122
7.i Contributions of tile Tiesis 124
7.2 Future Work 126
BIBLIOGRAPIIY 129
APPENDIX 139
APPENDIX 2 143
APPENDIX 3 149
APPENDIX 4 155
APPENDIX 5 157
APPENDIX 6 161

List of Figures

Figure 2.1. Connecting a New Sentence into a Discourse Trce (Kurohashi and Nagao, 1994) 11
Figure 2.2. Derivation of Example (2.I) 14
Figure 2.3. Definition of the Purpose Relation 23
Figure 2.4. Basic Discourse Trees Used in this Thesis 24
Figure 2.4. Discourse Tree of Example (2.6) 25
Figure 2.5. Discourse Tree of Example (2.5) 25
Figure 2.6. Discourse Tree of Example (2.7) 26
Figure 3.1. Outline of the Discourse Segmentation by Syntax Ngorithm 35
Figure 3.2. Scgmenting Example (3.5) Using Syntactic lnformation 37
Figure 3.2. Scgmenting Example (3.5) Using Syntactic Information (con't) 38
Figure 3.3. Discourse Trec of Example (3.6) 40
Figure 3.4. Discourse Tree of Example (3.7) 41
Figure 3.5. Pseudo-code for the Defragmen Process of Discourse Segmentation by Syntax 43
Figure 3.6. Relations within Example (3.11) before Applying Defrogment Process 44
Figure 3.7. Relations within Example (3.11) after Applying Defragmem Process 45
Figure 4.1. Two Possible Discourse Trees Cor Example (4.7) 54
Figure 4.2. The D-LTAG Derivation for Example (4.8) 56
Figure 4.3. Outline of the Algorithm to ?osit Relations Betwecn Spans 74
Figure 5.1. Discourse Tree of Example (5.1) 78
Figure 5.2. Discoursc Trec of Example (5.2) 80
Figure 5.3. Discoursc Trec of Example (5.3) 81
Figure 5.4. Discoursc Tree of Example (5.4) 84
Figure 5.5. Discourse Tree of Fixample (5.5) 8.5
Figure 5.6. Discourse Trec of Example (5.6) 86
Figure 5.7. Search Spaces For the Hypothesis Set H. RASTA.Visits all Branches in the Tree. The Branches Drawn by Dotted Lines Are Pruned by DAS 90
Figure 5.8. Λ Situation When the Rhetorical Relation Between Two Non- Adjacent Spans Is Called 90
Figure 5.9. Routes Visit by the Two Analysers. RASTA Visits all Branches in the Trec. D \wedge S only Visits the Branehes Drawn by Solid Lines 91
Figure 5.10. Calculating the accumulated-score at time t 94
Figure 5.11. Outline of Λ Igorithm for Deriving Text-level Discourse Trees 95
Figure 5.12. Discourse Trees Generated by the Discourse Analyser 104
Figure 5.12. Discourse Trees Generated by the Discourse \wedge nalyser (con't) 105
Figure 6.1. Discourse Tree of Example (6.4) Taken From the RSF-I)T' Corpus 114
Figure 6.2. Discourse lree of Example (6.5) Generated by D \wedge S 115
Figure 6.3. Discourse Trec of Example (6.6) 116
Figure 6.4. Discourse Tree of Examples (6.7) and (6.8) 118

List of Tables

Table 3.1. Defragment Process of Example (3.11) 44
Table 4.1. Necessary Conditions for the List Relation 68
Table 4.2. Heuristic Rules for the List Relation 69
Table 4.3. Heuristic Rules for the Circumstance Relation 70
Table 4.4. Necessary Conditions for the Elaboration Relation 71
Table 4.5. Heuristic Rules for the Elaboration Relation 72
Table 5.1. Rhetorical Relations in $\mathrm{New} H$ 98
Table 5.2. Analysing Process - Round 1 99
Table 5.3. Analysing Process - Round 2 100
Table 5.4. Analysing Process - Round 3 102
Table 5.5. Analysing Process - Round 4 103
Table 5.6. Analysing Process - Round 5 104
Table 6.1. Performance's Mcasurements 108
Table 6.2. DAS Performance in Three Experiments 110
Table 6.3. DAS Performance Vs. Human Performance 111
Table 6.4. SPADE Performance, DAS Performance, and Iluman Performance at Sentence-level 120
Table A6.1. Necessary Conditions for the Sequence Relation 161
Table A6.2. Heuristic Rules for the Sequence Relation 162
Table A6.3. Necessary Conditions for the Contrast Relation 162
Table A6.4. Heuristic Rules for the Contrast Relation 163
Table A6.5. Heuristic Rules for the Antithesis Relation 164
Table A6.6. Necessary Conditions for the Concession Relation 164
Table A6.7. Heuristic Rules for the Concession Relation 164
Table A6.8. Necessary Conditions for the Condition Relation 165
Table A6.9. Heuristic Rules for the Condition Relation 165
Fable $\wedge 6.10$. Itcuristic Rules for the Otherwise Relation 166
Table A6.11. Heuristic Rules for the Hypothetical Relation 166
Table 16.12 . Heuristic Rules for the Cause Relation 167
Table A6.13. Heuristic Rules for the Result Relation 167
Table A6.14. Necessary Conditions for the Cause-Resulf Relation 168
Table A6.15. Heuristic Rules for the Cause-Result Relation 168
Table $\Lambda 6.16$. Necessary Conditions for the Purpose Relation 169
Table A6.17. Heuristic Rules for the Purpose Relation 169
Table 16.18 . Necessary Conditions for the Solutionhood Relation 170
Table A6.19. Heuristic Rules for the Solutionhood Relation 170
Table A6.20. Heuristic Rules for the Manner Relation 171
Table A6.21. Heuristic Rules for the Means Relation 171
Table A6.22. Heuristic Rules for the Interpretation Relation 172
Table A6.23. Necessary Conditions for the Evaluation Relation 173
Table A6.24. Heuristic Rulcs for the Evaluation Relation 173
Table A6.25. Heuristie Rules for the Summary Relation 174
Table A6.26. Necessary Conditions for the Explanation Relation 175
Table $\wedge 6.27$. Heuristic Rules for the Explanation Relation 175

1 Introduction

The current boom in information technology has produced an cnormous amount of information. From the abundance of information available, getting the information that we need is not an easy task. Using the vast amount of on-line text has become unmanageable without tools for retrieving and filtering. There are many World Wide Web scarch engines, which can locate possibly relevant texts, but they can provide hundreds of results, from which only a few may be really useful or relcvant. Obviously, we do not have time to read every document presented by ṣuch search engincs to find the most relcvant documents. Sometimes the title of these documents may not represent their contents very well. If we skip some of the documents by looking al the title or the search cngine index by which they are presented, we might miss valuable information. This problem can be; overcome by representing documents by their summarisations. Therefore, effective methods of automatic text summarisation are necessary today.

Generating multi-documenl summaries also has a lot of denands. For example, a doctor needs information about a specific disease. He then extracts information involving that disease from medical digital libraries. What he needs is a document that summarises all the information from this search. This document needs to be well-organised and coherent. This is the area of information extraction and multidocument summarisation.

Most existing text summarisation systems are based on text extraction (Rau et al., 1994; Mitra et al., 1997). These systems identify and extract key sentences or paragraphs from an article using statistical techniques. The inost important parts of the text are then copied and pasted into the summary. This approach often gives us incoherent texts since the summary may consist of scutences that do not naturally follow one another. Λ new trend in text summarisation solves the incoherence problem by using discourse strategies (Joncs, 1993; Rino and Scott, 1994: Marcu. 2000: Polanyi et al., 2004), which analyse the colierence of a text by a rhetorical structure' that deseribes rhetorical relations between different parts of

[^0]a text. ${ }^{2}$ The salient units from these rhetorical relations, which are called nuclei by Mann and Thompson (1988), are selected and organised by using heuristics to generate a summary. Experiments from different summarisation systems have shown that the approach based on discourse strategies aelieves better results than systems based on other strategies.

Discourse strategies not only improve the performance of text summarisation systems, but also support other fields of text processing such as information retrieval (Miike et al, 1994; Morato, 2003), text translation (Marcu et al., 2000), and text understanding (Rutledge et al., 2000; Torrance and Bouayad-Agha, 2001). Let us have a brief look at the impact of discourse strategics on one of the above text processing applications - information retrieval. In à normal information retrieval system, documents (or parts of a document) are selected by statistical techniques based on the relevant words between documents and a search query. Discourse analysis can improve the performance of these systems by concentrating on salient parts (the nuclei) of the search query and documents, since the nuclei are the most important parts in realising the writer's communicative goals (see Section 2.2.1).

Although research in text processing has proved that discourse analysis is an efficient approach in constructing automatic text processing systems, systems using discourse strategies are still rare. This is because discourse is eomplex and vague. Discourse analysis is diflicult for linguistic analysts amd it is much more difficult to do automatically by a computational system. Literature shows that a considerable amount of work has been carried out in this area (Grosz and Sydner, 1986; Mann and Thompson, 1988; Hovy, 1993; Marcu, 2000; Forbes et al., 2003). However, most research has concentrated on specific discourse phenomena (Schiffrin, 1987; Hirschberg and Litman, 1993; Kehler, 1994; Forbes and Webber, 2002). Only a few algorillms for implementing rhetorical struetures have been proposed so far (Marcu, 2000; Corston, 1998; Forbes et al., 2003; Polanyi et al., 2004). Realising the lack of discourse systems and the great demand for text processing applications, we have carried out researeh in diseourse amalysis,

[^1]aiming to construct a system that automatically derives rheiorical structures for lext. The next section points out the main tasks of a discourse analysing system and identifies the research targets of this thesis by briefly reviewing the remaining problems of existing research in discourse.

1.1 Problem Statement

This thesis aims to construct a Discourse Analysing System (DAS) that automatically generates rhetorical structures of text. The main tasks of a normal discourse system are:

1. Segment text into discourse units. The discourse units should have independent functional integrity, which are essentially clauses.
2. Posit rhetorical relations between text spans ${ }^{3}$. After the text is segmented into elementary discourse units, the next task of a discourse system is to recognise all possible rhetorical relations between these units and between larger text spans.
3. Generate rhetorieal struetures that best deseribe the text. The hypothetical rhetorical relations created in the previous task (task 2) are selected and applice to construct a rhetorical structure that represents the text. \wedge text may have more than one rhetorical structure that can describe it.

Although many attempts have been carried out to build discourse systems, the performances of existing discourse systems are still low. For this reason, this thesis concentrates on improving both speed and quality of a discourse analyser. Inspired by Marcu (2000) and Corston (1998), the thesis focuses on the following issues:

Inproving the correctness of discourse segment bomndaries

Discourse segmentation is the first step in discourse analysis. The output of the discourse segmentation process is used to generate rhetorical structures of text. Therefore, a high perlominace diseourse segmenter is eritical lior a discourse

[^2]system, which derives discourse trees for the entire text. Many efforts have been put in this task (Passomncau, 1997; Marcu, 1999; Forbes ạd Miltsakaki, 2002; Heusinger, 2001). However, the performances of existing discourse segmenters are still not good enough to assist the task of gencrating discourse trees. For this reason, exploring aspects that improve the correctness of discourse segments is one of the main targets of this thesis. Syntactic information and cue phrases are used to tackle this problem. This method is discussed in Chapter 3.

Exploring wew foctors to recognise rhetorical relotions

Most research in discourse atalysis is based on eue phrases to recognise rhetorical relations between text spans (Schiffrin, 1987; Marcu, 2000; Forbes and Webber, 2002). However, from the earliest stages of discourse theoretical development, it has been clear that in most texts, a large fraction of relations were not signalled by any word, phrase, or syntactic configuration. Different studies use different recognition factors to deal with such cases. Nevertheless, most of these studies are empirical and only concentrate on specific discourse situations (Kehler and Shieber, 1997; Poesio and Di Eugenio, 2001). In this thesis, different recognition factors are explored and integrated into the system. In addition to exploiting new properties of the factors that have been investigated in other rescarch (syntactic information, cue phrases, time references, reitcrative devices, reference words, substitution words, and ellipses), we propose new recognition factors (noun-phrase cues and verb-phrase cues). These factors are discussed in Chapter 4.

Improving the efficiency and reducing the computational complexity of the discourse analyser

Unlike syntactic parsers which have a long history, discourse analysing has only received attention since 1980s. As such only a few algorithms for generating rhetorical struetures have been proposed (Marcu, 2000; Corston, 1998; Forbes et al., 2003); and fewer algorithms have been implemented. As discussed in Section 2.1.1, although the discourse systems created by Marcu (2000) and Corston
(1998) are advanced when compared with other discourse systems, the computational complexity of these systems is still bigh; the system's performances still need to be improved. For this reason, this thesis concentrates on reducing the computational complexity of the discourse analyser and improving the system's performance. The solution to these problems is presented in Chapter 5.

1.2 Outline of the Thesis

We began Clapter I by introducing the motivation for carrying out this research. We then elarified the problems that this thesis attempts to solve. A summary of the rest of this thesis is given below.

Chapter 2: Literature Review. We introduce existing apmoches to discourse analysis, aining to understand the state of the art of the field and to determine an approach for this thesis. Since the Rhetorical Structure Theory (RST^{1}) was chosen as the framework for this research, we present an overvicw of the RSI to inform the reader of the basic concepts of this theory. Λ fter that, the unresolved issues of the RST are highlighted. Finally, we introduce the corpus that is used in this research in constructing a discourse system and in doing experiments.

Chapter 3: Discourse Segmentation. A method that uses sentential syntactic structures and cue plases to segment text into elementary discourse units is proposed. Λ sentence is first segmented into clauses by using its syntactic structure. Alter that, DAS searches for strong eue phrases from these clanses and continually splits the clauses that contain a strong cue phrasc. Finally, a post segmenting process is used to refine segment boundarics.

Chapter 4: Positing Rlietorical Relations between Elementary Discourse Units. We introduce the relation set that is used in this thesis to posit rhetorical relations. Several factors that contribute to the process of recognising relations are analysed. They are syntactic information, cue phrases, noun-phrase cues, verbphrase enes, time references, reiterative devices, reference words. substituion ${ }^{4}$ words, and cllijpses, anong which noun-phrase cucs and verb-phrase enes are new factors proposed in this thesis. We present a method of positing rhetorical
relations based on these factors. Different scores are assigned to these factors, so that DAS can determine which relation is stronger than the others. Conditions for recognising a List, Elaboration, and Circumstance relation are then introduced as representative samples of this method. The complete set of conditions for recognising relations is in Appendix 6 .

Chapter 5: Constructing Rhetorical Structures. This chapter introduces a method for deriving rhetorical structures of text at two levels: sentence-level (intra-sentence) and text-level (inter-sentences), concentrating on improving the system's performance and reducing the computational complexity. At the sentence-level, information about sentential syntactic structure permits DAS to generate one and only one rhetorical structure for each sentence. At the text-level, constraints about textual organisation and textual adjacency are integrated into a beam search to reduce the size of the space in searching for the best discoursc trees.

Clapter 6: Evaluation. Since a standard benchmark for evaluating a discourse system does not exist, this chapter proposcs a method to evaluate the discourse system based on different levels of processing. Experiments and their results are reported, discussed and compared with the most recent and best performance discourse systems. The experiments show that syntactic information and cue phrases are efficient in constructing discourse structures at the sentence-level, especially in discourse segmentation. The current version of DAS provides promising results compared to discourse trees gencrated by humans.

Chapter 7: Conclusions. This chapter summarises the thesis and outlines its contribullonis. We llst some of the open issues that have not been addressed in this work, and we suggest directions for future research.

The contributions of this thesis are on several points. Λ new segmentation method, a new method for deriving sentential discourse trecs; and new factors to signal discourse relations are proposed. We optimise the procedure to posit relations that is first propused by Corston (1998). We extend Marals (2000) proposition that is used to posit relations between large spans to make the most of cue phrases. We improve the algorithm to construct discourse trees from
hypothetical relations hetween text spans, aiming to reduce the computational complexity of the algorithm and to improve the system's performance.

The architecture of $\mathrm{D} \wedge \mathrm{S}$ is deseribed in \wedge ppendix 1 . The extended version of algorithms implemented in this thesis is presented in Appciodix 2. Appendices 3 and 4 list the cue phrases, NP-cues and VP-cucs that are used in this research. The syntactic clains that are used in DAS to segment a scntence into clementary discourse units are shown in Λ ppendix 5. Finally, a definition of rhetorical relations and conditions to recognise rhetorical relations arc introduced in Appendix 6.

2 Literature Review

In this chapter, we first discuss existing work on discourse analysis. Then, the discourse theory that this research was based on - the Rhetorical Structure Theory - is introduced. Λ brie $\{$ description of the data used in experiments of this rescarch is given at the end of this chapter.

2.1 Existing Work on Discourse Analysis

We review research on discourse analysis focussing on two aspects: one relates to generating an entire discourse structure of text, the other relates to solving specific tasks of discourse analysis (e.g., discourse segmentation). Section 2.1.1 introduces our survey which is based on the first aspect. The purpose of this survey is to identify different theorics in discourse analysis and to select a discourse theory to be used as the framework of our research. Scetion 2.1.2 carrics out another survey based on the second aspect mentioned above, aiming to investigate all appoaches that have been used to solve each task.

2.1.1 Existing Work on Generating Discourse Structures

In this section, the main theories that inspire most research in discourse (Grosz and Sidner, 1986; Mam and Thompson, 1988) are described. Thereafter we introduce some of the most recent studies on generating a discourse system that follow these theories.

2.1.1.1 Grosz and Sidner (1986)

One of the main discourse theories is proposed by Grosz and Sidner (1986). In this approach, the intention of the author in creating a text is crucial in leading the rhetorical structure of that text. According to Grosz and Sidner, a rhetorical structure is composed of three components: a linguistic structure, an intentional structure, and an attentional state. The linguistic structure consists of Discourse Scgments (DSs) and an embedding relationship that can hold between them. The intentional structure is achieved by recognising the particular purpose of the author in producing the text (called Discourse Purpose or DP'), and the way each DS contributes to the overall discourse purpose (called Discourse Segment

Purpose or DSP). Relations between intentions indicate whether onc intention contributes to the satisfaction of another (dominance) or whether one intention must be satisfied before another (satisfaction-precedence).

The attentional state of a rhetorical structure is modelled by a set of focus spaces ${ }^{4}$ and a set of transition rules ${ }^{5}$. The transition rules push a new focus space onto the focus stack when a text segment is open and pop it out when the segment is closed. Grosz and Sidner have proposed a method to recognise focus spaces based on cue phrases and anaphora resolution. They arguc that the primary role of the stack of the focus space is to determinc the DSPs that have a relationship with, the DSP of the current segment. In other words, the focus space reffects the intentional structure.

The discourse theory proposed by Grosz and Sidner leaves many issues unresolved. It would require much more intensive work in order to transform it from theory into a real system, capable of automatically generating rhetorical structures.

2.1.1.2 Mann and Tlıompson (1988)

Another discourse theory, which exists in parallel with the one proposed by Grosz and Sidner (1986), is the Rhetorical Structure Thicory proposed by Mann and Thompson (1988). Mann and Thompson have proposed and defined a set of 23 rhetorical relations for deriving rhetorical structures and a definition for each of these relations. They suggest that this relation set is not a closed list, but could be extended and modified for the purposes of particular genres and cultural styles. In order to derive the rhetorical structure of texts, one must first divide text into clauses and clause-like units, and then recognise relations between these units using the set of 23 rhetorical relations mentioned above. The reader is referred to Section 2.2 for a detailed description of the RST. Mam and Thompson admit the existence of multiple amalyses in the RST, which causes difficulties in deriving and evaluating discourse systems. The main reasons for multiple analyses are:

[^3]1. The difference of boundary judgements between analysts
2. The text structure ambiguity
3. The phenomenon of simultaneous analyses: Several analyses are acceptable for a specific text.
4. The differences between analysts: One text is analysed in different ways by different analysts.
5. The analytical errors: This situation happens with inexperienced analysts.

The theory introduced by Grosz and Sidner (1986) and the RST agree that discourse is structured in a hierarchy of non-overlapping constituents. However, the internal structure of a segment in the theory of Grosz and Sidner (1986) is different to that of a text span in the RST. The former consists of an utterance of the discourse segment purpose and any number of embedded segments. The latter consists of a nucleus, which expresses the content that the writer wants to convey, and a satellite, which provides additional information to the nucleus.

2.1.1.3 Poesio and Di Eugenio (2001)

Poesio and Di Eugenio (2001) have evaluated the work of Grosz and Sidner (1986) by carrying out an empirical study of the relation between rhetorical structure and anaphoric accessibility. The Sherlock corpus used in their experiment is a collection of seventeen tutorial dialogues animotated according to Relational Discourse Analysis (RDA) (Moore and Pollack:, 1992). RDA is a theory of rhetorical structure that attempts to merge the RST with Grosz and Sidner's (1986) theory. In the RDA, the utterance of the discourse segment purpose is a core, whereas its embedded segments are contributors. A core can have any number of contributors, each of which plays a role in serving the purpose expressed by the core.

One goal in Poesio and Di Eugenio's research is to find out when focus spaces should be openced and closed. They assume that contributors slay on the stack until the RD Λ-seginent is completed. They claim that only the simplest treatments of
 complex ones prohably are not. In order to deal with this, the attentional state has to be seen as a list instead of a stack as in Grosz and Sidncr's (1986) theory.

Poesio and Di Eugenio (2001) leave two open issues. The first issue is how to supervise discourse entitics on the stack: the more entities are in the stack, the more likely that an antecedent will be found. However, this'may result in losing the crucial property of the attentional state and increasing scarch ambiguity. As such an anaphoric resolution mechanism is proposed to deal with this issue, which is something that can be explored in future work. The second issuc is the multiple analyses of discourse (sec Section 2.1.1.2) and because of this, they do not expect everybody to agree on the particular analyses proposed in their paper.

2.1.1.4 Kurohashi and Nagao (1994)

Kurohashi and Nagao (1994) propose a method of detecting rhetorical structures automatically using surface information in sentences: cue plarases, chains of identical and similar words, and similarity between two sentenecs. The rhetorical structures derived by their system are similar to rhetorical structures in the RST. However, the elementary discourse tuits in Kurohashi and Nagio's system are sentences instead of clauses as in the RST. Their system starts with an empty discourse trec. Each step a new sentence is connected to the node on the right most edge in the discourse tree (Figure 2.1).

Figure 2.1: Comuecting a New Sentence into a Discourse Tree (Kurohashi and Nagao, 1994)

CS - A Possible Comected Sentence on the Right Edge in the ISS Iree
DS - Discourse Structure RS - Ranking Score \quad NS - New Sentence

The node which is chosen to be connected with is the one with the highest ranking score. This score is computed by the three types of surface information mentioned above (i.e., cue phrases, chains of identical and similar words, and similarity between two spans).

2.1.1.5 Marcu (2000), Marcu (1999)

Marcu (2000) ${ }^{6}$ presents a rhetorical parsing model that uses manually derived rules to construct rhetorical structures. This approach uses cue phrases to segment a text into elementary discourse units. To posit hypothetical rhetorical relations, Marcu uses a discourse-marker-based algorithm and a word co-occurrence-based algorithm. The co-occurrence-based algorithm is used to detect whether two sentences or two paragraphs "talk about" the same thing or not. Since this algorithm is based on the co-occurrence of words, it camot deal with the case when the two sentences or paragraphs use synonyms or similar expressions to refer to one meaning. Marcu (2000) proposed a theory, which states that, "If a rhetorical relation R holds between two text spans of the tree structure of a text that relation also holds between the most important wits of the constituent spans". From this point of view, Marcu (2000) analyses relations between text spans by considering only recognition factors from their muclei. Although Marcu's algorithm for constructing RST representations is considerably advanced compared to other methods, several problems have not been considered. Since Marcu's system is heavily dependent on cue phrases, it has problems when cue phrases are not present in the text. In addition, as Marcu's system produces all RST trees compatible with the relations that might hold between pairs of RST terminal nodes, his system suffers from combinatorial explosion when the number of relations increases exponentially (sce Section 2.1.2.3).

Marcu (1999) introduces a decision-based approach to rlictorical parsing. This approach relies on a corpus of manually built discourse trees and the adoption of a shift-reduce parsing model to automatically derive rules. By evaluating the experimental results, Maren (1999) clains that his :ystem i:: sufficient for determining the hicrarchical structure of a text and the nuclearity status of

[^4]discourse segments. However, it is not very good at determining correctly the: elementary discourse units and the rhetorical relations that hold between discourse segments.

2.1.1.6 Corston (1998)

Corston (1998) follows Marcu's (2000) research and creates a discourse processing component named RASTA. He proposes a set of thirteen rhetorical relations and builds RST trees for articles from the Encarta corpus. Corston reports a list of conditions that must be met for a text segment to be considered as an elementary discourse unit. These conditions are based on the syntactic structure of sentences. This syntactic-based approach is more reliable than the cuc-phrasebased approach proposed lyy Marcu (2000) since most elementary discourse units are clauses. Furthermore, the sentential syntactic structure is always present, whereas cue phrases can be absent in a text. Unfortunately, it is not clear how the syntactic conditions reported by Corston (1998) are implemented in R \triangle STA.

Corston combines cue phrases with anaphora and referential continuity to recognise rhetorical relations. A relation is posited between iwo discourse units if they satisfy several criteria that characterise this relation. If two or more relations are suggested by the system, heuristic scores are used to choose the best one. These scores also help in filtering out all ill-formed trees and in reducing the algorithm's complexity.

Corston uses the formal model of discourse that was presented by Mareu (2000) and improves Marcu's (2000) discourse parsing algorithm in order to reduce its search space. Although considerable improvement has been made when compared with Marcu's (2000) system, the search space of R^S'「^ still contains redundancy, which increases the computational complexity of the discourse analyser. In addition, Corston does not consider the case of multiple discourse connectives. .

2.1.1.7 Forbes et al. (20103)

Forbes et al. (2003) have developed an aproach to discourse analysis by applying Lexicalised Tree Adjoining Grammar to Discourse (D-LTAG). In this approach,
discourse connectives are used as anchors to comnect discourse sub-trees into bigger discourse trees. The typical grammar rule for this system is:

Tree \rightarrow SubTrcel + [anchor $]+$ SubTrec 2
The anchor that cominects two discourse sub-trees can be ain overt comective or a lexically unrealised anchor such as a comma or a full stop. For example, Example (2.1) presents two differenit situations (a) and (b). In Example (2.1.a), two clauses "you shouldn't trist John" and "he never returns what he borrows" are comected by the comective "because". The discourse tree of Example (2.1.a) is illustrated in Figure 2.2.a. It consists of two sub-trees. Tl and T^{2}, which correspond to the two clauses mentioned above, and the anchor "because". In Example (2.1.b), two sentences "you shouldn't trust John". and "he never returns what he borrows" are separated by a full stop. Figure 2.2.b slows how this situation is presented by a D-1,T^G tree. The two sub-trees T3 and 144 in Figure 2.2.b correspond to the two sentences in Example (2.1.b). The anchor that connects these sub-trees is the full stop.
(2.1) a. You shouldn't trust John because he never returns what he borrows.
b. You shouldn'I trust John. He never returns what he borrows.

Figure 2.2. Derivation of Example (2.1)

Larger D-LTAG trees are achicved with two operations, adjunction and substitution. Adjunction adds an auxiliary tree with at least one tree node, whereas substitution replaces each tree node with a corresponding D-LTAG sub-tree.

Forbes et al. (2003) show that the D-LTAG grammar simplifies rhetorical structures, while allowing the realisation of a foll range of ancorical relations. Despite its potential ability in discourse analysis, many problems in the D-LJ \wedge G still need to be resolved. Although anaphoric and presuppositional properties of
lexical items are proposed by Forbes ct al. (2003) to extract certain aspects of discourse meaning, these features have not been investigated: Also, Forbes et al.'s (2003) system cannot be successful without discourse comectives. Tasks such as discourse segmenting, determining connections between discourse units, and recognising relation names in the absence of overt connectives are not mentioned in their rescarch. Since an implementation of the D-LTAG ${ }^{\text {a }}$ and its experimental results have not been reported, it is impossible to compare the performance of this approach with other research in this field.

2.1.2 Existing Work on Specific Tasks of Discourse Analysis

In this section, we perform a critical survey of the researcli that deals with specific tasks of discourse analysis, including discourse segmentation (Section 2.1.2.1), relation recognition (Section 2.1.2.2), discourse structure gencration (Section 2.1.2.3), and system evaluation (Section 2.1.2.4). From that point of view, we propose our solution for each task, which will be introduced later in Chapters 3, 4, 5 , and 6.

2.1.2.1 Discoursc Scgmentation

Discourse las been automatically segmented using disparate phenomena: cue phrases (Grosz and Sydner, 1986; Marcu, 2000; Passonneaiu and Litman, 1997), syntactic information (Batliner et al., 1996; Corston, 1998), and semantic information (Polanyi et al., 2004). However, the criteria to indicate the exact discourse segment boundaries are still not certain.

The shallow parser introduced by Marcu (2000) splits iext into clementary discourse units by mapping cue phrases and punctuation marks. Marcu does not provide any solution to deal with the case when cuc phrases are not present in text, and his system fails in this situation. For example, Marcu's system cannot detect the two discourse units presented in Example (2.2) below:
(2.2) [As part of the upscale push, Kidder is putting brokers through a 20 weck training course,] [turning them into "investment counselors" with knowledge of corporate finonce. $]^{7}$

Passonneau and Litman (1997) propose two sets of algoritlums for lincar segmentation based on linguistic features of discourse. The first set is based on referential pronoun phrases, cue phrases, and pauses. The sceond set uses error analysis and a machine learning method. The performance of their segmentation modules are quite advanced in comparison with other rescarch at that time. However, the machine learning method requires training, which heavily depends on manually annotated eorpora. A small training corpus may lead to lack of generality and a large discourse corpus for such a training purpose is diffieult to find. ${ }^{\text {B }}$

Onc well-organised system using the syntactic approach is proposed by Corston (1998). He defines a list of grammatical conditions that a text segment must satisfy in order to be considered as an elementary discourse unit. Unfortunately, the segmentation algorithm used by him is not fully explained in his thesis. Corston's system docs not consider the cases when strong cue phrases make noum phrases become elementary discourse units. The two elementary discourse units in Example (2.3) are recognised as only one by Corston's system.
(2.3) [According to a Kidder World story about Mr. Megargel,] [all the firm has to do is "position ourselves more in the deal flow."]

Polanyi et al. (2004) propose a new approaeh based on discourse semanties. Rather than posit which syntactic objects function as discourse segments, they start by establishing the semantic basis for functioning as a segment and then identify whieh syntactic constructions earry the semantie information needed for discourse segment status. The segments that have the potential to independently establish an anchor point for future continuation are identified as Basic Discourse Units (BDUs). After that, they draw a further distinction between 13DUs as a elass

[^5]of syntactic structures with the potential to establish anchor points and the BDUs in a givell sentence, which function as indexical anchor points in a specific discourse. Despite being cumbersome, this approach has a potential to provide a discourse segmenter with high accuracy. Unfortunately, no experimental result of diseourse segmentation was reported in this research. It is thus diflicult to compare this approach with the others.

2.1.2.2 Recognising Discourse Relations

Recognising rhetorical relations is the most erucial and difficult task in deriving the rhetorical structure of text. Although much research has been carried out in this area, there are many situations in which no simple rule can be established to recognise relations.

Cue phrases have been the centre of research in this area since using cue phrases is the most efficient method of recognising relations (Schiffrin, 1987; Marcu, 2000; Forbes and Wchber, 2002). Several corpus-based works have attempted to build a sct of potential cue plirases (Grosz and Sidner, 1986; Hirschberg and Litman, 1993; Knott and Dale, 1994; Mareu, 2000). Some studies pay attention to the diversity of meanings associated with, some specific cue phrases, based on the context or the conversational moves (Halliday and Hassan, 1976; Schiffrii, 1987; Korbayov and Webber, 2000).

Studies on the disambiguation between the discourse sense and the sentential sense of a cue phrase include Hirschberg and Litman (1993), Iitman (1996), Siegel and McKeown (1994), and Marcu (2000) (sec Section 4.2.1 for the concept of "disambiguation of a cue phrase"). Siegel and McKcown (1994) develop an approach that: is based on decision trees to test adjacent punctuation marks, cuc phrases, and near-by words, and to discriminate between cue plirases. They use a genetic algorithm to automatically determine which words or punctuations near a cue phrase are important for disambiguation. Litman (1996) uses machine learning techuiques to classify the discourse sense and sentential sense of cue phrases, using features of eue phrases in text and speech. These apporoches have shown that the sense of a cue phrase ean be determined by the orthographic environment of the cue phrase.

As Redeker (1990) stated, only 50% of clauses contain cue phrases. Therefore, although cue phrases are the easiest means of signalling fhetorical relations, olher recognition factors still need to be investigated. Research las slown that lexical cohesion can be used to identify the movement of topics. (Grosz and Sidner, 1986); sometimes it can even determine rhetorical relations between small text spans (Harabagiu and Maiorano, 1999). Several forms of lexical cohesion have been exploited, including anaphoric references (Poesio and Di Eugenio, 2001; Webber et al., 2003), and VP-ellipsis (Kehler, 1994; Kehler and Shieber, 1997). (See Sections 4.2.4 and 4.2.7 for the concept of "anaphoric references" and "VPellipsis" respectively.) It is more difficult to recognise relations using lexical cohesion than using eue phrases because of two reasons. First, cohesive devices camot be simply delected by pattern mateling like cue phrases. It reçuires a more complicated mechanism (see Chapter 4). Second, the lexical cohesion cannot directly signal a rhetorical relation most of the time. Instead, it often indieates a semantic link among text spans. For this reason, in order to recognise rhetorical relations, research often uses the solution of combining different linguistic factors ${ }^{4}$ (e.g., Corston, 1998).

2.1.2.3 Generating Discourse Structures

The ainn of this task is to gencrate discourse structures of text, given all possible relations that hold between text spans. Since we concentrate on minimising the search space when producing well-formed discourse structures, we will look at different approaches related to this problem both in a direct way (i.e., generating discourse structures of text such as Marcu (2000)) and in ain indirect way (i.e., generating a text using discourse structures such as Hovy (1993)).

Hovy (1993) describes methods of automated planning and generating multisentential texts using rhetorical structure. He proposes a: method based on predefined structures or schemas. Jlovy's method is based on the idea that text structure reflects the intention of the writer. With the predefinced knowledge about the text (the structure of a scientific paper, a dialogue with il commmencative goal. ete.), a schema is developed for that text, and then the content of the text is mapped to this scliema to construct a rhetorical structure. This approach produces
acceptable results in restrieted domains where the library of schemas is provided. The schema is especially efficient in reducing the combination of spans in a text that consists of two or more paragraphs. However, it is difficult to extend it to freer text types, as this approach relies on a library of schemas.

In contrast, Marcu's (2000) system can apply to unrestricted text, but is faced with combinatorial explosion. Marcu's system generates all possible combinations of nodes according to the hypothesized relations between spans, and then filters out ill-formed trees based on the heuristics about trec quality. These heuristics are constraints about the order of the two facts involved in a rhetorical relation and the adjacency of discourse segments. The disadvantage of Marcu's approach is that it produces great numbers of ill-formed trees during its process, which is its essential redundancy in computation. As the number of relations increases, the number of possible discourse trees increases exponentially. The construction of these ill-formed trecs can be eliminated before hand if the above heuristics are applied during the process of gencrating discourse trees instead of applying them after generation. Another problem of Marcu's (2000) system involves the evaluation of discourse trees to select the most preferred one. According to Mareu (2000), the right-branching structures are preferred because they reflect basic organisational properties of a text. This observation, as Corston (1998) pointed out, is not valid for all genres of text. The right-branching structure is also not the chosen one in Example (5.6) (shown later in Chapter 5), which is taken from the RST-DT corpus (RSI-DI', 2002).

The trec-construeting algorithm in R \wedge STA, proposed by Corston (1998), solves the combinatorial problem in Marcu (2000) by using a recursive, backtracking algorithm that produces only well-formed trees. If RASTA finds a combination of two spans leading to an ill-formed tree, it will backtrack and go to another direction, thus reducing the search space. By applying the higher score hypotheses before the lower ones, RASTA tends to produce the most reliable RSI. trees first. Although a lot of improvement has been made over Marcu's (2000) mothod, $\mathrm{R} \wedge \mathrm{SI}^{\circ} \mathrm{A}$ scarch space is still not optimal because of two reasons. Pirst, RASTA does not consider the adjacency constraint when it constructs discourse trees. Second, RASTA does not trace the already visited routes that generate ill-
formed trees. As a result, RASTA continues to check the same combinations of discourse units again and again. These problems are further discussed in Section 5.3.1.

2.1.2.4 Evaluation Methods

Evaluating a discourse system is difficult. Most research in discourse analysis concentrates on proposing discourse analysing methods (Poesio and Di Eugenio, 2001; Forbes et al., 2003). There are only a few efforts to install a real discourse ${ }_{y}$ system (Kurohashi and Nagao, 1994; Marcu, 2000; Corston, 1998), and fewer efforts to evaluate the system's performance (Marcu, 2000; Soricut and Marcu, 2003). One reason is that discourse is too complex and ill defined to generate rules that can automatically derive rhetorical relations, and even if a system that can generate rhetorical structures is available, it is difficult to cloose which discourse trees should be used to compare because of the multiple analysis property of discourse. To our knowledge, there is no standard benchmark to evaluate a discourse system. Each researcher has evaluated their discourse system using different data. Also, they do not compare the system's performance with others.

Corston (1998) assesses discourse trees by scores of the trecs, which are calculated by heuristic scores of recognition factors that contribute to the relation. No experimental result has been reported by Corston (1998). Marcu (2000) manually evaluates discourse trees of five texts by comparing, rhetorical relations of the discourse trees built by his system and by human annotators. However, the method of manually evaluating thetorical siructures would be extremely costly and inefficient for a larger number of texts. Soricut and Marcu (2003) evaluate their sentence-level discourse parser at different tasks: discourse segmentation and discourse parsing. These tasks are cvaluated in both cases, iwhen correct data or automatically gencrated data are used as the input. The evaluating approach of Soricut and Marcu is better than those reported in Marcu (2000) and Corston (1998) since it can assess the real performance of each !!odule, as well as the effect of the previous module on the next onc.

2.1.3 Summary

Two main discourse theories have been reported in this section. The first discourse theory proposed by Grosz and Sidner ereates a thetorical structure using three components: the linguistic strueture, the intentional strueture, and the attentional state. An example of research following this theory is Poesio and Di Eugenio (2001). The second discourse theory, which is proposed by Mann and Thompson (1988), is called the Rhetorical Structure Theory. Λ rhetorical structure that follows the RST framework is derived by rhetorical relations between adjacent, non-overlapping text spans. Corston (1998), Mellish et al. (1998), and Marcu (2000) follow this theory. Several studies are elose to the representation of the RST, but do not follow exactly the RST framework (Kurohashi and Nagao, 1994; Cristea, 2000; Forbes et al., 2003).

The discourse segmentation has been done using variouș means: cue phrases (Grosz and Sydner, 1986; Passomecau and Litman, 1997), syntactic information (Corston, 1998), and semantic information (Polanyi et al., 2004).

Studies on recognising relations between discourse constituents can be divided into three main trends, depending on the features being used. These trends are cue-phrase-based (Hirschberg and Litman, 1993; Knott and Dale, 1994: Kurohashi and Nagao, 1994; Marcu, 2000; Forbes et al., 2003), lexical-cohesionbased (Poesio and Di Eugenio, 2001; Webler et al., 2003; Kehler and Shieber, 1997), and a combination of eue phrases and lexical information (Corston, 1998). Discourse relations are generated using two basic methods: rule-based (Kurohashii and Nagao, 1994; Corston, 1998; Forbes et al., 2003) and maehine-learning-based (Marcu, 1999; Marcu and Echihabi, 2002).

In respeet of construeting discourse structures, we have introduced two approaches: scliema-based (llovy, 1993) and non-schema-based (Maren, 2000; Corston, 1998). The former relies on predefined knowledge about the text. The latter can be applied to unrestricted text, but is faced with combinatorial explosion.

We follow the approach proposed by Mareu (2000) and extended by Corston (1998), using the RST as a framework for the discourse system. Before
introducing our approach to the problem of discourse structure generation, let us have an overview of the Rhetorical Structure Theory, informing the reader of the basic definition of a rhetorical structure. This information is presented in Section 2.2. Section 2.2 also analyses the open issues in the Rhetorical Structure Theory that research on this theory have been facing.

2.2 Rhetorical Structure Theory

2.2.1 Overview

Rhetorical Structure Theory is a method of representing the coherence of texts, in order to understand discourse structure. It models the rhetorical structure of a text by a hierarchical tree that labels relations between text spains. (typically clauses or larger linguistic units). This hierarchical tree diagram is called "rhetorical tree", "discourse tree", or "RST tree". The leaves of a discourse; tree correspond to clauses or clause-like units with independent functional integ!ity. Mcanwhile, the internal nodes of a discourse tree correspond to spans that are larger than clauses.

The children of an RSI^{-}tree correspond to adjacent, non-overlapping spans, which are joined by a rhetorical relation. This relation can be asymmetric or symmetric. An asymmetric relation, also called a nuclear-satellite relation, involves two spans, one of which is more essential to the writer's goals than another. The more important span in a rlictorical relation is labelled a nucleus (N); whereas the less important one is labelled a satellite (S). The nucleus of a rhetorical relation is comprehensive and independent of the satellite, but not viceversa. An asymmetric relation is shown in Example (2.4) below:
(2.4) [Its 1,400-member brokerage operation reported an estimated $\$ 5$ million loss last year,][alhough Kidder expects it to turn a profit this year.]

The deletion of the second clause in Example (2.4) does not significantly affect the meaning of the whole text. The first clause is still understandable without the second clause. Meanwhile, the second clause is not understandable without the first clause. For this reason, the first clause is more important than the second clause in respect to the writer's purpose. Therefore, the first clause is the nucleus, and the second clause is the satellite of an asymmetric relation between them.

A symmetric relation, also called a multi-nuclear relation, involves two or more spans, ${ }^{9}$ each of which is equally important in respect to the writer's intention in producing texts, sucli as the two clauses "Three seats currently are vacant" and "and three others are likely to be filled within a few yearr" in Example (2.5) below. Each node in a symmetric relation is a nucleus.
(2.5) [Three seats currently are vacant][and three others arc likely to be filled within a few years.].

A rhetorical relation is recognised by constraints on the nucleus, on the satellite, and on the combination of the nucleus and the satellite (Mann and Thompson, 1988). Figure 2.3 illustrates this recognition process by a representative sample relation - the Purpose relation.

Constraints on N : presents an activity.
Constraints on S : presents the situation that is unrealised.
Constraints on the $N+S$ combination: S presents a situation to be realised through the activity in N .

The effect: \quad Reader recognises that the activity in N is initiated in order to realise S .

Figure 2.3. Defmition of the Purpose Relation

Example of the Purpose relation:
(2.6) [To answer the brokerage question, 2.6.1][Kidder, in typical fashion, completed a task-force study.2.6.2] ${ }^{10}$

The first clause "To answer the brokerage question" in Example (2.6) presents an incompleted statement without the second elause. It is only understood when

[^6]the second clause is pronounced. The effect of the relation is that the activity "Kidder, in typical fashion, completed a task-force study" needs to be carried out in order to perform the situation presented in the first clause. In other words, the first clause is a purpose of the activity mentioned in the second clause. Span (2.6.2) is understandable without span (2.6.1), but not vice-versa. Therefore, a Purpose relation holds between the nueleus (2.6.2) and the satellite (2.6.1). The Purpose relation is an asymmetric relation.

Definitions of the rhetorical relations in the RST (Mann and Thompson, 1988) are only guidelines for the reader to understand and to be able to recogitise relations in a text. These definitions do not provide any signal that can be used to computationally posit relations. Finding the factors that can signal relations is the centre of many studics in discourse analysis, including the research in this thesis.

Rhetorical relations are represented in discourse trees on the basis of five schemas (see Mann and Thompson (1988) for details). These schemas are also applied in this thesis. For the clarification of presentation, we present the discourse trees corresponding to the two basic types of rhetorical relations (i.e., asymmetric relation and symmetric relation) in Figure 2.4 below.

Figure 2.4. Basic Discourse Trees Used in this Thesis
Figure 2.4.a represents the discourse tree of an asymmetric relation. An are goes from the satellite (span 2) to the nucleus (span 1) of the relation, whose arrowhead points to the nucleus. A tree node is created as the parent node of the nucleus and the satellite, which contains a relation name and the text span corresponding to this tree node. This new span (span 1-2) is the combination of the spans of the children nodes. Each child node in the discourse tree is marked with a nuclearity role (i.e., nucleus or satellite).

Figure 2.4.b illustrates the discourse tree of a symmetrie relation. Both spans, which correspond to the nuclei of this relation, are connecled with their parent node by straight lines. The parent node contains information about its text span and the name of the relation between its child nodes.

The discourse tree of the asymmetric relation in Example (2.6) is displayed in Figure 2.5. An are with an arrow-head goes from the satellite "To answer the brokerage question" to the nucleus "Kidder; in typical foshion, completed a taskforce study". Instead of displaying the span "To answer the brokerage question, Kidder, in typical fashion, completed a task-force study" in the parent node of the two nodes (2.6.1) and (2.6.2), we only represent the index of the first and last spans contributing to the parent node.

Figure 2.5. Discourse Tree of Example (2:6)
Figure 2.6 represents the discourse tree of the symmetric relation in Example (2.5). A List relation" holds between the two spans in this example.

Figure 2.6. Diseourse Tree of Example (2.5)

[^7]To represent the discourse tree of a rclation between large spans, each of which contains more than one clause, the tree nodes of these spans are replaced by their correspondent discourse trecs. This is illustrated by Example (2.7) shown below.
(2.7) [Only a few months ago, the 124 -year-old securities firm seemed to be on the verge of a meltdown, 2.7.1] [racked by internal squabbles and defections. 2.7.2] [Its relationship with parent Geineral Electric Co. had been frayed since a big Kidder insider-trading scandal two years ago. 2.7.3][Chief executives and presidents had come and gone. 2.7.4]

The text in Example (2.7) consists of four elementary discourse units. The clause "racked by internal squabbles and defections" elaborates the information in the clause "Only a few mont/s ogo, the 124-year-old securities firm seemed to be on the verge of a meltdown". The sccond sentence relates to the first sentence by a List relation. The last sentence elaborates two sentences before it. Figure 2.7 displays the discourse trec for the text in Example (2.7). Instead of displaying the content of each leaf, we only show the indexes of the corresponding spans. :s

Figure 2.7. Discourse Tree of Example (2.7)

In Figure 2.7, an Elaboration relation holds between two leaves (2.7.1) and (2.7.2). The internal tree node corresponding to the text span that covers the two spans (2.7.1) and (2.7.2) is represcnted by the index of its. first and last spans (2.7.1-2.7.2), and the name of the relation that holds between these spans. The are
with an arrow-head that goes from (2.7.2) to (2.7.1) indicates that span (2.7.1) is the nicleus in a rhetorical relation between (2.7.1) and (2.7.2).

A discourse tree is created for the List relation between spans (2.7.1-2.7.2) and (2.7.3). Span (2.7.1-2.7.2) in this tree is represented by the tree that contains two children (2.7.1) and (2.7.2). Similarly, a tree with the parent node that contains spans (2.7.1-2.7.4) and an Elaboration is generated, as shown in Figure 2.7.

According to Mann and Thompson (1988), a valid RST tree that describes the structural analysis of a text must satisfy the following constraints:

- Completeness: One RST tree covers the entire text.
- Conncetedness: Except for the entire text as span, each span in the analysis is either a minimal unit or a constituent of another tree of the analysis.
- Uniqueness: Each RST trec consists of a different set of spans.
- Adjacency: Only adjacent spans can be comnected to form larger spans.

These constraints are employed in this thesis as principles to generate discourse trees. They are not only used to check the well-formedness of the final RST trees, but also considered as conditions to limit the search space of discourse trees during the generation process (sec Section 5.3.1 for more detail).

2.2.2 Discussion

Although the Rhetorical Structure Theory has been widely used in most research in discourse analysis, many issues still need to be addressed The theory in this research only provides some basic ideas that may need further studies to be validated, both from a theoretical and computational point of view. These problems are:

1. No standard set of rhetorical relations has beeil delined. Mann and Thompson (1988) have proposed a set of 23 relations. However, as stated in their report, this relation set can vary, depending. on the purpose of particular genres and cultural styles.
2. Although Mann and Thompson have provided a definition for each rhetorical relation, little guidance is given on how to recognise rhetorical
relations. At present there are many debates involving positing the most suitable relation for a specific example.
3. Mann and Thompson have not given us any method to recognise rhetorieal relations in a computational way. According to Mann and Thompson, the process of relation recognition depends on functional and semantic judgements alone, not on morplological or syntactic signais.
4. It is not clear from Mann and Thompson as to what order of spans to form a discourse tree. This paper only presents an example of an eight-sentence- ${ }^{*}$ text being analysed using five kinds of sehemas. There is no rule to say which spans should be comeeted in a rhetorical relation.
5. The above problems cause the problem of multiple analyses. Different people may create differcnt discourse trees for the same text and we cannot say which trees are incorrect. Even one person may generate two different trees for the same text. The RS' does not give any instruction on how to evaluate the correctness and the quality of discourse trees, nor the similarity among different discourse trees.
6. Although the RS Γ has been popular among studies in discourse, there are other discourse theories, which have been used by other researchers (e.g., Grosz and Sidner, 1986; Polani, 1988). Therefore, it is necessary to understand the eompatibility between the RS「 Γ and other discourse theories. The RST has been understood as a method to understand the coherence of text. It has the potential ability to be used in or to inspire many text processing applications such as text generation, automatic text summarisation, and evaluation of students' compositions. Therefore, it is necessary to turn the theory of rhetorical structure into a real computational discourse system, which can automatically generate rhetorical structures. To achicve this purpose, it is ideal to solve all the problems mentioned above. However, to do so would be too ambitious for the seope of this thesis. For the present study, we concentrate on three main unsolved issues in discourse analysis diseussed in Section 1.1. The data used in the experiments of this research are documents taken from the RST Discourse Treebank (RST-DT, 2002), which is deseribed nexi.

2.3 Overview of the Corpus

Discourse analysis has begun to receive the attention of the computational linguistics community in recent ycars. Each researcher in discourse uses different data to evaluate the system. Because of that, it is difficult to compare the performance of one system with the others. Several efforts have been made to annotate discourse structures. The main sludies among these efforts are done by Carlson et al. (2002) and Forbes et al. (2003). The corpus created by Carlson et al. (2002) is based on the RST framework, whereas the one created by Forbes et al. (2003) reflects the theory of the D-LTAG. Since the RST corpus (RST-DT, 2002) created by Carlson et al. is the only available corpus that follows the Rhetorical Structure Theory, it is used in the experiments carried out in this research. An overview of this corpus is presented in the remainder of this section.

The RST-DT corpus contains 385 Wall Street Journal (WSJ) articles from the Pem Treebank (1999). These articles have been mamually amotated with rhetorical structures in the RST framework. Each article is accompanied with an .edus file and a dis file. The .edus file contains the elementary discourse units of the article with one discourse unit per line. These discourse units have been generated by a human. The dis file contains the manually amotated thetorical structure of that article. This file has a structure similar to the LISP language. Fifty three articles in the corpus have bcen independently annotated by a second analyst. These 53 documents have been used to compute human agreement on the rhetorical structures derived from the same texts. One huridred and ten different rhetorical relations are used in the RST-DT corpus. This corpus also contains extract and abstract documents of the WSJ articles, which can be used for summarisation tasks.

The next chapter analyses the problem of discourse segmentation, whose purpose is to split text into diseourse units with independent functional integrity. In order to solve this task, we combine two processes: discourse segnentation by syntax and discourse segmentation by cue phrase.

3 Discourse Segmentation

According to Mann and Thompson (1988), a rhetorical structure is constructed from smaller discourse segments. All discourse units should have independent functional integrity, such as independent clauses. The smallest discourse unit is called elementary discourse unil (edu) (Marcu, 2000). Therefore, the first problem in constructing the rhetorical structure is to segment text into elementary discourse units.

Considering the advantages and disadvantages of different approaches in discourse segmentation discussed in Section 2.1.2.1, a now discourse segmenting method that combines the syntactic approach with the cue phrase approach is proposed in this thesis (leThanh ol al., 2004a). The principles used in our approach to segment text into clementary discourse units are mainly based on previous research in discourse segmentation (Carlson et al., 2002). Since a typical discourse unit is an independent clause or a simple sentence, the text is first split into elementary discourse units using syntactic information. One may argue that using syntactic information is complicated since a syntactic parser is needed to generate this kind of information, but there are a number of good syntactic parsers available nowadays. To deal with the case where strong cue phrases make a noun phrase become a separatc elementary discourse unit, a furlher segmentation process is undertaken after segmenting by syntax. The purpose of the latter process is to delect strong cue phrases. Both these processes will he discussed in more detail in the following sections.

The rest of this chapter is organised as follows. The first step of discourse segmentation (Step 1) - Discourse Segmentation by Syntax - is described in Section 3.1. Discourse Segmentation by Cue Phrases (Step 2) is introduced in Section 3.2. Section 3.3 summarises the segmentation method and discusses the possible future work.

3.1 Discourse Segmentation by Syntax - Step 1

In this section, we introduce a method to segment text by using sentential syntactic structures. There are two methods to get the syntactic structure of
sentences. One method is using a syntactic parser to generate the syntactic information from the plain text. Another method is using a gold standard corpus that contains syntactic parsed documents annotated by human analysts. Since we concentrated on the discourse analysing lask, we chose the second method - using a syntactic annotated corpus (the Pemn Trecbank (1999)) - to get sentential syntaetie structurcs. The Penn Treebank (1999) is chosen because of two reasons. First, hais syntactic corpus is widely accepted and used in mueh syntactic research. Second, documents from the RST Discourse Treebank (RSTT-DT, 2002) are also taken from the Penn Trcebank.

A requirement for the input syntactic information is that the clausal boundaries should be correctly assigned. If this syntactic information, which comes either from the annotated corpus or from the output of a syntactic parser, contains ineorrect clausal boundaries, it will affect the system's performance (see Seetion 6.2.1).

The input to this module is a sentence ${ }^{12}$ and its syntactic information. It checks segmentation rules, which are based on sentential syntactic structures, to split sentences into discourse segments. This process also provides initial information about rhetorical relations between spans within a sentence, such as which spans should be connected, and the nuclearity status (i.e., nucleus, satellite) of spans in a rhetorical relation. A brief description of the segmentation rules is presented in Scction 3.1.1. An implementation of the segmentation algorithm that is based on these rules is introduced in Section 3.1.2. The post segmenting process is discussed in.Section 3.1.3.

3.1.1 Discourse Segmentation Rules

The rules for dividing sentences into discourse segments ${ }^{13}$ in this step are based on the syntactic structure of the sentence. These rules are based on the segmentation principles proposed by Carlson et al. (2002). The contribution of this thesis here is

[^8]to propose a method that automatically detects discourse segments, instead of a segmention process that depends on humans as in Carlson et al. (2002).

In this section, we first analyse three representative samples of segmentation principles (principles ito iii) and describe our method of implementing these principles. These samples represent the main segmentation categories in respect of syntactic roles: segmenting a clause from a noun phrase; segmenting a clause from a verb phrase; and segmenting a clause from a sentence or a complex clause. The complete set of scgmentation principles can be found in Carlson et al. (2002). After the representative principles have been given, we ihtroduce the básic segmentation rule and the syntactic chains that correspond to the sample principles. An implementation of the segmentation process is described in Section 3.1.2.

Principle (i) - The clause that is attached to a noun iphrase (NP) can be recognised as an embedded mnit.

For example:
(3.1) [Mr. Silas Cathcart built a slopping mall on some laind][he owns.]

Principle (ii) - Coordinate clauses and coordinaie elliptical clauses of verb phrases (VPs) are elementary discourse units. Coordinate VPs that share a direct object with the main VP are not considered as a separate discourse segment.

For example:
(3.2) [The firm seemed to be on the verge of a meltdown,][racked by internal squabbles and defections.]

Principle (iii) - Coordinate clauses and coordinate sentences of a complex sentence are elementary discourse units.

For example:
(3.3) [The firm's brokerage force has been trimmed][and its mergers-andacquisitions staff increased to a record 55 people.]

The basic segmentation rule that corresponds to the segmentation principle is:

If: a sentence satisfies the segmentation conditions of a segmentation principle

Then: split the sentence into discourse scgments
The 'If part of the rule checks whether the syntactic structure of the sentence contains the synfactic clain suggested by the segmentation principles or not. Using the syntactic assignments of the Penn Treebaiik (Bics et al., 1995), syntactic chains that correspond to principle (i) are:

```
(i-a)(NP|NP-SBJ <text1> (X <textx> )* (SBAR|RRC <text2> ))
(i-b) (NP|NP-SBJ <lext1> (X <textx> )* (PRN <texi2> (Y <texty> )* (S
    <(ext3> 1))
(i-c) (NP|NP-SBJ <lexl1> (X <lexlx> )* (PP <texl2> (Y <lexly> )* (S|VP
    <tex\3>)))
```

SBJ, SBAR, RRC, PRN, S, and PP stand for subject, subordinate clause, reduced relative clause, parenthetical, sentence, and prepositional phrase respectively. '|' stands for 'or'. <text1>, <text2>, and <text3> are parts of the text of a sentencc. ($\mathrm{X}<$ textx> $)^{*}$ and ($\mathrm{Y}<$ texty> $)^{*}$ stand for any syntactic string (or none of them). For example, consider the sentence:
(3.4) The land he owns is very valuable.

The syntactic chain which represents the noun phrase "The land he owns" in the above sentence can be written as (NP The land (SBAR he owns)).

According to principle (i), <text2> in syntactic chain ($i-a$), and the combination of <text2> and <text3> in syntactic chains (i-b) and (i-c) are recognised as cmbedded units. To simplify syntactic clains (i-b) and (i-c), D \wedge S creates two labels named PRS (parenthetical-sentence) and PS (prepositional-sentence). These two labels are described respectively in (i-d) and (i-c) below: !

```
(i-d) (PRN <text2> (Y <texty> )* (S <text3> )) }->(\mathrm{ PRS <text2-3>)
```

(i-e) $\left(P P<t e x t 2>(Y<t e x l y>)^{*}(S \mid V P<l e x l 3>)\right) \rightarrow(P S<t e x t 2-3>)$
" \rightarrow " can be interpreted as "convert 10 ". <text2-3> is the concatcnated string of <text2> and <text3>. By using syntactic chains (i-d) and (i-c), syntactic chains (i-
a) to ($i-c$) can be combined into one syntactic ehain as given in ($i-a^{\prime}$). It should be noted that <text2'> in (i-a') is <text2-3> in (i-d) and (i-e).
(i-a') (NP|NP-SBJ <texI1> ($\mathrm{X}<$ texix> $)^{*}($ SBAR|RRC|PS|PRS <text2'> $)$)
The syntactic chains that map to principles (ii) and (iii) are given in (ii-a) and (iii-a) respectively. In the syntactic chains corresponding to principles (ii) and (iii), Sx stands for basic elause types such as subordinate clause (SBAR) and participial clause (S-ADV). <conjunction> stands for a conjunction such as "and", "or", comma, and semicolon.

```
(ii-a) ( VP ( VP <text1> ) <conjunction> ( X <textx> )* ( VP|Sx|RRC|PPS <lext2> )
    )
(iii-a).(Sx<lext1> (X <textx> )* (Sx<text2> )<conjunction> (Y<lexty> )* (Sx
    <lex\3> ))
```

All segmentable syntactic chains are presented in Λ ppendix 5 . The algorithni ${ }^{i}$ that automatically splits text into discourse segments using the segmentation principles is described next.

3.1.2 Segmentation Algorithm

The segmentation algorithm that we propose in this section is outlined in Figure 3.1. The input to this algorithm is the syntactic string of a sentence, in which <texl> is replaced by a token \#x,y\# (where x, y is the begin and end position of <lext> in the sentence bcing analysed). Each token of the sentential syntactic string is separated by a space. The syntactic string from the Pemn Treebank of Example (3.5) is given in (3.5.a).
(3.5) "The book I read yesterday is interesting."
(3.5.a) ((S (NP-SBJ (NP The book) (SBAR I read yesterday)) (VP is (ADJP inleresting))).) ,

The input to the diseourse segmenter by syntax in this case is given in (3.5.b).
(3.5.b) ((S (NP-SBJ (NP \#0,7\#) (SBAR \#9,24\#)) (VP \#26,27\#(ADJP \#29,39\#))).)

The segmentation algorithm uses a stack to store tokens of the syntactic string during the reading process. The algorithm ends when the syntactic string is reduced to the string "((S\#x,y\#).)".

Input: The syntactic information of a sentence.
Output: Discourse segments (DSs).

1. Read each character from the input string from left to right and put them onto a stack, until a space is found.
2. Repeat Step 1 until two consecutive close brackets (')') are found on top of the stack.
3. Pop off strings from the top of the stack into a separale string called "compared string" until the number of open brackets and the number of close brackets in the compared string are equal.
4. Check whether the compared string maps to the syntactic chain (syntactic strings (i-a'), (ii-a), (iii-a), etc.) or not. If they map, segment the text corresponding to the compared string. A rhetorical relation is created by using these two segments as its left and right spans. Assign nuclearity roles if there is enough information. ${ }^{14}$
5. Encode the compared string as a text thal consists of the synlaclic calegory of the compared string in the sentence and its position tag \#x, у\#\#. Push the encoded string onto the stack.
6. Repeat Step 1 to Step 5 until the input string is empty and the stack contains the following tokens, considering from the bottom of the stack: "(", "(", "S", "\#x,y\#", ")", ".", ")".

Figure 3.1. Outline of the Discourse Segmentation by Syntax A Igorithm

Figure 3.2 represents the segmentation progress of Example ' (3.5). Duc to space constraints, some steps of the segmentation process are not described in detail. In

[^9]Figure 3.2.d, DAS continucs pushing characters from the left side of the input string onto the stack. When there are two intermediate close brackets on top of the stack (Figure 3.2.e), the segmenter pops from the top of the stack into a compared string until the number of open brackets and the number of elose brackets in the compared string are equal (Figure 3.2.g). The compared string is then compared with the syntactic chain. Since the compared string maps to (i-a'), the segmenter produces discourse boundaries at the begimning and the end position of the SBAR clause (at characters 9 and 24 of the input sentence). A rhetorical relation is then created between the noun phrasc "the book" and its embedded unit "I read yesterday" (Step 4). The noun phrase is the nucleus; whercas the cmbedded unit is the satellite of this relation. This relation is stored in a list of rhctorical relations of the sentence. After that, the segmenter eneodes the compared string (NP-SBJ (NP \#0,7\#) (SBAR \#9,24\#)) as (NP-SBJ \#0,24\#) and pushes the new string onto the stack (Figure 3.2.h). The segmenter continucs its loop by carrying out the operators of pushing onto and poping off the stack, mapping rules, segmenting text, and encoding syntactic strings. If the compared string does not map to any syntactic chain, the compored string is simply encoded and pushed back onto the stack (Figure 3.2.k and Figure 3.2.1). The segmenter finishes' its process when the stack consists of characters "(", "(", "S", "\#0,39\#", ")", ".", ")" (Figure 3.2.r).

Figure 3.2. Segmenting Example (3.5) Using Synlactic Information

Figure 3.2. Segmenting Example (3.5) Using Syntactic Information (con't)

3.1.3 Post Segmenting Process

The purpose of the processing described in this section is to refine the output of the segmentation procedure described in Section 3.1.2. This post segmenting processing is required due to two problems, which arise from the output of the segmentation process presented in Figure 3.1. The first problem is that the segmentation of embedded units fragments the sentence. ${ }^{15}$. We call the text being left out of the relation as "Unknown", as it docs not belong to any relation. There are two cases under the first problem that need to be treated differently. In the first case, the Unknown part is adjacent to the satellite of a nuclear-satellite relation, such as in Example (3.5) given in Section 3.1.2. For the convenience of the reader, this example is repeated here as Example (3.6).
(3.6) The book I read yesterday is interesting.
$N \quad S \quad$ Unknown
After Example (3.5) undergocs the segmentation process described in Figure 3.1, two seginentation boundaries are produced at the positions of characters 9 and 24 of this sentence. The sentence is divided into three parts: "the book", "I read yesterday", and "is interesting". "I read yesterday" is an embedded unit of the noun phrase "the book". "The book", and "is interesting" are not two separate discourse segments since they are not clauses. We deal with this case by considering "I read yesterday" as an embedded unit of "the book" and "The book I read yesterday is interesting" as a discourse segment. DAS generates two relations in this case. One relation relates the nucleus and the satellite. Another relation called Same-Unit ${ }^{16}$ connects the span that covers the nucleus and the satellite, and the Unknown span. Both spans in the Same-Unit relation are nuclei. As the post segmenting process connects all the Unknown spans with the rest of the sentence, it creates an initial rhetorical structure for the sentence. Figure 3.3 displays the rhetorical structure of Example (3.6). The name of the relation

[^10]between "7he book" and "I read yesterday" is decided later in the discourse recognition process.

Figure 3.3. Discourse Tree of Example (3.6)

In the second case, the Unknown part is adjacent to the nucleus of a nuclearsatellite relation, such as in Example (3.7) shown below.
(3.7) Mr. Silas Catheart built a shopping mall on some land he owns.

Unknown N S
In this case, DAS produces only one relation. It merges the Unknown span with the nucleus. The previous relation between the old nucleus and satellite now becomes the relation between the new nucleus, whose span covers the Unknown span and the old nucleus, and the old satellite. In Example (3.7), the discourse segmenter by syntax described in Section 3.1.2 produces a nuclear-satellite relation between the noun phrase "some land" and its embedded unit "he owns". The string "Mr. Silas Cathcart built a shopping mall on" becomes an Unknown span. The post segmenting process reconstructs the discourse tree of Example (3.7), as shown in Figure 3.4.

The dotted arrow shows the relation between "some land" and "he owns" created by the algorithm described in Figure 3.1. The solid arrow shows a rhetorical relation between the two discourse units after the post segmenting process. This case is treated similarly in the RST-D'T corpus, as shown in Example 3.8 .

Figure 3.4. Discourse Tree of Example (3.7)
(3.8) [A new specialty court was sought by patent experts,][who believed][that the generalists had botched too many important, multimilliondollar cascs.]

The clause "who believed that the generalists had botched too many important, multimillion-dollar cases" is the subordinate clause of the noun plrase "patent experts". "Patent experts" is not treated as a separate discourse unit, but a part of the discoursc segment " A new specialty court was sought by patent experts".

The second problem that needs the post segmenting process involves the placement of adverbs in discourse segments. Some adverbs, which should stand at the beginning of the right clause, are put at the end of the left clause by the segmenting process in Section 3.1.2. An example of such a case is slown in (3.9).
(3.9) [They had to give up that campaign, mainly][because they did not have enough people.]

D^S recognises the second clause in Example (3.9) as a s subordinate clause of the first clause. It produces a segment boundary at the first position of the subordinate clause, which is the position before the word "becouse". However, the correct segnentation in this case slould be before the word "mainly", as shown in (3.10).
(3.10) [They had to give up that campaign,] [mainly because they did not have enough peoplc.]

To deal with this situation, DAS checks all adverbs that are adjacent to the left boundary of the right clause. If these adverbs do not belong to the syntactic structure of the left clause, they will be moved to the right clause. After undergoing the post segmenting process, the segment boundary between "mainly" and "because" in Example (3.9) created by the previous discourse segmentation process is moved to the left, which means to the position between the comma and the adverb "mainly" as given in Example (3.10). The RST-IDT corpus analyses Example (3.10) in the same way as DAS docs.

The input to the post processing procedure is the output of the scgmentation algorithm given in Section 3.1.2. The outputs of the post processing procedure are the discourse segments after refining segment boundaries. In doing this, discourse segments are comected into pairs of adjacent and non-overlapping spans; the longest pair covers the entire sentence. In other words, besides refining discourse boundaries, the post segmenting process also constructs rhetorical relations between spans within a sentence. The nuclearity roles and relation names, which have not been assigned in this process, will be posited later in the sentence-level discourse analysing process (see Section 5.2). Thic post scgmenting process includes two components: the first component corrects the position of adverbs in a sentence (see Examples 3.9 and 3.10), the second one deals with the text fragments caused by the segmentation of cmbedded units (see Examples 3.6 and 3.7). The latter is the centre of the posi segmenting process. The pseudo-code for the second component mentioned above, whicl is called Defragment, is given in Figure 3:5 An extended version of this algorithm is given in Appendix lame.....

Let us apply the Defragment algorithm to the discourse segments of Example (3.11), which are created by the segmentation algorithm presented in Figure 3.1.
(3.11) [Three seats currenlly are vacant][and three others are likely to be filled within a few years,][so patent lawyers and research-based industries are making][a now push][for specialists to be added to the court.]

Input:

- start and end position of the input phrase needed to bé processed.
- A list of relations sentNodes created by the segmentation procedure presented in Figure 3.1.

Output:

- Rhetorical relations after refining boundaries.

Deiragment(start, end)

1. Find a node changenode that starts at the left most boundary of relations within the input phrase (minsta), ends at the right most boundary of relations that are within the input phrase and start at minsta. (maxend). The maximum position of boundaries between the left and right node of the tree nodes that starts at minsta and ends at maxend is middle.
2. if (minsta > start):
2.1 if '(changenode.leftrole $=$ ' N '): Expand the left node of the changenode to the start position.
2.2 else: Create a new node, whose left node coiresponds to the remaining span, and the right node is the changenode. Assign nuclearity roles for these riodes.
3. if (maxend < end):
3.1 if(changenode.leltrole $=$ 'S'): Expand the right node of the changenode to the end position.
3.2 else: Create a new node, whose left node is the changenode, and the right node corresponds the remaining span.
4. it(middle < end) Defragment(start, middle);
5. if(middle > start) Defragment(middle, end);
6. Return.

Figure 3.5. Pseudo-code for the Defragment Process of Discourse Segmentation
by Syntax

After being segmented by the algorithm in Figure 3.1, three rhetorical relations are created: one betwecn "Three seats currenty are vacan" and" and three others are likely to be filled within a few years,", one between " a new push" and " for specialists to be added to the court.", and one between "Three seats currently
are vacant and three others are likely to be filled within a few years," and " so patent lawyers and research-based industries are making a new push for specialists to be added to the court.". The positions of the left and right tree nodes of the first, the second, and third relations are $(0,33)$ and $(33,95) ;(155,166)$ and $(166,208)$; and $(0,95)$ and $(95,208)$, respectively. Figure 3.6 shows the positions of these spans and their relations in the sentence.

Figure 3.6. Relations within Example (3.11) before Λ pplying Defragment Process

It is clear that the rhetorical relations presented in Figure 3.6 cannot form an RST tree because the connectedness constraint of the RST (Mamn and Thompson, 1988) is not satisfied here (sec Section 2.2.1 for the statement of the connectedness constraint). 'fhis problem is fixed by the Defragment procedure outlined in Figure 3.5.

					changendey	ing inge	Claígeiode	
0	208	0	208	95	$(0,95,208)$			$(0,33,95)$ $(155,166,208)$ $(0,95,208)$
0	95	0	95	33	$(0,33,95)$			-
0	33	0	NA	N^				-
33	95	NA	NA	NA				-
95	208	155	208	166	(155,166,208)		$(95,166,208)$	$(0,33,95)$ $(95,166,208)$ $(0,95,208)$
95	166	NA	NA	NA				-
166	208	NA	NA	NA			!	-

Table 3.1. Defragment Process for Example (3.11)

Table 3.1 represents the progress of the Defragment process to refine segment boundaries and generate rhetorical relations. In Table 3.1, "NA" is the abbreviation for "Nor Available"; "-" means "same as the above row"; each node is represented by a triple of the node properties (from, leftnode.to, to).

After undergoing the Defragment process, the three relations of Example (3.11) arc now updated as $(0,33)$ and (33,95); $(95,166)$ and $(166,208) ;(0,95)$ and $(95,208)$. These relations are shown in Figure 3.7.

Figure 3.7. Relations within Example (3.11) after Applying Defragment Process

The three relations showed in Figure 3.7 now form an RST tree that satisfics the four constraints of the RST (Mann and Thompson, 1988).

When elcmentary discourse units are clauses, syntactic information is reliable enough to be used in segmenting text. However, syntactic information could not detect the case when an elementary discourse unit is a noun phrase. This case will be analysed and solved in Section 3.2.

3.2 Discourse Segmentation by Cue Phrases - Step 2:

Several noun phrases are considered as elementary discourse units when they are accompanied by a strong cue phrase ${ }^{17}$ (Examples 3.12). These cases cannot be recognised by syntactic information. Therefore, another segmentation process is integrated into DAS to deal with such cases. fhis process searclics for a strong cue phrase in each discourse segment generated by Step 1, When a strong cue phrase is found, the algorithm splits the discourse segment into two elementary discourse units: one unit is the noun phrase that contains the strong cue plrase,

[^11]and another unit is the rest of the discourse segment. The set of strong cue phrases used in the experiments described in this thesis are: according to, as a result of, although, because of, but also, despite, despite of, in spite of, irrespective, not only, regardless, without. --. It is created basing on previous research about elementary discourse units such as Marcu (1997) and on the observation of the annotated documents from the RST-DT corpus (2002).

There are two cases of strong cue phrases that are treated differently by DAS, as shown in Examples (3.12) and (3.13):
(3.12) [According to a Kidder World story about Mr. Megargel, ll all the firm has to do is "position ourselves more in the deal flow.".]
(3.13) [In 1988 , Kidder eked out a $\$ 46$ million profit,][mainly because of severe cost cutting.]

In the first case, there is no adverb that is adjacent to the strong cue phrase and on the left of the cue phrase (Example 3.12). A new elementary discourse unit is created from the beginning position of the cue phrase to the end boundary of the noun phrase. The end boundary of a noun phrase is identified by punctuation such as a comma, a semicolon, or a full stop.

In the second casc, some adverbs are left-adjacent to the strong cue phrase (Example 3:13). If these adverbs do not belong to the syntactic structure of the left part of the old discourse segment, a new elementary discourse unit is ereated from the left most position of these adverbs to the end boundary of the noun phrase. Otherwise, the new elementary discourse unit is created in the same way as in the first case.

3.3 Summary and Discussion

In this chapter, we have presented a discourse segmenting method based on syntactic information and cue phrases. The discourse segmentation by syntax consists of two processes. The first process divides text into discourse segments based on syintactic information. The second process refines the output of the first process to guarantec the independent functional integrity of each discourse segment. After the input text has been segmented by using. syntactic information,
noun phrases that have the role of elementary discourse units are recognised by detecting strong cue phrases from text.

At the moment, the rules for the discourse segmentation by synlax are manually created based on previous rescarch in discourse analysis (Carlson et al., 2002). The experiments carried out in this rescarch show that this discourse segmenter has good performance when compared with other discourse segmenters known to us (Section 6.2.1). It shows that the combination of sentential syntactic structures and eue phrases are reliable enough for intra-sentential diseourse segmentation.

A problem faced by all discourse segmenting systems is that different people may create different elementary discourse units for the same text. For that reason, a flexible rule set that can adapt to new segmentation approaches is preferred by DAS. For future work, a method for automatically learning syntactic-based rules from a discourse corpus can be considered and then these rules can be used to segment text into elementary discourse units. Cue plrases can also be considered in the future system since they are the strongest signals and they provide the simplest way to annotate thetorical structures.

After a text is segmented into elementary discourse umits, the next task in discourse analysis is to find all possible rhetorical relations between them. This problem is addressed in Chapter 4.

4 Positing Rhetorical Relations between Elementary Discourse Units

Rhetorical relations have been recognised based on different factors. The factors that have been mostly used by researchers are cue phrases, anaphora resolution, and VP-ellispis (see Scction 2.1.2.2). We apply some cohesive devices that have already been exploited by other researchers and propose new factors including noun-phrase cues and verb-phrase cues (LeThanh and Abeysinghe, 2003b).

This chapter is organised as follow. The set of relations that is used to represent the rhetorical structure of text is introduced in Section 4.1. Section 4.2 introduces the factors that are used in DAS to signal rhetorical relations. Section 4.3 describes the method that uses these factors to recognise relations. An implementation of the recognition process is presented in Section 4.4. Finally, a summary of this chapter is provided in Section 4.5.

4.1 The Set of Relations

Before considering constructing a rhetorical structure, it is inccessary to define a set of relations to describe this structure. Which relations and how many relations are going to be enough to describe the text cohcrence by a rhetorical structure? According to Mann and Thompson (1988), the set of rhetorical relations is open. It can be modified for the purposes of particular genres and cultural styles. If the relation set consists of just a few relations, the discourse trees will be easier to construct, but they will not be informative. On the other hand, if it is a large relation set, the trees will be informative, but they will be difficult to build.

The number of relations proposed by researchers varics from two (Grosz and Sidner, 1986) to over a hundred (Carlson ct al., 2002). According to llovy (1990), the two relations proposed by Grosz, and Sidncr (1986), Dominance and Salisfaction-Precedence, may satisfy from the point of view of text summarisation, but it is not so from the point of view of text gencration. Hovy (1990) has carried out a survey of the works of approximately 30 researchers and identifies nore than 350 relations from their research. He then proposes a set of

70 relations, which is achieved by fusing and classifying these relations. His motivation in defining this set is to produce a standardised and covering set of relations. However, this taxonomy is then replaced by Maier and Hovy (1991), as they state the set proposed by llovy (1990) fails to recognise the communicative differences between the various relations.

The problem arising from this work is how to justify whether one set of relations is adequate or not, and how to justify whether one set is more appropriate than another. Mann and Thompson (1988) use five different rclations to describe causal relations (Volitional Cause, Non-Yolitional Cause, Volitional Result, NonVolitionol Result, and Purpose). All thesc five relations are grouped together by Scott and de Souza (1990) for the task of textual realisation.

According to Knott (1996), in order to justify the set of relations, we have to have a way of deciding on an appropriate level of detail. Kıot states:
"The standards of adequacy are set by the demands of the theory in which the relations figure. The theory will determine what information about a text relations are supposed to capture; we can then ask whether the description they provide is in fact sufficient to capture that information." (Knolt, 1996, pp.40)

Corston (1998) uses a sct of thirteen relations in $\operatorname{RAST}^{\circ} \Lambda$, as he claims at least these relations are required for the analyses of Encarta 96 articles. He climinates six relations from the origimal sct of relations in Mam and Thompson (1988) (Antithesis, Enoblement, Evalsation, Interpretation, ' Motivation. and Solutionhood), as these relations do not participate in building the rhetorical structures for articles in Encarta 96.

The articles from the RSf discourse corpus (RST-DT, 2002) used in this thesis were manually analysed using 110 different relations (see Section 2.3). It is very difficult to attomatically construct RST trecs based on such a large set. Therefore, we propose a smaller set by merging relations with similar characteristics in these 110 relations, resulting in a sct of 22 relations: List, Sequence, Condition, Otherwise, Hypothetical, Antithesis, Contrast, Concession. Çause, Result, CauseResult, Purpose, Sohtionhood, Circumstance, Manner, Meons, Interpretotion,

Evaluation, Summary. Elaboration, Explanation, and Joint. We use three different relations Couse, Resull, and Cause-Result to emplasise the essential text span in each rhetorical relation (see Appendix 6 for definitions of these relations). This relation set is created by taking the most widely used relations by researchers on discourse analysis (e.g., Mann and Thompson, 1988; Hovy, 1990; Marcu, 2000; Corston, 1998). Also, these relations are separate enough so that DAS can recognise one relation from another.

As mentioned at the begiming of this section, since the set of rhetorical relations is an open set, we make no elaim that this set covers all other relations or is correct in all details. It can be reduced, extended, or modified depending on different purposes and data. The modification of the set of relations does not affect the approach used in this thesis. In order to fit with the hew set of relations, $\mathrm{D} \wedge \mathrm{S}$ is easily modified by changing the conditions for recognising relations based on recognition factors proposed in Section 4.2. Other analysing modules used in D \wedge S, i.e., discourse segmentation (Chapter 3) and discourse analysing (Chapter 5), still remain the same since they are independent of the set of relations.

4.2 Factors Used for Signalling Rhetorical Relations

This section presents different recognition factors used in DAS for signalling thetorical relations. In addition, to exploit new propertics of the factors that have been investigated in other research (cue phrases, syntactic information, time references, reiterative devices, reference words, substitution words, and ellipses), we propose new recognition factors (noun-phrase cues and verb-phrase cues). Similar to cue plrases, these new factors are very useful in recognising relations. The recognition factors are briefly presented below.

4.2.1 Cue Phrases

Cue phrases (e.g., however, as a result), also called discourse connectives, conjunctions, or discourse markers, are words or phrases that comuct clauses, sentences, or larger textual mits. Cine phases are the most simple and obvious means of signalling relations in text because of two reasons. First, they explicitly express the coliesiveness among textual units most of the time. Second,
identifying cue phrases is essentially based on pattern matching. For example, the cue phrase "when" in Example (4.1) determines a Circumsitance relation between two clauses "He was staying at home" and "the police arrived":
(4.1) [He was staying at home][when the police arrived.]

Cue phrases have been widely and systematically investigated in both linguistic and computational literature. Therefore, we created a set of cue phrases for recognising rhetorical relations based on previous studies of cue phrascs. This set is inherited from those in Grosz and Sidner (1986), Hirschberg and Litman (1993), Knott and Dale (1994), and Marcu (2000). The list of cue phrases used is shown in Appendix 3.

Some problems in using cue phrases

Although cue phrase has shown to he the simplest factor to signal rhetorical relations, they are not without problems. Previous studies on cue phases (Litman, 1996; Marcu, 2000; Webber et al., 1999a) have drawn out scveral difficulties in recognising cue phrases and using them in signalling rhetorical relations. These problems are:
A. Ambiguity between the discourse sense and the sentential sense of a cue phrase;
B. Ambiguity about rhetorical relations;
C. Eflective scope of cue phrases;
D. Multiple discourse comectives.

We will address these problems and propose our solutions to each case.

A - Ambiguity between the discourse sense and the sentential sense of a cue phrase.
Λ word or phrase can lave a discourse sense in some cases; but it may not do so in the others. For example, the word "and" is a cue phrase in Example (4.2), but not in Example (4.3) as shown below.
(4.2) [Mary borrowed that book from our library last Monday,] [and she
returned it this morning.]
(4.3) Mary has a eat and a dog.

The word "and" in Example (4.2) starts a new action "she returned it this morning" that happens after the first action represented by the first clause of the sentence. "And" has a discourse sense herc by signalling a Sequence relation between these two clauses. On the other hand, the word "and" in Example (4.3) does not give any information about the rhetorical relation. Instead, it is only a conjunction that connects two noun phrases in that sentence; When a word only expresses a sentential meaning in the current context such as "and" in (4.3), it only has a sentential sense. In our experiments we noticed that a cue plrase in the discourse sense has a different effect to a sentence than a cue phrase in the sentential sense. The sentence is still grammatically correct \cdot when the "discourse sense" cue phrase is removed from the sentence, but it is not so with the "sentential sense" cue phrase. Therefore, we used syntactic information to deteet the sense of a cue phrase.

Examples (4.2) and (4.3) show that the position of a word in a sentence is important in deciding the discourse role of that word. The word "and" has a discourse sense only when it stands at the beginning of the right span of a rhetorical relation. Because of this, we added information 'about the possible positions of a cue phrase in a span to cach cue phrase. If'a cuc phrasc lias a discourse sense only in some special positions of a sentenice, the information about its position will be attached to the cue phrase. From now on, when mentioning a cue phrase, we only refer to the cue phrase ini its discourse sense.

B - Ambiguity about rhetorical relations

Finding a eue phrase in its discourse sense does not mean à rhetorical relation can be immediately posited simee a cue phrase may signal two or more relations. In Example (4.4), "since" ean be interpreted as a notation about the time "I have not seen .John". Meanwhile, the elause after "since" in Example (4.5) explains the reason why "He came back to Berlin". As a result, the cue phrase "since" siguals a Circumstance relation in Example (4.4) and an Explanation relation in Example (4.5).
(4.4) I have not seen John since he came back from Austria.
(4.5) He came back to Berlin since he prefers to live there.

In order to posit a relation between elementary discourse units in these cases, other information has to be taken into account. In a Circumstance relation, the event in the circumstance clause always happens before the event in the main clause; or the event in the main clause happens during the time of the event in the circumstance clause. Therefore, the tense of spans is checked by DAS in order to extract this information. In addition, other coherence information is also computed to posit the most suitable relation in each situation. A detailed description about the process to recognise rhetorical relations is discussed in Section 4.3.

In some cases, more than one relation can be posited between spans as in Example (4.6) shown below.
(4.6) I have not seen John for a while since he moved to a new town far away from herc.

The clause after "since" in Example (4.6) can be understood as an explanation for the clause before it. The reason "I have not seen John for a while" is that he lives too far from the writer or the speaker. This clause can also be considered as the answer for the question "Since when have you not seen John?". Therefore, it also has a Circtunstance relation with the first clause. Both relations are acceptable in this case. They are kept as candidates in DAS to derive discourse trees.

C-Effective scope of cue phrases

Deciding the spans that are affected by a cue phrase is sometimes not easy, such as in Example (4.7) below.
(4.7) a. As the crystal grows larger,
b. the corncrs of the hexagon grow a bit faster.
c. The slightly faster growth at the corners soon couses the hexagon to sprout arms.
d. Atrd since the ambient atmospheric conditions are nearly identical across the crystal,
e. all six budding arms grow at roughly the same rate.

The cue phrase "as" signals a Circumstance relation between the two clauses (a) and (b). The VP cue "cause" indicates that "The slightly faster growth at the corners" is a cause of "the hexagon to sprout arms". Since "The stightly faster growth at the corners" is another way of expressing the main clause (b) of the first sentence (a-b), a Cause-Result relation holds between the first sentence (a-b) and the second sentence (c). Both cue phrases "and" and "since" stand at the beginning of the last sentence in Example (4.7). Only the cue phrase "since" signals a rhetorical relation (a Cause relation) between the twọ clauses (d) and (e). The cue phrase "and" comects the second sentence (c) with the third sentence ($\mathrm{d}-$ e). It posits an Elaboration relation between these sentences. Two questions arise from this example:

1. How to make DAS take "since", not "and", as the cue plrase for the (wo clauses (d) and (e)?
2. How to make DAS decide whether the cue phrase "and" comect the last two sentences (Figure 4.1a) or the first two sentences and the third one (Figure 4.16)?

(b)

Figure 4.1. Two Possible Discourse Trecs for Example (4.7)

With the first problem, we used information about positions of cue phrases. The cue phrase "and" has to stand at the beginning of the right span (see Appendix 3). Therefore, "and" camot be used as a cue phrase for the relation between the two spans "since the ambient atmospheric conditions are nearly"identical across the crystal" and "all six budding arms grow at roughly the samie rate" in Example (4.7).

The second problem is solved by using the scope of cue phrases. Since some eue phrases can only connect clauses or sentences (e.g., since, although), and the others can comect paragraphs (e.g, firstly, secondly), we used this information to control the effective scope of cue phrases. As the cue phrase "and" is to comect clauses or sentences (Appendix 3), the discourse tree in Figure 4.1.a is chosen as the representation for Exampie (4.7).

D-Multiple discourse connectives

Let us consider the following situations of recognising thetorical relations between two text spans, which are relerred to as the problem of multiple discourse connectives:

1. Several adjacent cục phrascs in a span.
2. Several non-adjacent cue phrases in a span.
3. Several non-adjacent cue phrases in both spans.

Example (4.7) represents the first situation. In this case, we proposed to use the following rules:

1. If several cue phrases stand at the beginning of the left span, the right most cue phrase will decide the relation. The left most cue phrase will decide the relation between the span on its left and the span that covers the left and right span.
2. If wo cue phrases stand at the beginning of the right span, the left most cue phrase will decide the relation.

It is necessary to note that the chosen eue phrase necds to satisfy all of its properties (c.g., its position in a span) before it can be used to posit a relation.

The second rule is applied for a situation that has been discussed in Webber et al. (1999b), which is represented in Example (4.8):
(4.8) You shouldn't trust John because, for example, he never returns what he borrows.

The cue phrase "becanse" is chosen by the second rule to comnect "You shouldn't trust John" and "for example, he never returns what he borrows."

According to Webber et al. (1999b), the presupposition of "for example" is grounded through the adjacent discourse connectives "because", which provides evidence for a set of reasons. Thus, the right clause "for example, he never returns what he borrows" is a cause for the left clause "You shouldn't trust John". Webber et al. use the D-LTAG (Discourse Lexicalized Tree-Adjoining Grammar) to parse the sentence in Example (4.8), which produces the tree in Figure 4.2.

Both approaches, which are used in DAS and in Webber et al. (1999b), posit the same relation for Example (4.8). The difference between them is that DAS generates an RST tree, whereas the method used in Webber et al. (1999b) constructs a D-LTAG tree for the text.

Figure 4.2. The D-LTAG Derivation for Example (4.8)

For the second situation (i.e., several non-adjacent cue phrases in a span), the cue phrase that is contiguous with the segment boundary will decide the relation. For the third situation (i.e., several non-adjacent cue phrises; in both spans), all relations corresponding to these cue phrases will be checked. The procedure to check a relation is discussed in Section 4.4.

In summary, the following properties are added to each cue phrase in order to assist the process of recognising relations:

- The possible position of a cue phrase in a span. A cuc phrase can be at the heginning, in the middle, or at the end of a span. Its respective positions are ' B ', ' M ', and ' E '. If the cue phrase can be at any position inside a span, then its position is ' Λ ', which means " any position".
- The span that the cue phrase belongs to. This is indicated by the letter ' I ' (for left span) or ' R ' (for right span). If the cue phrase can be in either side, this property is indicated by the letter ' Λ ', which means "any side".
- The effective scope of a cue plirase. If a cue phrase can be used only to connect clauses, its effective scope is ' C '. If the maximum size of a span that a cue phrase can connect with is the size of a sentence, the effective scope is ' S '. Otherwise, this value is ' P ' (paragraph).
- The relation name suggested by the cuc plarasc (e.g., Elaboration, Circumstance).
- The score of the cue plirasc for the relation, whose values ranges between 0 and 1. For example, "in spite of f " is the cue phrase for the Concession relation; it has a score of 1 . "And" can be a cue phrase for a List, Sequence, or Elaboration relation, its score for each of these relations should be lower than 1. This score is initially assigned according to human linguistic intuitions. It can be adjusted during a training process of cue phrases.

For example, the cue phrase "and" is stored in the set of cue phrases for the List relation as "and: $\mathrm{B}: \mathrm{R}: \mathrm{S}: L i s t: 0.8$ ". The information for the cue phrase "in spite of" is "in spile of: $\mathrm{B}: \mathrm{A}: \mathrm{C}: C o n t r a s t: \mathrm{I}$ ".

4.2.2 Noun-Phrase Cues and Verb-Phrase Cues

In this section, we introduce two new types of cuc phrases. They are noun-phrase cues (NP ciles) and verb-phrase cues (VP cues). Examples'of NI' cues and VP cues are shown below:
(4.9) [New York style pizza meets Californian ingredients,]] and the result is the pizza from this Church Strect pizzeria.]
(4.10) [By the end of this year, 63-year-old Chairman Silas Cathcart retires to his Lake Forest, Ill., home, possibly to build a shopping mall on some land he owns. "I've done what I came to do at Kidder", he says.] [And that means 42-year-old Michael Carpenter, president and chief executive since January, will for the first time take complete control of Kidder and try to make good on some grandiose plans.]

In Example (4.9) the noum "result" indicates a Resull rclation; whereas in Example (4.10) the verb "means" signals an Interpretation relation between two sentences. The phrases in the main noun phrases (i.e., subjects and objects) of a sentence that signal rhetorical relations are called NP cucs. These phrases can be nouns, adjectives, or adverbs. For example, the adjective "following" in the noun phrase "the following week" signals a Sequence rclation. This word is considered as a NP cue. Similarly, the phrases in the main verb phrase of a sentence that signal relations are called VF cues. These phrases can contain verbs, adjectives, or adverbs.

NP cues, VP cues, and cue phrases arc considered as separate recognition factors because of their different behaviours in recognising relations. The same word in a NP, a VP, and a clause may signal different relations or may not signal any relation at all. Let us illustrate this statement using the word "means". When "means" acts as a verb, it often signals an Interpretation relation (Example 4.10). When the noun "means" is in the main noun phrase of a sentence, it does not signal any relation (Example 4.11). Meanwhile, when the noun "means" is not in a main noun phase of a sentence, but it is in the cuc plrase "by means of", it indicates a Means retation (Example 4.12).
(4.11) [These means of transport are sometimes called accidental, If but this is not strictly correct.]
(4.12) [1t is the magician's wand,][by means of which he may summon into life whatever form and mould he pleases.]

In addition, the cue phrases are identilied based on pattern matehing, whereas the NPs or YPs of text spans have to be stemmed before being compared with the NP or VP cues. The sets of NP cues and VP cues were created by us and are listed
in Appendix 4. The information stored for each NP or VP cue includes the span that the NP or VP cue belongs to, relations that the NP or VP cue signal, and the score of NP or VP cue whose value is between 0 and 1 . Similar to cue plrases, if a, NP cue or a VP cue signals more than one relation, its score for each relation is lower than 1. This score can be adjusted during a training process.

A detailed description of the use of NP cues and VP cues will be discussed in Sections 4.3 and 4.4.

4.2.3 Reiterative Devices

The reiterative devices include word repctition, synonyms, hypernyms, cohyponyms, and antonyms.

4.2.3.1 Word Repetition and Synonyms

Word repetition has been used in previous studies on text summarisation and information retrieval to segment text into topics (Utiyama and II. Isahara, 2001; Salton et al:, 1999; Choi, 2000). The idea is that if two spans refer to the same topic (i.e., some specific words are repeated many times), there must be a diseourse comection between these spans.

Synonyms can be considered as a variant of word repetition phenomenon, which is often used when people do not want to repeat a specific word so many times. In Example (4.13), the words "employer" and "boss" refer to the same person:
(4.13) Amada's employer, however, was less sympathetic. 'My boss gave me an envelope and told me it was redundancy money - two weeks' pay - $\$ 280$. I was shocked.' (Salkie, 1995)

In relation recognition, the information about word repectition and synonyms is used to detcet the discourse connection and relation name between spans. For example, a Contrast relation often occurs when most words in two spans are similar, and one span has the word "mot". When both sentences have the same subject or object, and the same syntactic structure, it is likely that a List relation holds between these sentences.

4.2.3.2 Hypernyms

Hypernyms are used when one refers back to a word that has been used in the previous text, or mentioned a more general or more specific situation, such as the words "Brazil" and "country" in Example (4.14) shown below.
(4.14) Brazil, with her two-crop economy, was even more scverely hit by the Depression than the other Latin American states. The country was on the verge of complete collapse.
"Brazi"" is a specific instance of the more general word "country". The general word is called a hypernym; the more specific one is called a hyponym. If the specific word is used before the general word, and no cue phrase is present in the text, it is possible that an Elaboration, Evaluation, Interpercation, Explanation, or Circumstance relation holds between two spans. On the other hand, if the general word is used before the specific word, it often signals an Elaboration relation. Λ s such, DAS uses hypernyms to limit the range of rhetorical relations needed to be examined.

4.2.3.3 Co-hyponyms and Antonyms

Co-hyponyms are the words that have the same hypernym. For example, "Brazil", "Viemam", and "Poland" are co-hyponyms since all of them are all hyponyms of country. Antonyms are opposite words such as "hot" and "cold". Since the meaning of antonyms is opposite, they often express a Contrast relation. The cohyponyms often refer to a multi-nuclear relation such as Contrast, List, and Sequence.

4.2.4 Combining Reiteration Devices with Reference Words

 ;The reference words include personal pronoms (I, yon. he), their object forms (me, him) and their possessive forms (my, mine, your, yoirs), demonstratives (this, that, these, those) and comparative constructions (the same thing, a different person, etc.). The meanings of reference words do not exist in isolation. Each word must be interpreted in its context. One needs to look back at the previous text to understand which entity the reference word refers to. For example, the
pronoun " $h e$ " in the second sentence of Example (4.15) refers to the private name "Graham", whereas the pronoun "it" refers to the noun phrase "his bicycle".
(4.15) Graham sold his bicycle. He said he did not need it anymorc.

The reference words arc often combined with the reiterative devices to refer to the previous entity (see Example 4.16). The phenomenon of reiteration of ati 'entity (called "antecedent") by a reference (called "anaphor') that points back to that entity is called "cmaphora".
(4.16) 1 have read a novel written by Barbara Erskine. The book is fascinating, absorbing, and hypnotic.

Normally, after an entity is initiated, this entity is elaborated by succeeding sentences, using reference devices. When another entity is initiated, the text changes its focus to the new entity. Researchers such as Grosz and Sydner (1986) have proved that identifying the movement of locus is important in defining the rhetorical structure of text. The process of identifying the antecedent of an anaphor is called "maphora resolution". Anaphora resolution has been extensively investigated in many studies (e.g., Cristca and Dima, 2001; Mitkov, 2002).

In this research, we use a simple model of amaphora resolution to recognise retations. The main noun plrases (i.c., subjects and objects of sentences), verb phrases, and adjective phrases are extracted from the syntactic information of these spans. These phrases are then stemmed into their original forms (e.g., "books" is converted into "book"). After that, DAS computes the semantic relation between these phrases using a thesaurus ealled WordNet (2004). The relations needed to be computed are word repestition, synonyms of nouns, hypcrnyms of nouns, co-hyponyms and antonyms of nouns, verbs, adjectives, and adverbs, and references.

Let us consider the following exame:
(1.17) Fire is hot. Ice is cold.

The two subjects, "ice" and "fire", are co-hyponyms, since both of them have a hypernym "substance". The two adjectives, "cold" and "hot", are antonyms. The
head verbs of two sentences have the same base form " $b e$ ". This information signals a Contrast or a List relation between these two sentences.

A detailed description about using cohesive devices in recognising relations is described in Sections 4.3 and 4.4.

4.2.5 Time References

Diseourse connection can be established by time relations between spans. If the time of a narrative changes from the present to the past, it is likely that the writer refers to a previous event that is the cause (Example 4.18), the hypothetical (Example 4.19), or the elaboration (Example 4.20) of the current event.
(4.18) Mark has a terrible headache today. He drank too much last night.
(4.19) Mark has a terrible headache today. He mast have drmek too much last night.
(4.20) Mark has a restaurant now. He had to work in several restaurants before he opened his own.

If the time of the second span covers the time of the first span, a Circumstance relation usually holds in this case (Example 4.21).
(4.21) Mark knows every person in this village. He has been living here for more than (en ycars.
If no eue phrase is present in a sentence and the subject of this sentence contains ád temporal NP cue (e.g., previous, next), a List, Sequence, Explanation, or Elaboration relation may hold. For example, an Explanation relation exists in Example (4.22).
(4.22) Mark bought a new car today. His previous car was stolen.

The time reference can also be used to check the validity of a relation as mentioned in Section 4.3.2.1. Since the time reference can signal discourse connection and limit possible relations, it is combined with other factors to posit rhetorical relations, as described in Scetion 4.3.

4.2.6 Substitution Words

Substitution serves as a place-holding device, where the missing expression is replaced by a special word (one, do, so, etc.), in order to avoid the repetition. "One" and "some" replace a noun phrase (Example 4.23).'"Do" and its other forms ("did", "have done", etc.) replace a verb phrase (Example 4.24). "So" replaces a clause (Example 4.25).
(4.23) This television is too small for your room. You should buy a bigger one.
(4.24) I have never read that book before. I wish I did.
(4.25) - Steve will get the first prize.

- I think so.

By replacing words that have already been used in the preceding text, a strong link is created between one part of the elided text and anothicr. While reiterative devices or reference words can be distant from their antecedents, the substitution words only refer to the entities or the actions that have just been mentioned. ${ }^{\text {T }}$ Therefore, substitution words are used for local focus.

The substitution words "one", "do", and "so" also have other uses where they do not substitute for anything. For example, "one" can be a number; "do" can be an auxiliary; and "so" is not a substitute in "so many". Syntactic information is used in DAS to distinguish these cases.

4.2.7 Ellipses

Ellipsis is a special form of substitution words where a part of a sentence is omitted. The use of VP-ellipsis has been discussed in previous research in discourse analysis such as Kehler and Shieber (1997). In this research, other types of ellipses are also considered, including $N P$-ellipsis and clause-ellipsis. Examples of NP-ellipsis, VP-ellipsis, and clause-ellipsis are shown in Examples (4.26), (4.27), and (4.28) respectively. In these examples, the word or clatse in itchics is left out at the position that is marked with " \diamond ".
(4.26) Steve has always been a good student in my class. Actually, he is the best \varnothing.
(4.27) I wern to the dentist, and he \diamond to the airport.
(4.28) I have a feeling that this cottage is very faniliar. But I eannot explain why $>$.

Many studies on VP-ellipsis have been carried out by Kehler (e.g., Kehler, 1996; Kehler and Slieber, 1997). He elaims that VP-ellipsis exists in two levels: the syntactic level and the semantic level. The data support a syntactic aecount when a Resemblance relation is operative between the clauses, whereas the data support a semantic account when a Cause-Effect relation is operative. This observation about VP-ellipsis, as well as other aspects of NP-ellipsis and clauseellipsis, is eonsidered in DAS to posit rhetorieal relations. The elliptical phenomenon in a text is reeognised by analysing the syntactic information of sentences.

4.2.8 Syntactic Information

According to Matthiessen and Thompson (1988), clausal rclations refleet rhetorical relations within a sentence. The rhetorical relation between a mainclause and its subordinate clause is an asymmetric relation, in which the main clause is the nucleus, and the subordinate clause is the satellite. This proposal is applied in DAS to suggest the nuclearity role of spans and to eliminate unsuitable relations (e.g., a List relation cannot hold between a main clause and a subordinate clause). If two elauses are in coordination, their relation can be symmetric or asymmetric.

Syntactic information can also be used to suggest relation names. For example, the reporting and reported clauses of a sentenee are considered as the satellite and the nucleus in an Elaboration relation:
(4.29) [Mr. Carpenter says][that Kidder will finally tap the resourees of GE.]

In Example (4.29), the reporting clause "Mr. Carpenter says" is considered as the satellite, whereas the reported clause "that Kidder will finally tap the resources of $G E$ ' is eonsidered as the nucleus. This is described in Chapter 3.

4.3 Conditions to Posit a Rhetorical Relation

Mann and Thompson (1988) have stated that a rletorical relation is identified by constraints on the nucleus, on the satellite, and on the combination of the nucleus and the satellite (see Figure 2.3 in Section 2.2.1 for an example). This process depends on the reader's understanding of the text. To rccognise relations in a computational way, DAS uses two kinds of recognition rules. The rules that are used to signal relations are called heuristic rules. The rules that are used to check the validity of a relation are called necessary conditions.

The heuristic rules are the applications of recognition factors to a specific relation. For example, the heuristic rule to recognise a List relation "The right span contains List cue phrases" (Section 4.3.2.1) is the application of the recognition factor cue phrases.

The purpose of separating two kinds of recognition rules is to reduce the workload of the recognition process. To posit relations, DAS starts by finding recognition factors from text spans. If these factors are strong enough to signal a relation, which means that the total scores of the heuristic rules that contribute to that relation are more than or equal to a threshold θ (see Section 4.3.1), then the necessary conditions of that relation will be checked. That relation will be posited if all necessary conditions arc satisfied (sce Section 4.4). Since a factor often signals a limited number of relations, DAS does not need to check all relations from the relation set.

4.3.1 Scoring Heuristic Rules

Cue phrases, NP cues, VP cues, and cohesive devices have different importances in recognising rhetorical relations. The cuc phrases are the oncs that explicitly express discourse relations most of the time. Meanwhile, ellipsis, which is one type of cohcsive devices, can only create a link between text spans and cannot determine a relation name. Therefore, the heuristic rules using cue phrases are stronger than the heuristic rules using ellipsis. To control the influence of these factors to the relation recognition, each heuristic rule is assigned a heuristic score. The cue phrase rules have the highest score of 100 because cue phrases are the
strongest factor to signal relations. NP cues and VP cues are also strong factors but they are weaker than cue phrases since they do not express relations in a 'straightforward sway like cue phrases. As a result, the heuristic rules involving NP cues and VP cues are assigned a score of 90 . The heuristic rules corresponding to the remaining recognition factors receive scores ranging from 20 to 80 because these factors are weaker than NP cues and VP cues.

In this research, we scparate two types of scores: the seore of a heuristic rule and the score of a specific cue phrase, NP cue, and VP cuc (sec Sections 4.2.1 and 4.2.2). The heuristic rule involving cue phrases has the score of 100 , which means DAS is one loundred per cent certain that the relation signalled by the cue phrase holds. However, it is only correct when that cue phrasc explicitly expresses a relation. As mentioned in Sections 4.2.1, each cue phrase has a different level of certainty in signalling relations. The cue phrase "instead of" always signals an Antithesis relation; whereas the cue phrase "and" may signal a Lisv, Sequence, or Elaboration relation. That means the cue phrase rule that applies to the cue plrase "and" is not one hundred per cent certain that a List relation holds. In other words, the score of a cue phrase rule should be reduced when this rule is applied to a weak cue plirase. Since the score of a cue phrase is between 0 and 1, DAS calculates the actual score of a heuristic rule involving cue phrases as follow:

Actual-score(heuristic rule) $=$ Score(heuristic rule) ${ }^{*}$ Score(cue phrase).
This treatment is also applied to NP cues and VP cues. Since a NP or VP cue can signal two or more relations, each NP or VP cue may have a different score. It follows that the actual score for the heuristic rule of a NP or VP cue is:

Actual-score (heuristic rule) $=\operatorname{Score}($ leuristic rule $) * \operatorname{Score}($ NP cue or VP cue $)$. The actual score of other heuristic rules that do not involve cue phrase, NP or VP cue is:

Actual-score(heuristic rule) $=$ Score(heuristic rule $)$
If several heuristic rules of a relation are satisficd, the seme of than retation will be the total scores of all factors that contribute to this relation.

Total-heuristic-score $=\sum$ Actual-scorc (heuristic rule)

At present, heuristic scores are assigned by human linguistic intuitions. They can be optimised by a training method. Unfortmately, we know of no discourse corpus that is large enough for this training purpose. Therefore, this training proeess has not been addressed in this thesis.

DAS seeks the recognition factors in the following order: cue plrases, NI eues, VP cues, and the remaining recognition factors. A rhctorical relation will be posited if the total-hewristic-score of this relation is greater than or equal to a threshold θ. Choosing a reasonable value for this threshold is very important since a modification of this value may affect many decisions in positing relations, therefore changing rhetorical structures of text. The threshold is initially assigned the seore of 30 (compare to 100 as the maximum score of a heuristic mile), as by observation we found that reeognition factors can be very weak in many cases. For a better use of the threshold, a training method to optimise this value will be considered in liture work.

4.3.2 Criteria to Recognise Relations

The criteria to recognise relations in this research are inherited from Corston (1998) and then modified and extended by us. However, D $\wedge S$ and R $\wedge S T \wedge$ (Corston, 1998) use the necessary conditions and the heuristic rules for different purposes and in diflerent orders. The necessary conditions are used in DAS to eliminate the unsuitable relations that have been signaled by heuristic rules. Meanwhile, these conditions are used in RASTA to filter out unsuitable relations from the relation set before considering any heuristic rule. DAS has to test fewer relations than R $\triangle S^{\prime} \wedge$ since the number of relations satisfied by the heuristic rules is always less than the number of relations satisfied by the neeessary conditions. Therefore, the computational cost in DAS is less than that in RASTA.

The criteria to recognise relations are described by three representative samples of a List relation (Section 4.3.2.1), a Circumstance relation (Scetion 4.3.2.2), and an Filathoration relation (Scelions 4.3.2.3). The hemistic mes that are used to recognise the remaining relations are given in Appendix 6 .

4.3.2.1 List

A List relation is a multi-nuclear relation whose elements can be listed. A List relation is often considered as a Sequence relation if there is an explicit indication of temporal sequence. The neeessary conditions for a List relation between two text units, Unit ${ }_{1}$ and Unit 2_{2} (Unit 1_{1} precedes Unit ${ }_{2}$) are shown in Table 4.I. The first condition is based on syntactic information to guarantec that the two units are syntactically independent. The second condition in Table 4.1 ehecks the linkage between the two units by using reiterative and co-reference devices. Syntactic and semantic information determine the subject of these units and their relations. The third condition distinguishes a List relation from a Sequence relation. The last condition ensures that a Contrast relation is not present.

Index	Necessary Condition
1	Two units are two co-ordinate elauses or two sentences.
2	If both units have subjects and do not eontain attribution verbs, then these subjects need to meet the following requirement: they must either be the same, identical, synonyms, co-hyponyms, hypernym/hyponym, or the subject of Unit is a pronoun or a noun phrase that can replace the subject of Unit t_{1}
3	There is no explicit indication that the event 'cxpressed by Unit temporally precedes the event expressed by Unit
4	The Contrast relation is not satisfied.

Table 4.I. Necessary Conditions for the List Relation
The heuristic rules for the List retation is shown in Table 4.2. Let us apply the criteria to recognise the List relation to Example (4.30).
(4.30) [Mr. Catheart is credited with bringing some basic budgeting to traditionally free-wheeling Kidder.4.30.1] [He also improved the firm's compliance procedures for trading. .4.30.2]

In Example (4.30), the cue phrase "also" signals a List relation between the two sentences (4.30.1) and (4.30.2). Since only the heuristic rule 1 (Table 4.2) is satisfied here, the total-heuristic-seore is:

Total-heuristic-score $=$ Actual-score(heuristic rule 1)
$=$ score(heuristic rule 1) ${ }^{*}$ seore("also").

Index	Heuristic Rule	Score
1	Unit2 contains List cue plorases.	100
2	Both units contain enumeration conjunetions (first. second, etc).	100
3	Both subjects of Unit ${ }_{1}$ and Unit ${ }_{2}$ contain NP cues.	90
4	If both units contain attribution verbs, the subjects of their reported clauses are similar, synonyms, co-hyponyms, or hypernyms/lyyponyms.	80
5	If the subjects of two units are co-hyponyms, then the verb phrase of Unit2 must be the same as the verb phrase of Unit ${ }_{1}$, or Unit ${ }_{2}$ has the structure "so + auxiliary $+s b j$ ".	80

Table 4.2. Heuristic Rules for the List Relition

The cue phase "(rlso" has the score of I for the List relation, so the total-heuristic-score is $100^{*} 1=100>0$. Therefore, the necessary conditions of the List relation are checked. Spans (4.30.1) and (4.30.2) are sentences, the first condition is thus satisfied. The subject of text span (4.30.2), "he", is a pronoun, which replaces the subject of text span (4.30.1), "Mr. Cathcart" (emindition 2). There is no evidence of an increasingly temporal sequence (condition 3), and also no signal of a Contrast relation (condition 4). Therefore, a List relation is posited between text spans (4.30.1) and (4.30.2).

The cue phrase "and" is found in Example (4.31):
the Bush adeninistration.at.31.2
"And" is considered as a cue phrase because it stands at the begimning of clause (4.31.2) (heuristic rule 1). The subjects of two spans, "the Reagan administration" and "the Bush administration", are co-hyponyms. In addition, clause (4.31.2) has the structure "so + auxiliary $+s b j$ ". With the score of 0.8 for the cue phrase "and" in the List relation, and with the satisfaction of the heuristic rule 5 , the total-heuristic-score is:

Total-heuristic-score $=$ Score(heuristic rule 1)*Score("and") + Score(heuristic rule 5) $=100^{*} 0.8+80=160>0$.

As in Example (4.30). the necessary conditions of the list relation are checked and then a List relation is posited between two elementary discourse units (4.31.1) and (4.31.2).

4.3.2.2 Circumstance

A Circumstance relation is a nuclear-satcllite relation. In a Cifcumstance relation. the situation presented in the satellite provides the context in which the situation presented in the muclcus should be interpreted. The satellite is not the cause/explanation of the situation presented in the nucleus.

For example:
(4.32) [Some evinced an optimism that had been rewarded][when they didn't flee the market in 1987.]

There is no necessary condition for the Circumstance relation. The heuristic rules for the Circumstance relation between two text units, Unit, and Unit ${ }_{2}$ (Unit ${ }_{1}$ precedes Unit ${ }_{2}$) are shown in Table 4.3.

The heuristic rule 3 is to distinguish the Circumstance relation with the Manner relation (see conditions to posit a Manmer relation in Appendix 6). It is illustrated in Examples (4.33) and (4.34) below:
(4.33) [Walking slowly.\|| we approached the main building.|
(4.34) [Looking at Susan s face, |f le knew she was terrible angry.]

The adverb "slowly" describes the manner of "walking". The verb phrase "walking slowly" indicates the manner of "we approached the main building".

Mcanwhile, "looking at Susan's face" denotes the circumstance when "he knew she was terrible angry". The total-heuristic-score of the Circumstance relation in Example (4.34) is:

Total-heuristic-score $=$ Score $($ heuristic rule 3$)=80>0$.

Index	Heurislic Rule	Score
1	One unit has Circamstance cue phrases.	100
2	The subject of Unit 2 contains a NP cue.	90
3	Unit 1 is a Verb + ing clause; that verb phrase does not contain any adverb.	80
4	The time of Uniti 2 covers the time of Unil.	

Table 4.3. Heuristic Rules for the Circumstance relation

Since the Circminstance relation does not require necessary conditions, a Circumstance relation is posited between two clauses in Example (4.34), with the total-heuristic-score of 80 .

4.3.2.3 Elaboration

An Elaboration relation is a muclear-satellite relation. In an Elahoration relation, the satellite gives additional information or detail about the situation presented in the nucleus. This is the most general relation since one span often provides additional information for its previous span. The necessary conditions for the Elaboration relation are given in Table 4.4.

Index	Necessary condition
1	Both units are not dominated by and do not contain cue phrases that are compatible with other relations. However, it is still acceptable if the cue phrase signals other relations as well as the Elaboration relation.
2	List, Sequence. Circumstance relations are not satisfied.

Table 4.4. Necessary Conditions for the Elaboration Relation

The heuristic rules for the Elaboration relation are given in Table 4.5. The heuristic rule 6 in Table 4.5 means that the Elaboration i's the default relation when there is a signal of semantic relation between two spans and all other relations are not satisfied. It is checked only when no other heuristic rule is satisfied, or when it is signalled by syntactic information. Let us apply the criteria to recognise the Elaboration relation to Example (4.35):
(4.35) [But even on the federal bench, specialisation is creeping in,] [cond it has become a subject of sharp controversy on the newest federal appeals court.]

Index	Heuristic rule	Seore
1	One unit contains Elaboration cue plarases.	100
2	The VP of Unit ${ }_{2}$ contains a VP eue or an attribution verb.	90
3	Unit 2_{2} is a clause that is adjacent to the last NP of Unit ${ }_{1}$ and has the syntactic role ol PP. NP, VP, or SBAR.	80
4	The subject or object of Unit ${ }_{2}$ is a hyponym of thic subject or object of Unit , or the subject\|object of Unit ${ }_{2}$ is the pronoun some or contains the modifier some.	50
5	The subject or object of Unit 2 is a synonyms, co-hyponyms, or the subject of Unit 2_{2} is a pronoun or a NP that relates to the subject or object of Unit ${ }_{1}$.	30
6	There is an indication of a relation between two units (e.g., both units "talk about" the same subject). Also, other relations (except .Joint) are not satisfied.	30

Table 4.5. Heuristic Rules for the Elaboration Relation

DAS considers the word "bum" as a cue phrase if this word is at the beginning of the right span (see \wedge ppendix 3), which docs not match with "bu" in Example (4.35). Therefore, there is only one cue plarase "cind" in this example. "And" signals the List, Sequence, and Elaboration relations. It has the score of $0.8,0.8$, and 0.7 for the List, Sequence, and Elaboration relation respectively. Since the
score for the heuristic rule involving cue phrases is 100 , the actual scores for the List, Sequence, and Elaborction relations are $80\left(=100^{*} 0.8\right), 80\left(=100^{*} 0.8\right)$ and $70\left(=100^{*} 0.7\right)$ respectively. All of these scores are greater than the threshold θ $(=30)$. The two clauses in (4.35) do not satisfy the necessary condition 2 of the List and Sequence relations (sce Necessary Conditions of the List and Sequence relations in Section 4.3.2.1 and in Appendix 6). The List and Sequence relations therefore do not hold in Example (4.35). The necessary conditions of the Elaboration relation are satisfied. Heuristic rules 2, 3, and 4 of the Elaboration relation are not satisfied in Example (4.35). With the score of 0.5 for the cue phrase "and" of the Elaboration relation, and with the satisfaction of the heuristie rule 1, the total-heuristic-score of the Elaboration relation is:'

Total-heuristic-score $=\Lambda$ ctual-score $($ heuristic rule 2$)$

$$
\doteq \text { Score(leuristic rule 2) *Score("and") }=100 * 0.7=70>0
$$

Therefore, an Elaboration relation with the score of 70 is posited in Example (4.35).

4.4 Procedure to Posit Rhetorical Relations

In order to posit one or several rietorical relations between spans from the set of 22 relations, it is unnecessary to check all of 22 relations one by one. Instead, DAS starts by detecting recognition factors from texts. If two spans are clauses of a sentence, $D \Lambda S$ first clucks the syntactic rule that produces the segnentation boundary between these clauses. If no relation can be posited between two elauses by using syntactic information, or if two spans are not in the same sentence, $D \wedge S$ searches for cue phrases from the two spans. If cue phrases are found, D $\wedge \mathrm{S}$ checks other conditions of the relations that correspond to these cue phrases.

If cue phrases are not found, DAS searches for other factors, in a decreasing order of heuristic scores. These factors are VP cues, NP cues, symactic information, and semantic information. When searching for recognition factors, DAS calculates the aecmumation score of all heuristic rules contributing to each relation signalled by the factors. If the accumulation score of one relation is higher or equal to the threshold $0, D \wedge S$ examines necessary conditions of this relation. If
the necessary conditions are satisfied, this relation will be posited. If no heuristic rule is satislied, and there is evidence that two spans are related, an Elaboration is posited. Otherwise, if no heuristic rule is satisfied, and no cvidence that these spans are related, a Joint relation is assigned. Figure 4.3 describes the algorithn to posit relations between spans. Λ detailed description of this algorithm is presented in Appendix:2.

Input:

- Two non-overlapping spans Unit ${ }_{1}$ and Unit ${ }_{2}$ and the syntactic rule that has been used to segment these spans.
- Lists of cue phrases, VP cues, and NP cues.

Output: All possible retation name of the relation between Unit ${ }_{1}$ and Unit $_{2}$.

Algorithm:

1. If the input spans are clauses, find a name for the relation using the information of the syntactic rule. If it is found, posit this name.
2. If a relation name has not been assigned, find all cue phrases in Unit ${ }_{1}$ and Unit 2_{2}. Compute a total score of all heuristic rules that have been found. If this score $>=0$, and necessary conditions of the relation signalled by the cue phrases are satisfied, posit this relation name.
3. If a relation name has not been assigned, detect VP cues and NP cues from Unit1 and Unit2 and perform the same operations as in Step 2.
4. If a relation name has not been assigned, check other heuristic rules of each relation. With each relation, compute a total score of all heuristic rules that have been found. If this score $>=0$, and necessary conditions of the relation signalled by the heuristic rules are satisfied, posit this relation name.
5. If a relation name has not been assigned, and there is a signal indicating that Unil ${ }_{1}$ and Unit ${ }_{2}$ has a semantic relation, posit an Elaboration relation. Otherwise, posit a Joint relation.

Figure 4.3. Outline of the Algorithn to J'osit Relations Between Spans.

When positing a rhetorical relation between spans, the nuclearity role and the relation score are also assigned to this relation. The semantic relation mentioned in Step 5 is achieved by checking cohesive devices (e.g., word repetition and synonyms).

4.5 Summary and Discussion

This ehapter has presented a method of positing rhetorical relations between spans based on several recognition factors. A set of 22 relations has been proposed to be used in analysing thetorical relations. It is created by grouping relations in the RST-DT corpus according to a specific resemblance. Λs^{i} Mann and Thompson (1988) stated, the set of rhetorical relations can be varied depending on genres and cultural styles. The set of 22 relations used in DAS is enough for our research and for evaluating , the result based on the RST-DT corpus. The number of relations in this set can be made smaller by grouping relations that share a number of characteristics into a relation; or it can be made larger by adding more relations into the set. In case of grouping similar relations into one, the easiest way to produce discourse trees is to get the output from DAS and then map the relations from this ontput to the relation in the new relation set. In case of adding more relations, the heuristic rules of the relations that have some common properties with the new relations need to be modified accordingly. The task of finding recognition factors (time references, substitution words, etc.) and the algorithm to posit relation are still the same.

Beside the traditional cue phrases that have been used in most research on discourse analysis, we exploit new recognition factors, including NP cues and VP cues. Time references, anaphora resolution, substitution words, ellipses, and syntactic information are also investigated in this research. Each heuristic rule, which is an application of these recognition factors to a specific relation, is considered as a piece of evidence that eontributes to the recognition process. Each heuristic rule is assigned a score. The combination of thesc heuristic rulcs, represented by a total-heuristic-score, decides the relations.

DAS posits a rhetorical relation if all necessary conditions and at least one heuristic rule are satisfied. To recognise a relation, DAS does not check all 22
relations from the relation set. Instead, DAS uses recognition factors from the two spans to propose all possible relations. Only the relations that are signalled by the recognition factors are tested to posit relations between spans.

The problem of generating rhetorical structures of a text from rhetorical relations between text spans is discussed in Chapter 5.

5 Constructing Rhetorical Structures

This chapter concentrates on reducing the search space when constructing rhetorical structures of text, given all possible relations that hold between text spans. The discourse analyser developed in this thesis was inspired by Marcu (2000) and Corston (1998). It concentrates on further reducing the search space and finding the best rhetorical structures (LeThanh et al., 2004b). According to Matthiessen and Thompson (1988), syntactic structures of sentences have a close relation to the sentential rhetorical structures. Therefore, syntactic information is used in DAS to construct the sentential rhetorical structures (see Section 5.2). Based on the syntactic information, only one rhetorical structure is created for a sentence. No hypothetical span combination is created; no combinatorial problem happens; and no searching algorithm is needed to derive a rhetorical structure for a sentence.

In principle, the process of constructing text-level rhetorical structures is the same as that of sentence-level rhetorical structures (i.c., connecting text spans by rhetorical relations to create discourse trees): However, since there is no syntactic information to indicate the synactic relations between sentences, DAS cannot use syntactic information to construct text-level thetorical structures. Instead, DAS has to search for the best wetorical structure covering the entire text from all hypothetical relations between (ext spans (see Section 5.3).

In order to take advantages of the clausal relations within a sentence, we divide the discourse analyser into two levels: sentence-level and text-level, each of which is processed in a different way. Nevertheless, both analysing levels have to posit rhetorical relations between large text spans. We modify the compositionality criterion of Marcu (2000) in order to take advantage of recognition factors that are situated in the satellite. This recognition process is presented next.

5.1 Positing Relations Between Large Spans

An important task in constructing diseourse trees is to posit rhetorical relations between large spans. For example, DAS has to find rhetorical relations between
two sentences in Example (5.1), each of which consists of two elementary discourse units.
(5.1) [Some of the associations have recommended Dr. Alan D. Lourie s.1.1] who now is associate general counsel with SmithKline Beckman Corp. in Philadelphin. 5.1.2][Dr. Lourie says 5.1 .3][the Justice Department interviewed him last July. s.1.4]

Figure 5.1.a shows the discourse tree that connects two sentences in Example (5.1). The dotted are connecting these sentences indicates that the nuelearity roles of these sentences have not been posited.

Figure 5.1. Discourse Tree of Example (5.1)

Marcu (2000) explains the rhetorical relations that are held between large spans in terms of the rhetorical retations that are held between elementary discourse units. According to the strong compositionality criterion of Marcu (2000), "if a
rhetorical relation R holds between two textual spans of the tree structure of a text, then it can be explained by a similar relation R that holds between at least wo of the most important textmal units of the constitneatt spons." From this point of view, Marcu analyses relations between large spans by eonsidering only relations between their nuelei.

Let us apply the compositionality criterion proposed by Mareu to Example (5.1). In Example (5.1), the elementary discourse units (5.1.1) and (5.1.4) are the most important units of the first and the seeond sentenees respectively. Therefore, the relation between the two sentences is the relation between (5.1.1) and (5.1.4). Sinee the span (5.1.4) elaborates the information in the span (5.1.1), an Eloboration holds between the spans (5.1.1) and (5.1.4), in which the span (5.1.1) is the nucleus and the span (5.1.4) is the satellite. Consequently, an Elaboration holds between spans (5.1.1-5.1.2) and (5.1.3-5.1.4), in whieh the span (5.1.15.1.2) is the nucleus and the span (5.1.3-5.1.4) is the satellite. The dolted are now becomes a solid are whose arrow-head points to the span (5.1.1-5.1.2) (see Figure 5.1.b)

Consider the ease when one constituent span contains iwo nuclei (Example 5.2).
(5.2) [Some patent lawyers had hoped 5.2 .1$]$ that such a speeialty court would be filled with experts in the field.5.2.2ll But the Reagan administration thought otherwise, 5.23 II and so may the Bush administration.52.4]

The elementary discourse unit (5.2.2) is the most important unit of the first sentence. Both elementary discourse units (5.2.3) and (5.2.4) have equal important roles in contributing to the discourse relation of the second sentence. Therefore, a relation holds between two sentences in Example (5.2) if it holds either between (5.2.2) and (5.2.3), or between (5.2.2) and (5.2.4). The cue phrase "bur" signals a Contrast relation between (5.2.2) and (5.2.4), a Comrast relation thus holds between these spans with the heuristic score of 100 (sec Appendix 6). Becaltise of that, a Contrist relation holds between the two sentences in Example (5.2) (Figure 5.2.b).

Figure 5.2. Discourse Tree of Example (5.2)

The span (5.2.4), "and so may the Bush administration", means the Bush administration did not think that "such a specialty court would be filled with experts in the field'. Therefore, the context of the span (5.2.4) is also contrast with the context of the span (5.2.2). However, the current recognition faetors used in DAS is unable to detect a Contrast relation between (5.2.2) and (5.2.4). The word "and" in the span (5.2.4) is not considered as a cue phrase in the relation between
these spans since it has been used to signal a List relation between (5.2.3) and (5.2.4) (see "Effective scope of cue phrases" in Section 4.2.i). A default relation "Elaboration" is assigned between (5.2.1) and (5.2.4) with the heuristic score of 30 (Figure 5.2.c) (see Section 4.3.2.3). As a result, two relations are posited between two sentences in Example (5.2), a Contrast with the heuristic score of 100 and an Elaboration with the heuristic score of 30.

The compositionality criterion of Marcu (2000) skips recognition factors from the satellites of the constituent spans, which can also be used to sigual relations between large spans. Example (5.3) illustrates this situation. ligure 5.3 shows the discourse tree that comects two sentences in Example (5.3). The name of the rhetorical relation between these sentences has not been recognised.
(5.3) [With investment banking as Kidder's "lead business," where do Kidder's 42 -branch brokerage network and its 1,400 brokers fit
 fashion, completed a task-force study.5.3.3]

Figure 5.3. Discourse Tree of Example (5.3)
The VP cue "To (+ verb)" in span (5.3.2) indicates a Purpose relation between two clauses (5.3.2) and (5.3.3), in which the span (5.3.2) is the satellite and the span (5.3.3) is the nucleus. The VI cue "cmswer" in the span (5.3.2) indicates a Solutionhood relation between (wo sentences; one is the span (5.3.1), another covers spans (5.3.2) and (5.3.3). If D \wedge S ignores the satellite (5.3.2), it is difficult to recognise the retation that hokls hetween these two sentenes.

Example (5.3) shows that although the content of a satellite does not determine rhetorical relations of its parent span, recognition factors that belong to the
satellite are still a valuable source. We noticed that the cue phrases, NP cues and VP cues of the left most elementary discourse unit of both large spans can contribute to the relation between the two large spans. Meanwhile, the other cue phrases inside these two spans contribute to the internal rhetorical relations within each large span. For this reason, the first elementary discourse units of the two large spans are always considered by DAS to contribute to the relation. In computing the relation between large spans, DAS does not use only the nuclei of the two large spans as Marcu (2000) did, but also their first elementary discourse units, whether they are muelci or not.

We apply the compositionality criterion of Marcu and extended it for the case when a satellite stands at the begimning of the large span. To formalise the rules that are used to posit rhetorical relations between large spans, the following definitions are applied:

- <T> represents a span.
- $\left\langle T_{i} T_{j}\right\rangle$ represents a span that covers two adjacent, non-overlapping spans <Ti> and $\langle\mathrm{Tj}\rangle$, which are related by a rhetorical relationi. The possible roles of $\left\langle T_{i}\right\rangle$ and $\left\langle T_{j}\right\rangle$ in this rhetorical relation are Nucleus - Nucleus, Nucleus Satellite, or Satellite - Nucleus. These states are encoded as $\left\langle T_{i} T_{j}\right| N N>,<T_{i}$ $T_{j}|N S\rangle$, and $\left\langle T_{i} T_{i} \mid S N\right\rangle$, respectively.
- rhet rels $\left.\left.\left\langle<T_{i}\right\rangle<T_{j}\right\rangle\right)$ represents the rhetorical relations between $\left.\left.<\right]_{i}\right\rangle$ and $\left\langle\mathrm{T}_{\mathrm{j}}\right\rangle$.

The paradigm rules 1 to 4 in DAS given below are based on the proposition proposed by Marcu (2000).

Rule 1:

thet_rels $\left(\left\langle T_{1} T_{2} \mid N S\right\rangle,\langle T\rangle\right) \equiv$ rhet_rels $\left(\left\langle T_{1}\right\rangle,\langle\Gamma\rangle\right) \quad:$
If: there is a relation between two spans $\left\langle\Gamma_{1}\right\rangle$ and $\left\langle\Gamma_{2}\right\rangle$, in which $\left\langle T_{1}\right\rangle$ is the nucleus and $\left\langle\mathrm{T}_{2}>\right.$ is the satellite;

Then: rhetorical relations between span $\left\langle\Gamma_{1} \Gamma_{2}\right\rangle$ and its right-adjacent span \rangle

Rule 2:

rhet_rels $\left(\langle T\rangle,\left\langle T_{1} T_{2}\right| N S\right) \equiv$ rhet_rels $\left(\langle T\rangle,\left\langle T_{1}\right\rangle\right)$

If：there is a relation between two spans $\left\langle T_{1}\right\rangle$ and $\left\langle T_{2}\right\rangle$ ；in which $\left\langle T_{1}\right\rangle$ is the nucleus and $\left\langle\Gamma_{2}\right\rangle$ is the satellite；
Then：rhetorical relations between span $\langle T\rangle$ and its right－adjacent span $<T_{1} T_{2}>$ are the relations that hold between $\langle T\rangle$ and $\left\langle T_{1}\right\rangle$ ．

Rule 3：

rhet＿rels $\left(\left\langle\mathrm{T}_{1} \mathrm{~T}_{2} \mid \mathrm{NN}\right\rangle,\langle\mathrm{T}\rangle\right) \equiv \operatorname{rhet}$＿rels $\left(\left\langle\mathrm{T}_{1}\right\rangle,\langle\mathrm{T}\rangle\right) \cup$ rhet＿rels $\left(\left\langle\mathrm{T}_{2}\right\rangle,\langle\mathrm{T}\rangle\right)$
If：there is a relation between two spans $\left\langle\Gamma_{1}\right\rangle$ and $\left\langle\Gamma_{2}\right\rangle$ ；both $\left\langle\Gamma_{1}\right\rangle$ and $\left\langle\Gamma_{2}\right\rangle$ are nuclei

Then：rhetorical relations between span $\left\langle T_{1} T_{2}\right\rangle$ and its right－adjacent span $\langle\mathrm{T}\rangle$ are the relations that hold either between $\left\langle\mathrm{T}_{1}\right\rangle$ and $\langle\boldsymbol{T}\rangle$ ，or between $\left\langle\mathrm{T}_{2}\right\rangle$ and $\langle T\rangle$ ．

Rule 4：

rhet＿rels $\left(\langle T\rangle,\left\langle T_{1} T_{2} \mid N N\right\rangle\right) \equiv$ rhet＿rels $\left(\langle T\rangle,\left\langle T_{1}\right\rangle\right) \cup$ hact＿rels $\left(\langle T\rangle,\left\langle T_{2}\right\rangle\right)$
If：there is a relation between two spans $\left\langle\mathrm{I}_{1}\right\rangle$ and $\left\langle\mathrm{T}_{2}\right\rangle$ ；and both $\left\langle\mathrm{T}_{1}\right\rangle$ and $\left\langle\mathrm{I}_{2}\right\rangle$ are nuclei

Then：rhetorical relations between span $<T_{1} T_{2}>$ and its lefl－adjacent span $<1>$ are the relations that hold either between $\langle\mathrm{T}\rangle$ and $\left\langle\mathrm{T}_{1}\right\rangle$ ，or between $\langle\mathrm{l}\rangle$ and $<\mathrm{T}_{2}>$ ．

In case a satellite stands at the begiming of a large span，we propose a different treatment than the rules reported in Marcu（2000）．This situation is formalised as follows：

Rule 5：
rhet＿rels（ $\left.\langle\mathrm{T}\rangle,<\mathrm{T}_{1}\left|\mathrm{~T}_{2}\right| \mathrm{SN}\right\rangle$ ）
If：there is a relation between two spans $\left\langle\Gamma_{1}\right\rangle$ and $\left\langle\Gamma_{2}\right\rangle$ ，in which $\left\langle\Gamma_{1}\right\rangle$ is the satellite and $\left\langle\mathrm{F}_{2}>\right.$ is the nucleus；

Then：thetorical relations between span＜$T_{1} T_{2}>$ and its leli－adjacent span＜$\rangle>$ are either the relations that hold between $<1\rangle$ and $\left\langle T_{2}\right\rangle$ ，or the relations that signal by cuc phases in ぐリン・

To recognise the relations thet＿rels（ $\left.\langle\mathrm{T}\rangle,\left\langle T_{1} T_{2} \mid S N\right\rangle\right)$ ，$D \dot{\Lambda} S$ first finds all cue phrases restCPs in span＜li＞which have not heen used to create the relation
between $\left\langle\Gamma_{1}\right\rangle$ and $\left\langle\Gamma_{2}\right\rangle$, then cheeks rhet_rels $\left(\langle T\rangle,\left\langle T_{1}\right\rangle\right)$ by using restCPs. If a relation is found, it is assigned to rhet_rels($\left.\langle\mathrm{T}\rangle,\left\langle\Gamma_{1} \mathrm{~T}_{2} \mid \mathrm{SN}\right\rangle\right)$. Otherwise, rhet_rels($\langle\mathrm{l}\rangle,\left\langle\mathrm{T}_{1} \cdot \mathrm{~T}_{2} \mid \mathrm{SN}\right\rangle$) \equiv rhet_rels($\langle\mathrm{T}\rangle\left\langle\mathrm{T}_{2}\right\rangle$).

Applying this rule to Example (5.3) with two spans (5.3.1) and (4.3.2-5.3.3), restCPs contains oae VP cue "answer" since the VP eue " 7 "o" is used to signal the relation between (5.3.2) and (5.3.3). The relation between (5.3.1) and (5.3.2-5.3.3) is recognised as Solutionhood by using the cue "answer" in restCPs. If DAS uses Marcu's rules, rhet_rels((5.3.1), (5.3.2 5.3.3|SN)) = rhet_rels((5.3.1), (5.3.3)). That means the VP cue "answer" is not considered in Marcu's system.

5.2 Constructing Discourse Trees at the Sentence-level

This module takes the nutput of the discourse segmenter as the input and generates a discourse tree for each sentence. The discourse segmenter has already generated elementary discourse units and initial rhetorical relations between elementary discourse uaits (see Chapter 3). The sentence-level discourse analyser only has to posit relation names and the nuelearity rofes of discourse units that contribute to each relation. This information is achieved by applying the conversional rules deseribed in Scetion 5.1 and the relation recognition module described in Section 4.4. Symactic information and cue phrases are the main recognition factors for the recognition process. For example, the rhetorical relation between a reporting clause and a reported clause in a sentence is an Elaboration relation. The reporting clause is the satellite; the reported clause is the nucleus of that relation (see Example 5.4).
(5.4) [She said]l. she went to the British library yesterday.]

Figure 5.4. Discourse Tree of Example (5.4)

Cue phrases are also used to detect the connection between clauses in a sentence, as in Example (5.5) shown below:
(5.5) [He came late] [because of the traffie.]

The cue plrase "becanse of" in Example (5.5) recognises a relation between the clause containing this cue phrase and its left adjacent elause. The clause containing "because of" is the satellite of this relation.

Figure 5.5. Diseourse Tree of Example (5.5)

To construct the sentence-level diseourse trees, after all relations within a sentence have been posited, all spans that correspond to a sub-tree are replaced by that sub-tree, such as in Example (5.6):
(5.6) [[She knows $\left.\mathbf{5 . 6 . 1}^{1}\right]$ [what time you will comes.6.2]] lbccause I told her yesterday.5.6.3

The discourse segmenter outputs two discourse sub-trees, one with two spans "She knows" and "what time you will come"; another with two elementary discourse units "She knows what time yon will come" and "becanse I told her yesterday". DAS combines these two sub-trees into one discourse tree, as shown in Figure 5.6.

With the presented method of eonstructing sentential discourse trees based on syntactic information and cue phrases, the eombinatorial explosion can be prevented while DAS still gets aecurate analyses.

Figure 5.6. Discourse Trec ol Example (5.6)

5.3 Constructing Discourse Trees at the Text-level

The discourse tree of a sentence can be consiructed with high accuracy based on the syntactic structure and cue phrases of that sentence. It also prevents the combinatorial explosion by using only rhetorical relations that have been generated by the discourse segmenter. Since there is no syntactic structure between sentences, syntactic information cannot be used to determine rhetorical relations outside the scope of a sentence. In order to construct the discourse trees of a text at the text-level, other sources of information should be taken into account. First, constraints about textual organisation and textual adjacency are used to initiate all possible comections between spans (see Section 5.3.1 for the description of these constraints). Then, all possible adjacent rhctorical relations are posited based on different recognition factors mentioned in Section 4.2. The relation recognition procedure is discussed in Section A:3. Based on these hypothetical relations, the discourse analyser clooses the best combination of relations between text spans to form a discourse tree represcnting the entire text.

Since a text can have more than one rhetorical structure, we set an upper bound N of rhetorical structures DAS has to generate, which means DAS should generate no more than N structures that best describe the text. The value N is decided by the user.

Section 5.3.1 discusses the approach used in DAS to reduce the search space in deriving best discourse trees representing the entire text, given all possible relations between text spans. The analysing algorithm is introduced in Section 5.3.2.

5.3.1 Search Space Reduction

This section describes the methods used in DAS to reduce the seareh space in searching for the best combinations of hypothetical relations between text spans, in order to generate discourse trees representing the entire text. The scarch space reduction is done by using two constrains: textual organisation and textual adjacency, which are introduced in the rest of this section.

The first factor that is used to reduce the scarch space is the predefined structure of the text, or "textual organisation". The application of this factor comes from the fact that each text normally has an organisational framework including sections, sub-sections, paragraphs, ete. to express a communicative goal. Each unit in a text completes an idea, an argument, or a topic that the writer intends to convey. Therelore, each span should have a semantic link to spans in the same textual unit before connecting with spans in a different one. We call it the textual organisational constraint. Based on this idea, in order to generate the rhetorical structure of a text, instead of testing every possible combination of discourse trecs, only discourse trees whose spans are in the same text unit (a paragraph, a sub-section) are considered. This strategy reduces the search space significantly, especially with long texts. It is applicd in Marcu (2000), but surprisingly not in Corston (1998).

Marcu's (2000) system generates rhetorical structures at each level of granularity (e.g., paragraph, section). The discourse trees at a particular level are used to build the discourse trees at the higher level, until the:discourse tree for the
entire text is generated. This approach does not optimise calculation time when one wants to derive only some rhctorical structures of the text instead of all of them. Since the discourse analyser does not know the number of discourse trees it should generate for each paragraph or section, it still has to generate all possible trees at each level of granularity.

DAS does not separate levels of granularity in this way. Instead of concentrating on mily one level at a time, the entire text participates in the process of deriving rhetorical structures. The levels of granularity are controlled by using a block-level-score. One span is always comected with the spans that have the same block-level-score before connecting with the spans that have a different one. A detailed description of the block-level-score is presented in Scction 5.3.2. The discourse analyser completes its task when the required number of rhetorical structures has been generated.

There are two situations that can affect this approach. lïrst, some authors might put two or niorc topics in one paragraph, or one topic in two or more paragraphs. The use of a block-level-score is still effective here since the texts in different units still camot have a closer semantic relation than the texts within the same one. Second, some texts such as articles on the web or texts written by inexperienced writers may not have structural mark-ups to separate paragraphs and sections. Some texts even may lave weak semantic coherence by containing incorrect paragraph boundaries. The use of a block-level-score may have a problem here since this situation does not follow the assumption about the organisational framework of texts. However, since most writers create a new paragraph when they start a new argument, we still use the textual format to detect the boundaries of sections or paragraphs. The text scgmentation solution is considered for future work.

The second factor uscd in reducing the search space is the adjacency criterion of rhetorical structures. Since the spans that contribute to a rhetorical relation must be adjacent (Mann and Thompson, 1988), only adjacent spans are considered to be comected in gencrating new rhetorical relations. This searcli space is smaller than the search space reported in Marcu (2000) since most discoursc trees in his
search space connect discourse trees that correspond to non-adjacent spans. Marcu's (2000) system gencrates all possible trees, and then uses the adjacency constraint to filter the inappropriate ones. We reduce the search space further by applying this constraint carlier, when the candidate solations are generated, instead of filtering candidates after they are generated. Although Corston (1998) made considerable improvements to reduce the search space in Marcu's (2000) algorithm, his system still contains redundancy since Corston's algorithm does not check this property before generating trees.

To elaborate the efficiency of text adjacency, we make a comparison between D \wedge S searcli space and the scarch space of RASTA, ereated by Corston (1998). Given a set of elementary discourse units, R \wedge STA detects all possible rhetorical relations of every pair of clementary discourse units. These relations are called hypothetical relations or hypotheses. With N elementary discourse units $\left\{\mathrm{U}_{1}, \mathrm{U}_{2}\right.$, $\left.\ldots, U_{N}\right\}, N(N-1)$ pairs of clementary discourse units $\left\{\left(\mathrm{U}_{4}, \mathrm{U}_{2}\right),\left(\mathrm{U}_{1}, \mathrm{U}_{3}\right), \ldots\right.$. $\left(\mathrm{U}_{1}, \mathrm{U}_{\mathrm{N}}\right),\left(\mathrm{U}_{2}, \mathrm{U}_{3}\right), \ldots,\left(\mathrm{U}_{\mathrm{N}-1}, \mathrm{U}_{\mathrm{N}}\right)$, arc examined. Then, all combinations of this set are tested in order to build the discourse trees. Meanwhile, DAS only detects rhetorical relations of $N-1$ pairs of adjacent elementary discourse units $\left(U_{1}, U_{2}\right)$, $\left(U_{2}, U_{1}\right), \ldots,\left(U_{N-1}, U_{N}\right)$ and then tests their combination to build discourse trees. Each hypothetical relation has a score, as mentioned in Section 4.3. DAS picks relations from the hypotheses set starting from the highest score to the lowest score.

To illustrate this idea, let us consider a text with four elementary discourse units $U_{1}, U_{2}, U_{3}, U_{4}$, and the hypothesis set $H=\left\{\left(U_{1}, U_{2}\right),\left(U_{1}, U_{3}\right),\left(U_{2}, U_{3}\right)\right.$, $\left.\left(U_{3}, U_{4}\right)\right\}$. The set H consists of all possible relations between every pair of elementary discourse mits. ($\mathrm{U}_{\mathrm{i}}, \mathrm{U}_{\mathrm{j}}$) refers to the hypotheses that involve two clementary diseourse units U_{i} and U_{j}. Since two elementary discourse units U_{1} and U_{3} are not adjacent, the hypothesis $\left(U_{1}, U_{3}\right)$ is not selceted by D \wedge S. Figure 5.7 displays the search space for the set II. In this figure, each elementary discourse unit U_{i} las been replaced by the corresponding number i due to space restriction and for clarity.

Figure 5.7. Search Spaces For the Hypothesis Set H. RASTA Visits all Branches in the Tree. The Branches Drawn by Dotted Lines Are Pruned by DAS. ${ }^{18}$

Although rhetorical relations between non-adjacent spans are not considered in $\mathrm{D} \wedge$ S search space, these relations may be generated during the searching process when they are parts of two larger discourse trees that correspond to adjacent spans. The relations between non-adjacent spans are stored in a hypothesis set in order to be called when they are needed. Figure 5.8 illustrates a situation when the relation between two non-adjacent spans is called. $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}, \mathrm{~T}_{4}, \mathrm{~T}_{5}, \mathrm{~T}_{6}$ are adjacent spans by this order. Rhet_rels $\left(\mathrm{T}_{\mathrm{i}}, \mathrm{T}_{\mathrm{j}}\right)$ denotes the rhetorical relation between two spans T_{i} and $T_{j} . T_{1-3}, T_{4-6}$ are two acljacent spans.

Figure 5.8. \wedge Situation When the Rhetorical Relation Between Two NonAdjacent Spans Is Called

[^12]In Figure 5.8, the relation between the two non-adjacent spans T_{2} and T_{4} is called when DAS attempts to find the relation between two adjacent spans T_{1-3} and T_{4-6}. If the relation between T_{2} and T_{4} has not been generated before, it will be posited based on recognition factors given in Scction 4.2.

Another problem with RASTA is that one RST tree can be created twice by grouping the same spans in different orders. If derived hypotheses of the set H contain $\left\{\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right),\left(\mathrm{U}_{3}, \mathrm{U}_{4}\right)\right\}$, RASTA will generate two different combinations which create the same tree as shown below:

Connect U_{1} and $U_{2}->$ Connect U_{3} and $U_{4}->$ Connect $\left(U_{1}, U_{2}\right)$ and $\left(U_{3}, U_{4}\right)$.
Connect U_{3} and $U_{4}->$ Connect U_{1} and $U_{2} \rightarrow$ Connect $\left(U_{3}, U_{4}\right)$ and $\left(U_{1}, U_{2}\right)$.
To deal with the redundancy problem faced by $R \wedge S T \wedge, D \wedge S$ updates the hypothesis set every time a new branch on the search tree is visited. When the discourse analyser visits a new branch, the eurrently visited node is removed from the hypothesis sets, which only stores unvisited branches that are at the same level as the curcent branch, This action ensures that the algorithun does not creale the same RSI trec twice.

Let us assume that both RASTA and DAS start from the search space drawn by solid lincs in Figure 5.7. DAS search space is explained in more detail using Figure 5.9.

Figure 5.9. Routes Visit by the Two Analysers. R \wedge STA Visits all Branches in the Tree. D \wedge S only Visits the Branclies Drawn by Solid Lines.

Firstly, D \wedge S visits the branches that start with node $(1,2)$ at Level I. After all branches starts with branch $(1,2) \rightarrow(2,3)$ have been visited (here only one node $(1,2) \rightarrow(2,3) \rightarrow(3,4))$. DAS is going to visit nodes starting with node $(3,4)$ at Level 1. Node $(2,3)$ that belongs to branch $(1,2) \rightarrow(3,4) \rightarrow(2,3)$ is removed from DAS search space since all branches that contain two nodes $(1,2)$ and $(2,3)$ have been visited before.

After all RST trees or sub-trees involving the node $(1,2)$ are already visited, this node will not be revisited in the futurc. $\mathrm{D} \wedge \mathrm{S}$ removes all branches that contain nodes $(1,2)$ from the hypothesis set of other nodes at the same level as the node $(1,2)$ at Level I. The branch that connects node $(2,3)$ in Level 1 with node $(1,2)$ in Level 2 is pruned from the search tree. Λs a result, D $\wedge S$ docs not visit the route $(2,3) \rightarrow(1,2) \rightarrow(3,4)$. The same reason is applied for other dotted lines in Figure 5.9. This figure shows that DAS search space is much smaller than R \triangle STA scarch space.

5.3.2 Discourse Analysing Algorithm

The problem of deriving thetorical strictures from a set of hypothetical relations can be considered as the problem of searching for the best solutions for combining rhetorical relations. An algorithm that minimises the search space and maximises the tree quality needs to be found. We apply a beann scarch, which is an optimisation of the best-first search where only a predectermined number of paths are kept as candidates. The rest of this section will describe this algorithm in delail.

A set called Subtrees is used to store sub-trees that have been created during the constructing process. The sub-trecs in this set correspond to adjacent and nonoverlapping spans. At the beginning. Subtrees consists of sentential discourse trees. Λs sub-trecs corresponding to contiguous spans are connected to construct bigger trees, Subtrees contains fewer and fewer members. When Subtrees contains only one tree, this tree will represent the rhetorical structure of the input text.

All potential relations betwecn adjacent spans that can be used to construct bigger trees at a step (t) Corm a hypothesis set Potentiallf. Λ rhetorical relation
created by the system is called a hypothesis. Each relation has a total-heuristicscore, which is equal to the total score of heuristic rules that signal the relation as explained in Chapter 4. To control the textual block level (paragraph, section, etc.), each hypothesis is assigned a block-level-score, whose value depends on the block level of the spans that participate in the hypothesis. The block-level-score and the heuristic-score are set in different value-scale so that the combination of sub-trees in the same textual block always has a higher score than that in a different textual block.

- If two sub-trees are in the same paragraph, the relation that connects these sub-trees will have the block-level-score $=0$. (The paragraph is considered as the lowest block level.)
- If two sub-trecs are in different paragraphs, and a value Li is the lowest block level where two sub-trees are in the same unit, the block-level-score of the relation corresponding to their parent tree is equal to - 1000 * Li . For example, if two sub-trees are in the same section but in different paragraphs; and there is no subsection in this section; then Li is equal to 1 . The negative value (-1000) indicates the higher the distance between two spans, the lower the combinatorial priority they get. The block-level-score of a relation is the lowest block-level-score among all relations hetween a sub-trec of the left node and a sub-trce of the right node. This computation is illustrated in Exampte (5.7) at the end of this section.

When selecting a hypothesis, the hypothesis with the highcr block-level-score is preferred. If two or more hypotheses have the same block-level-score, the one with higher fotal-hemistic-score is chosen. Λ variable total-score is used to store the sum of the total-hemristic-score and the block-level-score of a hypothesis.

To simplify the scarching algorithm, an accumblated-score is used to store the value of the search path. The accumulated-score of a path at a step (t) is the highest predicted-score of that path at the previous step (1-1). A predicted-score of a hypothesis at the step (1) is equal to the sum of the coctumulated-score of the previous step (t-I) and the totol-scare of the hypothesis. The searching process now becomes the process of scarching for the bypothesis with the bighest
predicted-score. The mothod of calculating the accumnlated-score and the predicted-score are illustrated in Figure 5.10. $\mathrm{h}_{\mathrm{i}}(\mathrm{t})$ stands for the hypothesis it the step $(t) \cdot h^{*}(t-1)$ is the best hypothesis found at the step $(t-1)$ that maximises the accumulated-score from the siarting point to the step ($\mathrm{t}-1$).

Figure 5.10. Calculating the accmmulated-score at Time t

At each step of the beam search, the most promising node from Potentiallt is selected. If a hypothesis involving two spans $\langle\mathrm{Ti}, \mathrm{Tj}\rangle$ is used, the new sub-trce created by joining the two sub-trees corresponding to spans $\langle\mathrm{Ti}\rangle$ and $\langle\mathrm{Tj}\rangle$ is added to Subtrees. The set Subtrees is now updated so that it does not contain overlapping discourse trees. The set PotemialH is also changed according to the change in Subtrees. The relations between the new sub-tree and its adjacent subtrees in Subtrees are created and added to Potentially.

All hypotheses computed by DAS are stored in a hypothesis set called StoredH. The use of this set guarantees that a discourse tree will not be created twice. When detecting a relation between two spans, the analyser first looks for this relation in StoredH to check whether it has already been ereated or not. If it is not, it will be generated by a discourse recogniser (sec Chapter 4).

D \wedge S limits the branches that the search algorithm ean switel to by a constant M. This mumber is chosen to be 10 sinee through experiments it was found to be large enough to derive good discourse trecs. If at a later stage it was found that this value is insulficicm, the only thing DAS needs to do is to increase this value. All other values are updated accordingly. If Subtrees contains only one tree, this
tree is added to the tree set, Trees. ${ }^{19}$ This set is used to store the discourse trees that cover the entire text. The searching algorithm terminates when the number of discourse trees in Trees is equal to the number of trees required by the user.

Figure 5.11 outlines the main steps of the algorithm to construct rhetorical structures of a text. Λ detailed description of this algorithm is presented in Appendix 2.

Input:

- Discourse trees of all sentences
- Information about positions of sentences
- The value of \mathbf{N} (the number of discourse trees required by the user).

Output:

- Discourse trees that cover the entire text.

Algorithm:

1. Trees $=\{ \}$
2. Sublrees $=\{$ sentential discourse trees $\}$
3. accumulated-score $=0$
4. $\mathrm{NewH}=\{$ hypotheses between adjacent sentential discourse trees $\}$
5. Polentiall $=\{M$ highest total-score hypotheses from NewH$\}$
6. Create M set ol hypoSet $[i]=\{$ apptiedH, accumulated-score, Sublrees, NewH, PotenlialH \boldsymbol{H} by applying each hypothesis of Potentiall created by Step 3.
7. Select M highest predicled-score hypotheses from M sets of Polentiall to be applied (appliedH). Create M new set ol hypoSet $[i]=\{$ appliedH, accumulated-score, Subtrees, NewH, Potentiall $\}$ \} by applying each of these hypotheses. It a set Subtrees contains only one tree, this tree is moved to the set Trees.
8. Repeat Step 7 until the number of discourse trees in Trees is equal to N or when all PotentialHs are empty.

Figure 5.11. Otuline ol Algorithm for Deriving Iext-leveí Discourse Trees

[^13]In the algorithm given in Figure 5.11, the set Subtrees is updated by adding to Subtrees the hypothetical relation that has been applied and removing from Subtrees the relations whose text spans overlap with the texi span of the applying relation. A set $N e w H$ is used to store the new hypotheses ilhat are created due to the modification of Subtrees. The set Potentiallt is updated by selecting M highest predicted-score hypotheses among hypotheses from the old PotentialH and the new created sct $N e w h$.

To demonstrate the working process of the algorithm given in Figure 5.11, let us consider the following example:
(5.7) [In an age of specialization, the federal judiciary is one of the last bastions of the generalist. $]$][A judge must jump from murder to antitrust cascs. from arson to securitics fraud, without missing a bcat.2][But even on the federal bench, specialization is creeping in, and it has become a subject of sharp controversy on the newest federal appeals court.3]

The Court of Appeals for the federal Circuit was created in 1982 to serve, among other things; as the court of last resort for most patent disputes.s][Previously, patent cases moved through the court system to one of the 12 circuit appeals courts. 5] There, judges who saw few such cases and had no experience in the ficld grappled with some of the most technical and complex disputes imaginable.6]

For the convenience of discussion, each tree node is represented by a sel of five properties:

- From: the begin position of the span of the tree node, represented by a sentence number.
- To: the cnd position of the span of the tree node, represented by a sentence number.
- Relationname: the name of the rhetorical relation.
- Total-score: the total score of the relation.
- Predicted-score: this score is used for the node in Potentiallt only. It is used to choose the hypothesis for the next round.

The input to the text-level discourse analyser is the rhetorical structure of all sentences from the text, and information about the positions of sentences in the text. The text-level discourse amalyser has to find rhetorical relations between these sentences. In the rest of this section, we will describe the process of the analyser in deriving the text-level rhetorical structures of Example (5.7).

In describing the proccss of the discourse analyser for Example (5.7), we use the following simplifications:

- The sentential rhetorical structures are not mentioned here.
- Each sentence in Example (5.7) is labelled as a number.
- The value M (the number of the branches that the beam seareli can switch to) is set to 5: The value N (the number of discourse trecs) is sct to 4.
- The information of the tree nodes that are created in previous steps are simplified by displaying only the name of its left and right nodes.
- The relations Contrast, Circumstance, and Elaboration are abbreviated to Cons, Cir, and Ela.

At the beginning:

- Trees $=\{ \}($ Step 1).
- Subrrees $=\{1,2,3,4,5,6\}($ Step 2 $)$.
- accumulated-score $=0(\operatorname{Stcp} 3)$.

DAS detects all relations between adjacent sentences and puts it in Newh, which are shown in Table 5.1 (Step 4). In this table, the indexes of spans that participate in a relation (the $1^{\text {st }}$ columm), relation names (the $2^{\text {ned }}$ column), the licuristic rules that have beco applicd to posit a rclation (the $3^{\text {rd }}$ columm), and scores of relations (the $4^{\text {th }}$ column to the $7^{\text {th }}$ column) are present.

	Relation naiiie	Heurisustić rile	Cue phrase and cue phirase's score	heuristics: scorc	block-lëvel ścore	
1,2	Ela	5		30	0	30
2,3	Cont	1	but(1)	100	0	100
3,4	Ela	6		30	-1000	-970
4,5	Cir	1	previously(1)	100	0	100
5,6	Ela	5		30	0	30

Table 5.1. Rhetorical Relations in NewH

The heuristic rule 5 of the Elaboration relation exists between sentences 1 and 2 since the noun phrases of these sentences, "the fecleral judiciary" and "a judge" are related to each other by their semantic meanings. The heuristics-score of this pair is 30 . Since these sentences are in the same paragraph, they have a block-level-score of 0 . The totol-score of this relation is $30+0=30$. An Elaboration relation is assigned between these sentences with the score 30 . A Contrast relation with a score 100 is posited between sentences 2 and 3 based on the appearance of the cue phrase "hu" at the begiming of sentence 3. Sentences 3 and 4 are in different paragraphs, thus the block-level-score of the relation between them is 1000. Both sentences "talk about" the court, thus the heuristic rule 6 of the Elaboration relation is satisfied in this case. Their total score is the sum of their heurislics-score (30) and their block-level-score (-1000), which is equal to -970. Similarly; DAS posits a Circmmstance ${ }^{20}$ relation between sentences 4 and 5, with a score 100 of the cue phrase "previously"; and an Elaboration relation between sentences 5 and 6 with a score 30 of the heuristic rule 5 of the Elaboration relation.

[^14]For the ennvenience of the reader, each hypothesis of $N e w h$ is represented by a set of four propertics: left span, right span, relation name, and total-score. Each hypothesis of Potentialh is represented by a set of live properties: left span, right span, relation name, total-score, and predicted-score.

The set $N e w / /$ now contains the following relations:

$$
(2,3, \text { Cont, 100), (4,5,Cir,100), (1,2,Ela,30), (5,6, Ela,30), (3,4,Ela,-970). }
$$

These relations are put into PotentialH (Siep 5). Since the accumulated-score is now 0. the predicted-score of each hypothesis in Potentially is equal to its totalscore.

$$
\begin{aligned}
\text { Potentialh }= & \{(2,3, \mathrm{Cont}, 100,100), \quad(4,5, \mathrm{Cir}, 100,100), \quad(1.2, \mathrm{Ela}, 30,30), \\
& (5,6, \mathrm{Ela}, 30,30),(3,4, \mathrm{Ela},-970,-970)\}
\end{aligned}
$$

Each hypothesis in Potentialt is now used to create a hypoSel, which is shown in Table 5.2 (Sicp 6).

$\begin{array}{\|l} \text { hypo } \\ \text { Set } \end{array}$	appliedrt	Sulitres:	NewH	Potentialty
1	$\begin{aligned} & (2,3, \text { Cont, } \\ & 100,100) \end{aligned}$	$\begin{aligned} & 1,(2,3, \text { Conn, } 1 \\ & 00,100), 4,5,6 \end{aligned}$	$\begin{aligned} & (1,(2,3), \text { Ela }, 30) \\ & ((2,3), 4, \text { Ela,-970 }) \end{aligned}$	$\begin{aligned} & (4,5, \mathrm{Cir}, 100,200),(1,(2,3), \text { Ela, } \\ & 30,130),(5,6, \text { Ela, } 30,130),((2,3 \\ &), 4, \text { Ela,-9.70,-870 }) \end{aligned}$
2	$\begin{aligned} & (4,5, \mathrm{Cir}, 10 \\ & 0,100) \end{aligned}$	$\begin{aligned} & 1,2.3,(4.5 . \mathrm{Cir}, \\ & 100,100), 6 \end{aligned}$	$\begin{aligned} & (3,(4,5), \text { Ela, }-970), \\ & ((4,5), 6, \text { Ela, } 30) \end{aligned}$	$\begin{aligned} & (1,2, \text { Ela,30,130),((4,5),6,Ela,3 } \\ & 0,130),(3,(4,5), \text { Ela,- }-970,-870) \end{aligned}$
3	$\begin{aligned} & (1,2, \mathrm{E} \mathrm{a}, 30 \\ & , 30) \end{aligned}$	$\begin{aligned} & 1,2, \text { Ela,30,30 } \\ & \text {), } 3,4,5,6 \end{aligned}$	((1,2),3,Cont,100)	$\begin{aligned} & ((1,2), 3, \text { Cont, 100,130),(5,6,El } \\ & \mathrm{a}, 30,60),(3,4, \mathrm{El},-970,-940) \end{aligned}$
4	$\left(\begin{array}{ll} (5,6, \text { Ela } 30 \\ , 30) & \ldots \end{array}\right.$	$\begin{aligned} & 1,2,3,4,(5,6, E \\ & 1,, 30,30) \end{aligned}$	(4,(5,6),Cir,100)	$\begin{aligned} & (4,(5,6), \mathrm{Cir}, 100,130),(3,4, \text { Ela, } \\ & -970,-940) \end{aligned}$
5	$\begin{aligned} & (3,4, \text { Ela,- } \\ & 970,-970) \end{aligned}$	$\begin{aligned} & \overline{1,2,(3,4, \mathrm{Ela},-} \\ & 970,-970), 5,6 \end{aligned}$	$\begin{aligned} & (2,(3,4), \mathrm{Cont}, 100) \\ & ((3,4), 5, \mathrm{Cir}, 100) \end{aligned}$	$\begin{aligned} & (2,(3,4), \mathrm{Cont}, 100,-87(0), \\ & ((3,4), 5, \mathrm{Cir}, 100,-870) \end{aligned}$

Table 5.2. Analysing Process - Round I

When the hypothesis $(2,3$, Cont, 100,100) of the initial Potentiall created in Step 5 is selected, this hypothesis is added to Subtrees of hypoSet[1]. The overlapping sub-trees 2 and 3 are removed from the Subtrees (see Subtrees in line 1 of Table 5.2). The \dot{N} w w/t of hypoSel[I] in Table 5.2 now contains two new hypotheses (1,(2,3),Ela.30) and ((2,3).4,Ela,-970) (Step 7 in Figure 5.11 or Step 9.2 in Figure A2.3 of Appendix 2). They are added to. the Potentialll of hypoSel[1] in Table 5.2. The predicted-score of all lyypotheses in the Potentiallt of hypoSet[I] in Table 5.2 is calculated. For example, the new predicted-score of the old hypothesis (4,5,Cir,100,100) in the initial Potemiallt created in Step 5 is now equal to
predicted-score(hypothesis) $=$ accumulated-score + totai-score(hypothesis)

$$
=100 \cdots 100=200,
$$

since the accumblated-score after applying the hypothesis' $(2,3, \operatorname{Cont}, 100,100)$ is 100 (the accrimulated-score hacre is cqual to the predicted-score of the appliedil). and the total-score of the hypothesis $(4,5, \mathrm{Cir}, 100,100)$ is 100 .

$\begin{aligned} & \text { hypo } \\ & \text { Set } \end{aligned}$	anplieàin	Sübtreés	$\therefore \text { NewH }$	Pótentiàioh
1	$\left(\begin{array}{c} (4,5, \mathrm{Cir}, \mathrm{IO} \\ 0,200) \\ \vdots \end{array}\right.$	$\begin{aligned} & 1,(2,3, \text { Cont, } 100,100 \\ &),(4,5, \text { Cir. } 100,200), \\ & 6 \end{aligned}$	$\begin{aligned} & ((2,3),(4,5), \mathrm{Ela}, \\ & -970),((4,5), 6, \\ & \mathrm{Ela}, 30) \end{aligned}$	$\begin{aligned} & (1,(2,3), \text { Ela, } 30,230),((2,3),(\\ & 4,5), \text { Ela,- }-970,-770), \\ & ((4,5), 6, \text { Ela, } 30,230) \end{aligned}$
2	$\begin{aligned} & (1,(2,3), E 1 \\ & a, 30,130) \end{aligned}$	$\begin{aligned} & (1,(2,3, \text { Cont, 100,10 } \\ & 0), \text { Ela,30,130 }, 4,5,6 \end{aligned}$	$\begin{aligned} & (1,(2,3)), 4, \text { Ela,- } \\ & 970) \end{aligned}$	$\begin{aligned} & (5,6, \text { Ela,30,160):(1,(2,3)),4, } \\ & \text { Ela,-970,-840) } \end{aligned}$
3	$\begin{aligned} & (5,6, \mathrm{Ela}, 30 \\ & , 130) \end{aligned}$	$\begin{aligned} & 1,(2,3, \text { Cont, } 100,100 \\ &), 4,(5,6, \text { Ela, } 30,130) \end{aligned}$	$\begin{aligned} & (4,(5,6), \mathrm{Cir}, \\ & 100) \end{aligned}$	$\begin{aligned} & (4,(5,6), \mathrm{Cir}, 100,230),((2,3) \\ & 4, E l a,-970,-840) \end{aligned}$
4	$\begin{aligned} & 1,2, \mathrm{ETa}, 30 \\ & 130) \end{aligned}$	$\begin{aligned} & (1,2, \text { Ela, } 30,130), 3,(\\ & 4,5, \mathrm{Cir}, 100,100), 6 \end{aligned}$	$\begin{aligned} & ((1,2), 3, \text { Cont, } \\ & 100) \end{aligned}$	$\begin{aligned} & ((1,2), 3, C o n t, 100,230),((4, \\ & 5), 6, E l a, 30,160),(3,(4,5), \mathrm{El} \\ & \mathrm{a},-970,-840) \end{aligned}$
5	$\begin{aligned} & ((1,2), 3, \mathrm{Co} \\ & 111,100,130) \\ &) \end{aligned}$	($\begin{aligned} & \text { (1,2,Ela,30,30),3,C } \\ & \text { ont,100,130),4,5,6 }\end{aligned}$	$\begin{aligned} & (((1,2, \text { Ela, } 30), 3 \\ & \text { Cont, } 100,130) \\ & , 4, \text { Ela,- } 970) \end{aligned}$	$\begin{aligned} & (5,6, \text { Ela, } 30,160),(((1,2, \text { Ela, } \\ & 30), 3, \text { Cont, } 100,130), 4, \text { Elia,- } \\ & 970,-840) \end{aligned}$

Table 5.3. Analysing Process - Round 2.

Since PotentialHs in Table 5.2 are not empty, DAS repeats Step 7 of the analysing algorithm. DAS selects the five highest predictect-score hypotheses from all Potential/ts in Fable 5.2 to create five new hypoSets (which are given in Table 5.3). For each hypothesis selected in Table 5.2, a new hypoSet is created by updating the Subtrees, the New H, and the Potentiall corresponding to that hypothesis. The score of the remaining hypotheses in the Potentiall of the hypoSet concemed is then updated. The new hypoSets are used for the next round.

When the hypothesis $(4,5, \mathrm{Cir}, 100,200)$ of the Potentiall of hypoSet[I] in Table 5.2 is selected, this hypothesis is added to the Subtrees of lyppoSet[I]. The sub-trees 4 and 5 are removed from the Subtrees (see Subtrees in line 1 of Table 5.3). The $N e w H$ of hypoSet[I] in Table 5.3 now contains, two new hypotheses $((2,3),(4,5)$,Ela,-970) and ((4,5),6, Ela,30) (Step 7 in Figuré 5.11 or Step 9.2 in Figure A2.3 of Appendix 2). These hypotheses are added to the Potentiall of hypoSet[1] in Table 5.3. The predicted-score of the remaining hypotheses in the Potentialll of hypoSet/I] in Table 5.2 is updated. For example, the new predicted-score of the old hypothesis (1,(2,3),Ela,30,130) in the Potentiall of hypoSet[l] in Table 5.2 is now equal to

$$
\begin{aligned}
\text { predicted-score(hypothesis) } & =\text { accumulated-score }+ \text { total-score(hypothesis }) \\
& =200+30=230,
\end{aligned}
$$

since the accumulated-score after applying the hypothesis $(4,5, \mathrm{Cir}, 100,200)$ is 200 and the otol-score of the hypothesis ($1,(2,3)$, Ela, 30,130$)$ is 30 .

After all hypoSets have been updated, DAS starts a new round by repeating Step 7 until all Poteniallts are emply, or when four discourse trees have been generated by the discourse analyser. The five highest predicted-score hypotheses from all Potentialls in Table 5.3 are now selected. The hypoSets that correspond to these hypotheses are shown in Table 5.4.

$\begin{aligned} & \text { hypo } \\ & \text { Set } \end{aligned}$	áppliéd	Súbitrees	New	Pôteñítiali
1	(1, 2,3$), \mathrm{EI}$ $\mathrm{a}, 30,230)$	$\begin{aligned} & (1,(2.3, \text { Cont, } 100,100), \text { Ela, } \\ & 30,230),(4,5, \mathrm{Cir}, 100,200), \\ & 6 \end{aligned}$	((1,(2,3)),(4,5),	$\begin{aligned} & ((4,5), 6, \text { Ela,30,260 } \\ & ,((1,(2,3)),(4,5), \text { Ela, } \\ & -970,-740) \end{aligned}$
2	$\begin{aligned} & ((4,5), 6, \mathrm{El} \\ & \mathrm{a}, 30,230) \end{aligned}$	$\begin{aligned} & 1,(2,3, \text { Cont,100,100),((4,5, } \\ & \text { Cir, } 100,200), 6, \text { Ela, } 30,230) \end{aligned}$	$\begin{aligned} & ((2,3),((4,5), 6), \\ & \text { Ela,-970) } \end{aligned}$	$\begin{aligned} & ((2,3),((4,5), 6), \text { Ela,- } \\ & 970,-740) \end{aligned}$
3	$\left(\begin{array}{l} (4,(5,6), \mathrm{Ci} \\ \mathrm{r}, 100,230) \end{array}\right.$	$\begin{aligned} & 1,(2,3, \text { Cont, } 100,100),(4,(5, \\ & 6, \text { Ela,30,130),Cir, } 100,230) \end{aligned}$	$\begin{aligned} & ((2,3),(4,(5,6)), \\ & \text { Ela,-970) } \end{aligned}$	$\begin{aligned} & ((2,3),(4,(5,6)), \text { Ela,- } \\ & 970,-740) \end{aligned}$
4	$\begin{aligned} & ((1,2), 3, \mathrm{Co} \\ & \mathrm{nt}, 100,230 \\ &) \end{aligned}$	$((1,2$, Ela,30,130),3,Cont, I $00,230),(4,5$, Cir, 100,100 $)$, 6	$\left(\overline{((1,2), 3),(4,5),} \begin{array}{l} \text { Ela,-970) } \end{array}\right.$	$\begin{aligned} & (4,5), 6, \text { Ela,30,260 } \\ & ((1,2), 3),(4,5), \text { Ela,- } \\ & 970,-740) \end{aligned}$
5	$\begin{aligned} & \overline{(5,6, \text { Ela }, 30} \\ & 160) \end{aligned}$	$\begin{aligned} & ((1,2 \text { Ela,30,30),3,Cont, } 10 \\ & 0,130) .4 .(5,6, \mathrm{Ela}, 30,160) \end{aligned}$	$\begin{aligned} & (4,(5,6, \text { Ela. } 30,1 \\ & 60), \text { Cir. } 100) \end{aligned}$	$\begin{aligned} & (4,(5,6), \mathrm{Cir}, 100,260 \\ &) \cdot(((1,2), 3) .4, \text { Ela.- } \\ & 970,-810) \end{aligned}$

Tahle 5.4. Analysing Process - Round 3

Again, the five highest predicted-score hypotheses are selected from all Potentiallhs in Table 5.4. New hypoSets generated by applying these hypotheses are shown in Table 5.5. Line 4 of Table 5.5 shows that the analyser creates a new hypothesis that connects span (1-5) (covering sentences 1 to 5) and span (6) (see the Newh of hypoSet[47). In the lefl node of the tree that corresponds to this hypothesis, span (1-3) is the nueleus; span (4-5) is the satellite in an Elaboration relation. In the relation between span (1) and span (2-3), span (1) is the nucleus, span (2-3) is the satellite. Therefore,

$$
\begin{aligned}
& \text { rhet_rels }((\langle 1-3\rangle\langle 4-5>| \mathrm{NS}),\langle 6\rangle)=\text { rhet_rels }(\langle 1-3\rangle,\langle 6\rangle) \\
& =\text { rhet_rels }((<1\rangle,<2-3\rangle \mid \mathrm{NS}),\langle 6\rangle)=\text { rhet_rels }(\langle 1\rangle,<6\rangle) \\
& =\{\text { Elaboration. } 30, \mathrm{NN}\} .
\end{aligned}
$$

Spans (4-5) and (6) are in the same paragraph, thus the block-level-score of rhet_rels $(\langle 4-5\rangle,\langle 6\rangle)$ is 0 . Rhet_rels($\langle 1-3\rangle,\langle 6\rangle)$ have the block-level-score of -1000 since spans (1-3) and (6) are in different paragraphs. The block-level-score
of rhet_rels $((<1-3><4-5>\mid \mathrm{NS}),<6>)$ is the minimum value of these block-levelscore (0 and -1000), which is -1000 . The total-score of the new hypothesis of hypoSet[4] in Table 5.5 is
total-score(hypothesis) $=30+(-1000)=-970$.
The predicted-score of the hypothesis (((1,(2,3)),(4,5)),6,Ela,-970) is:

$$
\begin{aligned}
\text { predicted-score(hypothesis) } & =\text { accumulated-score }+ \text { total-score(hypothesis) } \\
& =(-740)+(-970)=-1710,
\end{aligned}
$$

since the accumulated-score after applying the hypothesis ((1,(2,3)),(4,5),Ela,-$970,-740)$ is -740 and the total-score of the hypothesis $(((1,(2,3)),(4,5)), 6$, Ela,970) is -970 .

$\begin{aligned} & \text { hypo } \\ & \mathrm{Sel} \\ & \mathrm{Se} \end{aligned}$	applicdH	Subtrees	Newll \therefore	Potentialll
1	$\left(\begin{array}{l} (4,5), 6, E 1 \\ a, 30,260) \end{array}\right.$	$\begin{aligned} & (1,(2,3, \mathrm{Cont}, 100,100), \text { Ela, } \\ & 30,230),((4,5, \mathrm{Cir}, 100,200), \\ & 6, \mathrm{Ela}, 30,260) \end{aligned}$	$\begin{aligned} & ((1,(2,3)),((4,5) \\ & 6), E / a ;=970) \end{aligned}$	$\begin{aligned} & ((1 .(2,3)),((4,5), 6), \\ & \text { Bla, }-970,710) \end{aligned}$
2	$\begin{aligned} & (4,5), 6, \mathrm{El} \\ & \mathrm{a}, 30,260) \end{aligned}$	$\begin{aligned} & (1,2, \text { Ela, } 30,130), 3, \text { Cont, } 1 \\ & 00,230),((4,5, \mathrm{Cir}, 100,100), \\ & 6, \text { Ela,30,260 } \end{aligned}$	$\begin{aligned} & \overline{((1,2), 3),((4,5),} \\ & 6), \mathrm{Ela},-970) \end{aligned}$	$\begin{aligned} & (((1,2), 3),((4,5), 6), \\ & \text { Ela,- } 970,-710) \end{aligned}$
3	$\begin{aligned} & (4,(5,6), \mathrm{Ci} \\ & \mathrm{r}, 100,260) \end{aligned}$	$((1,2$, Ela,30,30),3,Cont,10 $0,130),(4,(5,6$, Ela,30,160), Cir,100,260)	$\begin{aligned} & (((1,2), 3),(4,(5,6 \\ &)), \text { Ela,-970) } \end{aligned}$	$\begin{aligned} & (((1,2), 3),(4,(5,6)), \\ & \text { Ela,-970,-710) } \end{aligned}$
4	$\begin{aligned} & ((1,(2,3)),(\\ & 4,5), \text { Ela,- } \\ & 970,-740) \end{aligned}$	$\begin{aligned} & (1,(2,3, \text { Cont,100,100),Ela, } \\ & 30,230),(4,5, \mathrm{Cir}, 100,200), \\ & \text { Ela,-970,-740),6 } \end{aligned}$	$\begin{aligned} & ((1,(2,3)),(4,5)), \\ & \sigma, E l a,-970) \end{aligned}$	$\begin{aligned} & \hline((1,(2,3)),(4,5)), 6, \\ & \text { Ela,-970,-1710) } \end{aligned}$
5	$\begin{aligned} & ((2,3),((4,5 \\ &), 6), \text { Ela,- } \\ & 970,-740) \end{aligned}$	$1,((2,3$, Cont, 100,100$),((4,5$ $, \mathrm{Cir}, 100,200), 6$, Ela,230),El $\mathrm{a},-970 .-740)$	$\begin{aligned} & (1,((2,3),((4,5), 6 \\ &)), \text { Ela,-970) } \end{aligned}$	$\begin{array}{\|l\|} \hline(1,((2,3),((4,5), 6)), \\ \text { Ela,-970,-1710) } \end{array}$

Table 5.5. Analysing Process - Round 4

The five highest predicted-score hypotheses are selected from all Potentiallis in Table 5.5. By using these hypotheses, the hypoSets in Table 5.6 are generated.

$\begin{aligned} & \text { lì' } \hat{\prime} \hat{0} \\ & \text { Set. } \end{aligned}$	appliedit	Subtrees	Nêwi	Pötectin tiâlị
1	$\begin{aligned} & ((1,(2,3)),((4,5), 6) \\ & , \text { Ela,-970,-710) } \end{aligned}$	$\begin{array}{\|l\|} \hline((1,(2,3, \text { Cont,100,100),Ela,30,230),((4,5, } \\ \text { Cir,100,200),6,Ela,30,260),Ela,-970,-710) } \end{array}$		
2	$\left\lvert\, \begin{aligned} & (((1,2), 3) \cdot((4,5), 6) \\ & , \text { Ela,-970,-710) } \end{aligned}\right.$	$(((1,2, E l a, 30,130), 3$, Cont, 100,230$),((4,5$ Cir, 100,100),6,Ela,30,260),Ela,-970.-710)		
3	$\begin{aligned} & (((1,2), 3),(4,(5,6)) \\ & , \text { Ela,-970,-710) } \end{aligned}$	$\begin{aligned} & (((1,2, \mathrm{Ela}, 30,30), 3, \text { Cont, } 100,130),(4,(5,6, \\ & \text { Ela, } 30,160), \mathrm{Cir}, 100,260), \text { Ela,-970,-710) } \end{aligned}$		
4	$(((1,(2,3)),(4,5)), 6$, Ela,-970,-1710)	$\begin{aligned} & (((1,(2,3, \text { Cont, } 100,100), \text { Ela,30,230),(4,5, } \\ & \text { Cir, } 100,200), \text { Ela,-970,-740),6,Ela,-970,- } \\ & 1710) \end{aligned}$		
5	$\begin{aligned} & (1,((2,3),((4,5), 6)) \\ & , \text { Ela,-970,-1710) } \end{aligned}$	<stop here>		

Table 5.6. Analysing Process - Round 5

After the fourth discourse tree that covers the entire text has been derived by applying the appliedH of hypoSet[4] in Table 5.6, the analyser ends its process. No further action is done with Set 5. The four discourse trees generated by the analyser are shown in Figure 5.12. These trees are derived when the appliedIIs of hypoSet[1], hypoSet[27, hypoSet[37, and hypoSet[4] of Table 5.6 are used.

(a)

Figure 5.12. Discourse Trees Generated by the Discourse Analyser

(b)

(c)

(d)

Figure 5.12. Discourse Trees Generated by the Discourse Analyser (con't)

In Figure 5.12, the dotted lines represent the order in which tree nodes are created. The accumulated-scores during the process are shown at the end points of these lines. The discourse trec (d) is the least preferred tree among the four trees in Figure 5.12 since it has the lowest accumulated-score. This is because sentences in different paragraplis are connected before sentences in the same paragraph. As such it is not correct from a linguistics point of view. DAS generates three trees (a), (b), and (c) with the same score. The text-level rhetorical structure of Example (5.7) from the RST-D'I corpus is the tree in Figure 5.12.c.

The complete discourse trees of the text in Example (5.7) are created by replacing each leaf of the text-level discourse tree by the corresponding sentencelevel rhetorical structure.

5.4 Summary

The discourse analyser presented in this chapter is divided into two levels: sentence-level and discourse-level, which are processed in differcnt manners. In order to take advantage of syntactic structures, the scintence-level discourse analyser takes as its input discourse segments generated by a method presented in Chapter 3 and initial information about rhetorical relations between clauses. The syntactic information and cue phrases help the process of generating sentential discourse trees to be done simply and accurately. The main draw back of this approach is that it depends on a sct of predefined rules, which may create incorrect discourse trecs in some exceptional cases. A training method for learning discourse rules from a corpus is a solution to this problem.

Generating text-level rhetorical structures is more complicated than the sentence-level ones. The text-level discourse analyser involves many more discourse segments than the sentence-level one; most of them do not have an explicit signal of relation. We extended Marcu's (2000) rule sct, which is used to posit relations between large spans, so that recognition factors from the satellite can contribute to the relation. Based on the rules mentioned above, the hypothetical relations between large spans are created and combined to form discourse trees. The computational explosion problem in searching for wellformed discourse trees is solved by applying a beam scarch and constraints about
textual organisation and text adjacency. Scorcs are assigned to each discourse tree, so that the analyser can choose the best ones that represent the input text.

The next chapter describes our expcriments and evaluates experimental results. We also comparc D $\triangle \mathrm{S}$ performance with the performance of existing discourse systems.

6 Evaluation

We propose a method to evaluate the output of a discourse system using precision, recall, and F-score on seven levels of processing (LeThanh et al., 2004b). This method is introduced in Scction 6.1. Section 6.1 also describes the experiments carried out and presents the results achieved so far. Section 6.2 analyses the performance of DAS at different tasks and compares them with existing discourse systems. \wedge summary of this chapter is given in Section 6.3.

6.1 Description of the Experiments

The standard information retrieval measurements (precision and recall) were used for evaluation. Precision is the proportion of assignments made that were correct. Recall is the proportion of possible assignments that were actually assigned. We also used F -score, which is a measure combining precision and recall into a single figure. We used the version in which they are weighted equally:

$$
F-\text { score }=2 * \frac{\text { precision } * \text { recall }}{\text { precision }+ \text { recall }}
$$

D \wedge S performance is based on the Human Assignments ($\mathrm{H} \wedge$), the System Assignments (SA), and the overlap between them (ISA). This is demonstrated in Table 6.1.

		Human assignments		Total
, .		Yes	No	
System assignments	Yes	HSA	SA - HSA	SA
	No	HA - HSA	:	
Total		H^		

Table 6.1. Performance's Measurements
The number of assignments that the analyst considers as correct, but the system does not, is HA - HSA. The number of assignments that the system considers as
correct, but the analyst does not, is SA - HSA. Precision and reeall are calculated as follows.

$$
\text { precision }=\frac{H S A}{S A} \quad \text { recall }=\frac{H S A}{H A}
$$

We manually trained the system by using 20 documents from the RST Discourse Treebank (RST-DT, 2002), which included tet short documents and ten long ones. The lengths of the documents varied from 30 words to $\mathbf{I} 284$ words. Most sentences in those documents are long and complex. The syntactic information of these documents was taken from the Penn Treebank, which was used as the input to the discourse segmenter. To evaluate the effect of the relation set on the system's performance, we used two sets of relations. The original one consists of 22 rhetorical relations mentioned in Section 4.1. The second set consists of 14 relations, formed by grouping similar relations in the set of 22 into one. The RST-DT corpus, which was created by humans, was used as the standard discourse trees for the evaluation. The n-ary relations in the corpus are converted to binary relations during the cvaluation. The accuracy of the output of DAS is measured at seven levels. The output of one process was used as input to the process following it.

- Level', 1-The accuracy of discourse segments. This was calculated by comparing the segment boundaries assigned by the discourse segmenter with the segment boundaries assigned by a human.
- Level 2 - Thene accuracy of the combination of text spans al the sentencelevel. DAS generates a correct combination if it connects the same spans as the human does.
- Level 3 - The accuracy of the nuclearity role of spans at the sentence-level.
- Level 4a-The acenaty of thetorical relations at the scntence-level (with the set of 22 relations).
- Level dib - The acemacy of rimerical relations at the sentence-level (with the set of 14 relations).
- Level 5 - The accuracy of the combination of text spans for the entire text.
- Level 6 - The accuracy of the nuclearity role of spans for the entire text.
- Level 7a - The accuracy of rhetorical relations for the entire text (with the set of 22 relations).
- Level 7b-The accuracy of rhetorical relations for the entire text (with the set of 14 relations).

In order to have an accurate evaluation of the system's performance, we tested the system by carrying out two more experiments, each of which consists of a different set of 20 dociments from the RST Discourse Treebank (RST-DT, 2002). The lengths of those documents vary from 29 words to 1432 words. In these experiments, we did not do any modification to the system by observing the RST structures from the corpus that correspond to the input documents. The performances of DAS in all three experiments are shown in Table 6.2. In this table, DASI, DAS2, and DAS3 represent the systen's performance in the first, second, and third experiment respectively.

Wevel		1	2	3	4 a	4 b	5	6	7 a	76
$\mathrm{D} \wedge \mathrm{~S} 1$	Precision	88.2	68.4	61.9	53.9	54.6	54.5	47.8	39.6	40.5
	Recall	85.6	64.4	58.3	50.7	51.4	52.9	46.4	38.5	39.3
	F -score	86.9	66.3	60.11	52.2	53.1	53.7	47.1	39.1	39.9
D \wedge S2	Precision	92.2	72.2	63.2	55.1	56.4	56.5	47.9	40.2	41.0
	Recall	90.3	71.0	62.2	54.2	55.5	55.1	46.8	39.2	40.0
	F-seore	91.2	71.6	62.7	54.7	55.9	55.8	47.3	39.7	40.5
DAS3	Precision	91.7	68.5	60.7	51.3	52.9	53.8	44.8	36.1	37.4
	Recall	88.5	66.3	58.8	49.6	51.2	52.2	43.4	35	36.3
	F-score	90.1	67.4	59.7	50.4	52.0	53.0	44.1	35.5	36.8

Table 6.2: DAS Performances in Three Experiments
Table 6.2 shows that the performance of DAS is quite stable. Therefore, it is reasonable to take the average of these performances as the real performance of DAS, which can be used to compare with the performance of other discourse
systems. The average value of DAS performances is stiowit in the upper part of Table 6.3.

The performance of the human was considered as the upper bound for DAS performance. This value was obtained by evaluating the inter-agreement in the corpus. That is, we compared the discourse structures of each document annotated by two different human analysers using 53 double-annotated documents from the RST corpus. The differences of these double-annotated documents were used to calculate precision, recall, and F -score. This performance is labelled "Human", it is shown in the lower part of Table 6.3. An evaluation of these performances is presented in Section 6.2.

LTLLel ${ }^{\text {L }}$		1	2.	3	4 a	. 4 b	5	6	7ä:	716
DAS	Precision	90.7	$69: 7$	61.9	53.4	54.6	54.9	46.8	38.6	39.6
	Recall	88.1	67.2	59.8	51.5	52.7	53.4	45.5	37.6	38.5
	F-score	89.4	68.4	60.8	52.4	53.6	54.2	46.2	38.1	39.1
Human	Precision	98.7	88.4	82.6	69.2	74.7	73.0	65.9	53.0	57.1
	Recall	$\overline{98.8}$	88.1	82.3	68.9	74.4	72.4	65.3	52.5	56.6
	F-score	98.7	88.3	$\overline{82.4}$	69.0	74.5	72.7	65.6	52.7	56.9
$\frac{F-\operatorname{score}(D A S)}{F-\operatorname{score}(/ h u m a n)} * 100 \%$		90.6	77.5	73.8	75.9	71.9	74.6	70.4	72.3	68.7

Table 6.3. D \wedge S Performance Vs. Human Performance

6.2 Discussion

In the experiments carried out in this research, the output of one process was used as input to the process following it. The error of one process is, therefore, the accumulation of the error of the process itself and the error from the previous process. As a result, the accuracy of DAS and that of humans decline as the processing level increases. D \wedge S provides a reliable result at the discourse segmentation level (90.7% precision and 88.1% recall). The system's performance at the sentence-level is acceptable when compared with humans. The low accuracies of D \wedge S for the entirc text $(46.2 \%$ F-scorc at Level 6 and $38.1 \% \mathrm{~F}$ -
score at Level 7a) indicate that the discourse trees generated by DAS are quite different from those in the corpus. The final crror of D $\wedge S$ (Levels 7a and 7b) is the accumulation of crrors from all processes, starting from the discourse segmenter.

The rest of this section analyses the performance of each module in detail. Section 6.2.1 discusses the factors that reduce the scgmenter's performance and compares this performance with the performances of existing discourse segmenters. Section 6.2 .2 analyses the impacts of previous processes to the performance of the sentence-level discourse analyser. Section 6.2 .2 also compares the performance of DAS' sentence-level analyser with the performance of the best sentence-level analysers that we know of. Finally, Section 6.2.3 discusses the factors that affect the performance of the text-level discourse analyser and compares the accuracy of the final output of DAS with those of the discourse analyser created by Marcu (2000).

6.2.1 Performance of the Discourse Segmenter

A discourse segmenter with high accuracy is very important to the performance of a discourse analyser, since its accuracy affects the performance of all processes that occur afterwards. The discourse segmenter's performance depends on three factors. The first factor is the accuracy of syntactic information. Although most syntactic documents from the Penn Treebank are well-structured, this corpus sometime contains inaccurate analysis, which reduces the performance of this module. For example, consider Example (6.1) below:
(6.1) In the Lilly case, the appeals court broadly construed a federal statute to grant Medtronic, a medical device manufacturer, an exemption to inliringe a patent under certain circumstances.

The syntactic structure of this sentence from the Pem Trecbank is:

```
( (S (PP-LOO In
    (NP the Lilly case))
    (NP-SBJ the appeals court)
    (VP (ADVP-MNR broadly)
```

```
        construed
        (S (NP-SBJ a federal statute)
        (VP to
                                    (VP grant
                                    (NP (NP Medtronic)
                                    (NP a medical device manufacturer)
                                    ,)
        (NP (NP an exemption) 'i
        (SBAR (WHADVP-1 0)
        (S (NP-SBJ *)
        (VP to
            (VP infringe
                (NP a patent)
                (PP-LOC under
                                    (NP certaini
circumstances))
                                    (ADVP-MNR *T*-1)') )) )))))
```

 .)
 D \wedge S splits this sentence into two clementary discourse units (see Example 6.2), whereas the RST-DT corpus splits it into three units (sce Example 6.3). The elementary discourse units generated by the RST-DT corpus are correct in this case.
(6.2) [In the Lilly case, the appeals court broadly construed a federal statute to grant Medtronic, a medical device manufacturer; an excmption][to infringe a patent under ccrtain circumstances.]
(6.3) [ln the Lilly case, the appeals court broadly construed a federal statute][to grant Medtronic, a medical device manufacturer, an exemption][to infringe a patent under certain circumstances.]

The missing segment boundary in Example (6.2), which is between "a federal stature" and " o gront", relates to the syntactic structure of the sentence from the Penn 'rreebank. As we see from the syntactic structure of Example (6.1), the text "a federal statute to grant Medtronic, a medical device manufacturer, an exemption to infringe a patent mider certain circumstances" is tagged as a sentence in the l'em Trecbank. This analysis does not follow the nomal coneept of a sentence: the main verb phrase of a sentence cannot start with " $t o$ ". Because of this syntactic information, DAS docs not generate a segment boundary before
"fo grant" since it is not allowed to split the subject and the verb phrase of a sentence. The syntactic information of Example (6.1) indicates that "to infringe a patent minder certain circimstances" is a clause that belongs to the noun phrase "an exemption to infringe a pettent under certain circumstances". Therefore, DAS puts a segment boundary between "an exemption" and " $t o$ infringe a patent under certain circumstances". Since incorrect syntactic structures in the Pem Treebank are rare, this factor does not reduce significantly the system's performance.

The second factor that reduces the segmentation performance is the oversegmentation of the RST-DT corpus. Texts in the RST corpus are sometime analysed into very small spans such as the words "ond" and "or" as in Example (6.4), which are not clauses with independent functional integrity.
(6.4) |Every order shall be presented to the President of the United States; 6.4.1 [and] $]_{6.4 .2}$ before the same shall take effect, $]_{6.43}$ shall be approved by him, $]_{6.4 .4}[\text { or }]_{6.45}$ [being disapproved by him, $]_{6, m_{6}}[$ shall he repassed by two-thirds of the Senate and House of Representatives. $]_{6.4 .7}$

Figure 6.1. Discourse Tree of Exampie (6.4) Taken From the RST-DT Corpus

The discourse tree of tixample (6.4) from the $\mathrm{RST}^{-1} \mathrm{IT}$ corpus is presented in Figure 6.1 above. The cue phrase "or" is split from "being disapproved by him" by the RST-DT corpus since "or" is not semantically involved in the relation
between the two elementary discourse units "heing disapproved by him" and "shall be repassed by two-thirds of the Senate and House of Representatives". However, "or" belongs to the span "or being disapproved by him. shall be repassed by two-thirds of the Senate and house of Representatives" in the relation between it and its left span "and before the same shall take effect, shall be approved by him". That is why "or", which is span (6.4.5). is reconnected with spans (6.4.6-6.4.7) by a Same-Unil relation. The same explanation is applied for the segmentation of the word "and" from the span "before the same shall take effect" by the RST-DT corpus. We consider this analysis as over-segmentation since it creates many spans smaller than elementary discourṣe units. D^S prevents this situation by not separating cue phrases from the elementary discourse units that go after them. It is illustrated in Example (6.5) shown below.
(6.5) [Every order shall be presented to the President of the United States; 6.5i] [and before the same shall take effect, 6.5.2] ${ }^{\text {shall }}$ shat be approved by him, 6.5 .3$][$ or being disapproved by him, 6.5 .4$][$ shall be repassed by twothirds of the Semate and House of Representatives. 6.5.5]

Figure 6.2. Discourse Tree of Example (6.5) Generated by DAS

Figure 6.2 represents the discourse tree of Example (6.5) generated by DAS. This tree is preferred by DAS because its discourse segments are closer to the definition of elementary discourse units (Mann and Thompson, 1988) than the discourse segments of the tree presented in Figure 6.1. Furthermore, this approach
reduces the complexity of the discourse tree while rhctorical relations between elementary discourse units are stilt. correet. This treatinent results in some differences between the output of DAS and the RST-DJ corpus. which means the system's performance is reduced by such cases. We accept this reduction since we do not want DAS to make the text too fragmented by creating many phrases that do not have independent functional integrity. The belaviour of D $\wedge \mathrm{S}$ in such cases is supported by other human analysts. An example of such a case is shown in (6.6). This example is received from Mann's (2003) website.
(6.6) [Using thumbs is not the problem 6.6.1][but heredity is 6.6 .2] and the enid result is no use of thumbs 6.6 .3] [if 1 don't do something now. 6.6.4]

The discourse tree of Example (6.6) is represented in ligure 6.3.

Figure 6.3. Discourse Trec of Example (6.6)

In this example, although the cue phrase "and" is not involved in the rhetorical relation betwecn the two elementary discourse units "the end result is no use of thumbs" and "if I don't do something now", it is not segmented from the elementary discourse unit, "the end result is no use of thumbs".

The third factor that affects the system's performance is the segmentation rules. The current rule set used in DAS was created manually based on the segmentation principles proposed by Carlson et al. (2002). In order to get a high performance, a flexible rule set that can adapt to now situations is preferred. This could be achieved by using a machine learning algorithm to kam segmentation rules. This process can be integrated with DAS in future work.

Since the work in this field has not achieved any cerlainty about the criteria to indicate the exact segment boundaries, and there is no standard benchmark, it is difficult to compare one research result with others. Nonetheless, Okumura and Honda (1994) have carried out experiments on three texts, which are from exam questions in Japanesc. The avernge preeision and recall rates of that experiment were 25% and 52% respectively.

Passonneau and Litman (1997) have proposed a series of algorithms for identifying segment boundaries based on various combinations of referential noun phrases, cue phrases, and pauses. Their experiments werc carried out on a corpus of spontaneous, narrative monologues. The best algorithm in their series, which combines all the thrce features, achieved 52% precision and 39% recall. The performance of the discourse segmenter of $\mathrm{D} \wedge \mathrm{S}(90.7 \%$ precision and 88.1% recall) is better than this system.

Soricut and Mareu (2003) carried out their experiments on the RST-1)T corpus, in which 347 articles were used as the training set and 38 oncs were used as the test set. The precision, recall, and F -score of their system when the syntactic information from the Penn Treebank was used as the input are $84.1 \%, 85.4 \%$, and 84.7% respectively. The discourse segmenter of DAS has a better performance than the one in Soricut and Mareu (2003).

The performance of the discourse segmenter of $D \mathcal{A}$ is promising when compared with other discourse segmenters known to us. It has proved that the combination of sentential syntactic structures and cue plirases are reliable enough for diseourse segmentation. However, since the output of the discourse segmenter is used as the input to the later process, this module needs to be as exact as possible. To improve the accuracy of this modulc, future work includes developing a method for learning segmentation rules, and șludying the impact of other factors such as semantic information on discourse seginentation.

6.2.2 Perfornance of the Sentence-level Discourse Analyser

The discourse segmentation rules discussed in Chapter 3 split text into discourse segments and comect these segments to create rhetorical relations. lor this
reason, the accuracy of span combinations at the sentencc-level (Level 2) depends on the segmentation rules and the post segmenting process. A missing segment boundary can cause several misplaced rhetorical relations. For cxample, let us reconsider the text in Example (6.1) in the previous section. For the convenience of the reader, we repeat below the discourse segments derived by DAS and the RST-DT corpus for this example as Examples (6.7) and (6.8), respectively.
(6.7) [In the iilly case, the appeals court broadly construcd a federal statute to grant Medtronic, a medical device manufacturer, an exemption 6.7:1][to infringe a patent under certain circumstances. 6.7.2]
(6.8) [It the Lilly case, the appeals court broadly construed a federal slatute 6.8.1][to grant Medtronic, a medical device manufacturer, an exemption 6.8 .2 .7$]$ to infringe a patent under certain circumstances. 6.8.3]

DAS creates a muclear-satellite relation between the two spans (6.7.1) and (6.7.2) (see ligure 6.4.a). Mcanwhile, the corpus assigus a nuelear-satellite relation between the two spans (6.8.2) and (6.8.3), and a nuclear-satellite relation betwcen the span (6.8.1) and the span that covers the two spans (6.8.2) and (6.8.3) (see Figure 6.4.b).

Figure 6.4. Discourse Tree of Examples (6.7) and (6.8)

The corpus does not contain a relation between the two spans "In the lilly case, the appeals court broadly construed a federal statute to gram Medtronic, a medical device mamufacturer, an exemption" and "to illfringe a patent under certain circumstances". Instead, it contains a relation between "In the Lilly case,
the appeals court broadly construed a federal statut" and "ra grant Medtranic, a medical device manufucturer: an exemption to infringe a patent under certain circumstances". Λs a result, there is no rhetorical relation shared by DAS and the corpus in this case.

Table 6.3 shows a performance fall from Level 1 to Level 2 (reduction of 21% F-score) which mainly caused by the segmentation disagreement between DAS and the RST-DT corpus. The nuclearity role of spans and the accuracy of rhetorical relations reduce $7.6 \% \mathrm{~F}$-score from Level 2 to Level 3, 8.4\% F-score
 that the factors to recognise rhetorical relations (Chapter 4) are good enough to posit sentential relation properties. Thus, the largest problem in future work at the sentence-level is to improve the accuracy of combination of text spans.

Soricut and Marcu (2003) developed a probabilistic model for the sentencelevel discourse parser called SPADE: using the same trainiing sel and fest ser as in their discourse segmentation module. This system provides the best performance among existing sentence-level discourse analysers that we know of. Although SPADE and DAS use the same corpus, it is still difficult to compare the performances of these two systems since the SPADE cvaluation uscs slighty different criteria than D \wedge S's. Soricut and Marcu compute the accuracy of the sentence-level discourse trees withont labels, with 18 labels and with 110 labels. It is not clear how the sentence-level discourse trees are considered as correct. Due to thls reason, the performance given by the human amotation agreemen reported by them is different than the calculation used in this rescarch. We compared the performance of the two systems using the percentages of the F-scores between the systems and the humans. SPADE performance and human performance calculated by Soricut and Marcu when syntactic trees from the Pem Trcebank are used as the input is presented in Table 6.4. For the convenience of the reader, D \wedge S performance is repeated in the lower part of Table 6.4. "IJuman" and "Human*" in Table 6.4 refer to the human perfomance of the RSTH HF corpus calculated by Soricut and Marcu (2003) and by us respectively.

We consider the evaluation of the "Unlabeled" case in Soricut and Marcu's experiment as the evaluation of Level 2 in our experiments. The values shown in Table 6.3 and Table 6.4 imply that the $₹$-score's percentage of DAS performance and the performance of human analysts ean be considered as approximate to that of SP^ADE.

-	Unilăbêled	$\begin{aligned} & 100 \\ & \text { labels } \end{aligned}$	18 labels	$\begin{aligned} & \because 2 \\ & \text { abels } \end{aligned}$	14 lăbels
SPADE	73.0	52.6	56.4		
Human	92.8	71.9	77.0		
$\frac{F-\operatorname{score}(S P A D E)}{F-\operatorname{score}(H u m a n)} * 100 \%$	78.7	73.2	73.2		
D^S	68.4			52.4	53.6
Htuntin*	88.3			69.0	74.5
$\frac{F-\operatorname{score}(D A S)}{F-\operatorname{score}\left(\text { Ifmhen }{ }^{*}\right)} * 100 \%$	77.5	.		75.9	71.9

Table 6.4. SPADE Performance, DAS Performance, and Human Performance

6.2.3 Performance of DAS

The text-level discourse analyser constructs diseourse trees from sentences. It is independent of the accuracy of elementary discourse units. Instead, it depends on the hypothelical rhetorical relalions generated by the relation recognising process (see Section 4.2) and the organisation of the text, which is uscd for the textual organisational constraint. Some documents from the RST corpus, which are used in the experiments carried out in this research, contain incorrect paragraph boundaries. The textual organisational constraint may create incorrect segment boundaries here since it relies on a well-organised text structure. This problem contributes to the error of the discourse analyser at the text-level. To solve the
problem of incorrect paragraph boundaries, we propose to apply a text segmentation approach (e.g., Choi, 2000).

To our knowledge, there is only one report about a discourse analysing systein for the entire text that measures accuracy (Marcu, 2000) When training on 20 WSJ documents and testing on 3 WSJ documents from the Penn Treebank, Marcu's decision-tree-based discourse parser receives 21.6% recall and 54.0% precision for the muclearity; 13.0% recall and 34.3% precision for rhetorical relations. The recall is more important than the precision siince we want rhetorical relations that are as correct as possible. Therefore, the discourse analysing system presented in this research shows a significantly better performance. However, more work needs to be done to improve the reliability of the system.

6.3 Summary

In this chapter, we have evaluated the performance of D \wedge S based on different processing levels. The experimental results showed that DAS has a good performance when compared with current discourse analysing systens. Syntactic information and cue phrases are efficient in constructing discourse structures at the sentence-level, especially in discourse segmentation. The performance of the entire DAS system is better than the one created by Marcu (2000), which is the best discourse system that we know of. This chaptei also analysed different factors that affect the accuracy of the system, including the errors of the RST-DT corpus and the Penn Trcebank corpus, the segmentation rules, the relation recognition rules, and the method of using the textual organisational constraint.

The following chapter summaries the content of this thesis, emphasises the contributions, and delineates possible future work for this thesis.

7 Conclusions

This thesis has concentrated on constructing a system for automatically deriving the rhetorical structure of written texts. While the rhetorical structure has been proved to be useful in many fields of text processing such as text summarisation and information extraction, such discoursc systems are difficult to find because discourse analysis is one of the vast and least defined areas in linguistics. Different approaches have been proposed for the linguistic analysis of discourse, from interaction sociolinguistics, and pragmatics to conversation analysis. However, none of these approaches can define a rule set that can automatically derive rhetorical structures. An agreement among rescarchers about rhetorical structures has not yet been found. For example, Marcu (2000), Forber et al (2003), and Polanyi ct al. (2004) have different ways to analyse n text, which result in different rhetorical structures. For this reason, a discourse corpus that is accepted by all researchers does not exist at the time of writing this thesis.

This research follows the Rhetorical Structure Theory (Mann and Thompson, 1988), which has inspircd many studies in discourse analysis. The RST-DT corpus (RST-DT, 2002). which was annotated with rhetorical structures in the framework of the RST, was used in the experiments of this research. The system implemented in this research ($D \wedge S$) takes as its input a written text and its syntactic parsed document and produces as its output binary discourse trees in the framework of RST.

The text is first segmented into clementary discourse units by using sentential syntactic structures and cue phrases. These discourse mits are then used to construct the rhetorical structures of the text. The discourse constructer is divided into two levels: sentence-level and text-level. The former constructs the discourse tree for each sentence. Only onc rhetorical structure is generated for each sentence, and is based on the segmentation rules. The latter posits rhetorical
 selecting thetorical rclations to comect adjacent and non-overlapping spans to form a tree that covers the entire text. The constraints of textual organisation and
textual adjacency are used in a beam seareh to generate such rhetorical struetures from a sel of all possible rhetorieal reiations in the text.

To posit a rhetorieal relation. different reeognition factors' are used, including cue phrases, NP cues. VP cues, reiterative devices, reference words, time references, substitution words, ellipses, and syntactic information. Each heuristic rule, whieh corresponds to some recognition factors, is assigned a score, depending on its weight, to deeide a relation. The relation with a high total-heuristic-seore is preferred over a lower one.

The experimental evaluation on seven levels of analysis showed that this approach provides good performance when compared with current research in discourse analysis. Yet, undoubtedly there are still spaces in this researeh that need to be improved in order to achieve better results.

A problem rising from the experimental evaluation is the disagreement among researchers on the principles of discourse analysis. There are several trends in discourse analysis, each of which processes a text in a different way (Marcu, 2000; Forbes et al., 2003; Polanyi el al., 2004). Different RST corporn are created accordingly in order to fit with the theory that they have established. Experiments reported in this researeh used the RST-DT corpus ereated by Carlson et al. (2002), which is not without problems. Since this eorpus is the only available diseourse corpus known to us that is created based on the framework of the Rhetorical Structure Theory, it is uscd in our experiments. However, we believe that our approaeh ean also be adapted to other discourse analysis theories. For example, in order to generate diseourse trees following the D-LTAG proposed by Forbes et al. (2003), all proeesses of DAS can still remain the same, only the node strueture of a discourse tree needs to be modified to fit with new method of discourse representation (i.e., the eue phrases and the punctuation marks that are used as anchors to comneet spans are stored separately from the spans).

This work has focused on the use of syntax and relatively shallow semanties to construet discourse structure. There is a continum between syntax and semantics. We have used eue phrases which are towards the syntactic end of the continuum. $N P$ and VP eue phrases are more semantic, and cohesive devices are even more
semantic. The system could be improved by the use of even richer semantics, but $i t$ is striking how effective this relatively shallow analysis is.

The main contributions of the thesis are summarised in Section 7.1. Section 7.2 addresses future work and proposes some directions to solve the problems in future work.

7.1 Contributions of the Thesis

The approach to discourse analysing presented in this thesis is inspired by Marcu (2000) and Corston (1998). The contributions of this thesis can be summarised as follows:

1. Proposing new factors for signalling relations between elementary discourse units. These factors are NP cues and VF cues. The ellipses, which are not used in Marcu (2000) and Corston (1998), are integrated in DAS. Although VP-ellipsis has becn investigated in Kchler and Shicber (1997), a discourse system that uses VP-ellipses has not been reported by them. Besides VP-ellipses, other types of ellipses (NP-ellipses, clauseellipses) are also used in DAS.
2. Inproving the rules to posit relations between large spans. The rules to posit relations between large spans were extended from Marcu (2000) so that cue phrases from the satcllites can contribute to the recognition process.
3. A new discourse segmentation method. This discourse segmentation approach uses syntactic information and cue phrases. Λ post segmenting process is used in this approach to refine segment boundaries after being generated by the above segmentation factors.
4. A new method for deriving sentential discourse trees. This method produces trees fast and accurately. As described in Section 3.1, these trees are created by the post segmenting process of discourse segmentation. based on the sentential syntactic structure and cue phrases. If we do not count the relation names of each discourse tree, only one discourse tree is gencrated for each sentence. After the segmentation process, DAS only
needs to posit nuelearity roles and relation names for existing discourse trees. DAS does not have to combine random spans to eheck whether a relation cxists or not. Meanwhile, the systems of Maren (2000) and Corston (1998) examine all combinations of spans, irrespective of the adjacency property. If a sentence has N elementary discourse units, in order to find possible rhetorical relations, $N(N+1)$ pairs of elementary discourse units have to be checked by Mareu's system as well as Corston's. The sentence-level search space in DAS is much smaller than that of Mareu (2000) and Corston (1998).
5. Improving the efficiency of the discourse analyser. Unlike Marcu's (2000) sysitem, which generates all combinations of discourse trees and then filters out the inappropriate ones, DAS takes efficiency issucs seriously, and tries to avoid combinatorial explosion by using a beam search with constraints abont textual organisation and textual acliacency. The search space of $\mathrm{D} \wedge \mathrm{S}$ is also smaller than Corston's (1998), as discussed in Section 5.3.1
6. Evaluation methods. To evaluate the tree quality, Marcu (2000) computes a weight for each valid discourse tree and retains only the trees that are maximal. This weight function gives high priority for rightbrancloing trees. However, this priority does not apply for all genres. Corston (1998) uses heuristic scores associated with licuristic rules to form rhetorical structure. The heuristic score associated with a tree is computed from. the heuristic scores of the relations used in constructing the tree. Unlike Corston (1998), DAS caleulates the score for each tree by summing up the total-score of every relation eontributing to it: The relation seore is computed from the total-heuristic-score of recognition factors and the block-level-score, which relates to the position relation of its left and right spans. The block-level-score is used to ensure that spans in the same textual block are connected before spans in different ones. The leftbranching trees and the right-branching ones are considered equally in Corston (1998) and DAS.

To evaluate the discourse system, the accuracy at seven processing levels was calculated based on experimental results. By this detailed evaluation, one will know which process needs to be improved most.

7.2 Future Work

Generating an automatic discourse analysing system is a difficult task. Although many efforts have been put into different issues of discourse analysis such as discourse segmentation and relation recognition, there is room to inprove the performance of the discourse system. In this research, we proposed an approach to generate a discoursc system, concentrating on the system’s performance and on the problem of combinatorial cxplosion in searching for a discourse tree representing a text. An implementation has been made based on this approach. Due to the time limitation, several tasks that have been proposed to improve the system's performance are left for future work, including:

1. Integrating a learning algorithom to lcarn the score of cue phrases and scores of heuristic rules. The score of a cue phrase is assigned between 0 and 1 , depending on its certainty in signalling a relation. For example, "in contrast" explicitly signals a Comtrast relation, meanwhile "however" can indicate a Contrast, or an Antithesis relation. The score of a heuristic rule is between 0 and 100 , and also depends on its ectainty in signalling a relation. At present, these scores are assigned using human intuition. The heuristics rules and their scores can be modified when new examples are provided. However, these tasks are currently done manually. A learning algorithm is necessary to improve the accuracy in recognising relations and to adapt to new data and genres.
2. Integrating a learning algorithon to learu syntactic-lased rules and cue-plirase-based mules that are used to segment fext and posit rhetorical relations. The basic segmentation rules in $\mathrm{D} \wedge \mathrm{S}$ are based on the segmentation principles in Carlson et al. (2002). We have manually improved this rule set based on different linguistic sources. In order to make this set more adaptable with other genres of data, a training algorithm to learn new instances and to optimise the result should be integrated into

DAS. New heuristic rules are added, and existing heuristic scores are adjusted until D \wedge S can derive the closest rhetorical structures to the ones created by human analysts.
3. Investigating a method to segment text into semantic-related paragraphs if there is no information about the organisation of text. Λ s discussed in Sections 5.3.1 and 6.2.3, the method of using a block-levelscore to reduce the search space has a problem when there is no information about the organisation of text or when a text contains incorrect paragraph boundaries. In order to solve this problem, an aspeet that is worth investigating is semantic relations in a text. loor example, if some sentences refers to the same area or domain (e.g., law), and other sentences involve another domain (c.g. computer science), it is likely that the former sentences and the latter ones belong to two different paragraphs, each of which fulfils a communication goal. We propose a inethod using the text segmentation approach based on word term freqtiencies and semantic relations as a potential method to determine correct paragraph boundaries and linkages among paragraphs:
4. Evaluating the system in more aletail by calculating the performance at cach level with a correct input or with the input from the previous process. By this evaluation, the real performance of each module and the affects of the previous modules on the next ones are computed. This information is important to find which module needs to be improved in order to improve the system's performance.

In addition to improving the system's performance, we would also like to integrate a syntactic parser into DAS. The current version of DAS depends on a corpus that contains sentential syntactic structures. An available syntactic parser with high performance will be chosen to bc integrated with DAS, so that DAS can generate sentential syntactic structures by itself.

Since our motivation in carrying out this research on discourse analysis is to improve the performance of a text processing application, DAS will be integrated into a more practical text processing system such as text summarisation, text
translation, or information retrieval. Moreover, DAS performance can also be evaluated by its impact on the accuracy of other text processing lasks.

Last but not least, we would like to apply this research to other languages espeeially to the Vietnamese language. The purpose of this is twofold. First, we would like to investigate the impact of our approach to a language that has different characteristics than English. Second, since only a few studies on text processing have been carried out for Vietnamese language, this research will be a good contribution to this area.

Bibliography

Batliner, A.. Kompe, R., Kießling, A., Niemann, H., and Nöth, E. (1996). Syntactic-Prosodic Labeling Of Large Spontaneous Spéech Data-Bases. In Praceedings of ICSLP-96, USA, pp.1720-1723.

Beeferman, D.. Berger, A.. and Lafferty J. (1999). Statistical models for text segmentation. Machine Learning. In Special Issue oï , Natural Language Learning, edited by C. Cardie and R. Mooney, 34:177-210.

Bies, A., Ferguson, M.. Katz, K., and Maclntyre, R. (1995). Bracketing Guidelincs for Treebank 11 Style, I'cmn Treebank Project.

Boguraey, B.K. and Neff, M.S. (2000). Discourse Segmentation in Aid of Document Summarisation. In Proceedings of the 33rd Hawaii Internatianal Conference on System Sciences-Volume 3, pp. 3004.

Bouchachia, A., Mittermeir, R., and Pozewamig, II. (2000). Document Identification by Shallow Semantic Analysis. NLDB 190-202.

Carlson, L., Marcu, D., and Okurowski, M.E. (2002). Building a DiscourseTagged Corpus in the Framework of Rhetorical Structure Theory. In Current Directions in Discourse and Dialogue, Jan van Kuppevelt and Romnie Smith eds., Kluwer Academic Publishers, pp.85-112.

Choi, F. (2000). Advances in domain independent linear text segmentation. In Proceedings of NAACL'OO, Seattle, USA, pp.26-33.

Cristea, D. (2000). An Incremental Discourse Parser Architecture. In Proceedings of the Second International Conference Natural Language Processing - NLP 2000, Patras, Greece. Lecture Notes in Artificial Intelligence 1835, Springer, pp.162-175.

Cristea, D. and Dima, G.E. (2001). An Integrating Framework for Anaphora Resolution. In Information Science and Technology, Romanian Academy Publishing House, Bucharest, 4(3-4):273-292.

Corston, S.O. (1998). Computing Representations of the Structure of Written Discourse. Ph.D. Thesis. University of California, Santa Barbara, C \wedge, U.S.A.

Dalrymple, M. and Kchlcr. A. (1995). On the Constraints lmposed by Respectively. Lingnistic Inquiry 26(3):531-536 (Squibs and Discussion).

Elhadad, N. and McKcown, K. (2001). Jowards Gencrating Palient Specific Summarics of Medical Articles. In Proceedings of the NAACL Workshop on Automatic Summarisation, Pittsburgh, PA, pp.3I-39.

Forbes, K. and Wcbber, B. (2002). A Semantic Account of Adverbials as Discourse Conmectives. In Proceedings of the 3rd SIGDial Workshop on Discourse and Dialogne, Philadelphia PA, pp. 27-36.

Forbes, K. and Miltsakaki. E. (2002). Empirical Studies of Centering Shifts and Cue Phrases as Embedded Segment Boundary Markers.' In E. Kaiser (ed.). Pem Working Papers in Linguistics. Current work in linguistics. 7(2):39-57.

Forbes, K., Miltsakaki. E., Prasad, R., Sarkar, ^., Joshi, A., and Wcbber, B. (2003). D-LTAG System: Discourse Parsing with a Lexicalized TrecAdjoining Grammar. Journal of Logic, Lnngunge and Information, 12(3):261279.

Gardent, C. (1997). Discomrse tree adjoining grammors. Claus report no.89, University of Saarland. Saarbiicken.

GATE (2004). Genteral Architecture for Text Engineering. University of Shelfield, UK.

Grosz, B.J. and 'Sydner C.L. (1986). Attention, intentions and the structure of discourse. Computational tinguistics, 12:175-204.

Gundel, J.: Hegarty, M., and Borthen, K. (2003). Cognitive status, information structure and pronominal reference to clausally introduced entitics. Journal of Logic, Language and information, 12:281-299.

Hahn, U., and Strube, M. (1997). Centering in-the-Large: Computing Referential Discourse Segments. In Proceedings of $A C L^{\prime} 97 / E A C L ' 97 . ~ M a d r i d, ~ S p a i n, ~$ pp.104-111.

Harabagiu, S. and Maiorano, S. (1999). Knowledge-lean coreference resolution and its relation to textual cohesion and coreference. ln Proceedings of the $A C L$ Workshap on Discourse/Dialogue Siructure and Reference, pp.29-38.

Halliday, M.A.K. and Ilasan, R. (1976). Cohesion in Enghish. London, England: Longman.

Heusinger, K. (2001). Intonational Plrasing and Discourse Segmentation. In Proceedings. of the ESSLLL Workshop on Informatian Structure, Rhetorical structure and Discourse Semantics. Helsinki, pp.189-200.

Hirschberg, J. and Litman, D. (1993). Empirical Studies on the Disambiguation of . Cue Phrases. Computational Linguistics, 19(3):501-530.

Hobbs, J. (1979). Colterence and coreference. Cagnitive Science 3:67-90.
Hobbs, J. (1985). On the Coherence and Structure of Discourse. Technical Report CSLI-85-37, Center for the Study of Language and Inforimation.

Hovy, E. H. (1990). Parsimonious and profligate approaches to the question of rhetorical structure relation. In Proceedings of the $5^{\text {th }}$ International Workshop on Natural Langnage Generation. Pittsburgh, pp.128-136.

Hovy, E. (1993). Automated Discourse Generation Using Rhctorical structure Relations. Artificial Intelligence, 63, pp.341-386.

Hovy E. and Lin, C. (1999). Automatic Text Summarisation in SUMMARIST. In Advanced in cutomatic text summarisation, edited by Inderjeet Mani and Mark T.Maybury. The MIT Press.

Jones, K:S. (1993). What might be in a summary? In Proceedings of Information Retrieval: Von der Modellierung zur Anwendung (eds.), pp.9-26, Universitatsverlag Kistanz.

Joshi, A. and Kuhn, S. (1979). Centered Logic: The Role of Entity Centered Sentence Representation in Natural Language Inferencing. In Proceedings of the Gih International .Ioint Conference on Artificial Intelligence, pp 435-439.

Joshi, A. and Weinstein, S. (1981). Control of Inference: Role of Some Aspects of Rhetorical structure: Centering. In Proceedings of the 7/h Internotionol Joint Conference on Artificial Intelligence, pp.385-387.

Kameyama, M. (1997). Recognizing Referential links: an Information Extraction Perspective. In Proceedings of the Workshop "Operational Factors in Practical. Robust Anaphara Resolution for Unrestricted Texts", Madrid, pp.46-53.

Kehler, A. (1994). Common Topies and Coherent Situations: Interpreting Ellipsis in the Context of Discourse Inference. In Proceedings. of the 32nd Ammal Conference of the Assaciation for Camputational Linguistics (ACL-94), pp.50:57.

Kehler, A. (1996). Coherenee and the Coordinate Stricture Constraint. In Proceedings: of the 22nd Anmal Meeting of the Berkeley Linguistics Society (BLS 22), Berkeley, CA, pp.220-231.

Kehler, A. and Shieber, S. (1997). Anaphoric Dependencies in Ellipsis. Compuratianal Linguistics, 23(3):457-466.

Knotı, A. (1996). A Data-Driven Methodology for Motivating a Set of Coherence Relations: Ph.D. Thesis, University of Edinburgh, UK. :

Knott, A. and Dale, R. (1994). Using Linguistic Phenomena to Motivate a Set of Rhetorical Relations. Discourse Processes 18(1):35-62.

Komagata, N. (2001). Entangled Information Structure: Analysis of Complex Sentence Structures. In Proceedings of the ESSLLLI 2001 Workshop on Information Structure, Rhetorical structure and Discourse Semantics. Helsinki, pp.53-66.

Korbayov, I.K. and Wcbber, B. (2000). Information Structure and the Interpretation of "otherwise". In Proceedings of the 2 nd International Conference in Contrastive Semantics and Pragmatics (S/C-CSl 2000), Cambridge, UK, pp.67-83.

Kozima, H. (1994), Computing lexical cohesion as a tool for text analysis. Ph.D. Thesis: Graduate School of Electro-Communications, University of ElectroCommunicalions.

Kurohashi, S. and Nagao. M. (1994). Automatic detection of rhetorical structure by checking surface information in sentences. In Proceedings of the $15^{\text {th }}$ International Conference on Compurotional Linguistics, 2:1123-1127.

LeThanh. H.. Abeysinghc. G., and Huyck. C. (2003a). Using Cohesive Devices to Recognize Rhetorical Relations in Text. In Proceedings of ath Computotional Linguistics UK Research Colloquium (CLUK-4), pp.123-128.

LeThanh, H. and Abeysinghe, G. (2003b). A Study to Improve the Efficiency of a Discourse Parsing System. In Proceedings of the 4th International Conference on Intelligent Text Processing and Computational Linguistics (ClCLing'03), pp.104-117.

LeThanh, H., Abeysinghe, G., and Huyck, C. (2004a). Automated Discourse Segmentation by Syntactic Information and Cue Phrases. In Proceedings of the IASTED International Conference on Artificiol Intelligence and Applications (AIA 2004), pp.293-298

LeThanh, H., Abeysinghc, G., and Huyck, C. (2004b). Generating Discourse Structures for Written Jexts. In Proceedings of the 20th International Conference on Computational Linguistics (COLING 2004), pp.329-335.

Litman, D.I. (1996). Cue Phrase Classification Using Machine Learning. Journal of Arlificial Intelligent Research, 5:53-94.

Litman, D.J. and Passonneau, R.J. (1993). Empirical evidence for intention-based discourse segmentation. In Proceedings of the ACL Workshop on Intentionality and Structure in Rhetorical relations, pp.60-63.

Maier, E. and Ilovy, E.H. (I99I). A Metafunctionally Motivated Taxonomy for Discourse Structure Relations. In Proceedings of the 3rd,European Workshop on Language Generation. Innsbruck, Mustria, pp.38-45.

Mann, W. C. and Thompson, S. A. (1988). Rhetorical Structure Theory: Toward a Functional Theory of Text Organization. Text, 8:243-281.

Mann, W.C. (2003). A View of Rhetorical Structure Theory. http://www.sil.org/\~mamb/rs//index.htm

Marcu, D. (1997). The Rhetorical Parsing, Summarization, and Gencration of Natural Language Texts. PhD Thesis, Department of ${ }^{i}$ Computer Science, University of Toronto.

Marcu, D. (1999). A decision-based approach to rhetorical parsing. In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistic: (ACl). Maryland, pp.365-372.

Marcu, D. (2000). The theory and practice of discourse parsing and summarisation. MI' Prcss, Cambridge, Massachusetts. London, England.

Marcu, D., Amorrortu. R... and Romera, M. (1999). Experiments in Constricting a Corpus of Discoursc Trees. The ACL'99 Workshop an Standards and Tools for Discourse Tagging, pp.48-57.

Marcu, D. and Echihabi, Λ. (2002). An Unsupervised Approach to Reeognising Rhetorical relations. In Proceedings of the 40th Ammal Meeting of the Association for Computational Linguistics (ACL), pp.368-375.

Matthiessen, C. and Thompson, S.A. (1988). The structure of discourse and 'suhordination'. In Plaiman and T'hompson (cds.), pp.275-329.

McKcown, K.R. (1985). Text Generation: Using Discourse Strategies and Focus Constraints to Generate Notural Language Text. Cambridge University Press.

Mellish, C., Knott, A., Oberlander, J., and O'Donnell, M. (1998). Experiments Using Stochastic Scarch for Text Planning. In Proceedings of IWNLG-98, Niagara-on-tle-L_akc. Canada. Association for Computational Linguistics, pp.98-107.

Miike, S., Itoh, E., Ono. K., and Sumita, K. (1994). A full-text retrieval system with a dynamic abstract generation function. In Proceedings of the 17th ammal international ACM S/GIR conference on Research and development in information. Dublin, lreland, pp.152-161.

Mitkov, R. (2002). Anaphora Resolutian. Longman.

Mitra, M., Singhal, A.. and Buckley, C. (1997). Automatic text summarisation by paragraph extraction. In Proceedings of the ACL/EACL-97 Workshop on Intelligent Scalable Text Summarisotion, pp.31-36, Madrid, Spain.

Morato, J., Llorens, I.. Genova, G., and Moreiro, J. ^. (2003). Experiments in discourse analysis impact on information classification and retrieval algorithuns. Information Processing ond Monagement. 39(6):825-851.

Morris, J. and Hirst, G. (1991). Lexical Cohesion Computed by Thesaural Relations as an Indicator of the Structure of the Text. Computational Linguistics, 17:21-28.

Nomoto, T. and Matsumoto, Y. (2001). A New Approach to Unsupervised Text Summarisation. In Proceedings of SIGIR'0l, New Orleans, Louisiana, USA, pp.26-34.

O'Donnell. M. (2002). RST「Fool - an RSI; Markup Tool. http://www.wagsoft.com/RS'|"ool/index.html

Okumura, M. and Fonda, T. (1994). Word Sense Disambiguation and Text' Segmentation Based on Lexical Cohesion. In Proceedings of the 15th Conference on Computational Linguistics (COLING-94); 2:755-761.
l'assonneau, R. I. and Litman, D. I. (1997). Discoursc Segmentation by IItuman and Automated Means. Computational Linguistics 23(1):103-139.

Penn : Treebank (1999). Linguistic Data Consortium. http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogld=LDC99T42

Polanyi, L.. (1988). Λ formal model of the structure of discourse. Journal of Pragmatics 12:601-638.

Polanyi, L. (1996). 7he Linguistic Strncture of Discourse. Technical Report CSLL-96-200. Center for the Study of Language and Information.

Polanyi, L., Culy, C., Thione, G.L., and Ahn, D. (2004). Λ Rule Based Approach to Discoursc Parsing. In Proceedings of SigDial2004, pp.108-117.

Poesio, M. and Di Eugenio, D. (2001). Discourse structure and Anaphoric Accessibility. In Proceedings of the ESSLLI Workshop on Information Structure. Rhetorical struchure and Discourse Semantics. Helsinki, pp.129-143.

Power, R. (2000). Mapping Rhetorical Structures to Text Structures by Constraint Satisfactions. Technical Report. ITRI-00-01. ITRI, University of Brighton, UK.

Power, R., Scott, D., and Bouayad, N.A. (2003). Document Structure. Compuntional Linguistics 29(2) :211-260.

Quirk, R., Greenbaum, S., Leech, G., and Svartvik, J. (1972). A Grammar of Contemporary English. Longman.

Rau, L.F., Brandow, R., and Mitze, K. (1994). Domain-Independent Sunmarisation of News. In Summarizing Text for Intelligent Communication, pp.71-75. Dagstuhl. Germany.

Redeker, (i. (1990). Ideational and pagmatic markers of rictorical structure. Joumal of Progmatics. pp.367-381.

Rino, L.H.M. and Scott, D. (1994). Automatic Generation of Draft Summaries: Heuristics for Content Selection. lin Proceedings of the 7hird International Conference of the Cognitive Science of Natural Langmage Processing. Dublin City University, Irclancl.

RST-IDT (2002). RST Discourse Treebonk. Linguistic Data Consortium. http://www.ldc.upcin.cclu/Catalog/CatalogEntry.jsp?catalog Id=LDC2002T07.

Rutledge, L.., Bailey, B., Ossenbruggen, J.V., Hardman, I., and Geurts, J. (2000). Generating Prescntation Constraints from Rhetorical Structure. In Proceedings of the Hh ACM conference on Hypertext and Hypermedia. San Antonio, Tcxas, USA. pp. 19-28.

Salton, G., Singhal. A., Mitra, M., and Buckley, C. (1999). Automatic Text Structuring and Summarisation. In Advances in Automatic 7ext Summarisation, pp. 341-356.

Salkie, R. (1995). 7ext and discourse analysis. London, Routledge.
Schiffrin, D. (1987). Discourse markers. Cambridge: Cambridge University Press.

Schiffrin, D. (1994). Approaches to discourse. Oxford: Blackwell.
Siegel, E.V. and McKeown, K.R. (1994). Emergent linguistic rules from inducing decision lrees: disambigualing discourse clue words. In Proceedings of the Twelfih Notional Conference on Artificial Intelligence, pp.820-826, Seattie, WA.

Scott. D.R. and de Souza. C.S. (1990). Gcting the message across in RST-based text generation. In Current Research in Natural Langunge Generation. Aeademic Press, pp.47-73.

Soricut, R. and Marcu, D. (2003). Sentence Level Discourse Parsing using Syntactic and Lexical Information. In Proceedings of HLT-NAACL 2003, pp.149-I56.

Tablan, M., Barbu, C., Popeseu, H., Hamza, R., Nita, Cil., Bocaniala, C.D., Ciobann. C., and Cristea, D. (1988). Co-operation and Detachment in Diseourse Understanding. In Proceedings of the Workshop on Lexical Semontics and Rhetorical structure, ESSLLJ'98, Saarbruecken.

Torrance, M, and Bomayal- Agha , N. (2001). Rhelorical struclure analysis as a method for understanding writing processes. In . Proceedings of the International Workshop on Multi-disciplinary Appraaches af discomrse (MAD 2001), pp. 51-59. Amsterdam \& Nodus Publications.

Utiyama, M. and Isahara, II. (2001). A Statistical Model for Domain-Independent Text Segmentation. In Proceedings of ACL/EACL-2001, pp. 491-498.

Webber, B. L. (1991). Structure and ostension in the interpretation of discourse deixis. Language and Cognitive Processes, 6(2), pp.107-135.

Webber, B., Knott. A.. Stone, M.. and Joshi, A. (1999a). Multiple Discourse Comnectives in a I.exicalized Grammar for Discourse. In Proceedings of the Third International Workshop on Computational Semontics, Tilburg, The Netherlands, pp.309-325.

Webber, B., Knott, A., Stone, M., and Joshi, A. (1999b). Diseourse relations: A Structural and Presuppositional Account Using Lexiealised TAG. In

Proceedings of the Meeting of the Association far Computational Linguistics, College Park MD, pp.41-48.

Webber, B., Stone, M., Joshi. A., and Knott, A. (2003). Anaphora and Rhetorical structure. Compiutational Linguistics, 29(4):545-587.

WordNet (2004). http://www.cogsci.princeton.edu/~wn/index.shtml (last visited 9/2004)

Appendix 1

Architecture of DAS

Appendix I presents the arehilecture of DAS implemented in this thesis, which is created based on our proposed solution discussed in Chapters 3, 4, and 5 .

Figure A1.1. The Architeclure of DAS

D \wedge S takes articles from the RST Discourse Treebank (2002) as the input and derives RST trees. In order to easy integrate with other language processing modules and DAS. GATE (2004) - a softivare developed by the computational linguistics team at the Shelfield University, United Kingdom - is used as the infrastructure of D $\triangle S$. GATE is an architecture in which text processing tools can be created and used. It has a Collection of Reusable Objects for Language Engineering (CREOLE) that enables language processing components to be loaded into GATE. Λ series of ProcessingResources (PRs) is available in CREOLE, which can be reused in constructing new text processing systems. The PRs used in D \wedge S are:

- Tokeniser tokenises the inpul text into words.
- Sentence Splitter linds and marks sentence boundaties.
- VPChunker gets the original form of the verb.
- WordNet Lookni (WordNet, 2004) gets the meaning of a word and thesemantic relation between words (e.g., synonyms, antonyms).

The main processing modules of DAS, which are created by us, include:

- Diseourse Segmenter segments text into elementary discourse units. One sentence is processed at a time. Tivo components of this module, Disconrse Segmenter by Syntax and Discourse Segmenter by Cue Phrases, split a sentence into elementary discourse units by using syntactic information and cue phrases, respectively.
?
- Relation Recoginiser finds all possible rhetorical relations between clementary discourse units.
- Semantic Recogniser computes a semantic relation between words.
- Disenurse Analyser derives rletorical structures from text. It is divided into two parts: Sentence-leval Discourse Analyser and Text-level Diseourse Analyser. The femer eonstructs discourse trees for each sentence. Starting witi) sentence as its smallest spans, the latter derives
rhetorical relations between sentences to produce discourse trees for the entire text.

DAS was implemented using Java language. The working process of DAS is briefly described below.

The plain text of an article from the RST-DT (2003) is tokenised by the Tokeniser. Based on the output of the Tokeniser and the rules that identify sentence boundaries. the Sentence Splitter segments the text into paragraphs and sentences. The plain text of a sentence and its syntactic structure is used as the input to the Discourse Segmenter by Symax: This syntactic information is taken from the syntactic document of the Penn Treebank that corresponds to the input text of DAS. The Discourse Segmenter by Syntax segments a sentence into clauses by a rule set, based on syntactic information. The output of this process is further segmented by the Discourse Segmenter by Cue Plosases. The set of cue phrases used in DAS is inherited from those in Grosz and Sidner (1986), Hirschberg and litman (1993), Knoll and Dale (1994), and Marcu (2000). The reader is referred to Chapter 3 for a detailed description of the discourse segmentation process.

The output of the Discourse Segmenter by Cue Phrases, which is stored in a text file, is now used as the input to the Relation Recogniser. This module posits all possible relations between elementary discourse units by using the syntactic information of a sentence, cue phrases, time relation, and semantic relations between discourse units (sce Section 4.2). The semantic relations are computed by the Semantic Recogniser, whieh computes the semantic relations between words by using information from the WordNet Lookup. The original form of the verb, which is obtained by the VP Chunker of GA'fE, assists the Relation Recogniser to delect VP cues. All redations generated by the Relation Recogniser are stored in a relation set, which will be used by the Discourse Analyser. The task of recognising rhetorical relation was discussed in Chapter 4.

Next, the Sentence-level Discourse Analyser generates a discourse trec for each sentence. Starting with sentences as its smallest spans, the, Text-level Discourse Analyser derives rhetorical relations between sentences to produce
discourse trees for the entire text. During the analysing process, the Text-level Discourse Analyser may need to go back to the relation recognition process, as the analyser may generate new combinations of spans, which have not been created before. Each discourse tree generated by the Discourse Analyser is stored in a file, which is then displaycd by a Displaying Tool called RSTTool (O'Donnell, 2002). The Discourse Analyser was discussed in Chapter 5.

Appendix 2

Algorithms

This appendix represents an extended version of some main algorithms implemented in this thesis.

Input:

- sfart and end position of the phrase needed to be processed. The first time this algorithm is called, slart and end are assigned as integer values 0 and the length of the execuled sentence, respectively.
- A list of rhetorical relations sentNodes created by the segmentation procedure presented in Figure 3.1.

Output:

- Rhetorical relations after refining boundaries, each of which contains adjacent and non-overlapping spans. These rhetorical relations should cover the entire input span.

Defragment(stait, end)

1. if(start $>=$ end) Return;
2. minsta $=$ the left most position among all relations within the input phifase that satisfies (minsta $\geqslant \equiv$ stati).
3. maxend $=$ the end position of the right span of the tree node starting al minsla. If two or more tree nodes start at minsta, maxend $=$ the maximum value of these end positions that satisfies (maxend $<=$ end).
4. middle $=$ the position of the segment boundary between the left and right node of the tree node that starts at minsta and ends at maxend. If two or more tree nodes start at minsla and end at maxend, middle $=$ the maximum value of these middie positions that satisfies (middle > minsla and middle < maxend).
5. if not found (minsla, maxend, middle) Return;
6. changenode $=$ the tree node tio thas the start position minsla, the end position maxend, and the end ${ }_{\xi f}$ vition of its left node middle.
7. if(minsla > siart)
7.1 it(changenode.leftrole $=$ ' N '):
7.1.1 Expand the left node of the changenode to the start position:
changenode.from = start; changenode.leftnode.from = start;
7.1.2 Update sentNodes;
7.2 else ${ }^{21}$:
7.2.1 Create a new node, whose left node corresponds to the remaining span, and the right node is the changenode: newnode.leftnode from $=$ stant; newnode.leftnode. to $=$ minsta; newnode.rightnode $=$ changenode;
newnode.from $=$ siart; nawnode.to $=$ changenode.to;
newnode.leftrole $=$ ' N '; newnode. rightrole $=$ ' N ';
if(changanode. leftrole $=$ 'S')
newnode.relationname = "Same-Unit";
7.2.2 Update seniNodes:
8. if(maxend<end)
8.1 if(changenode. leftrote $=$ ' S '):
8.1.1 Expand the right node of the changenode to the end position: changenode.to $=$ end; changenode.rightnode. $10=$ end;
8.1.2 Update sentNodes;
8.2 else:
8.2.1 Create a new node, whose left node is the changenode, and the right node corresponds the remaining span:
newnode.rightnode.from =maxend; newnode.rightnode. io =end; newnode.leftnode $=$ changemode;
newnode. from $=$ changenode.from; newnode. o $=\mathrm{end}$;
newnode $. l e f t r o l e=' N$ '; newnode. rightrole $=$ ' N ';
$\mathrm{ir}($ changenode.leflnode $=$ ' N ')
newnode.relationname = "Same-Unil",
8.2.2 Update seniNodes;
9. it(middle < end) Defraginent(slart, middle);
10. it(middle > start) Defragment(middle, end);
11. Return.

Figure A2.1. Pscudo-code for the Defragment Process of Discoursc Segmentation by Syntax

[^15]
Input:

- Two non-overlapping spans Unit, Unit ${ }_{2}$. (These spans do not need to be adjacent.)
- The syntactic rule has been used to segment text (when the input spans are clauses).
- Lists of cue phrases, VP cues, and NP cues.

Output: Rhetorical relations between Unit, and Unit ${ }_{2}$.

Algorithm:

1. If the input spans are clauses, use the syntactic rule from the input to posit relations. Otherwise, go to Step 2.
1.1 If a relation name is found, Stop.
1.2. Otherwise, go to Step 2.
2. Find all cue phrases in Unit1 and Unit2.
3. If cue phrases are found, compute the actual score of each cue phrase and the total score of these actual scores.
3.1 If the tolal score $>=0$, check the necessary conditions of the relations corresponding to these cue phrases.
3.1.1 If one relation satisfies, compute the total score of all heuristic rules of this relation. Posit these relations between Unit ${ }_{1}$ and Unit ${ }_{2}$. Stop.
3.1.2 If no relation is satisfied, go to Step 4.
3.2 If the total score <0, go to Step 4.
4. Find the main verb phrases of the two units and stem these VPs.
5. Check whether the stemmed VPs contain VP cues or not.
5.1 If VP cues are found, compute the actual score of each VP cue and the total score of the actual score of these VP cues.
5.1.1 If the total score $>=0$, check the necessary conditions of the relations corresponding to these VP cues.
5.1.1.1 If at least one relation is satisfied, compute the total score of all heuristic rules of these relations. Posit these relations between Unit, and Unit 2 . Stop.
5.1.1.2 If no relation is satisfied, go to Step 6.
5.1.2 If the total score $<\theta$, go to Step 6 .
5.2 If VP cues are not found, go to Step 6.

6 . Find the main noun phrases from the subjects and ohjects of the two units and stem these NPs.
7. Check whether the stemmed NPs contain NP cues or not.
7.1 If NP cues are found, compute the actual score of each NP cue and the total score of the actual score of NP cues.
7.1.1 If the total score $>=0$, check the necessary conditions of the relations corresponding to these NP cues.
7.1.1.1 If at least one relation is satislied, compute the total score of all heuristic rules of these relations. Posit these relations between Unit1 and Unit2. Stop.
7.1:1.2 If no relation is satisfied, go to Step 8.
7.1.2 if the lotal score <0, go to Step 8 .
7.2 If NP cues are not found, go to Step 8.
8. Check other heuristic rules of each relation.
8.1 If several relations are signalled, compute the total score of these relations.
8.1.1 If the total score $>=0$, check the necessary conditions of these relations.
8.1.1.1 If at least one relation is satisfied, posit these relations between Unit1 and Unit2. Stop.
8.1.1.2 If no relation is satisfied, go to Step 9.
8.1.2 If the total score $<\theta$, go to Step 9 .
8.2 If no relation is signalled, go to Step 9.
9. If there is a signal indicating that Unit ${ }_{1}$ and Unit ${ }_{2}$ has a semantic relation, posit an Elaboration relation. Otherwise, posit a Joint relation. Stop.

Figure A2.2. Outline of the Algorithm to Posit Relations Between Spans

input:

- Discourse trees of all sentences from the input tex't
- Information about positions of sentences in the text
- The value of N \{the number of discourse trees required by the user).

Output:

- Discourse trees that cover the entire text.

Algorithm:

1. $\operatorname{Trees}=\{ \}$.
2. Subtrees $=$ \{all sentential discourse trees $\}$.
3. If Subtrees contains only one tree, add this tree to Trees. Stop.

Otherwise, go to Step 4.
4. accumulated-score $=0$
5. Find hypothesis between adjacent sentential discourse trees.

With each hypothesis:

- lotal-score(hypothesis) = total-heuristic-score(hypothesis) + block-level-score(hypothesis)
- predicted-score(hypothesis) = total-score(hypothesis)
- Sort the hypotheses by their predicted-score.
- Store the hypotheses in a set called NowH.

6. Select M highest total-score hypotheses from NewH and put them into PotentiallH.
7. For each hypothesis in Potenfiall (called appliedH), create a hypothesis set hypoSet $[i](i=1 \div M)$. For each hypoSet $[i]$, compute:
7.1. accumulated-score $=$ predicted-score $($ appliedH $)$.
7.2. Subtrees:
-. Subtrees $=$ Subtrees $\cup\{$ applied $H\} \backslash\{$ trees that overlap with applied $/-1\}$

- If Subtrees has only one tree, add that tree to Trees.
- If the number of discourse trees in Trees is equal to N. Stop. Otherwise, continue.
7.3. NewH: This set stores new hypotheses that are created due to the modification of Subtrees. They are relations between the node created by appliedH and its adjacent nodes.

With each hypothesis in NewH :
total-score(hypothesis) $=$ totel-heuristic-score(hypothesis)

+ block-level-score(hypothesis).
7.4. Potentiallt: This set stores all the potential hypotheses which can be used after appliedH has been used.
- PotentialH = PotentialH \backslash \{əppliedH $\boldsymbol{\} \backslash$ \{hypotheses that overlap with әppliedH) $\cup \mathrm{NewH}$
- With each hypothesis in PotentialH:

$$
\begin{aligned}
\text { predicted-score(hypothesis) } & =\text { accumulated-score } \\
& + \text { total-score(hypothesis) }
\end{aligned}
$$

- Sort hypotheses in PotentialH by predicled-score.
- If there are more than M hypotheses in PotentialH, keep M highest predicted-score hypotheses in PolèntialH. Otherwise, keep all hypotheses in PotentialH.

8. II all PotentialHs are empty, Stop. Otherwise, go to step 9.
9. Select M highest predicted-score hypotheses Irom M sets of Potentiall H to be applied (appliedt- -). Let us say hypoSet[p] is the set that appliedH belongs to. With each appliedH:
9.1 If appliedH appears in the PotentialH of other hypoSets that are at the same level with hypoSet[p], delete appliedH from those hypoSets.
9.2 Update all sets and variables in hypoSellp] (Steps 7.1 to 7.4).
9.3 Repeat Step 9 until the number of discourse trees in Trees is equal to N or all PotentialHs are empty.

Figure A2.3. Outline of Algorithm for Deriving:Text-level Discourse Trees

Appendix 3

List of Cue Phrases

In this table, the information about each cue phrase is encoded by cue_phrase(position_in_text, side, scope, score), in which

- position_in_text is the position of the cue phrase in the span where the cue phrase can be used to signal relation. position_in_text can be ' B ' (beginning), ' M ' (middle), ' E ' (end), or ' A ' (any position).
- side can be 'L.' (left), 'R' (right), or ' Λ ' (any side).
- scope can be 'C' (clause), 'S' (sentence), or ' P ' (paragraph).
- score is between 0 and 1 .

Index	Relation name	Cue phrase
1	List	also($\Lambda, R, S, 1)$, alternatively($\Lambda, R, S, 0.8$), but also(B,R,C,I), and also(B.R.C.1), not only($\wedge, L . C, 1)$, and(B.R,S,0.8), and another((B, R, S, I), neither $(\Lambda, \Lambda, S, I), \operatorname{nor}(B, R, C, I)$, or ($B, R, S, 0.8$), too($E, R, C, 0.8$), in addilion($B, R, P, 0,8$)
2	Sequence	$\operatorname{and}(B, R, S, 0.8)$, and then(B, R, S, I), at first ($B, L, P, I)$, in the beginning ($\Lambda, L,, P, 0.8$), at the beginning ($\Lambda, L,, P .0 .8$), at $\operatorname{last}(\Lambda, R, P, I)$, at the end (\wedge, R, P, I), in the end $(\wedge, R, P, 0.8)$, eventually $(\Lambda, R, P, 1)$, formerly (B.L,S,, 0.5), in turn (M,R,S.I), initially(A,L,P,I), last($\Lambda, R, P, 0.8)$, lastly($A, R, P, 0.8), \operatorname{latter}(\Lambda, R, P, 1)$, mext(B,R,P,I), subseguently $\left(\Lambda, R, I^{\prime}, 1\right)$, then $(\Lambda, R, I$, I), then again($\Lambda, R, S, 0.8$), thereafter($\Lambda, R . S .1$), thercupon($\wedge, R, S, 0.5)$, ultimately (\wedge, R, S, I), whereupon($B, R, C, 1$), after that (Λ, R, S, I), Following ($\wedge, R, C, 0.5$)

3	Condition	as long as $(B, A, C, 1)$, as soon as $(B, \wedge, C, 1)$, as far as ($13, \Lambda, C, 1$), given $(B, \Lambda, C, 1)$, given that ($B, \Lambda, C, 1$), if(B, $\wedge, C .1)$, only($B, A, C, 1$), only after(B, $\wedge, C, 1)$, only if($B, \wedge, C, 1$), only when($(3, \Lambda, C, I)$, provided (B, R, C, I), provided that $(B, \Lambda, C, 1)$, providing that $(B, \Lambda, C, 1)$, unless($13, \Lambda, C, 1$), until(B,R,C,0.5), until then(B,R,S,1)
4	Otherwise	alternatively $(B, R, S, 0,8)$, else $(\wedge, R, C, 0.7)$, elsewhere $(\wedge, R, C, 0.7)$, in plaec of $(\dot{B}, \Lambda, C, 1)$, otherwise $(\Lambda, R, S, 0.8)$, in other respects $(13, R, S, 1)$, in other ways $(B, R, S, 1)$, if not $(B, R, S, 0.8) \quad$ i
5	ITypothetical	arguably $(\wedge, A, S, 1)$, it may seem tha, ($B, R, S, 1$) on the possibly($\Lambda, R, S, 1$), presumably ($\Lambda, A, S, 1$), quite likely($\mathrm{M}, \wedge, \mathrm{C}, 1$), suppose $(\wedge, L, \mathrm{C}, 1)$, suppese that $(B, L, P, 1)$, it may be the ease that $(B, R, P, 1)$, it is possible that $(B, R, P, 1)$, supposing $(B, L, C, 1)$
6	Antithesis	allhough($B, \Lambda, C, 0.8$), apart from ($B, L, C, 1$), aside from(B,L,C,1), but(B,R.P,0.8), despite(B, $\wedge, C, 0.8)$. except(B, $\wedge, C, 1)$, however($\wedge, R, P, 0,8)$, instead($\wedge, R, S, 1)$, instead of ($B, R, C, 1$), whereas($13, R, C, 0.8)$. while($13, R, C, 0.5$), yet(B,R,P,0.5)
7	Contrast	as against $(B, R, S, 1)$, by contrast (\bar{B}, R, S, I), but $(B, R, S, 1)$, contrarivise (\wedge, R, P, I), conversely (Λ, R, P, I), however($A, R, P, 0.8$), in a contrary $(B, R, P, 1)$, in contrast ($B, R, P, 1$), on another($B, R, P, 0.5$), on one side $(B, L, S, 1)$, on the contrary $(B, R, P, 1)$, on the other hand $(B, R, P, 1)$, on the other side $(B, R, P, 1)$, $\operatorname{yel}(B, R, P, 0.5)$, in a different point of view $(B, R, P, 1)$, in the opposite($B, R, P, 1$), mulike(B,L,C,1), still(13,R,S,0.5), iwhile(13,R,C.0.3)
8	Concession	

		$\begin{aligned} & \text { in despite of(B,A,C,1), notwithstanding(A,R,C,1), } \\ & \text { nevertheless }(E, R, C, 1) \text {, nonetheless }(E, R, C, 1) \text {, } \\ & \text { though(} A, L, C, 1), \text { still(} B, R, P, 0.8), y c t(B, R, P, 0.5) \end{aligned}$
9	Cause	hecause $(B, A, C, 1)$, because of $(B, A, C, 1)$, hecause of this($B, R, S, 1$), it is because $(B, R, S, 1)$, merely because($B, R, C, 1$), only because ($\Lambda, R, P, 1$), simply hecause ($A, R, P, 1$), since $(B, \wedge, C, 0,8)$, so($B, R, C, 1$), $\operatorname{as}(B, \wedge, C, 0.5)$, due to $(B, A, C, 1)$
10	Result	as a consequence $(B, R, P, 1)$, as a corollary (B, R, P, I), as a logical conclusion($B, R, P, 1$), as a $\operatorname{result}(B, R, P, 1)$, as it turned out $(B, R, P, 1)$, consequently $(B, R, P, 1)$, in consequence ($13, R, P, 1$), therehy $(\Lambda, R, P, 1)$. therelore ($\Lambda, R, P, 1$), thereupon($(, R, P, 0,8)$, thus ($\Lambda, R, P, 1)$, $\operatorname{sos}(13, R, 1,1)$, whereby (B,R,IיI 1$)$
11	Cause-Resule	
12	Purpose	for $(B, A, C, 1)$, for the matter $(B, \Lambda, P ; 1)$, for the reason($B, \wedge, C, 1$), for this $(B, \wedge, P, 1)$, for this reason($B, \wedge, P, 1$), in order to($B, A, C, 1$), in the hope that $(B, \wedge, C, 1)$, so as $(B, R, C, 1)$, so that $(B, R, C, 1)$, fo(B, $\wedge, C, 1)$, aim at ($B, R, C, 1$), aiming at($B, R, C, 1$)
13	Solutionhood	
14	Circumstance	actually ($A, R, S, 0.8$), after($B, \Lambda, C, 1)$, after a time $(\Lambda, A, P, 1)$, after all $(B, R, P, 1)$, after that $\left(B, R, P^{\prime}, 1\right)$, after this $(\Lambda, \Lambda, P, 1)$, alicrwards $(\Lambda, R, P, 1)$, again $(\Lambda, R, P, 0.5)$, all this time $(B, R, P, 1)$, already $(A, R, P, 0.5)$, another time $(\wedge, R, P, 0.6)$, as $(B, \wedge, C, 0.4)$, as $\operatorname{for}(B, \Lambda, C, 1)$, as to ($B, \wedge . C, 1$), at that moment $(B, R, P, 1)$, at that time $(B, R, P, 1)$, at the moment $(B, R, P, 1)$, at the outsel($B, L, P, 1)$, at the same time $(\Lambda, R, P, 1)$, at this date $(A, R, P, 1)$, at this stage ($\Lambda, R, P, 1)$, at which $(B, R, C, 0.8)$, before $(\Lambda, \Lambda, P, 1)$, by that time $(\Lambda, R, P, 1)$, by then $(\Lambda, R, 1,1)$, each time $(\Lambda, \Lambda, C, 1)$,

		$\operatorname{carlier}(A, R, P, 1)$, either case($A, R, S, 0.4)$, either event($\Lambda, R, S, 0.4$), either way($A, R, S, 0.4$), every ime($\wedge . \Lambda, P, 1)$, everywhere $(\Lambda, \Lambda, P, 1)$, from now on (Λ, A, P, I), from then on $(\Lambda, \Lambda, P, 1)$, here ($\Lambda, \Lambda, P, 0.6)$, herctofore $(\Lambda, \Lambda, P, 0.8)$, hitherto($\Lambda, \Lambda, P, 0.8)$. in any $\operatorname{case}(\Lambda, \Lambda, \mathrm{P}, 1)$, in case $(\Lambda, \Lambda, \mathrm{C}, 1)$, in doing $(\Lambda, \Lambda, \mathrm{C}, 1)$, in doing so($B, R, C, 1$) in such a($B, R, C, 1$), in such an($13, R, C, 1$), in that $(B, R, C, 1)$, in that case $(B, R, C, 1)$, in the begiming ($B, L, P, 0.8$), in the case of $(13, \Lambda, C, 1)$, in the $\operatorname{end}(B, R, P, 0.8)$, in the event $(A, A, P ; 1)$, in the first place $(A, R, P, 1)$, in the meantime $(A, R, P, 1)$, in this case $(\Lambda, R, P, 1)$, in this comection($\Lambda, R, P, 1$), in this respect $(\Lambda, R, P, 1)$, in this way ($A, R, P, 1$), in which($B, R, C, 1$), in which $\operatorname{case}(B, R, C, 1)$. instanty $(A, \Lambda, S, 0.5)$, just as $(B, R, C, 1)$, just before (B.R.C.1), just then ($A, R, 1,1$). meanwhile ($B, R, P, 1$), never again((\wedge, R, P, I), now $(\Lambda, A, P, 1)$, now that $(\Lambda, \Lambda, P, 1)$, on the bases $(A, \Lambda, P, 1)$, on the basis $(\Lambda, \Lambda, P, 1)$, on this basis $(\Lambda, R, P, 1)$, on which $(B, R, C, 1)$, once $(\Lambda, A, C, 0.5)$, once again ($A, R, S, 0.7$), once more ($\Lambda, R, S, .7$), particularly when($B, R, C, 1$), presently ($\Lambda, \Lambda, S, 1)$, previously ($\wedge, R, P, 1)$, since $(B, \Lambda, P, 0.8)$, some time $(A, \Lambda, P, 0.4)$, the moment $(A, A, P, 0.7)$, this time ($A, R, P, 0.8$), thus $\operatorname{far}(A, R, P, 0.2)$, to the degree that $(B, R, C, 1)$, to the $\operatorname{extent}(B, R, C, 1)$, to this end $(\Lambda, R, P, 1)$, under the circumstances $(A, \Lambda, P, 1)$, under these circumstances($A, A, P, 1$), until($B, A, C, 0.6$), up to now $(B, A, P, 1)$, up to this $(B, R, P, 1)$, when $(B, \Lambda, C, 1)$, whenever($B, \Lambda, C, 1$), where($B, A, C, 1$), wherein($B, R, C, 1$), wherever $(B, \Lambda, C, 1)$, while $(B, \Lambda, C, 0,8)$, with regard $\operatorname{to}(B, \Lambda, C, 1)$, with respect $\operatorname{to}(B, A, C, 1)$, without $(B, \Lambda, C, 0.5)$

15	Manncr	as(B, $\Lambda, C, 0.5)$, as if (\bar{B}, R, C, l), as though($B, R, C, l)$, decidedly $(\Lambda, \Lambda, S, 0.5)$, definitely $(\Lambda, \Lambda, S, 0.5)$, doubtless($\Lambda, A, S, 0.3$), in the same, way ($\Lambda, \Lambda, \mathrm{C}, 1$), more accurately $(\Lambda, \Lambda, S, 0.5)$, more precisely $(\Lambda, \Lambda, S, 0.5)$, more spccifically $(\Lambda, A . S, 0.5)$, parenthetically $(\Lambda, \Lambda, S, 0.5)$, rcgardless($13, \wedge, C, 1$), simultaneously $(\Lambda, \Lambda, S, 0.5)$. with($\mathrm{B}, \mathrm{A}, \mathrm{C}, 0.3$), without $(13, \Lambda, \mathrm{C}, 0.3)$
16	Mcalis	by($13, \wedge, C, 1)$, by means of($B, \wedge, C, 1)$, using($3, \wedge, C, 1)$
17	Interpretation	in other words ($B, R, P, 1$), according to ($B, A, C, 0.5$), that is how $(B, R, P, 1)$, that is to $\operatorname{say}(B, R, P, 1)$, that is why($B, R, P, 1$), to wit($B, R, P, I)$
18	Evaluation	by comparison($\Lambda, R, P, 1)$, certainly $(\Lambda, R, P,(0.5)$, clcarly $(\Lambda, R, P, 0.5)$, conceivably($\wedge, R, P, 0.5)$, doubtless($\wedge, R, P, 0.5)$, cqually ($\left.\wedge, R, 1,{ }^{\prime}, 0.5\right)$, in comparison($B, R, P, 1$), most likcly($(\Lambda, R, P, 1)$, more accuratcly $(\Lambda, R, P, 0.5)$, more importantly ($A, R, P, 1$), more precisely ($\wedge, R, P, 0.5$), the more ($A, R, P, 1)$, very likely(0.5)
19	Summary	hricfly speaking ($B, R, P, 1$), in conclusion($B, R, P, 1$), in short($B, R, P, 1$). in summarisation($13, R, P, 1$), it can be concluded that($B, R, P, 1$), summarising ($\Lambda, R, P, 0,6$), summing up($\wedge, R, P, 0.8$), to summary ($B, R, P, 1$), in brief(B, R, P, I), to conclusion($B, R, P, I)$, succinctly($\Lambda, R, P, 0.5)$, compendiously ($\Lambda, R, P, 0.5$), compactly ($\wedge, R, P, 0.5)$
20	Elaboration	above all $(B, R, P, 1)$, add to this $(13, R, P, 1)$, additionally ($A, R, P, 1$), and $(B, R, S, 0.7)$, as well($A, R, S, 0.5$). at least($13, R, S, 1$), besides($B, R, P .1)$, hesides that($B, R, P, 1)$, for example($\Lambda, R, S, 1$), for instance ($\Lambda, R . S, I$), formerly($\Lambda, R . S, 0.3$), furthermore (B,R,P,1), in addition(13,R,P,I), in fact(B,R,P, O.8), in particular($\wedge, R, P, 1)$, in gencral($(\wedge, R, P, 0.8)$. including(iB,R,C,I), moreover(B,R,P.I), more to the

		$\|$point (B, R, P, I), on a different note $(\Lambda, R, P, 0.5)$, $\operatorname{or}(B, R, C, 0 . S)$, or again($B, R, C, 0.5)$, similarity $(A, R, S, 1)$, speaking of($B, \Lambda, C, 1)$
21	Explanation	clearly($\Lambda, R, P, 0.7$), conceivably ($\Lambda, R, P, 0.8$), in ract $(B, R, P, 0.8)$, let us assume ($13, R, P, 1$), let us consider($B, R, P, 1$), the fact is($B, R, P, 1$), to $\operatorname{explain}(B, R, P, 1)$, it is clear that $(B, R, P, 1)$, it is explained that $(B, R, P, 1)$, it stands to reason that (B, R, P, I), it is true that($B, R, P, 1)$, it is easy to understand that $(B, R, P .1)$, we can understand that $(B, R, P, 1)$, in point of fact $(B, R, P, 1)$
22	Joint	
;		

R.

Appendix 4

List of NP Cues and VP Cues

In this table, the infomation about each NP or VP cue is cncoded by cue_phrase(score), with the score ranging from 0 to 1 .

Index	Relation name	NP eue	VP cue
1	List		
2	Sequence	following(1)	come after(1), succeed (0.5), follow(0.2)
3	Condition	condition(0.7), necessary(0.7), important(0.7), essential(0.7), requirement(1), requisite(1)	be necessary (1), be important(1), be essential(1), be requisite(1), require(1), have to(1), must(1)
4	Otherwise		
5	Hypothetical	possibility(1), hypothezis/zes(0.5), hypothesis/ses(0.5), guess(0.5), conjecture(0.5), supposition(0.5), assumption(0.5$),$ reckoning(0.5$),$ speculation (0.5)	```guess(1), assume(1), suppose(1), suspect(1), reckon(1), think(1), opine(1), imagine(0.5), speculate(0.5), conjecture(0.5), hypothesize(0.5), hypothesise(0.5)```
6	Antithesis		
7	Contrast	turning point(0.5), opposite(0.5)	
8	Concession		
9	Causc	caluse(0.5), effect(0.5),	resull from(1), be why(1), be because(1)

10	Resuli	resulit(0.5), oútcome(1)	
11	Cause-Result		$\begin{aligned} & \operatorname{affect}(1), \text { cause }(0.5), \\ & \text { make }(0.2), \text { induce }(1), \\ & \operatorname{create}(0.2), \text { bring }(0.2), \\ & \text { effectuate(} 1), \text { raise }(0.2) \end{aligned}$
12	Purpose		$\begin{aligned} & \text { to }(+ \text { verb })(1), \operatorname{aim}(0.5), \\ & \text { purpose }(1) \end{aligned}$
13	Solutionhood	solution(1)	$\begin{aligned} & \operatorname{answer}(1), \text { solve }(1), \\ & \operatorname{resolve}(0.5), \operatorname{respond}(0.5), \\ & \operatorname{reply}(0.2), \operatorname{rcact}(0.2) \end{aligned}$
14	Circumstance	situation(0.5)	
15	Manner		
16	Means		
17	Interpretation	meaning(${ }^{\text {a }}$	$\begin{aligned} & \text { mean }(1) \text {, can be } \\ & \text { understand }(1) \text {, stand for(1), } \\ & \text { translate(} 0.2) \end{aligned}$
18	- Evaluation		$\begin{aligned} & \text { succecd }(0.5) \text {, fail }(1), \\ & \text { increase }(1), \text { fall }(0.5), \\ & \text { drop }(0.5), \text { decrease }(1) \end{aligned}$
19	Summary	summarisation(0.2), brief(0.2), outlinc(0.2), abstract(0.5), main idea(1)	$\begin{aligned} & \text { summary }(0.5), \\ & \text { conclude }(0.5), \text { brie }(0.5) \end{aligned}$
20	Blaboration		include(1 , consist(1),
21	Explanation	goal(1), target (1), purpose(1), reason(1), fact(0.5), aim(1), objective(1), intent(1), intention(1)	\because
22	Joint		:

Appendix 5

Syntax-Based Segmentable Chains

This appendix presents the syntactic chains that are used in DAS to segment a sentence into elementary discourse mits. For simplicity, the parts <text> inside a syntactic chain, such as <textl> and <text2> in (i-a) (Section 3.1.1), are removed from the representation of the chain. The following abbreviations are used in the syntactic chains:

NP - noun phrase

VP - verls plirasc

SIBJ - subject
S - scntence

SBAR - subordinale clause and relative clause
$R R C$ - reduced relative clause

PRN - parmilictical
$\mid P$ - prepositional phrase
PRS - parenthetical -sentence (see the syntactic chain (i-d) in Section 3.1.1)
PS - prepositional-sentence (see the syntactic chain (i-e) in Section 3.1.I)
Sx - basic clause types such as subordinate clause ($S B \wedge R$) and participial clause (S-ADV)

ADx - adverb phrase or adjective phrase
ADS - a clause starts with an adverb. (NDS) is ant abbreviation of the syntacis chain ($\wedge \mathrm{Dx}(\mathrm{S})$)

WH.Ix - any phrase starts with WH-question (e.g.; who, what, why)
ADVP - adverh plasase
<conjunction> - a conjunction such as "and", "or", comma, and semicolon.
" \mid " means "or"
"..." stands for any text or syntactic chain.

1. (NP (NP) ... (RRCIVPISx|PS))

The clause with the syntactic role (RRCIVPISX|PS:) is split from the noun phrase (NP (NP) ... (RRC|VPISxIPS)) . If $S x$ is a subordinate clause, the clause that has this syntactic role must have more than 1 word.
2. (VP (VP) <conjunction> (VPISx|RRC|PS|ADSISBAR))

The clause (VPISX|RRC|PS|ADS|SBAR) is split from the verb phrase (VP (VP) <conjunction> (VP|Sx|RRC|PS|ADSISBAR)). If $S \times$ starts with to, VP must be an attribution verb.
3. (VP ... (Sx|RRC|PSIADS) <conjunction> (Sx|RRC|PS|ADS))

The clauses ($S x \mid$ RRC|PS|ADS) are split from the verb plorase (VP ... (Sx|RRC|PSIADS) <conjunction> (Sx|RRCIPSIADS)).
4. ($\mathrm{S}(\mathrm{NP}-\mathrm{SBJ})(\mathrm{VP} \ldots(\operatorname{SBAR})) \ldots$)

The clause (SBAR) is split from the sentence ($\mathrm{S}(\mathrm{NP}-\mathrm{SBJ})$ (VP (SBAR))...) when the subject of the sentence (NP-SBJ) is not " $/ t$ " and the subordinate clause starts with wh|that|empty, then (S).
5. (S (NP-SBJ) (VP (SBAR) <conjunction> (Sx|RRC|PS|ADS|SBAR))...)

The clauses (SBAR) and (Sx|RRC|PS|ADS|SBAR) are splii from the sentencc (S (NP-SBJ) (VP (SBAR) <conjunction> (Sx|RRC|PS|ADS|SBAR))...). 6. ($S x$...($S x$) 〈conjunction> ($S x$))

Two clauses ($S x$) inside the sentence ($S x \ldots(S x$) <conjunction> (Sx), are split from this sentence.
7. (Sy... (Sx) (WHx) (Sx))

Two elauses ($S x$) and (WHx) ($S x$) inside the sentence ($S x$ $\ldots(S x)(W H x)(S x))$ are split from this sentence.
8. ($\mathrm{S} x \ldots(\mathrm{Sx}),(\mathrm{NP}-\mathrm{SBJ})(\mathrm{VP})$)

The clause (Sx) inside the sentence ($\mathrm{Sx} \ldots(\mathrm{Sx}),(\mathrm{NP}-\mathrm{SBJ})$ (VP)), in which VP is an altribution verb, is split from this sentence.
9. ($S x \ldots(S x),(V P)(N P-S B J))$

The elause ($S x$) inside the sentence ($S x \ldots(S X)$, (VP) ($N P-S B J$, , in which $V P$ is an attribution verb, is split from this sentence.
10. ($\mathrm{Sx}(\mathrm{NP}-\mathrm{SBJ})$, (Sx$),(\mathrm{VP})$)

The clause ($S x$) inside the sentence ($S x(N P-S B J),(S x)$, (VP)) :
11. ($5 x(A D V P),(S x),(N P-S B J)(V P))$

The elause ($S x$) inside the sentence ($S x(A D V P),(S x)$, ($N P-S B J)(V P)$, , in which $V P$ is an attribution verb, is split from this sentence.
12. ($S x .(V P)(N P-S B J),(S x))$

The clause ($S x$) inside the sentence ($S x$ (VP) (NP-SBJ) , ($S x$) , in whieh $V P$ is an attribution verb, is split from this sentence.
13. (S (NP-SBJ) (VP ... (SBAR) <conjunction> (SBAR))...)

The clauses (SBAR) are split from the sentence ($\mathrm{S}(\mathrm{NP}-\mathrm{SBJ})$ (VP (SBAR) <conjunction> (SBAR))...).
14. ($S x \ldots(P S),(N P-S B J)(V P))$

The clause (PS) is split from the sentence ($S x$... (PS), (NP-SBJ) (VP)).
15. (VP (ADS))

The clause (ADS) is split from the verb phrasc (VP (NDS)).
16. (VP ... (SBAR) (SBAR))

The clauses (SBAR) are split from the verb phrasc (VP ... (SBAR)
(SBAR)).
17. (VP (NPIPP) (SBAR|RRC))

The clause ($S B A R \mid R R C$) is split from the verb phrase ' (VP (NP|PP) (SBAR|RRC)).
18. (VP (NP|PP) (VP\Sx|PS))

The clause (VP|Sx|PS) is split from the verb phrase ($V P$ (NP|PP) (VPISx|PS)).

Appendix 6

Conditions to Posit Rhetorical Relations ${ }^{22}$

1 - Sequence (multi-nuclear)

A Sequence is a list of events presented in chronological order. For example, the span "The president could call" has a Sequence relation with the span "and declave that he womld single-humdedly kill the BART finds wnless the cangressman "shapes up" on the foreign-policy issue" in Example (1).
(1) [The president could call][and declare that he would single-handedly kill the $13 \wedge R T$ funds unless the congressman "shapes up" on the - foreign-policy issue.

Index	Necessary Condition
1	Two units are two co-ordinate clauses or two sentcnces.
2	Ir both units have subjects and do not contain attribution verbs, then these subjects need to mect the following requirement: they must either be the same, identical, synonyms, co-hyponyms, or hypernyms/hyponyms, or the subject of Unit 2 is a pronoun or a noun phrase that can replace the subject of Unit
3	There is an explicit indication that the event expressed by Unit temporally precedes the event expressed by Unit 2.
4	The Contrast relation is not satisfied.

Table A6.1. Necessary Conditions for the Sequerice Relation

Index	Heuristic Rule	Score
1	Unit 2 contains a Sequence cue phrase.	100

[^16]| 2 | Both units contain enumeration conjunctions (first, second.
 (hird...). | 100 |
| :---: | :--- | :---: |
| $3:$ | Both subjects of Unit, and Unit 2 contain NP cues. | 90 |
| 4 | Unit ${ }_{2}$ coulains a VP cuc. | 90 |
| 5 | Both units are clauses in which verb phrases agree in tense. | 20 |

Table A6.2. Heuristic Rules for the Sequence Relation

2 - Contrast (multi-nuclear)

In a Contrast relation, two muclei come in contrast with each other aloug some dimension. The contrasi may happen in only one or a. few respects, while everything else can remain the same in other respects.

For example:
(2) [ln an age of specialisation, the federal judiciary is one of the last bastions of the generalist. A judge must jump from inurder to antitnust cases, from arson to securities fraud, without missing a beat.][But even on the federal bench, specialisation is creeping in, and it has become a subject of slarp controversy on the newest federal appeals court. 1

Index		Necessary Condition
1	Two units arc coordinate.	
2	The subject ol Unil 2 is not a demonstrative pronom, inor it is modified by	
	a demonstrative.	

Table A6.3. Necessary Conditions for the Cointast Relation

Index	IIeuristic Rule	Score
1	Unit ${ }_{2}$ contains a Contrast cue phrase.	100
2	The VP of Unit ${ }_{2}$ contains a VP' cuc.	90

3	The main NP of Unit ${ }_{2}$ contains a NP cuc.	90
4	The main subjects of two units are co-hyponyms, or some/other.	50
5	Unit t_{2} has one of the structures: be incorrectly + attribution verb, be wrongly + attribution verb, attribution verb + ; by mistake.	40

Table A6.4. Heuristic Rules for the Combrast Relation

3 - Antithesis (mononuclear)

In an Amithesis relation, the situations presented in N and S are in contrast (see the Contrast relation); because of an incompatibility that arises from the contrast, one camot have positive regard for both situations presented in N and S ; comprelending S and the incompatibility between the situations presented in N and S increases R's positive regard for the situation presented in N. The Antithesis relation differs from the Concession relation, which is characterised by a violated expectation.

For exainple:
(3) |Kidder competitors aren't outwardly hostile to the firm, as many are to a tough competitor like Drexel Burnham Lambert Inc. That doesn't have Kiddcr's long history.] [However, competitors say that Kidder's hiring binge involving execurive-level staffers, some with multipleyear contract guarantees, could backfire unless there are results.]

There is no neccssary condition for the Antithesis relation.

Index	Henrislic Rule	Score
1	Unit ${ }_{2}$ contains an Anti/hesis cue phrase.	100
2	Unit ${ }_{2}$ contains the cue phrase but or however, and the VP of Unit ${ }_{2}$ contains the phrase not + a frequency adverb (e.g., alwoys. freigucently, usucally).	80
3	Unit ${ }_{2}$ contains hur or however, and the VP of Jnit2 contains the phrase mor + a degree adverb (c.g., absohtuely, quite).	80
4	Unir_{2} contains h (or however, and the VP of Unitit contains one	80

Table A6.5. Heuristic Rules for the Antithesis Relation

4 - Concesslon (mononuclear)

This is a nuclear-satellite relation. In a Concession relation, the situation indicated in the nueleus is contrary to expectotion in the light of the information presented in the satellite. In other words, a Concession relation is always eharacterised by a violated expectation. (Compare to Antithesis.) In some eases, the nuelearity role of spans in a Concession relation does not depend on the semaintics of the spans, but rather on the intention of the writer.

For example:

(4). [its 1,400 -member brokerage operation reported an estimated $\$ 5$ million loss last year,] [althought Kidder expects it to turn a profit this year.]

Index	Necessary Condition
1	The Contrast relation is not satisfied.

Table A6.6. Necessary Conditions for the Concession Relation

Index	Heuristic Rule	Score
1	Unit ${ }_{1}$ or Unit ${ }_{2}$ contains a Concession cue phrase. Ir two units are sentences and the cue phrase of Unil2 is yet, still, even, Unil is N. Otherwise, Unit ${ }_{2}$ is S.	100

Table A6.7. Heuristic Rules for the Concession Relation

5 - Condilion (mononuclear)

This is a nuclear-satellite relation. In a Condition relation, the truth of the proposition associated with the mueleus is a eonsequenee of the fulfilment of the condition in the satellite. The satellite presents a situation that is not realised.

For example:
(5) [Kidder's hiring binge involving executive-level staffers, some with multiple-year contract guarantees, could backfire][wiless there are results.]

Index	Necessary Condition
1	Unit t_{2} does not have a Canse cue phrase at the beginning or right after the Condition cue phrase.

Table A6.8. Necessary Conditions for the Condition Relation

Index	Heuristic Rule	Score		
1	Unit t_{2} contains a Condition cuc phrase.	100		
2	The verb of Unit ${ }_{2}$ contains a VP cue.	90		
3	The subject of Unit 2			
be.			\quad	90
:---:				

Table A6.9. Heuristic Rules for the Condition Relation

6 - Otherwise (mononuclear or milti-nuclear)

An Otherwise relation is a mulually exclusive relation between two elements of equal importance. The situations presented by both the satellite and the nucleus are unrealised. Realising the situation associated with the mucleus will prevent the realisation of the consequences associated with the satellite.

For example:
(6) [The executive close to Saatchi and Saatchi said that "if a bidder came up with a ludicrously high offer, a crazy offer which Saatchi knew it couldn' beat, it would have no choice but to recommend it to sharcholders. | (But otherwise it would madoubtedly come bock" with all offer by managemen.]

There is no necessary condition for the Otherwise relation.

Index	Heuristic Rules	Score	
1	Unit ${ }_{2}$ contains an otherwise cue phrasc.	\vdots	100
2	Unit ${ }_{2}$ has the structure: if ... not ...	50	

Table A6.10. Heuristic Rules for the Otherwise Relation

7 - Hypothetical (mnnonnclear)

In a Hypothetical relation, the satellite presents a situation that is not factual, but that one supposes or conjectures to be true. The nucleus preserits the consequences that would arise should the situation come irue. A Hyporhetical relation presents a more abstract scenario than a Condition relation docs.

For example:
(7) ["For some of these companies, this will be the first quarter with year-to-year negative comparisons," says Leonard' Bogner, a chemical industry analyst at Prudential Bache Research.II "7his could be the first of five or six down quarters."]

There is no necessary condition for the Hypothetical relation. The heuristic rules for the Hypothetical relation are shown in Table A6.1I below.

Index	Heuristie Rules	Scorc
1	Unit t_{2} contains a Hypothetical cue phrase.	100
2	The NP of Unit 2 is "il" or a demonstrative pronoun, and the main verh phrase of Unit ${ }_{2}$ is can \mid conld \mid maylmight + be.	100
3	The VP of Unit ${ }_{2}$ contains a VP cue.	90
4	The NP of Unit ${ }_{2}$ contains a NP cue, and the main verh is to be.	90

Table Ag. I I. Heuristic Rules for the Hypothelical Relation

8 - Result (mononucicar)

The situation presented in the satellite is the result of the situation presented in the mucleus. The cause, which is the nucleus, is the most important part. The satellite represents the result of the action. When it is not clear whether the cause or result is more important, select the multi-nuclear relation Couse-Result.

For example:
(8) ["Those that pulied out (of stocks) regretted it," he said, II "so I doubt you'll see any significant changes" in institutional portfolios as a result of Friday's decline.]

There is no necessary condition for the Result relation.

Index	Heuristic Rule	Score
1	Uniz combains a Ressuly cue plares.	100
2	The VP of Unit 2 contains a VP cue.	90
3	The subject of Unit ${ }_{2}$ contains a NP cue, and the verb is to be.	90
4	Unit t_{2} is subordinate Unit ; Unit $_{2}$ is a detached -ing participial clause.	60

I'alule A6.13. Heuristic Rules for the Result Relation

9-Cause (mononuclear)

The situation presented in the satellite is the cause of the situation presented in the nueleus. The result, which is the nueleus, is the most important part. In contrast to a Purpose relation, the situation presented in the muclens of a Couse relation is lactual, i.e., it is achieved.

For example:
(9) $\quad \wedge$ year earlier, operating prolit in telephone operations was reduced by a similar amount|[os a result of a provision for a reorganization.]

There is no necessary condition for the Comse relation.

Index	Heuristic Rule	Score
1	Unit ${ }_{1}$ or Unit ${ }_{2}$ contains a Cause ene phrase.	100
2	The VP of Unit ${ }_{2}$ contains a VP cue.	90
3	The subject of Unit ${ }_{2}$ contains a ND cue, and the verb is to be.	90
4	The object of Unit ${ }_{2}$ contains a NP cuc of Result, and the verb is to he.	60

Table A6.12. Heuristic Rules for the Cause Relation

10-Cause-Result (multi-nuclear)

This is t causal relation in which two elementary discourse units, one representing the cause and the other representing the resuht, are of equal imporlance or weight. When either the cause or the result is more important, select the corresponding mononuclear relation Cause or Result, respectively.

For example:
(10) IAnd Iudge Newman, a former patent lawyer, wrote in her dissent when the court denied a motion for a rehearing of the case by the full court, I["The panei's judicial lcgislation has affected an important high-leclmological industry, without regard to the consequences for research and innovation or the public interest."]

Index	Necessary Condition
1	Two units are coordinate.

Table A6.14. Necessary Conditions for the Cause-Result Relation

Index	Heuristic Rule	Score
1	Unit2 contains a VP cuc.	100

Table A6.15. Heuristic Rules for the Cause-Resulf Relation

II - Purpose (mononuelear)

In contrast to a Resull relation, the situation presented in the satellite of a Purpose relation is only putative, i.e., it is yet to be achieved. Most often it can be paraphrased as "muclens in order to sotellite." The purpose elause is the satellitc. For example:
(11) [To answer the hrokerage question,] K Kidder, in typical fashion, completed a task-force study.]

Index	Necessary Condition
1	Two units are coordinate.
2	Unit 2 is not dominated by and does not contain cue plrases compatible with the Condirion relation.

Tahle A6.16. Necessary Conditions for the l'urpose Relation

Index	Heuristic Rule	Seore
1	Unit ${ }_{2}$ starts with a l'urpose cue phrase.	100
2	The subject of Unit ${ }_{2}$ contains a NP cue, and the verb is to be.	90
3	The VP of Unit 2 contains a VP cue.	90
4	The syntactic role of one unit has S-PRP (purpose or reason).	90
5	Unit ${ }_{1}$ or Unit ${ }_{2}$ starts with 7o + V.	90

Table A6.17. Heuristie Rules for the Purpose Relation

12-Solutionhood (mononuelear or multi-nuclear)

The Problem-Solution. Question-Answer, and Statement-Response in (Carlson et al., 2002) are grouped into the Solutionhood relation'in this thesis. In a Solutionhood relation. one span presents a problem/question/statement, and the other span presents a solution/answer/response. The relation may be monomelenr, depending on the context. For example, both spans in Example (12) below are nuclei of a Solutionhood relation.
(12) |With investment banking as Kidder's "lead business." where do Kidder's 42 -branch brokerage network and its 1,400 brokers fit in? Mr. Carpenter this month sold off Kidder's eight brokerage offices in Florida and Puerto Rico to Merrill Lynch \& Co.. refuelling speculation that Kidder is getting out of the brokerage business entirely. Mr. Carpenter denies the speculation. IITo answer the brokerage question, Kidder, in typical fashion, completed a task-force study...]

Inclex	
1	Two units are coordinate.

Table A6.18. Neccssary Conditions for the Solutionhood Relation

Index	Henristic Rule	Score
1	Unit contains a Sohtionhood cue.	100
2	The subject of Unit ${ }_{2}$ contains a NP cue, and the verb is to be.	90
3	The VP of Unit ${ }_{2}$ contains a VP cue.	90
4	Unit t_{2} is in ellipsis situation and containing one of the words how, why, what, who, whom, whose, which	90

Table A6.19. Heuristic Rules for the Solutionhood Relation

13 - Manner (mononuclear)

A manner satellite explains the way in which something is done. (Sometimes it also expresses some sort of similarity/comparison.) The satellite answers the question "in what mamer?" or "in what way?". A Manner relation is less "goaloriented" than a Mecms. selation, and often is more of a description of the style of an action. For example:
(13) $\ \wedge$ judge must junp from murder to imtitust cases, from arson to securitics fraud. [[without missing a beat.]

There is no necessary condition for the Manner relation.

Index	Heuristic Rule	Score
1	One unit starts with a Manner cue phrase.	100
2	The syntactic role of one unit contains -MNR.	90
3	Unit is Ving + ADV.	70

Table A6.20. Heuristic Rules for the Manner Relation

14 - Means (monnouclear)

A means satellite specifies a method, mechanism, instrument, chamel or conduit for accomplishing some goals. It should tell you how something was or is to be accomplished. In other words, the satellite answers a "hy which means?" or "how?" question that can be assigned to the nueleus. It is often indicated by the preposition by. For example:
(14) [By blocking this enzyme. If the new compound, dubbed GS 4104, prevents the infection from spreading.]

There is no necessary condition for the Means relation.

Index	Heuristic Rule	Score
1	One until slarts wilh a Meams eue phrase.	100

Table A6.21. Heuristie Rules for the Manner Relation

15 - Inlerpretation (mononuelear)

In an Interpretation relation, one side of the relation gives a different perspeetive on the situation presented in the other side. It is subjeetive, presenting the personal opinion of the writer or of a third party. An interpretation can be: (1) an explanation of what is not immediately plain or explicit: (2) an explanation of actions, events, or statements by pointing out or suggesting inner relationships, motives, or by relating partieulars to general prineiples; or (3) an understanding or appreciation of a sitmation in ligh of individat helid. jumenem, interes. or cireumstance.

The interpretation may be mononuclear, with the interpretation occurring in the satellite or in the nucleus; or it may be multi-nuclear, with the interpretation occurring in one of the nucleus.

For example:
(15) [By the end of this year. 63-year-old Chairman Silas Catheart -- the former chairman of Illinois Tool $W_{\text {orks }}$ who was derided as a "tool-and-die man" when GE brought him in to clean up Kidder in 1987 -retires to his Lake Forest, III. . home, possibly to build a shopping mall on some land he owns. "I've done what I came to do" at Kidder, he says. ||And that means 42-year-ald Michael Carpenter: president and chief execurive since Jamary, will for the first time take camplete - control of Kidder and try to make gaod on some grandiose plans. Mr. Corpenter says he whll return Kidder to prominence as a great investment bank.]

There is no necessary condition for the inferpretation relation.

Index	Hemristic Rule	Score
1	Unit ${ }_{2}$ contains an therpretation cue phrase.	100
2	Unit ${ }_{2}$ has a subordinate clause and the main VP of Unit ${ }_{2}$ contains a VP cue.	90
3	The subject of Unit ${ }_{2}$ contains a NP cue.	90
4	Unit 2 has a subordinate clause and the main VP of Unit ${ }_{2}$ is in report style.	80

Table A6.22. Heuristic Rules for the Interpretation Relation

16 - Evaluation (mononuclear or multi-nuelear)

In an Evaluation relation, one span assesses the situation presented in the other span of the relationship on a scale of good to bad. An cualuation can be an appraisal, estimation, rating, interpretation, or assessment of a situation. The cvaluation can be the vicwpoint of the writer or another agent in the text. The assessment may occur in a multi-nuclear rclationship (Evaluation), when the
spans representing the situation and the assessment are of equal weight. Example (16) is nucleus - satellite; whereas Example (17) is a multi-muclear relation.
(16) But racial gerrymandering is not the best way to accomplish that essential goal.] [./t is a quick fix for a complex problem.]
(17) [Employers must deposit withholding taxes excceding $\$ 3,000$ within threc days after payroll -- or pay stiff penalties --] [and that's a big problem for small businesses.]

Index	Necessary Condition
1	Tiwo units are coordinate.
2	The subject of Unit t_{2} is a pronoun or a $\mathrm{NP}^{\text {P }}$, which replaces the object of Unit.
3	There is an adjective after the main verb of Unit ${ }_{2}$.
4	Unit ${ }_{2}$ docs not have a Circumstance cue phrase at the begiming or righle afler the Evalume cue phrase (c.g., "expecially when').

Table A6.23. Necessary Conditions for the Evaluation Relation

Index	Heuristic Rule	Score
1	Unit t_{2} contains an Evaluotion cue phrase.	100
2	The verb of Unit ${ }_{2}$ contains a VP cue.	90
3	The subject of Unit ${ }_{2}$ contains a NP cue.	90
4	The main verb of Unit 2 is to be and the object contains a NP cue.	60
5	The VP of Unit ${ }_{2}$ has the structure: verb + (adj-er/est).	50

Table A6.24. Heuristic Rules for the Evaluation Relation

17 - Summary (mononuclear)

In a Summary relation, one span summarises the infomation presented in another span. The former is shorter than the latter.

For example:
(18) [In what could prove a major addition to the Philippines' foreigninvestment portfolio, a Taiurmese company signed a \$180 million construction contract to build the centerpiece of a plamed perrochemical complex. II Taiwan's USI Far East Corp.. a petrochemical company, initialed the agreement with an unidentified Japancse contractor to build a maphtha cracker, according to Alson Lee, who heads the Philippine company set up to build and operate the complex. Mr. Lee, president of Luzon Petrochemical Corp., said the contract was signed Wednesday in Tokyo with USI Far East officials. Contract details, however, haven't been made pullic.]

There is no necessary condition for the Summory relation.

Index	Hearistic Rule	Score
1	Unit ${ }_{2}$ starts with a Stummer cue plrase.	100
2	The VP of Unit 2 contains a VP cuc.	90
3	The subject of Unit2 contains a NP cue and lie verb of Unit is 10 be or an attribution verb.	90

Table $\mathbf{~ 6 6 . 2 5 .}$. Hemristic Rules for the Summary Relation

18-Explanation (monoduclear)

The Evidence, Justify and the Explanation-Argumentative in (Carlson et al., 2002) are grouped into the Explanation relation in this thesis. In an Explanation relation, the satellite provides a factual explanation or justification for the situation presented in the nucleus.

For example:
(19) [Mr. Carpenter says that when he assumes full control. Kideler will finally tap the resources of GE. II One of GE's gools when it hought 80% of Kidder in 1986 was ia take advantage of "syngeries" between Kideler and (icneral bilecmic Copital Conp., (ibis iomporate-finance whit, which has $\$ 42$ billion in assets. The leveraged buy-ow group of GEC Copital mon reports to Mr. Carpenter: 1

Index	Necessary Condition
1	Two units are coordinate.

Table A6.26. Nccessary Conditions for the Explamation Relation

Index	IIcuristic Rulc	Score
1	Unit ${ }_{2}$ contains an Explanation cue phrase.	100
2	The verb of Unit ${ }_{2}$ contains a VP cue.	90
3	The subject of Unit ${ }_{2}$ contains a NP cue and the main verb is to be.	90

Table A6.27. Heuristic Rules for the Explanation Relation

19 -. Joint (multi-muclear)

Λ. Jom is not a rhetorical relation. but a pseudo-relation. By convention, Joint is a multi-nuclear relation. It is uscd when $\mathrm{DA} \overline{\mathrm{S}}$ cannot recognise any other relation between spans. There is no necessary condition and no heuristic rule for this relation.

Using Cohesive Devices to Recognize Rhetorical Relations in Text

Huong Le Thanh, Geetha Abeysinghe, and Christian Huyck
School of Computing Science, Middlesex University, The Burroughs, London NW4 4BT, UK. \{H.Le, G.Abeysinghe, C.Huyck)@mdx.ac.uk

Abstract

This paper investigates factors that can be used in discourse analysis, specifically, cohesive devices. The paper shows that cohesive devices such as cue phrases can provide information about the linkages inside a text. We propose three types of cue phrases (the ordigary cuc phrascs, noun-phrase cues, and verb-phrase cues). An algorithm to compute rhetorical relations between two elementary discourse units is also presented.

I Introduction

Rhetorical Structure Theory (RST) (Mann and Thompson, 1988) offers an explanation of the coherence of texts. It models the discourse structure of a text by a hierarchical tree diagram that labels relations between text spans (typically clauses or larger linguistic units). There are two kinds of relations: nucleus-satellite relation and multinuclear relations. A nucleus-satellite relation involves two nodes in which one node has a specific role relative to the other. The more important node between them in realising the writer's communicative goals is called a nucleus; the less important one is called a satellite. A multinuclear relation involve two or more nodes, each of which is equally important in realising the writer's communicative goals. RST can be applied in many fields, such as automatic summarisation, text generation, and text indexing.
Analysing textual rhetorical structures is difficult because discourse can be complex and vaguc. Many approaches in this area use cue phrases (such as "but", "however") to recognise rhetorical relations (e.g. Marcu, 1997; Corston-Oliver, 1998; Webber, 2001) because of their efficiency and simplicity. Cue phrases show a great potential in discourse analysis because most cue phrases have a specific discourse role. They indicate a rhetorical
relation between different parts of a text. However, these approaches have' problems when no cue phrases are found, which frequently happens.

This research carries out a study on textual coherence devices in order to solve this problem. The discourse parser we proposed involves the following three ateps. Firstly, we split text into elementary discourse units (EDUs)'. Secondly, after defining EDUs, all potential rlietorical relations between these units are discovercd. Finally, based on this relation set, all rhetorical structures will be produced using a discourse parser to combine small texts into larger ones.

This paper discusses step 2 of our proposed system. Different factors that can be used in identifying relations among'discourse units are analyzed in Section 2. Section 3 describes the relation set and the method for recognizing relations. We present our conclusions in Section 4.

2 Factors Used in Recognizing Relations

2.1 Cohesive Devices

Cohesive devices are not the unique way to make text coherence. However, they are chosen in our research becanse of their efficiency and "simplicity. Salkie (1995) presented different types of cohesive devices. We have considered a few of them to be implemented in our system. They are categorised into four groups: reiterative devices, reference words, ellipsis, and cue phrases.

The reiterative devices include synonyms (employer/boss), superordinates/hyponyms (country/Mexico), co-hyponyms (Uuited Kingdom/Mcxico), and antonyms (simple/complex). These devices are good factors in recognizing rhelorical relations. For example, antonyms often express a CONTRAST relation.

Reference words include personal pronouns (he.

[^17]she, it, etc.), demonstratives (this, that; these, those), and comparative constructions (the same thing; a different person, etc.). Reference words need help from their environment to determine their full meaning. Thus, they create links between texts.

To benefit from reiterative and reference words, we extract the main noun phrascs from the actor and the object of sentences. A thesaurus is then used to find the semantic relation between these noun phrases. ${ }^{2}$ This cohension participates in deciding rhetorical relations of text.

Another important cohesive device is ellipsis. This is a special form of substitution, where only a part of a sentence is omitted. Ellipsis can be found by analyzing the syntax of the sentence. Ellipsis often occurs in question/answer sequences. Therefore, ellipsis can be uscd to recognize a SOLUTIONHOOD relation (see Section 3).

2.2 Cue Phrases

Cue phrases (such as "however", "as a result"), sometime called connectives or conjunctions, are used to indicate a specific connection between different parts of a text. This is the strongest cohesive device due to two reasons. Firstly, most cue phrases have a rhetorical meaning. If two text spans are connected by a cue phrase, their relation will be determined by the cue phrase's rhetorical meaning. Secondly, identifying cue plrases is quite simple because it is essentially based on pattem matching. Meanwhile, syntactic information is needed in order to explore other text devices such as synonyms and antonyms. Because of its strength and simplicity, there are many approaches that use cue phrases to recognize rhetorical relations (e.g., Knott and Dale, 1995; Marcu, 1997). However, as mentioned before, these approaches have problems when no cue phrase is found.

Our solution to this problem is to further expand the cue phrase concept. We propose three kinds of cue phrases:

1. Ordinary cue phrase (called cue phrase).
2. Special words or phrases in the main noun phrase (subject or object) of a scntence (called noun-phrase cue or NP cue).
3. Special words or phatese in the verb phatse of a sentence (called verb-phrase cue or VP cue).
[^18]Cue phrases must match exactly, whereas noun phrases and verb phrases are stemined before being compared with NP/VP cue. Examples of NP and VP cucs are shown in example (1) and example (2) respectively, below.:
(1) [New York styie pizzo meets Califormia ingre. dients,] [and the result is the pizza from this Church Street pizzeria.]
!
(2) [Chairman Silas Cathcart retires to his Lake Forest.] [That means Michael Carpenter will take complete control of Kidder.]
The noun "result" indicates a RESULT relation in example (1); meanwhile the verb "incans" detemiines an INTERPRETATION relation in example (2).

A word/pluase can be a cue word/phrase in some cases, but not in the others. For example, the word "and" is a cue word in example (3), but not in example (4) as shown below.
(3) [Mary borrowed that hook from our library last Monday,] [and she returned it this moming.]

(4) Mary has a cat and a dog.

Some phrases (e.g., "in spite of") have a discourse meaning in all of their occurrences. Thus, each cuc phrase has a different effect in deciding rhetorical relations. To control their strength, scores are assigned to different cue plirases.

If a word/phrase always has a discourse meaning and represents only one rhetorical relation, it will get the highest score, 1 . If a word/phrase always has a discourse meaning and represents N relations (e.g., the cue phrase "although" expresses an ANTITHESIS relation or a CONCESSION relation), the score of that cue phrase for each type of relation will be I/N. If a cue phrase only has a discourse meaning in some cases (e.g., "and"), its maximum score will be lower than 1 .

Examples (3) and (4) show that the word's position is also important in deciding the word's discourse role. Therefore, if a word or a phrase has a discourse meaning in only some special positions inside a sentence, the information about its position will be given to the word/ phrase. If a word/phrase has a discourse role irrespective of its position in the sentence, no information will be provided about its position.
lor example, the word "second" only has a discourse meaning when it stands at the beginning of a clause/sentence (indicated by the letter " B "). It has 50% certainty to be a LIST relation (hence given a
score of 0.5). Then it will be stored in the cue phrases' set for the LIST relation as "second(B, 0.5)".

Similarly, NP cues and VP cues also have scores depending on their strength in deciding rhetorical relations. Information involving ordinary cue phrases, NP cues, and VP cues (such as the relations that the cue represents for, and relation's score) are stored in text files for further use.

3 Relation Set and Relation Recognition

To generate a rhetorical structure from text, we need to decide which rhctorical relations, ${ }^{3}$ and how many relations are enough. If we define just a few relations, the rhetorical trees will be easy to construct, but they will not be very informative. On the other hand, if we have a large relation set, the trees will be very informative; but they will be difficult to construct.

The RSI discourse corpus consists of 78 rhetorical relation types. I is difficult to automatically construct RST trees based on such a large relation set. Therefore, iwe define a smaller set but sufficient to characterize relations by grouping similar relations into one. Based on the rhetorical relations that have been proposed in the literature, e.g., (Mann and Thompson, 1988), and (Hovy, 1990), the following set of 22 relations has been chosen to be used in our system:

LIST, SEQUENCE, CONDITION, OTHERWISE, HYPOTHETICAL, ANTITHESIS, CONTRAST, CONCESSION, CAUSE, RESULTT, CAUSE-RESULT, PURPOSE, SOLUTIONHOOD, CIRCUMSTANCE, MANNER, MEANS, INTERPRETATION, EVALUATION, SUMMARY, ELABORATION, EXPLANA. TION, and JOINT.

3.1 Relation Recognition

Similar to (Corslon-Oliver, 1998), we divide the features that help us to recognize a rhetorical relation into two parts:
(1) the conditions that two text spans must satisfy in order to accept a specific relation between them;
(2) and, the tokens used for predicting a relation.

We call the features in part (1) the necessary conditions and the features in part (2) the cue set. A cue set consists of henristic rules involving cue

[^19]phrases, NP cues, VP cues, and cohesive devices. The necessary conditions ensure that the two text spans have no conflict with the definition of the relation being tested. The necessary conditions may not consist of any token to realise a specific relation. The system can only recognise a rhetorical relation between two units if all necessary conditions and at least one cue are satisfied.

3.2 Scoring Heuristic Rules

Cue phrases, NP cues, VP cues, and cohesive devices have different effects in deciding rhetorical relations. Therefore, it is necessary to assign a score to each heuristic rule. The cue pluase's rule has the highest score of 1 , as cue phrases are the strongest signal. NP cues and VP cues are the extension cases of cue phrases. They are also strong cues, but weaker than normal cue pirascs. Thus, the heuristic rules involving NP cues and VP cues have the score of 0.9 . The cohesive devices have lower scores than NP cues and VP cues. Depending on their certainty, the heuristic rules corresponding to these devices receive the scores of 0.2 to 0.8 . It is of interest to note tiat each score can be understood as the percentage of cases in which the cue recognises a correct rhetorical relation. These scores are first assigned to heuristic nules according to human linguistic intuitions. After building the whole system, different sets of scores will be tested in order to find the optimal scores for the system.

As mentioned is Section 2.2, each cue phrase, NP cue or VP cue has its own score. It follows that the actual score for those cues is:

Actual Score $=$ Score(heuristic rule) * Score(cue phrase, or NP cue, or VP cue).
The final score of a relation is equal to the sum of all heuristic rules contributing to that relation. The system will test the necessary conditions of that relation if its final score is more than or equal to a threshold θ. ${ }^{4}$

In the following section, we analyze the LIST relation to illustrate the usage of necessary conditions, cue set, and scores in recognizing relations betwcen two EDUs.

3.3 Algorithm for recognising relations between two EDUs

As mentioned in Section 3.1. The heuristics rules in the cue set provide a suggestion of relations between

[^20]two text spans. Thus, we start detecting relations between two text spans by testing the cue set, from the highest score rule to the lowest one. If several relations are recommended, the necessary conditions of these relations are chocked in order to find the appropriate relations. Due to lack of space, a detailed description of this process is not presented in this paper. The pseudo-code for recognising relations between two EDUs is shown below:

```
Input: Two EDUs \(U_{1}\) and \(U_{2}\), list of
ordinary cue phrases (CPs), list of \(V P\)
cues. and list of NP cues.
output: Relation set (R) between \(U\) and
\(\mathrm{U}_{2}\).
1. Find all CPs of \(U_{1}\) and \(U_{2}\).
2. If CPs ere found. compute actual score
    of the relations suggegted by cps.
3. Check necessary conditlons (NCs) of the
        relations suggested by CPs whose actual
        score \(>\theta\).
4. Add the reletions that satisfy NCe to
        (R).
5. If no relation satisfies, go to step 6.
    otherwise, Return.
6. Find the main Vp of each unit and stem
    them.
7. If one of these stemmed VPs conslsts of
    a \(V p\) cue, compute actual score of the
    stemmed \(V p\) and total score. \({ }^{5}\)
8. Check NCs of the relations correspon-
    ding to the vp cue whose total score \(>\)
    \(\theta\).
9. Add the relations that satisfy NCs to
    (R).
10. If no relation satisfies, go to step
        11. Otherwise, Return.
11. Find the subject of each unit and
        stem these NPs.
12. If one of these stemmed NPs consists
        of a NP cue, compute actual score of
        the stemmed NP and total score.
13. Ghegk NGs of the relatiens corres-
        ponding to the NP cue whose total.
        score \(>\theta\).
14. Add the relations that satisfy NCs to
        (R).
15. If no relation satisfies, go to etep
        16. Otherwise, Return.
16. For each of 22 relations in the
        proposed relation set:
        16.1. Check the remaining cues of the
        current relation the cues that
        do not involve ordinary CP, Vp
        cues. and NP cues).
    16.2. Compute cotal score of the
        relations suganeted by cuns.
```

[^21]```
 16.3. Check NCs of the relations whose
 total score > 0.
 26.4. Add the relations that satisfy NCs
 to (R).
```

17. Return.

In the following section, we analyze the LIST relation to illustrate the usage of necessary conditions, cue set, scores, and the algorithm for recognizing relations between two EDUs.

### 3.4 LIST Reiation

A LLST is a multinuclear relation whose elements can be listed, but not in a CONTRAST or other stronger types of multinuclear relation (Carlson and Marcu, 2001). A LIST relation is often considered as a SEQUENCE relation if there is an explicit indication of temporal sequence.

The necessary conditions for a LIST relation between two units, Unit; and Unit ${ }_{2}$, are shown below:

1. Two units are syintactically co-ordinates.
2. If both units have subjects and do not follow the reported style, then these subjects need to mect the following requirement: they must either be identical or be synonym, co-hyponym, or superordinate/hyponym; or the subject of Unit $z_{2}$ is a pronoun or a noun phrase that can replace the subject of Unit ${ }_{1}$.
3. There is no explicit indication that the event expressed by Unit, temporally precedes the event expressed by Unit ${ }_{2}$.

## 4. The CONTRAST relation is not satisfied.

The first condition is based on syntactic information to guarantee that the two units are syntactically independent. The second condition checks the linkage between the two units by using reiterative and co-reference devices. The third condition distinguishes a LIST relalion from a SEQUENCE relation. The last condition ensures that the stronger relation, CONTRAST, is not present in that context. In order to check this condition, the CONTRAST relation is always examined before the LIST relation.
The cue set of the LLST relation is shown below:

1. Unit ${ }_{2}$ contains a I.IST cue phrase. Score: 1
2. Both units contain cnumeration conjunctions (first, second, third...).

Score: 1.
3. Both subjects of Unit, and Unit ${ }_{2}$ contain NP cues. $\quad$ Score: 0.9
4. If bohk unis ane reportad sentences, they mention the same object.

Score: 0.8
5. If the subjects of two units are co-hyponyms, then the verb phrase of $U_{n i t}$ must be the same as
the verb phrase of Unit ${ }_{1}$, or Unit ${ }_{2}$ should have the structure "so + aizxiliary + sbj". Score: 0.8
6. Both units are clauses in which verb phrases agree in tense (e.g., past, present). - Score: 0.5
For cxample, the cue "olso" in sentence (5.2) suggests a LIST relation between unit (5.1) and unit (5.2) in the following case: ${ }^{6}$
(5) [Mr. Cathcart is credited with bringing some basic budgeting to traditionally frcewhceling Kidder. ${ }^{5.1}$ ] [He also improved the firm's compliance procedures for trading. ${ }^{5.2}$ ]
The actual score of cue 1 , with the cue word "alsa", is equal to Score(cue 1) * Score("also'). The cue word "alsa" has the score of I for the LIST relation, so the actual score is $1^{*} 1=1>\theta$. Therefore, the necessary conditions of the LIST relation are checked. Text spans (5.1) and (5.2) are two sentences, thus they syntactically coordinate (condition 1). In addition, the subject of the text span (5.2), "he", is a pronoun, which replaces the subject of the text span (5.1), "Mr. Cathcart" (condition 2). There is no evidence of an increasingly temporal sequence (condition 3), and also no signal of a CONTRAST relation (condition 4). Therefore, a LIST relation is recognized between text spans (5.1) and (5.2).

The cue word "and" is found in example (6):
(6)[But the Reagan administration thought. otherwise, ${ }^{6.1}$ ] [and so may the Bush administration. ${ }^{6.2}$ ]
" And" is considered as a cue word because it stands at the beginning of the clause (6.2) (cue 1). It can be used in a LISI relation, a SEQUENCE relation, or an ELABORATION relation. With the score of 0.3 for the cue word "and" in the LIST relation, the actual score of cue $1=$ Score (cue 1)*Score("and") $=1^{*} 0.3=0.3<\theta$. Also, another cue of the LIST relation is found between clause (6.1) and clause (6.2). The subjects of two text spans, "the Reagan administration" and "the Bush administration', are co-hyponyms. In addition, clause (6.2) has the structure "so + auxiliary + sbj". With the satisfaction of cue 1 and cue 5 , the total score is:

$$
\begin{aligned}
\text { Total score } & =\text { Actual Score }(\text { cue } 1)+\text { Score }(\text { cue } 5) \\
& =0.3+0.8=1.1>0
\end{aligned}
$$

As in the previous example, the necessary conditions of the LISt relation are checked and

[^22]then a LIST relation is recognized between clatse (6.1) and clause (6.2).

## 4 Conclusion

In this paper, we have explored several variants of cue phrases, and exploring combining with other feasible cohesive devices to rccognise relations between two text spans. It was shown that NP cues, and VP cues are good predictors for discovering rhetorical relations. In the case where cue phrases are not available, other text cohesive devices (e.g., synonyms, and antonyms) can be a reasonable substitution.

The algorithm for recognising relations between two text spans is being implemented. The evaluation will be done by using documents from the RST Discourse Treebank atter the completion of the implementation. Future work will focus on improving this algorithm's performance by refining the conditions to recognise relations mentioned in Section 3.1.

## References

Carison, L. and Marcu, D. (2001) Discourse Tagging Manual. ISI Tech Report ISI-TR-545.
Corston-Oliver, S. (1998). Computing Representations of the Structure of Written Discourse. PhD Thesis, Universtity of Califorma, U.S.A.
Hovy, E. H. (1990) Parsimonious and profligate approaches to the question of discourse structure relations. Proceedings of the $5^{\text {th }}$ Intemational Workshop on Natural Language Generation, Pitssburgh, 128-136.
Knott, A., Dale, R. (1995) Using linguistic phenomena 10 morivate a set of coherence relations. Discourse Processes 18:35-62.
Mann, W. C. and Thompson, S. A. (1988) Rhetoricol Siructure Theory: Toward a Functional Theory of Tert Orgonizotion. Text, vol. 8(3), 243-281.
Marcu, D. (1997) The Rhetorical Parsing. Summarization. and Generation of Natural Language Texts. PhD Thesis, Department of Computer Science, University of Toronto.
RST Discourse Treebank - http://www.ldc.upenn.edu/ Catalog/LDC2002T07.hml
Salkic, R. (1995) Text and discourse analysis. London: Routledge.
Webber, B. et al. (2001) D-LTAG System - Discourse Parsing with a Lexicalized Tree Adjoining Grammar. In ESSLLI 2001 Workshop on Information structure. Discourse structure and Discourse Scmantics.
WordNet (2002) -
http://www.cogsci.princeton.edw/-wn/index.shtm!

# A Study to Improve the Efficiency of a Discourse Parsing System 

Huong T. Le and Geetha Abeysingle<br>School of Computing Science, Middicsex University. The Burroughs, London NW4 4isT, UK.<br>(H.Le, G.Abeysinghe) @mdx.ac.uk


#### Abstract

This paper presents a study of the implementation of a discourse parsing system, where only significant features are considered. Rhetorical relations are recognized based on three types of cue phases (the normal cue phrases, Noun-Plurase cues and Verb-Plurase cucs), aud different textuat colierence deviees. The parsing algorithi and its rule set are developed in order to create a system with high accuracy and low complexity. The data used in this system are taken from the RST Discourse Treebank of the Linguistic Data Consortimen (LDC).


## I Introduction

Rhetorical Stricture Theory (RST) (Mamn and Thompsom, 1988) is a mehod of structured description of text. It provides a general way to describe the relations among clauses in a text, whether or not they are grammatically or lexically signaled. RS"l can be applied in many lields, smela as ammatic lext smmantzation, text gencrixion and text indexing.

Recognizing Iextual thelorical structures still remains a hard problem because discourse is complex and vague. Literalure shows that a considerable amount of work thas been carried oni in this area. However, mily a few algorihons lior implementing rhetorical strinetures have been proposed so far.

One of the pioncering works has been proposed by Marcu (1997). Itis alvanced discourse parser is based on cue phrases, and therefore faces problems when cue plarases are not present in the text. Corston-Oliver (1998a) improved Marcu's system by integrating eue phrases with amaphora, deixis and referenial continuily. Webler (2001) started from a different approach by implementing a discourse parsing system for a Lexicalized Tree Adjoining Grammar (L'AG). Webber developed a grammar that uses discoursc cue as an anchor to eomeet textual trees. Like Mareu's system, Webber's parser too cannot recognize relations when there is no ene phase preserit in the text.

Another trend in discourse analysis is learning-based, such as the decision-based appronch i(Maren, 1999) ant the unsupervised one (Mareu ant Eechihabi, 2002). This approach produces an impressive resulf but reguires a large enough corpus for traiiting purpose to be available. Such a sufficien discouse corpas is difficull to find'.

[^23] (1998a), and concontrate on improving the efficiency of the discourse parser. We proposed to do this by several ways: improving the correctness of dividing text itto elementary discouse units (cdus) ${ }^{2}$ by combining syntactic-based method with cue-phrase-based method; using colnesive devices as relation's predictors; refining rules for the discourse parser; and improving Corston-Oliver's parser to reduce its complexity. The diata used in the experiment are the discourse dixuments from The RS'I' Discoursể Trecbank.

Our discourse amalysis involves lice following three computatiomal sleps. Birsilly, we split text into elementary discomse mits. Sceontly, alter defining edus, all potential rhetorical relations between these units are discovered. Finally, based on this retation set, all rhetorical structures will be produced using a discourse parser to combine small texts into latger anes. The basic framework for our discourse amalysis system is depicted in Figure 1.

The way of dividing text inte) clementary discourse units is discussed in Section 2. Section 3 amalyzes different lactors that can be used in deciding metorical relations among discourse units. The relation set and the method for recognizing


Fig. L. The Framework for
a Discourse Analyzing System relations are described in Section 4. The discourse parser and its rule set are diseussed in Section 5. We present our conclusions in Section 6.

## 2 Identifying Elementary Discefirse Units

According to Mann and Thompson (19; , each discourse wit should have an independent finctional integrity. 'Thus, a distourse unit can be a clause in a sentence or a single sf̣̂tence. Marcu (1997) identific: edus based on regular expressions of cue phases. If all edus contain cue phrases, this method is simple and very cfficient siince only a shatlow jarsing is recpuired. However, Redeker (1990) has found liat only $50 \%$

[^24]of chases contain cue phases. Marcu has not provided any solution to deal with the non-cue phrase cases, and his system fails in this situation. In addition, the use of cue phrases in Marcu's system does not guarantee to produce correct edus. Cue phrases do not provide any syntaclic information; hence the edus generated by his system might not have an independent functional integrity.

Instead of using cue phrases, Corston-Oliver (1998:1) implemented a syntactic parser and thein used synactic information to identify edus. 'This method suffers from high complexity, but can solve the problems faced by Marcu's system (Marcu, 1997). Corston-Oliver's parser did not process correctly the case where strong cue phrases make nom phases become a separate edu. Two edus shown below in example (1) are considered as one colu in Corston-Oliver's parser:
(1) [According to a Kidder World story about Mr. Megargel,] [all the firm has to do is "position ourselves more in the deal flow."]

To deal with this problem. we divide the task of identifying edus into two processes. Pirst, the system uses syatactic intommation to split text. In order to get the syntactic intormation, a syntactic parser is integrated to the system. Then, the system seeks strong cue phases from the splitted text to make a further splitling when ene phrases are fomid, as in example (1). Due to lack of space, a detail description of this process is not presented in this paper.

## 3 Pactors Used for Recognizing Relations

### 3.1 Text Cohesion as Relation's Predictors

Stintax provides us with inlomation aboun how words combine form fentences. What it does not show is how sentences combine to form an moderstandable and informative text. This is the role of text and discourse analysis. Cohesion can fill mp this gap. They seek lingnistic features and amalyze their ocenrence. T'ext can therefore be evalated aceording to how eohesive they are. Cohesive devices are met the midue factor to make text coherence. However, they are chosen here because of their efliciency and simplicity. Salkie (1995) presented different typies of cohesive devices. We have considered a few of them to be implemented in our system. They are synonyms, superordinates/hyponyms, opposite words, ellipsis, reference words and connectives. These colicsive devices are categorized into four groups: rciteralive devices, reference words, ellipsis and cue phrases.

The Reiterative devices include synonyms (employer/boss), superordinates/hyponnyms (comitry/Mexico), co-hyponyms (United Kingdon/Mexico), and amtonyms (simple/complex). They are important features to define relations. For example, cohyponyms (or multiple opposites), binary opposites (male/female) and antonyms often express a CONTRAS' relation.

The Reference words include personal pronouns (l, yout he, she, it, we, they), their object forms (me, him, etc.) and their possessive forms (my, mine, your, yours, etc.), demonstratives (his, that, these, those) or comparative constructions (the same thing, a different person, etc.). Reference words need help from their environment to determine their full ineaning. Thus, they create links between texts.

Another important collesive device is cllipsis. This is a special lormot sutestifution, where only a part of a sentence is omitted. Ellipsis can be found by analyzing syntax of the sentence. The ellipsis situation often occurs in question/answer sequences. Therefore, ellipsis ean be used to recognize the SOLUTIONIIOOD relation (see Sec(ion 4).

In order to' recognize the reiteration and reference words from text, a lexical daiabase is reguired. We have chosen WordNel for this purpose. It is a machinc-ratable thesaurtus and semantic network developed and maintained by the Cognitive Science Laboratory at Princeton University. Two kinds of relations are represented in this database: lexical :md semantic. Lexical relations hold between word forms, whereas semantic relations hold hetween worl meanings. These relations inelude hypernymy/hyponymy, antonymy, entailment, and meronymy/holonymy.

### 3.2 Cue Phrases

Cue phrases (e.g., however, as a result), sometime called connectives or conjunctions, are used to indicate a specific comection between differen parts of a text. This is the strongest cohesive device due to two reasons. Firstly, most ene phrases have a rhetorical moming. If two text spans are comected by a cue phase, their relation will be detemined by the cac phase's metorical meaning. Secondly, identilying ene phrases is quite simple becanse it is essentially hased on pattern mate hing. Syntactic intormation is needed in order to explore other text devices such as synonyms and amtonyms. Because of its strength and simplicity, there are many approaches which use ene phases to recognize thetorical relations (Knott and Dale, 1995; Maren, 1997). How-


One solntion !o this problen is to limther expand the cue phase's detinition. We propose three kinds of cue phases:

1. Nemal cue phase (called cuephase) ;
2. Special words of phases in a main noun phrase of a sentence (called NomnPhrase cue or NP cue);
3. Special words or phrases in a verb phrase of a sentence (called Verl)-Phase cue or VP cue).

Cue phrases must match exactly, whereas noun phrases and verb phrases are simplified or stemmed before being compared wilh NP/VP cue. Examples of NP and VP cues are shown in (2) and (3), respectively, below.
(2) [New York style piz7a meets Califormia ingredients, ] lant the result is the pizza from this Church Strect pizzeria.]
(3) W3y the end of this year, 63-ycar-old Chaman Silas Catheart retires to his Lake liorest. Ill., home, possibly to buikd a slopping mall on some land he owns. "I've done what I canc to do" at Kidder, he says.] |Aud that means d2-year-old Michacl Cappenter, president and chief executive since Jamoary, will for the first time take complete control of Kidder and try to make good on some grandiose plans. Mr. Carpenter says he will retirn Kidder to prominence as a great investment bank.l

The nom "resull" indicates a RESULT' relation in example (2); meanwhile the VI' cue "means" determines an INTERPRETATION relation in example (3).

A word/plirase can be a cue word/phrase in some cases, but this may not be in the orlers. For cxample, the word "and" is a cue word in example (4), but not so in example (5) as shown below.
(4) [Mary borrowed that book from our library last Monday,] [and she returned it this morning.]
(5) Mary has a cat and a dog.

In contrast, some phrases (e.g., "in spite of") have a discourse meaning in all ol their occurrences. Thus, each eue phrase has a different effect in deciding rhetorical relations. To control their strength, scores are assigned to different cue phrases.

If a word/phrase always has a discourse meaning and represents only one rhetorical relation, it will get the highest score, 1. If a word/phrase always las a discourse meaning and represents N relations (e.g., cue phrase "allhough" can express an AN[ITIIESIS relation or a CONCESSION relation), the score of that cue phrase for eacli type of relation will be $1 / \mathrm{N}$. If a cue phrase only has a discourse meaning in some cases (c.g., "mof"), its maximum score will be lower thạn 1.

Examples (4) and (5) show that the word's position is also important in deciding the word's discourse role. Therefore, if a word or a phase has a discourse meaning in only some special positions inside a sentence, the information about its position will be given to the word/phrase. If a word/plirase has a discourse role irrespective of its position in the sentence, no information will be provided about its position.

For exanule, the word "second" only has a discomse meaning when it stames at lle

- begiming of a chase/sentence (indicated by the letter " 13 "). It has $50 \%$ certainty to be a BLST relation (hence given a score of 0.5 ). Then it will be stored in the cue phases' set for the LIS'I' relation as "second( $\mathrm{B}, 0.5$ )".

Similarly, NP cues and VP cues also have scores depending on their strengh in deciding rhetorical relations.

## 4 Rehation Set and Relation Recognition

To generate a thetorical structure from text, we need to decide which thetorical relations, ${ }^{3}$ and how many relations are enough. If we define just a few relations, the thetorical trees will be easy to construct; but they will not be very informative. On the other hand, if we have a large relation set, the trees will be very informative; but they will be diflicult to construct.

The RST' discourse corpus consists of 78 rhetorical relation types. It is difficult to automatically construct RSI' trees based on such a large relation set. Therefore, we define a smaller set but sufficient to characterize relations by grouping similar relations into one. Based on the thetorical relations that have been proposed in the litera-

[^25]me, e.g., (Mam and Thompsin, 1988), and (llovy, 1990), the following sel at \% relations has been chosen to be used in our system:

LIST, SEQUENCE, CONDHTION, OTHERWISE, HYPOTHETICAI, ANTITHESIS, CONfRAST, CONCESSION, CAUSE, RESULT, CAUSE-RESULT, PURPOSE, SOLUTIONHOOD. CIRCUMSTANCE, MANNER, MEANS, INTERPRETATION, EVALUATION. SUMMARY: GLABORATION, EXPLANATION, and JOINT.

## 4. 1 Relation Recognilfon

Similar to Corston-Oliver (1998:1), we divide the features, which helf as to recognize: a rhetorical relation, into two parts:
(1) the conditions that two text spans must satisfy in order to accept a specific relation between them;
(2) and, the tokens used for predicting a relation.

We call the features in prart (1) as the necessary conditions and the features in part (2) as the Cue set. $\Lambda$ Cue set consists of heuristic rules which involve cue phrases, NP cues, VI eues and cohesive devices. The neeessary conditions ensure that the two text spans has no conflict with the concept of the retation being tested. The necessary conditions may mot consist of any token to realize a specific relalion. The system can only recognize a thetorical relation between two tuits if all necessary comditions and at least one cate are samislied.

Corstom-Oliver tests the Cue set alter the necessary conditions are satislied. Thus, all rhetorical relations have to be checked seguentially one by one (hirteen relations are checked in his system).

The system that we propose detects relations in a diflerent order. It lirst extracts cues from the two edus. When several relations are suggested by cues, the necessary conditions of these relations are elhecked in order to find the appropriate one. Since each cue represents one or two thetorical relations in average, there are much less relations that need to be checked by our system. The definition of LIS'T relation discussed in Section. 4.3 will further illustrate this idea.

### 4.2 Scoring Henrislic Rules

Cue phrases, NI' cues, Vl' cues and cohesive devices have different effects in deciding rhetorical relations. Therefore, it is necessary to assign a score to each heuristic rule. The cue phrase's rule has the highest score of 1 , as cue phrases are the strongest signal. $N P$ cucs and VP cues are the extension cases of cue phrases. They are also strong cues, but weaker than nomal cue phrases. Thus, the heuristic rules involving NP cucs and VP cues have the score of 0.9 . The colnesive devices have lower seores than ND cues and VP cues. Depending on their certainty, the heuristic rules corresponding to these devices receive the scores of 0.2 to 0.8 . It is of interest to notice that each score can be understood as the percentage of eases in which the cue recognizes a correct rhetorical relation.

Hemistic scomes can be rained by evaluating the output of the discourse parser with $\mathrm{RS'l}^{1}$ trees in an existing discourse corpus. Unfortunately, no discourse corpus large enough for training purposes currently exists. For this reason, scores are first assigned to heuristic rules according to human linguistic intuitions. After buikling the whole system, dilferent sets of seores will be tested in order to find the optimal scores for the system.

As mentioned is Section 3.2, each cue phase, NP cue or ${ }^{\prime}$ VP cue has its own score. It follows that the actual seore for those cues is:

Actual Score $=$ Score(hemistic rule) * Score(cue phase, or NI' cue, or VI' cuc).
The final seore of a relation is equal io the sum of all hemistic rules contributing to that relation. The system will test the necessary conditions of that relation if its final score is more than or equal to a threshold 0. ${ }^{1}$

In the following section, we analyze the LIST relation to illustrate the usage of necessary conditions, Cue set and seores in recognizing thetorical relations between two edus.

### 4.3 L.IST Relation

A LIS' is a maltinuclear relation whose elements can be listed, but not in a CON'TRAS' or other stronger type of multinuclear relation. A LIS'' exhibits some sort of parallel structure between the units involved in the relation (Candson and Maren. $2(0)$ ). A LAS' relation is olten considered as a SLEQUENCLE relation if there is an explicit indication of temporal seguence.

The necessary conditions for a LIS'l relation between two units, Unil, and Unil ${ }_{2}$, are shown below:

1. Two units are symactically co-ordinates.
2. If both units have sulbjects and do not follow the reported style, then these subjects need to meet the following requirement: they must either be identian or he synonym, co-hyponym, or superordinate/hyponym; or the subject of Unit, is a pronoun or a noun phrase that can replace the subject of Unit.
3. There is no explicit indication that the event expressed by Unit, temporally preeedes the event expressed by Unit ${ }_{2}$.
4. The CONTR $\wedge$ ST relation is not satisfied.

The first condition is based on syntactic information to guarantee that the two units are syntactically independen. The second condition checks the linkage between the two units by using reiterative and co-reference devices. Syntaciic and semantic information are used to determine these umits' subjects and their relations. The third condition distinguislies a LIS' relation from a SEQUENCE relation. The last condition ensures that the stronger relation, CONTR $\wedge S^{\prime} \mathrm{I}^{\prime}$, is not present in that context. In order to check this condition, the CONTRAST relation is always examined before the LIST relalion.

The cue set of the LIST relation is shown below:

[^26]1. Unit, contains a LIS"I cut phatse.

Score: 1
2. Both units contain enumeration conjunctions (first, second, third...). Score: I
3. Both subjects of Unit, and Unit ${ }_{2}$ confain NP cues. Score: 0.9
4. If both units are reported sentences, they mention the same:object. Score: 0.8
5. If the subjects of two mits are co-hyponyms, then the verb phrase of Unit, must be the same as the verb pluase of Unit, or Unit ${ }_{2}$ should have the structure "so + auriliary $+s b j$ ".

Score: 0.8
6. Both units are clatuses in which verb phases agree in tense' (e.g., past, present). Scorc: 0.5
7. Both mits are sentences in which verb phatases agree in tense (e.g., past, present). Score: 0.2

Fior example, the cue word "also" in the sentence "Fle also improved the firm's compliance procedures for trading" suggests a LIST relation between two discourse units ( 6.1 ) and ( 6.2 ) in the following case ${ }^{5}$ :
(6) |Mr. Cathicart is credited with bringing some basic budgeting to traditionally free-whecling Kidder. ${ }^{6.1}$ ] [l.le also improved the firm's compliance procechures for trading. ${ }^{6.2}$ ]

Since only cue $I$ is satisfied in this case, the final score is:
Dinal score $=$ Actual scorc(cue 1) $=$ Score(cue 1) * Score("also"). The cue word "also" has the score of 1 for the LISt rehation, so the linat score is $1: 1=1>0$. Therefore, the necessary conditions of the LIS'l relation are checked. Text spans ( 6.1 ) and ( 6.2 ) are two sentences, thos they are syntactically coordinate (condition 1). In addition, the subject of text span ( 6.2 ), "he", is a pronoun, which replaces for the subject of text span ( 6.1 ), "Mr. Catheart" (condition 2). There is me evidence of an irreasingly temporal seguence (condition 3), and also no signal of a CONTR $\wedge \mathrm{SO}^{\circ}$ relation (condition 4). Therefore, a LIST relation is recognized between text spans ( 6.1 ) and ( 6.2 ).

The cue word "cmed" is fouml in example (7):
(7) |But the Reagan administration thought ohtherwise, ${ }^{7.1}$ [and so may the Bush administration. ${ }^{7.2}$ ]
"And" is considered as a cue word because it stands at the beginning of clause (7.2) (cue 1). 'lie subjects of two text span, "the Reagan administration" and "ihe Bush administration", are co-hyponyms. In addition, clause (7.2) has the structure "so + anxiliary + .sbj". With the score of 0.3 for the cue word "and" in the LIST' relation, and with the satisfaction of cue 5 , the final score is:

As in the previous example, the necessary conditions of the LIS'I relation ane checked and then a $\mathrm{L} \mathrm{SS}^{\prime} \mathrm{I}^{\prime}$ relation is recognized between clause (7.1) and clatuse (7.2).

[^27]
## 5 Rhetorical Parser

## 5.I Rules for the Rhetorical I'arser

Rhetorical rules are constraints of text spans in a RSI' tree. They are used in a discourse parser to find rhetorical relations between non-elementary discourse uits. To formalize these rules, the following definitions are applied:

- $\langle\boldsymbol{T}\rangle$ is a text span that can be presented by a RS'T tree, a RS' C subtrec, or a lear.
- $\left\langle\mathrm{l}_{\mathrm{i}} \mathrm{T}_{\mathrm{j}}\right\rangle$ is a text span in which a rhetorical relation exists between two aljacent
 lation are Nucleus - Nucleus, Nucleus - Satellite, and Satellite - Nucleus. These cases are coded as $\left\langle T_{i} T_{j} \mid N N\right\rangle,\left\langle T_{i} T_{j} \mid N S\right\rangle$, and $\left\langle l_{i}{ }^{\prime} \mathrm{f}_{j} \mid S N\right\rangle$, respectively.
- Thet_rels $\left.\left.\left(<l_{j}\right\rangle,<l_{j}\right\rangle\right)$ is the rhetorical relations between two adjacent text spats $\left\langle\mathrm{I}_{\mathrm{i}}\right\rangle$ and $\left\langle\mathrm{I}_{\mathrm{j}}\right\rangle$, cach of which has a corresponding RST tree.

The paradigm rules in our proposed system are shown below:

## Rile 1:

Thet_rels $\left(\left\langle\mathrm{l}_{1}, \mathrm{~T}_{2} \mid \mathrm{NN}\right\rangle,\left\langle\mathrm{l}^{\prime}\right\rangle\right) \equiv$ rhet_rels $\left(\left\langle\mathrm{T}_{1}\right\rangle,\left\langle\mathrm{l}^{\prime}\right\rangle\right) \cap$ rhet_rels $\left(\left\langle\mathrm{l}_{2}\right\rangle,\left\langle\mathrm{l}^{\prime}\right\rangle\right)$.
If: there is a relation between two text spans $\left\langle\mathrm{l}_{1}\right\rangle$ and $\left\langle\mathrm{l}_{2}\right\rangle$, in which both of them play the mucleus roles,
Hen: the rhetorical relations betiveen the lext spant $<\mathrm{l}_{1} \mathrm{l}_{2}>$ and its right-adinacent tex span $T$ look only when they hold between $\left\langle T_{1}\right\rangle$ and $\langle\boldsymbol{T}\rangle$. and between $\left\langle\gamma_{2}\right\rangle$ and <'l'>.
Rule 2: rhet_rels $\left(\left\langle T_{1} T_{2} \mid N S\right\rangle,\langle\Gamma\rangle\right) \equiv$ het_rels $\left(\left\langle T_{1}\right\rangle,\left\langle T^{\prime}\right\rangle\right)$.

- Rule 3: rhet_rels $\left(\left\langle{ }^{\prime} \mathrm{T}_{1} \mathrm{~T}_{2} \mid \mathrm{SN}\right\rangle,\langle\mathrm{T}\rangle\right) \equiv$ rhet_rels $\left(\left\langle\mathrm{T}_{2}\right\rangle,\left\langle\mathrm{l}^{\prime}\right\rangle\right)$.

Rule 4: rhet_rels(<' $\left.\mathrm{T}^{\prime}\right\rangle,\left\langle\mathrm{l}_{1}, \mathrm{~T}_{2} \mid \mathrm{NS}\right\rangle$ ) $\equiv$ rhet_rels $\left(\langle\mathrm{T}\rangle,\left\langle\mathrm{T}_{1}\right\rangle\right.$ ).
Rules 1-d are based on the proposal of Maren (1997) which states, "If a rhetorical relation $R$ holds between two text spans of the tree witucture of a text, that relation also holds benween the most important mits of the constiment spans". From his point of view, Marcn (1997) and Corston-Oliver (1998a) analyzed relations between two text spans by considering only their nuclei.

However, the rule with the lefl side rhet_rels( $\langle\mathrm{T}\rangle,\left\langle\mathrm{T}_{1} \mathrm{~T}_{2} \mid \mathrm{SN}\right\rangle$ ), is not formalized in the same way as rules 1-4. This is a special case which has not been solved in (Maren, 1997) and (Corston-Oliver, 1998a): This case is illustrated by example (8) below:
(8) [With investment banking as Kidder's "lead business," where do Kidder's 42 -branch brokerage network and its 1,400 brokers fit in? Mr. Carpenter this month sold olf Kidder's eight brokerage ofliees in lilorida and Puerto Rieo to Merrill L.ynch \& Co., refucling speculation that Kidder is getting out of the brokerage business entirely. Mr. Carpenter denies the speculation. ${ }^{8.1}$ I ||To muswer the brokerage question, ${ }^{8.2}$ ] | Kidder, in typical fashion, completed a task-force study $\ldots .^{8.3}$ ]l


Fig. 2. The discourse tree of text (8)

The cuc "Fo (NVerb)" in lext spun (8.2) indicates a IURPOSIE relation between two text spans (8.2) and (8.3), while the VP cue "answer" in text span: (8.2) indicates a SO LUTIONHOOD relation between two larger text spans (8.1) and (8.2-8.3).

Example (8) shows that althoughtie content of the satellite does not detcrmine rlictorical relations of its parent text span, special cue phrases inside the satellite are still a valuable source. We apply a different treatment in this sitution than the males proposed by Mareu (1997), as shown below.

To recognize the relations rhet_rels $\left\langle\langle\bar{I}\rangle,\left\langle T_{1} T_{2} \mid S N\right\rangle\right.$ ), we firstly find all eue phirases restCPs in text span $\left\langle\Gamma_{1}\right\rangle$ which have not been used to create the relation between $\left\langle\mathrm{T}_{1}\right\rangle$ and $\left\langle\mathrm{T}_{2}\right\rangle$, then check inct_rels $\left(\langle\mathrm{T}\rangle,\left\langle\mathrm{T}_{1}\right\rangle\right.$ ) by using rest $C P$. If a relation is found, it is assigned to rhet_rels $\left(\left\langle\mathrm{T}^{\prime}\right\rangle,\left\langle\mathrm{T}_{1}{ }^{\prime} \Gamma_{2} \mid S N\right\rangle\right)$. Otherwise, rhet_rels $\left\rangle^{\prime} \mid\right\rangle$, $\left.<\Gamma_{1} \cdot \mathrm{l}_{2} \mid S N>\right) \equiv$ thet_rels $\left.\left(<{ }^{\prime}{ }^{\prime}>\ll l_{2}\right\rangle\right)$.

Applying this rule to example (8) with two text spans (8.1) and (8.2-8.3), we have restCl's = "answer" since the cue " $7 \%$ " is used for the relation between (8.2) and (8.3). The relation between (8.1) and (8.2-8.3) is recognized as SOLUTIONHOOD by using the cute "answer" in restCPs. In contrast, if we use the Marcu's rules, thet_rels $((8.1),(8.28 .3 \mathrm{SN}))=$ thet_rels $((8.1)$, (8.3)). That means the cue "atiswer" is not considered in this case.

### 5.2 Algorithm for Rhetorical l'arser

The idea for this algorithm was first introduced by Marcu (1996) and then further developed by Corston-Oliver (1998a). Marcu jroposed a shallow, cue-phase-based approach to discourse parsing. Marcu's system splits text into edus and hypothesizes theirs thetorical relations based on the appearance of cue phases. Then, all the RST trees compatible with the hypollesized relations are gencrated. Nilhongh Maricu's discourse parser was considerably advanced at that time, it still had weaknesses. When the number of hypothesized relations increases, the mimber of possible RST trees increase exponentially. Marcu's parser creates all possible pairs of text spans by permutation operations without considering of their usefulness. As a result, a huge amount of ill-formed trees are created.

The improved algorithm in $R \wedge S T \Lambda$, proposed by Corston-Oliver (1998a), solves this problem by using a recursive, backtracking algoritlın that produces only wellformed trees. If $R A S^{\prime} l^{\prime} \Lambda$ finds a combination of two text spans leading to an illformed tree, it will backtrack and go to anomer direction, thins reducing the search space. By applying the higher score hypotheses before the lower ones, R $\triangle S I \wedge$ tend to produce the most reliable RS'l irces first. Thus, RAST $\Lambda$ can stop after a number of RS'T trees are buill.

Althongli a tot of inprovement harl been made, R $\triangle$ S'I' ${ }^{\prime}$ 's sarch space is still not optinnal. Given the set of edus, $\mathrm{R} \wedge \mathrm{Si}^{\circ} \Lambda$ checks each pair of edıs to determine rlietorical relations. With $N$ edtas $\left\{U_{1}, U_{2}, \ldots, U_{N}\right\}, N(N-I)$ pairs of edus $\left\{\left(U_{1}, U_{2}\right)\right.$,
$\left(\mathrm{U}_{1}, \mathrm{U}_{3}\right), \ldots,\left(\mathrm{U}_{1}, \mathrm{U}_{\mathrm{N}}\right),\left(\mathrm{U}_{2}, \mathrm{U}_{1}\right), \ldots,\left(\mathrm{U}_{\mathrm{N} \cdot}, \mathrm{U}_{\mathrm{N}}\right)$ are examined. Them, all possible relations are lested in orcler to build RS' trees.

The search space in our system is much less than that in R $A S^{\prime}$ TA. Since only two adjacent text spans can be combined to a larger text span, only $\mathrm{N}-1$ pairs of edus $\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right),\left(\mathrm{U}_{2}, \mathrm{U}_{3}\right), \ldots,\left(\mathrm{U}_{\mathrm{N}-1}, \mathrm{U}_{\mathrm{N}}\right)$ are selected. Instead of eliecking every pair of edus as in RASTA, only N-I pairs of adjacent edus are examined by our system. The relalions recognized by this examination are called hypothesis relations (or hypotheses). They are stored in a hypothesis set. Relations in this sel will be ealled from the highest score to the lowest score ones.

To illustrate this idea, we consider a text with four cedtis $\mathrm{U}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \mathrm{U}_{1}$, and the hypothesis set II of these edus, $\mathrm{If}=\left\{\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right),\left(\mathrm{U}_{1}, \mathrm{U}_{3}\right),\left(\mathrm{U}_{2}, \mathrm{H}_{1}\right),\left(\mathrm{U}_{3}, \mathrm{U}_{1}\right)\right\}$. The set II consists of all possible relations between every pair of edus. $\left(U_{i}, U_{j}\right)$ refers to the hypotheses that involve two edus $U_{i}$ and $U_{j}$. Since two edus $U_{1}$ and $U_{3}$ are not adjacent, the hypothesis ( $\mathrm{U}_{1}, \mathrm{U}_{3}$ ) is not selected by our proposed parser. Figure 3 shown below displays the search space for the set H . lin this figure, cach edu $\mathrm{U}_{\mathrm{i}}$ is replaced by the corresponding number $i$.


Fig. 3. The search spaces for the hypothesis set $\left\{\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right),\left(\mathrm{U}_{1}, \mathrm{U}_{3}\right),\left(\mathrm{U}_{2}, \mathrm{U}_{3}\right),\left(\mathrm{U}_{3}, \mathrm{U}_{1}\right)\right\}$, RASTA visits all branches in the tree. The branches drawn by doted lines are proned by onr proposed parser ${ }^{6}$

Another problem with $\mathrm{R} \Lambda \mathrm{SF}^{\prime} \Lambda$ is that one $\mathrm{RS'}^{\prime}$ trec can be createl twice by grouping the same text spans in different orders. If derived hypotheses of the set H contain $\left\{\left(\mathrm{U}_{1}, \mathrm{U}_{2}\right),\left(\mathrm{U}_{3}, \mathrm{U}_{4}\right)\right\}$, RASTA will generate two different conbinations which create the same tree as slown below:

```
Join }\mp@subsup{U}{1}{}\mathrm{ and }\mp@subsup{U}{2}{}->\mathrm{ Join }\mp@subsup{U}{3}{}\mathrm{ and }\mp@subsup{U}{4}{}-> Join (U1, U2) and (U3, U4)
Join }\mp@subsup{\textrm{U}}{3}{}\mathrm{ and }\mp@subsup{\textrm{U}}{4}{}->\mathrm{ Join }\mp@subsup{\textrm{U}}{1}{}\mathrm{ and }\mp@subsup{\textrm{U}}{2}{}->\mathrm{ Join (}\mp@subsup{\textrm{U}}{1}{},\mp@subsup{\textrm{U}}{2}{})\mathrm{ and ((}\mp@subsup{\textrm{U}}{3}{},\mp@subsup{\textrm{U}}{4}{})\mathrm{ .
```

To deal with this redundancy problem faced by RAS'I'A, our algorithm uses a tracing method: The hypothesis set is updated ëvery time a new branch on the search tree is visited. When the parser visits a new branch, all nodes previously visited in the same level as that branch are removed from the hypothesis set. This action ensures that the algorithm does not recreate the same RS' tree again:

Let's assume that both R $\wedge$ ST $\wedge$ and our proposed parser slatt from the search space drawn by solid lines in ligure 3. Our proposed tracing niethod is explained in more detailed using ligure 4 below.

[^28]

Flg. 4. Rovics visit by the two parsers. RASTA visits all branclics in the tree. The branches trawn by dotted lines are promed by our proposed parser, which nses the tating mellod
()nr : proposed parser lirse visits the bramelies which start with node $(1,2)$ in level I. After visiting these branches, the parser continues to the branches which start with node $(2,3)$ in level 1 . Since all $\left.R S^{\circ}\right]^{\circ}$ trees or subtrees involving the mode ( 1,2 ) are already visited. this mode does not need to be revisited in the future. The branch that connects node $(2,3)$
in level 1 with node $(1,2)$ in level 2 is proned from the search tree. As a result, the route $(2,3) \rightarrow(1,2) \rightarrow(3,4)$ is not visited by our algorithm.

The discouse parser for our system is explained below.
$\Lambda$ set called Subtrees is used in out parser to store the temporal subtrees created during the process. Ihis set is initiated wilh all edus $\left\{\mathrm{U}_{1}, \mathrm{U}_{2}, \ldots, \mathrm{U}_{\mathrm{N}}\right\}$.

All possible relations that can be used to construct bigger trees at a time $t$ form a hypothesis set Potentiallh. If a hypothesis involving two text spans $\left\langle\Gamma_{i}, \Gamma_{j}\right\rangle$ is used, the new subtree, created by joining $\left\langle\mathrm{T}_{\mathrm{i}}\right\rangle$ and $\left.<\mathrm{l}^{\mathrm{j}}\right\rangle$, is added to the set Subtrees. The two small trees corresponding to the two text spans $\left\langle\bar{T}_{j}\right\rangle$ and $\left.<\bar{l}_{j}\right\rangle$ are removed from Subtrecs. 'Thus. all members of the set Shbtrees are disjoined amel their combination covers the catice lext.

Fach time the Subtres eltages, the hypollesis sed lobentiall becomes obsolede. The hypotheses in the l'otcmiall relating to the subtrees that are removed in the previous step camot be used. loor that reason, the hypotheses, which do not fit will the new Simbrees, are removed liom the Potentiallf. Alihough some hypotheses are not comsidered as candidates to construct RS'I trees at one romad of the parser, they may be nected later when the patser follows a different searching branch. Nll hypotheses computed by the discourse pating system are slored in a hypothesis sel called StoredIJ.

The Potentiall has not got any liypothesis to process the new subtree after the Subtrees changes. 'lhese relations will be added to the Potemiall after the relations between the new subtrec and its aljacent Irees are checked by using rules of the rule set.

When checking for a relation, the parser searches for that relation in the set of all hypotheses StoredII. If it is not found, the new hypollesis will be created by applying mules shown in Section 5.1. The liypotheses involving two nadjacent celus may be created during this process when the algorithm iries to create a rhetorical relation belween two larger-adjacent lext spans containing these edus.

The following algorilhtibriefly describes the steps in ont discouse praser.

Function parser (Subtrees, PotentialH, < $\mathrm{T}_{1}, \mathrm{~T}_{2}>$ ) (
$/^{*}\left\langle\Gamma_{1}, T_{2}\right\rangle$ is created in the previous step by the two text spans
$\mathrm{T}_{1}$ and $\mathrm{T}_{2}$ */
If the number of final RSP trees reaches a required limit, Exit.


```
 RST trees and Return.
 If <T', T T > = null (this is the first call to PARSER),
 NewH = all rhetorical relations between pairs of adjacent
 edus.
 Else, NewH = all rhetorical relations between < T1, T > > with its
 left adjacent text span Lir and its richt adjacent text
 span R'T.
Add all members of Newli to potentialH.
Remove all obsolete hypotheses from Potenti.alH.
While PotentialH is not empty (
 - AppliedH = the highest score hypothesis in Potentiallt.
 - Remove AppliedH from PotentialH.
 - Find two subtrees ST1 and ST
 pliedIf. The text spans corresponding to ST, and ST
 <'T'\}\rangle\mathrm{ ; and <' }\mp@subsup{\textrm{F}}{2}{}>, respectively.
 - Remove ST
 - Add the new subtree created by ST, and ST2 to Subtrees::
 - Call PARSER(Subtrees, PotentialH, <Ti,T,
}
Return
}
```


## 6 Conclusion

In this paper, we have presented a discourse parsing system, in which symactic information, ene phrases and other cohesive devices are investigated in order to define elementary disconrse units and hypothesize relations.

To determine relations between texts, we explored all variants of cue phrases, combining witlo other feasible cohesive devices. It was shown that the position of cue phases in a sentence, Noun-l'hase cues, and Verb-plorase eues are good predictors for discovering thetorical relations. In the case where che phrases are not available, other text collesive devices (e.g., symonyms, and antonyms): eam be a reasomable sub)stitution.

The constriction of a discourse parser from the set of elementary discourse units was further amalyzed. We have proved that the satellite in a thetorical relation sometimes can provide good relation indications. This notation is implemented in creating the mule set for the parser. Based on the adjacency constraint of discourse amalysis adapted from (Manm and 'Thompson, 1988), several improveninents have been made to reduce the algorithors complexity and at the same time improve its elficiency.

## References

I. Bouchachia, A., Mittermeir, R., Pozewaunig, H.: Document kentification by Shallow Scmanlic Amplysis. NLDI3 (2000) 190-202
2. Catson, I. and Mate, D.: Discourse Tagging Manail. ISt Tech Report. ISI-TR-5d.S (2001)
3. Conston-Oliver, S.: Computing Represcmations of the Sinmethe of Whitten Discomese. Phb) Thesis. University of Cialifomia, Smuta Babara, C $\wedge$, U.S.A (1998a)
4. Corston-Oliver. S.: Jcyond string matching and cuc planses: lmproving efficiency and coverage in discomrse amalysis. In: Feduatd Flovy and Dragomir Radev: The Spring Symposium. $\wedge \wedge \wedge 1$ Tcchnical Repont SS-98-06. $\wedge \wedge \wedge 1$ Press (1998b) 9-1.5
5. Gumdel, J., Ilegarty, M., Bonthen, K.: Information structure and promominal reference to clamsally immoneal cmitics. In: ESSL.LI Workshop on lnformation Stucfuc: Discourse Stracturc and Discourse Scmantics. IIclsinki (2001)
6. Hobbs, J.: On the Colicrence and Stucture of Discourse. Techmical Report CSI.J-85-37, Center for the Study of Language and Information (1985)
7. Hovy, E. H.: Parsimonious and profligate appronches to the question of discourse struc-
 Gencration. Pittsburgh (199() 128-136
8. Knot, A., Dilc, R.: Using linguistic phenomena to motivate a sict of cohercnce relations. Discourse Processes 18 (1995) 35-62
9. Komagata, N.: Eintangled Information Stucture: Analysis of Complex Scntence Structmes. In: ESSSLILI 2001 Workshop oil luformation Struchinc. Discourse Structure and Discourse Semantics. Helsinki (2001) 53-66
10. Nam, W. C. ant Thompson, S. A.: Rhetorical Structure Theory: Toward a Functional Theory of Text Organization. Text, vol. 8 (1988) 243-281
11. Marcu, D.: Buiteling Ijp Rhetorical Structure Trees. In: Procecdings of the Thirtecnth National Confercnce on Artificial Intelligence ( $\wedge \wedge \wedge \mathrm{I}$ ), volume 2 (1996) J069-1074
12. Marcu, D.: The Rhetorical Parsing, Summarization, and Generation of Natural Langhage Texts. PhD Thesis, Department of Computer Scicnce, University of Torsnto (1997)
13. Marcu, D.: $\wedge$ decision-based approach to rhetorical parsing. The 37 in Ammal Mecting of the Association for Computitional Linguistics ( $\wedge$ CL). Maryland (1999) 365-372
14. Maren, D., B: hihahi. A.: An Unsupervised Appoach lo Recognizing Discomse Relations. In: Irocectings of the 40 th Ammal Mceting of the Association for Computational Linguistics ( $\wedge$ Cl). Pliladelpisia, l’^(2002)
15. Polanyi, L.: The Linginstic Structure of Discourse (1995)
16. Pocsio, M.. Di Eugenio. D.: Discourse Structure and Anaphoric Accessibility $\mathrm{f}_{\text {I }}$ In: ESSLI.I Worksisop on lnformation Structurc, Discourse Structure and Discourse Schant(ics. Ilelsinki (200I)
17. Redeker, G.: ledeational amd pagmatic markers of discourse structurc. Jommal of Pragmatics (1990) 367-381
18. RSl' Disconrse licebank - http://www.ke.upenuedu/Catog/LDC2002107.hanl
19. Salkic, R.: Text and discomse analysis. London, Ronlledge (1995)
20. Webber, 13. et al.: D-1;l^AG System - Discourse Parsing with a Lexicalized Tree Adjoining Grammar. In: I:SSLI, I Workshop on lnfomation structure, Discourse structure and Discourse Scmantics (2001)
21. Webber, B.. Knolt, ^.. Stone, M., Joshi, A.: Discourse Relations: $\Lambda$ Structural and Presuppositional Account Using Lexicalised TAG. Mecting of the Association for Computational Lingnistics, College Park MO (1999)
22. WordNct. hifp://wow.cogsci. princeton.cdu/-wni/index.shtmi

# AUTOMATED DISCOURSE SEGMENTA'TION BY SYNTACI'IC INFORMATION AND CUE PIIIRASES 

Iloong Lec Thamh, Gectha Abeysinghe, and Christian lluyck School of Computing Science, Middlesex University.<br>The Burroughs, London NW4 4BT, UK.<br>(H.1.e, G.Abcysinghe, C.Huyck)@mdx.ac.uk


#### Abstract

This paper presents an approach to automatic seginentation of text written in English into Elcmentary Discourse Units (EDUs) ${ }^{1}$ úsing syntactic information and cue phroses. The system takes docanmells will syntactic' itformation as the input and generates EDUs as well as their nucleus/sotellite roles. The experiment shows that this approach gives proinising results in comparison with some of the prominent research relevant to our approach.


Key Words: Natural Language Processing. Discourse Segmentation, Syntactic Information, Cuc Phrases.

## 1 Introduction

Previous research in discourse has shown that the discourse strueture of a text is construeted from smaller dis z course segments ([1]. [2]). According to Mann and Thompson [1], all discourse units should have independent functional integrity, such as independent clauses. The smallest discourse unit is called an Elementary Discourse Unit (EDU) [3].
Discourse has been nutomatically segmented using disparate phenomena: lexical cohesion ([4], [5], [6]), discourse cues (2], [3], [7], [8]), and syntactic information (9], [I0]). However, the criteria to indicate the exact discourse seginent boundaries are still not certnin.
The weakness of the lexical cohesion approach is that it camot guarantec independent discourse mnits, which is the essential condition for discourse segmentation. Discourse cnes, such as cue phrases, pauses, and referential identities (13], (11]) can be a solution for this problem. Marcu's shallow analyser [3] splits text into EDUs by mapping cue phrases and punctuation marks. However, this approach cannot correctly identify boundaries in complex sentences, which do not have nny lexical discourse cues.
Passonneau and Litman [7] proposed two sets of algorithms for linear segmentation based on the linguistic features of discourse. The first set is based on referential pronoun phrases, cue words and pauses. The second set uses error analysis and machine learning. The machine learning method requires training, which is heavily dependent on the manually annototed corpora. A large dis.

[^29]course corpus for such $n$ training pirpose is difficult to find. ${ }^{2}$
One of the well-organised sysicm, whicti used syntactic approach, wns done by Corston-Oliver [10]. Ie defined $n$ rule set for discourse scgmentation basing on grammaticnl information. Ilowever; the computationol algorithm used by him to segment text is not mentioned in his thesis. In addition, Corston-Oliver's system does not detect the cases when strong euc phrases make noun phrases become EDUs.
Considering the problems inentioned above, we propose a new method that, combines the syntactic appronch with the discourse eue approach. Sinee a typical discourse unit is an independent clause or a simple sentence [1], the text is first split into EDUs using syntactic information. To deal with the case where strong cue phrases make o noun phrase become a sépnrate EDU, a further segmẹntation process is undertaken afler seghtititig by syntax. Wie purpose of this process is to detect strong cuc phrases. These processes will be discussed in more delail in the following sections.
The rest of this paper is organised as follows. The first step of our sysiem (Step 1), discourse segmentation by syntax, is deseribed in Section 2. Discourse segmentation by cue phrases (Step 2) is represented in Section 3 in Section 4, we describe our experiment and discuss the result we have achicyed so far. Section 5 coneludes the paper and delineates the possible fiture work of this approach.

## 2 Discourse Segmentation by Syntax \& Step 1

 The discourse segmentation by syntax module takes parsed documents from the Penn Treebank [13] as its isput. One sentence is analyzed at each iteration of the segmentation process.' This module not only splits sentences into clauses, but also provides primary information abont discourse relations omong EDUs, such os which EDUs should have a discourse conmection, and the status assigned to them (nucleui and sateflites).[^30]
### 2.1 Segmentalion Prineiples

In Step 1, the principles for scgnenting sentences into discourse units are bosed on the symactic relations between words. These principles are based on previous tesearch on discourse segmentation [10], [14]). The main principles used in our system are shown below:
(i) The clanse that is attached to n nom phrase (NF) con be recognised as an embedded witt. If the clonse is a subordinate clanse. it must contain more than one word.

## For example:

(1) [Mr. Silas Cathcas buitt a slonpping mall on some land][ he owns.]
(ii) Coordinate clanses and aonrdinnte semences of a complex semence are EDUs.

## For example:

(2) [The firn's hrokerage force has been simmed] and its mergers-andiacquisitions staff increased to a iccorel 5.5 people. 1
(iii) Coordinate clanses and coordinate alliptical clanses of werb phrases (VPs) are EDUs. Coardinute VPs thut share a direct object uith the main IT' are not considered as a separate discourse segment.
For example:
(3) [The firm seemed to te on the verge of a neltalown,]| racked by interanl squabbles and defections.
(iv) Clausal complements of reported verbs uml cognitive verbs are EDUs.
For example:
(4) (Mr. Carpenter says)] That Kitder will finally tap the iesources of GE.]
Using the Penn Trecbank's symactic assigmments [15], prineiple ( $i$ ) eorresponds to syntactic chnins ( $i=n$ ) and ( $i \cdot b$ ) as shown below:
(i-a) (NP|NP-SBJ <text1> (SBAR|RRC<tcxt2>))
(i-b) (NP|NP-SB\} <lext|>(PRN <text2> (S<tcxt3>) ))
SB3, SBAR, RRC, FRN, and S stand for subject (SBl), subordinate clause and relative clause (SBAR), reduce relative clause (RRC), parenthetical (IRN), and sentence (S) respectively. Syntactic chain (i-a) means a subnrdinate clause or a reduced relative clanse is insite a nomp phrase. <textl>, <text2>, and <text3> are the context of a noun phrase. For example, consider the senience "The land he owns is very valuable." The syntactic chaill which represents the noun phrase "The land he nums" in the nbove sentence can be written as (NP The land (SBAR he owns)).
If a clause, which is attached to a noun plarase, is headed by a preposition, then the syntactic chain of the nown phrase that corresponds to principle (i) is:
(i-c) (NP|NP-S|3) <lcxt|> ( 1 PR <lext2> (S|VP <lcx|3>) ))
In chain (i-c). PP stands for prepositional phrase. According to principle (i). <tex12> in synactic chain (i-a), and <lext2> combining with <lex13> in syntactic chains (i-b) and (i-c) are recognised as cmbedded units. To sanplify syntactic chains (i-b) and (i-c), the system creates iwo labels named PRS (parenthelical-sentence) and PS (prepositional-sentence). These two labels are described respectively in (i-d) and (i-c) below:
(i-d) $(P R N<\operatorname{lex} 12>(S$-tex $13>)) \rightarrow($ PRS <tex $2-3>)$
(i-e) $(\mathrm{PF}<$ text2> $(\mathrm{S} \mid \mathrm{V} P<$ text $3>)) \rightarrow(\mathrm{PS}<$ tex|2-3>)
$" \rightarrow$ " can be interpreted as "convert to". <text2-3> is the conentenated string of <lext2> and <text3>. By using syntactic clanins ( $i-\mathrm{d}$ ) and ( $\mathrm{i}-\mathrm{c}$ ). syntactic chains ( $i-n$ ) to ( $i-$ c) can be grouped into noe symtactic chan as follow:
(i-a') ( NP|NP-SI3] <́textl> (SBAR|RRC|PS|PRS <tex+2'>))
If should be noted inat $\left\langle\mathrm{tex} 12^{\prime}\right\rangle$ in (i-a') is $\langle t \mathrm{cx} 12-3\rangle$ in ( $i-$ d) and (i-e). Due to space constraint, we only represent syntaclic chains of the segmentation principies (ii), (iii). and (iv). In the syntactic chains corresponding to principles (ii). (iii), and (iv) as shown below, Sx stands for basic clause types such as subordinate clause and refative clause (SBAR), participinit clause (S-ADV).... "And|butfor..." stands for a corimuction stich as "and", or "bu", or "or".
The synaclic clainof ofincighe (ii) is:
 <text3>))
The syntactic chnin of principle (iii) is:
(iii-a) (VP (VP <lexil>) and|but|or... (VF|Sx|RRC|PPS <lext2>)) :
The syntactic eloains of principle (iv) is:
 <(ext3>)))
(iv-b) ( $S$ ( Nr-S[3] <lexil>) (VP <lex12> (SI3AR <text $3>$ ) and|but|or... (SBAR <lex|A>)))
<textl> in (iv-a) and (iv-b) are not the pronom "it".
(iv-c) ( $S x$ ( $S x<t e x t \mid>$ ). ( NP'SBJ <text2>) ( VF $<(\mathrm{cx} 13>$ ))
(iv-d) (Sx (Sx<textl>):(Vr <text2>) (Nr-S13J < $($ exij>))
(iv-c) ( $S x$ ( NP-SBJ <lextl> ). ( $S x$ <text2> ). ( VD <text3>))
(iv-f) (Sx (VP atcxtl>) (NI-SI3. <tcxt2>) . ( $S x$ <(ex13>))
<text3> in (iv-c), $-i \operatorname{cox} 12>$ in (iv-d), <text3> in (iv-e), and etextl> in (iv-f) are reported verbs or engnitive verbs.

### 2.2 Segmentation Algorithm

The input to this algorithm is the syntactic string of a sentence, in which <text> is replaced by a token $\# x, y \#$ (where $x, y$ is the begits and end position of <text> in the sentence being annlysed). Ench Inken of the syntactic string of the sentence is separated by a space. For exa tr ple, the symiactic string of the sentence
(5) "The book I read yesterday is interesting."
is:
(Sa) ((S (NP-SB) (NR The book) (SBAR I read yesterday)
(VP is (AD) interestingl)).)
The input to the segmentation algorithm in this case is:
(5b) ( (S (NP.S13J (NP \#0.7\#) (SBAR \#9.24\#) ) (Vp \#26.27\# ( AI)JP \#29.394))).)
The segmentation algorithm uses a stack in store tokens of the syntactic string during the reading process. It pushes and pops tukens onto nut off the stack in arter to analyse them. The algorithm ends when the symactic string is reduced to the string "( (S \#x,y\#) . )". The steps of the alg orithmare described below:

| Sinck <br> $($ Ton of stack $) \Rightarrow$ | Input string | Comparen string | Operotinns |
| :---: | :---: | :---: | :---: |
|  |  |  | Pushing "(" onto the slack |
| ( , \% | $\begin{aligned} & \text { (S (NP.SDJ (NP } \# 0,7 \sharp) \text { (SBAR } \# 9,24 \#) \\ & \text { (VP } \# 26,27 \#(\text { ADJP } \# 29,39 \#))) .) \end{aligned}$ |  | F'ushing "(") anto thic siack |
| 1 |  | - i | Pushing 'S' onto the stack |
| C, |  |  |  |
| $\begin{aligned} & ((\mathrm{S}(\mathrm{NP} \cdot \mathrm{SB})(\mathrm{NF} \# 0.7 \#) \\ & \text { SBAR } \# 9,24 H)) \end{aligned}$ | (VP \#26,27\# ( ^DJP \$ 29,39\#) ) . ) |  | Popping off the stringe on lon of the siack, gencrating a compared string. |
| ( S | (VP \#26.27\# ( ADIP \#29.39\# ) ) ) .) | $\begin{aligned} & (N P \cdot S B J(N P H 0.7 \#)( \\ & S B A R H 9,24 \#)) \end{aligned}$ | Mapping principle 1 , splitling text (creating discourse segments), encoding the compared string, pushing it back onto the stack |
| ( (S $(\mathrm{NP} \cdot \mathrm{SB}]+10,244)$ | (VPH26,27\# (AD)P $+29,394$ ) 2 ) $)$ |  | Pushing "(" onlo the stack |
| (CS(NPSB) 40.244$)($ | VP $626,27 \%$ (ADJP $+29,394$ ) ) ) . |  | Pushing "VP " onto the stack |
| $\left(\left(S(N P \cdot S B){ }^{(10,2 A H)}\right)(\mathrm{VP}\right.$ | \#26,27\# ( 10 JP \#29,39\#) ) . ) |  | Pushing "h26,27\#" onlo the siack |
|  |  |  |  |
| $\begin{aligned} & \left(\begin{array}{l} \text { ( } \mathrm{NP} \text {-SBJ } \# 0,24 \#) \text { I VI } \\ A 26,27 \#(\text { NDIP } \& 29,39 \#)) \end{array}\right. \end{aligned}$ | ).) | - | Fopping off the sirings nn inp of the siack. gencrating a compared string |
| ( (S ( NP.SB] \%0,24*) | ).) | $\begin{aligned} & \text { (VF } \# 26,27 H(\text { NDJP } \\ & \#(29,39 \#)) \end{aligned}$ | No principle salisfies, cneoding the cotiparcd siring, pushing it back onto the stack |
| $\begin{aligned} & (1 \mathrm{~S}(\mathrm{~Np} \cdot \mathrm{SH} \mathrm{Hg}, 24 \mathrm{H})(\mathrm{VP} \\ & 426,39 \#) \end{aligned}$ | 1.) | - | Putitig ") ' onto the slack |
| $\begin{aligned} & \left(\begin{array}{l} (S(N P \cdot S B) \\ 426,39 H) \end{array}\right. \\ & \hline \end{aligned}$ | .) | - | Popping off the strings on top of the stack, gencrating a compared string |
| ( | ) | (S (NP-SB3] $\# 10.24 \#$. (VP \#26,39\#) | No principle salisfics, encoding the compared string, pushing it back onto the stack |
|  |  |  | Pushing ", onio tho stack |
| ( $\mathrm{SH} \# 39 \%$ ) | 1 |  | Puthitit onlo the siack |
| ( $(540,39 \#)$. |  | , | STOP |

Table 1. Progress of Segmenting Sentence (5) Using Syntactie Information

1. Read characters in the input string from lef to right and put them onto a stack, until a space is found.
2. Repeat Step 1 until two consecutive close brackets are found on the top of the stack.
3. Pop off strings from the top of the stack into a separate string called "compared string" until the number of open brackets and the number of close brackets in the compared string are cqual.
4. Compare the compared string with the sample syntactic strings (e.g., the syntactic string (a')) to check whether they matel or not.
4a. If they match, split the text corresponding to the compared string based on the segmentation principles. Store the information about the split text in the system. Go to Step 5.
4b. If they do not match, go to Step 5.
5. Encode the compared string as a position tag $\# x, y \#$ and push it back onto the stack with its syntactic information.
6. Repeat Step 1 to Step 5 mitit the input string is empty and the stack contains the following tokens, considering from the bottom of the stack: "(", "(", "S", "\#x,y\#", ")", ".", ")".
Table $\mathbf{i}$ represents the segmentation progress of sentence (5). Due to space constraints. some sieps of the segmentation protess ne skipped.
The output of the segmentation aigorithon lior sentence (5) is twn segments, "The bonk" and 'q reod yesterday'" which contribute to one relation. The text "is interesting"
is not in any text spans of the output. Another procedure, which is called the post process, will be called after the segmentation algorithim in order to deal with this problem. This procedure is described in Scetion 2.3.

### 2.3 Post Process

The purpose of this post process is to refine the output of the segmentation algoritim described in Section 2.2 . There are two situations which need the post process. The first situation is liat the segmentation of embedded units makes the text fragmented. For example, sentence (5) after being processed by Step 1 will have the structure as follows:
(6) The book $\frac{1 \text { read yesterday }}{\mathrm{N}} \frac{\text { is interesting. }}{\mathrm{S}_{\mathrm{j}}}$

The text "is intercsting" cannot be a single EDU because it does not have independent functional integrity. Meanwhitc, the embedded clause " read yerterday" provides additional information for the noun phrase 'the baok". "The book" is the nucleus ( N ) (tite most important part in
 relation. In this case, a relation called SAME-UNIT ${ }^{5}$ is

[^31]created hetween "The book $I$ read yesterday" and "is interesting". Both text spans "The book / read yesterthy" and 'is interesting' lave an cqually important mes in contributing to the scotence "The brok / read yesterdey' is interesting". Therefore, both of them are meleus in the SAME-UNIT relation.


Fit. I. Discourse Structurc of Example (6)
The post proeess's operation depends on the position of the embedded unit. When the satelite of a relation is near on UNKNOWN text spati, a SAME-UNIT relntion is msigned between the UNKNOWN text span and the text span that contains the nucleus and satcllite. Otherwise, when the nucleus of a relation is adjacent to an UNKNOWN Iext span, the UNKNOWN text span is merged with the nucleus, as in example (7) helow.


The segmentation by synax algoritim finds two segments in the sentence (7), "some lond" and "he owns", hut the actual segments should be 'Mr. Silas Cathcart built a shopping mall on some land" and "he owns".


Fig. 2. Discourse Structure of Example (7)
Fig. 2 presents the discourse structure of the sentence in example (7). "Mr: Silar Catheart built a shopping mall on some land" is the nucleus: "he owns" is the satellite in the relation. The dotted line shows the syntactic relation between "some land" and "he onns". The solid line shows a diseourse relation between the two actual discourse mills, after the sentence has been processed by Step 2 .
The sccond situation needing post processing involves the placement of adverbs in FDUs. Some adverbs, which should stand at the beginning of the right clause, are put at the end of the left clause by the process in Step I. This situation is detected ansl corrected by the procedure in Step 2. Examples (8) and (9) show such a situation. The clause "they did not have enough people" is split from the
sentence "They had to give ti, that compaign, matnly because they did not have enough people" by syntactic information in Step 1. However, the correct seginentation in this case should be 'mainly becanse they did not have enongh peaple", not "they did not have enaugh people". After undergoing lie prucess in Step 2, the boundary ereated by Step 1 is noved backward to the position between the comma and the two adverbs 'mainly because", as shown in exa nqle (9).
(8) They had to give up that campaign, mainty tecause] [they did not have cnough neople.]
(9) [They had to give up that campaign.] [mainly because they did nol have enough people.]
The input to the post processing procedure is the output of the segtuentation algorithm in Section 2.2. The nutput of the post processing pirocedure is the discourse segments after refining boundaries.

## 3 Discourse Seǵmentation by Cuc Phrases Step 2

Several noun phrases are considered as EDUs when they are accompanied by strong cue phrases. Thesc cases cannot be recognised by syntactic information. Therefore. amother segmentation process is integrated into the sysicm to deal with such cascs. This process finds strong enc phrases from the output of Step 1 . When a strong cue phrase is found, the algorithm scẹks the end boundary of the noun phrase. these end boundaries can be punctuations such as a comma, semicolon, or full stop. Normally, a new EDU is created from the beginning positiof of the cue phrase to the end boundary of the noun plarase. Wowever, this action may create incorrect results:
(10) [In 19g8, Kidder cked out a $\$ 46$ million profit. mainhy][becausc of severc cost cutting.] .

The correct segmentation for the sentence given in example (10) is generaled by Step 2 , and is given in example (11)bclow:
(11) [in 1988. Kisder eked out a $\$ 46$ milliont Profit.][main!! because of se vere cosil cutting.)

Such $n$ situation happens when an adverb slands before the eue phrases. Step 2 deals with such cases, by lirst deteeting the noun phrase, which will be an EDU. and then checking for the appearance of adverbs before a strong cue phrase. If an adverb is found, the new EOU is recognized from the beginning position of the ndverb th the end boundary of the nume pitense. Otherwise, the new EDU is split from the beginning position of the cue phrase to the end boundary of the noun plirase, for example:
(12) [Aecoiding to a Kinder Woild story aboul Mr. Megnsgel.] [all the firm has to do is "position ourselves more in the deal flow.")

## 4 Evaluation

Eight tocuments of thi: RS'T Discomse Trechank [16] are used in the experiment. These documents nre Wall Street Joirnal artictes from the I.DC Trecbank [13], whieh liave been annotated with cliscourse structure by human. The system's iuput is the corresponding syntaclically parsed
documents taken from the Penn Trecbank. The documents used in this experiment consists of 166 sentences with 3810 words. Most of the sentences are tong and conplex. The evaluation is done by comparing the EDUs assigned by the system with the F:DUs from the eight RST dociments mentioned aboye. Two EDUs atc considered as simitar if they have the same boundarics. There are 474 EDUs assigned by the system and 487 EDUs created by human, in which 386 EDUs of these two EDU sets are similar. Thus, there are 88 EDUs crented by the system, which are not assigned by human. There are 101 EDUs ereated by human, whicb are not assigned by the systen. The slandard information retrieval mensurements (precision and recall) nre used for evaluation. The precision is the proportion of assignments mate that were correct. The recall is the proportion of possible assignments that were aetually assigned. The precision aud the recall of our experiment are:

$$
\text { Precisitm }=\frac{386}{386+88}=81.4 \% \quad \text { Recall }=\frac{386}{386+101}=79.3 \%
$$

These measuremetris depend on several factors. The primary factor is the accuracy of symactic information. the incorrectucss syntactic information will decrease the accuracy of the segmentation's result. The syntactic documents from the Penn Trecbank, which are used as the input of our system, also contain analytical crrors. Since these crrors in the Penn Trechank are rare, this factor does not have a great effect ous our system's performance.
The sceond factor is the difference in human judgenents. One person does not always agrec with on segmentation [17]. Tice text in the RST cormes is analysed into very small text spans, which is not how our system seginents. For example, consider the segmentation of the following sentence in the RST comus:
(13) [Fivery order shall be presented to the l'resident of the United States; \} [and\} lbefore the same shall fake ef. fect, $]_{9}$ [shall be approved by him, $]_{10}$ [ or $]_{11}$ [being dis. npproved by him.) ${ }_{12}$ [shall be sepassed by two-thirds of the Sennle and House of Represcntetives. It,


Fig. 3. Discourse Structure af Example (13), (icting from The RST Discourse Corpus'

[^32]The sentence in example (13) is treated differently by our system, which is shown in example (14):
(14) [Every orter shail be presented to the President of the United States:], [and before the same slatl inke effect, $]_{1 s}$ [słall he approved hy him, $]_{16}$ [or heing dismpproved by him, |o [shat lee repassed by iwn-lhideds of the Senate and House of Repuesentatives. Ins $^{2}$


Fig. 4. Discourse Structure of Example (14), (icincrating hy Our System

Over-segmentation is prevented as much as possible in our system because it makes discourse amalysis more complicated. The appearance of new discourse units not ouly affects the EDUs next to them, but also the EDUs in other parts of the text. Since the merging of discourse conjunctions with their clauses docs not change the general meaning of this discourse structure, we analyse the sentence in a different way than that in the RST corpus. This treatment causes some differenec between the butput of our system with the data from the RST corpus.
As discussed above, incorrect syntactic information and the disagreement it human judgements reduce the system's perfornance. We accept this reduction becanse not all discourse struetures in the RST corpus are absolutely correct. Several discourse segments in the RST eorpus are not aceepted by other resenseliers.
Since researchers are still mot certain about the criteria to indiente the exact discourse segment boundaries, and there is no stantard benchmark, it is difficult to compare one researeher's result with others. Nonetheless, Okumura and Honda [6] carricd out experiments on three texts. which were from exam questions in Japancse. The average precision and recall ratcs of that experiment were $25 \%$ and $52 \%$ respectively. The best precision and recall in the series of Passonnean and Litiman's experiment [7]. which used macline learning approach, werc $95 \%$ and $53 \%$ respectively. Marcu [18] carried out experiments oll a corpus of 90 tiscouirse trecs, which werc built manmally from the text in the Message Understanding Conference (MUC) coreference corpus, the Watl Strect Journal (WS.I) corpus, and Brown corpus. If the system was trained in all corpora, the precision and recall for testing on WSJ corpus were $79.6 \%$ and $25.1 \%$. These values are lower than our system. The precisinn and recall for MUC corpus were $96.9 \%$ and $75.4 \%$; those of Brown corpus were $810.3 \%$ nud $44 . ?$ ? in ispectively. Ahlomple sevent walls reported in [7] and [18] are higher than our result, the cfliciency of these systems should not be judged purely on theses numbers since they depend on other factors
such as the size of training corpora, the corpora's d)mains, and the accurncy af human annotation. Meanwhile, the performance of our system is acceptahle because our system does not need any training.
Oor system's performance is promising when compared with the systems mentioned above aad with other discourse segmentation systems known io us. However, more experimenting using a larger corpus is needed in order in get a more reliable evaluation.

## 5 Conclusion nnd Future Wark

In this paper, we have presented a discourse segmentation method based on syntax and cue phrases. The discourse segmenter consists of two modules. Firstly, text is split based on syntactic information, aiming at receiving discourse units with independent functional integrity. Secondly, noun phrases that have the role of EDUs are recognised by detecting strong enc plrases from text.
Our preliminary experiment shows that this method atains promising results without any traising. The experimeotal result is encouraging in comporison with existing segmentation methods. However, the system's performanee can still be improved hy the following ways: investigating a method to reduce the effect of syntactic information; and refinting the ates for segmemation by syntax and for post processing. We leave these tasks for future work. Future work also includes integrating a symtaetic parser with the diseourse segmenter. Since there are many advanced syntactic parsers currently available, this problem can be easily solved.
A discourse parser cannot provide good results without accurate discourse segmentation. Therefore, this research is important in building discourse analysing systems. which have a wide range of applications inclucling text summarisation.

## References

[1] Mann. W. C. and Thompson, S. A., Rheterical Structure 'liscory: Toward a Filuctional Theory of Text O ganization, 7ext, 8, 1988, 243-281.
[2] Grosz., B.J. and Sidner C.L., Attention, intentions and the structure of discourse. Computational linguistics, 12, 1986, 175-204.
[3] Marcu. D., The Rhetorteal Parstng. Stmmartsation. and Generation of Natural Language Terts (Ph.D. Thesis: Department of Computer Science. University of Toronto, 1997). :
[4] Morris, J., \& Ilirst: G., Lexical Cohesion Computed by Thesamral Relations as an Indicator of the Structure
of the Texi, Computational Linguistics. 17. 1991, 21. 28.
[5] Kozima, II. Computing lexical cohesion as a tool for text analysis (Ph.D. Thesis: Giraduate School of Elec-tro-Combunicalinis, University of ElectroCommunications, 1994).
[6] Okımura. M. and Hondn, T., Word Scnse Disambiguation and Text Segmentation Based on Lexical Colesion, Proc. of the 1Sth Conf. on Computational Linguistic: (COLING-94). 2, 1994, 755-761.
[7] Passonneat, R. J.; and Litman, D. J., Discourse Scgmentation by Iluman and Automaled Means, Compurationn/ Linguistics, 23(1). 1997, 103-139.
[8] Forbes. K. and Miltsakaki, E., Empirical Studies of Centering Shifts and Cuc phrases as Embedded Scg. ment Boundary Markers, Penn Working Papers in Linguistic.s, 7(2), 2002, 39.57.
[9] Batliner, A., Kompe, R.. Kießling, A.. Niemann. II., and Nöth, E., Syntactic-Prosodic Labeling Of Large Spontancous Speech Data-Bascs, Proc. of ICSLP. USA, 1996.
[10] Corston-Oliver, S.. Computing Representotions of the Structure of Written Discourse (Ph.D. Thesis: University of Califurnia, Santa Barhara, C^, U.S.A. 1998).
[11) Webber, B. L., Structure and ostension in the interpretation of discourse deixis. Language and Cognitive Processes, 6(2), 1991, 107-135.
[12] Carlson. L., Marcu, D., and Dkerowski, M? E., RST Discourse Tre cbarik, LDC, 2002.
[13] Marcus. M. F.. Santorini, B. and Marcinkicwic?. M.A., Penn Treebank II, IDC, 1995.
[14] Carlson, L. and Marcu, D., Discourse Tagging Manual, ISI Tech Report, ISI-TR-545, 2001.
[15] Bices, A. el al., Bracketing Guidelines for Frecbank II Style, Pem Treebank Project, 1995.
[16] Carlson. L., Marci, D., and Okurowski, M. E., Eight documents of the RST Discomse Treebank (from hip://www. isi. edul/\%7Emarcu/, 2002)
[17] Litman, D. J. and Passonnean, R. J.. Intention-hased segmentation: Uuman reliability and correlation with linguistic cues. Proc. nf the 3/st Anmal Meeting of the Association for Computational Linguistics. 1993. 148:155.
[18] Marcu, D.. A Décision-Based Approach to Rhetorical Parsing. The 37 th Anmal Meeting of the Associa. tion for Comphtatiomal Lingmisticr (ACL). Maryland. 1999, 365.372.

# Generating Discourse Structures for Written Texts 

Iluong Le'Thanh, Geetha Abeysinghe, and Christian Huyck<br>- School of Compriting Science, Middlesex Insiversity<br>The Burroughs, London, NW4 4BT, Uniled Kiingdom<br>\{H.Le, G.Abeysinghe, C.Huyck\}@mdx.ac.uk


#### Abstract

This paper presents a system for allomalically generating discourse structures from wrilten text. The system is divided into two levels: sentence-level nutd lext-levet. The sentence-level discourse parser uses symaclic information and cue plarases to segment sattences into elementary discourse units and to generate discourse structures of sentences. At the text-level, constraints about textual adjcency and texiual organization are integrated in a bean searelt in order 10 generate best discourse structures. The oxporiments were dane with documents from the RS' Discourse Trecbank. It shows promising results in a reasonable scarch space compared to the discourse irecs gencrated by human analysts.


## 1 Introdinction

Many recent studies in Natural Language Proxessing have paid attention to Rhetorical Structure Theory (RST) (Mnm and Thompson 1988; llovy 1993; Marcu 2000; Forbes et ni. 2003), n nethod of structured description of text. Although rietorical structure has been found to be useful in many fields of text processing (Rutledge et al. 2000; Torrance and Bouayad-Agha 2001), only a few algorithms for implementing discourse analyzers have been proposed so far. Most research in this field concentrates on specific discourse phenomena (Schiffrin 1987; Litman and Hirschberg 1990). The amount of research available in discourse segmennation is considered small; in discourse parsing it is even smaller.

The difficulties in developing a discourse parser are (i) recognizing discourse relations between text spans and (ii) deriving discourse structures fronl lisese relations. Mareu (2000)'s parser is based on cue phrascs, and thercfore faces problems when cuc phrases are not present
in the text. This system can apply to unrestricted texts, but faces combinatorial explosion. The disadvantage of Marcu's approach is that it produces a great number of trees during its process, which is the csscntial redundancy in computation. As the number of relations increases, the number of possible discourse trees increases exponentially.

Forbes et al. (2003) have a different approach of implementing a discourse parser for a Lexicalized Tree Adjoining Grammar (LTAG). They simplify discoursc analysis by developing a grammar that uses cuc phrases as anchors to connect discourse trecs. Despite the poicntial of this approach for discourse analysis, the case of no cue phrase prosent in the text has not becus fully investigated in their research. Polanyi et al. (2004) propose a far more complicated discourse system than that of Forbes et al. (2003), which ases syntactic, semantie and lexical rulcs. Polanyi ct al. have proved that their approach can provitle promising results, cspecially in text summarization.

In this paper, different factors were investignted to achieve a better cliscourse parser, ithcluding syntactic infomation, constraints about textual adjacency and textual organization. With a given text and its syntactic information, the search space in which well-structured discourse trees of a text are produced is minimized.

The rest of this paper is organized as follows. The discourse analyzer at the scntence-level is presented in Section 2. A detaited description of our text-level discourse parser is given in Section 3. In Section 4, we describe our experiments and discuss the results we have achieved so far. Section 5 concludes the paper and proposes possible future work on this approach.

## 2 Scntence-level Discomise Analyzings

The sentence-lcvel discourse analyzer constructs discourse trees for cach sentence. In doing so,
two main tasks need to be accomplished: discourse segmentation and discourse parsing, which will be presented in Section 2.1 and Section 2.2.

### 2.1 Discourse Segmentation

The purpose of discourse segmentation is to split a text into elementary discourse units (edus)'. This task is done using syntactic information and cue phrases, as discussed in Section 2.1.1 and Section 2.1. 2 below.

### 2.1.1 Segmentation by Syntax - Step 1

Since all edu can be a clause or a simple sentence, syntactic information is useful for the segmentation process. One may argue that using symatic information is complicated since a syntactic parser is needed to generate this information. Since these are many advanced symactic parsers currently avaitable, the above problem can be solved. Some sludies in this area were based on regular expressions of cue phrases to identify edus (e.g., Marcu 2000). However, Redeker (1990) found that only $50 \%$ of clauses contain eue phrases. Segmentation based on cue phrases alone is, therefore, insufficient by itself.

In this study, the segmenter's input is a sentence and its syntactic structure; documents from the Penu Trcebank were used to get the syntactic information. A syytactic parser is going to be integrated into our system (see future work).

Based on the sentential syntactic structure, the discourse segmenter checks segmentation rules to split sentences into edus. These rules were created based on previous research in discourse segmentation (Carlson et al. 2002). The segmentation process also provides initial information about the discourse relation between edus. For example, the sentence "Mr. Silas Cathcart built a shopping mall on some land he owns" maps with the segmentation rule
( $\mathrm{N} \Gamma|\mathrm{NP}-\mathrm{SB} J<\operatorname{tex}| 1>(\mathrm{SB} \wedge R|R R C<\operatorname{ex}| 2>)$ )
In which, NF, SBJ, SBAR, and RRC stand for noun phrase, subject, subordinate clause, and reduce relative clause respectively. This rule can be stated as, "The clouse attoched to a nown phrase con be recognized as an embedded mit."

The system searehes for the rule that maps will the syntactic siructure of the scotence, and

[^33]then generates edus. After tbat, a post process is called to check the correctness of discourse boundaries. In the above example, the system derives an edu 'Te owns' from the noun phrase "some land he owns". The post process detects that 'Mr. Silas Cathcart built a shopping mall on' is not a complete clause without the noun phrase "some land". Therefore, these two text spans are combined into one. The sentence is now split into two edus "Mr. Silas Cothcort built a shopping mall on some land" and "he awns." A discourse relation between these two edus is then initiated. Its relation's name and the nuclearity roles of its text spans are detcminued later on in a relation recognition-process (see Section 2.2).

### 2.1.2 Segmentation by Cue Phrnse-Step 2

Several Nrs are considered as edos when they are accompanied by a strong cue phrase. These cases camot be recognized by syntactic information; another segmentation process is, thereforc, integrated into the sysiem. This process secks strong cue phrases from the oulput of Sicp 1 . When a strong cue phrase is found, this process detects the end boundary of the NF. This end boundary can be purctuation such as a senicolon, or a full stop. Normally, a new edu is created from the begin position of the cue phrase to the end boundary of the NF. However, this procedure may create incorrect results as shown in the example below:
(1) [In 1988, Kidder eked ont a $\$ 46$ million profit, mainly $]$ beeause of severe cost cutting.]
The correct segmentation boundary for the sentence given in Example (1) should be the position between the comma ( $\because$, ) and the adverb "mainly". Such a situation happens when an adverb stands before a strong cue phrase. The post process deals with this case by first detecting the position of the NF. Nfter that, it searches for the appearance of adverbs before the position of the strong eue phrase. If an adverb is found, the new edu is segmented from the start position of the adverb to the end boundary of the NP'. Otherwise, the new edu is split from the start position of the cue phrase to the end boundary of the $N P^{\prime}$. This is shown in the following example:
(2) [According to a Kidder World story about Mr. Megargel, |atl the lime has to do is "position ourseives more in the deal now."]

Similar to Step 1, Step 2 also initiates discourse relations between edus that it derives. The retation name and the nuclearity role of edus are posited later in a relation recognition-process.

### 2.2 Sentence-level Discourse l'arsing

This module takes edus from the segmenter as the input and generates discourse trecs for each sentence. As mentioned in Section 2.1, many edus lave already been conncted in an initial relation. The sentence-fcevel discourse parser finds a relation name for the existing relations, and then connects all sub-discoursc-trees within one sentence into one trec. All leaves that correspond to another sub-tree are replaced by the corresponding sub-trees, as shown in Example (3) below:
(3) [She knows $3_{3,1}$ ] [what time you will come ${ }_{3,2}$ ] because 1 told her yesterday ${ }_{3}$, $]$
The discourse segmenter in Step I outputs two sub-trecs, one with two leaves "She knows" and "what time you will come"; another with two leaves "She knows what time you will come" and "because I told her yesterday". The system combines these two sub-trees into one tree. This process is illustrated in Figure 1.


Figure 1. The discourse structurc of text (3)
Syntactic information is used to figure out which discourse relation holds between lext spans as well as their nuelearity roles. For example, the discourse relation between a reporting clause and a reported clause in' a sentence is an Elaboration relation. The reporting clause is the nueleus; the reported clause is the satellite in this rehtion.

Cue phrases are also used to detect the connection between edus, as shown in (4):
(4) [He came late] [because of the traffic.] The cue phrase "because of" signals a Cause elation between the clause containing this cue phrase and its adjacent clause. The clause containing "becouse of" is the satcllice in a relation between this clause and its adjacent clause.

To posit relation names, we combine several factors, ineluding syntactic information, cue phrases, NP-cues, VP-cues ${ }^{2}$, and cohesive devices (e.g., synonyms and hyponyms derived from WordNet) (Le and Abeysinghe 2003). With the presented method of constructing sentential discourse trees based on syntactic information and cue phrases, combinatorial cxplosions can be prevented and still get accurate analyses.

## 3 Text-level Discnomse Anmlyzing

### 3.1 Search Space

The original search space of a discourse parser is enormous (Marcu 2000). Therefore, a crucial problem in discourse parsing is scarch-space cduction. In this study, this problem was solved by using constraints about textual organization and textual adjaceney.

Normally, each text has an organizational framework, which consists of sections, paragraphs, ete., to express a communicative goal. Each textual unit completes an argument or a topic that the writer intends to convey. Thus, a text span should lave scmantic links to text spans in the same textual unit before connecting with text spans in a different one. Marcu (2000) pplicd this constraint by generating discourse structures at each level of granularity (e.g., paragraph, section). The discourse trees at one level are used to build the discourse trees at the higher level, until the discourse tree for the entire text is generated. Although this approach is good for deriving all valid discourse structures that represent the text, it is not optimal when only some discourse trees are required. This is because the parser cannot determine how many discourse trees should be generated for cach paragraph or seetion. In this researeh, we apply a different approaeh to control the levels of granularity. Instead of proeessing one textual unit at a time, we use a block-level-score to conncet the text spans

[^34]that are int the same textual unit. A detailed dscription of the black-level-score is presented in Section 3.2. The parser completes its task when the required number of discourse trees that cover the entire text is achicved.

The second factor that is used to reduce the search space is the textural adjacency constraint. This is one of the four main constraints in constructing a valid discourse structure (Mam and Thompson 1988). Based on this constraint, we only consider adjacent text spans in generating new discourse relations. This approach reduces the search space remarkably, since most of the text spans corresponding to sub-trees in the search space are not adjacent. This search space is mich smaller than the one in. Marcu's (2000) because Marcu's system generates all possible trees, and then uses this constraint to filter the inappropriate onas.

### 3.2 Algoritlın

To generate discourse structures at the text-level, the constraints of textual erganization and textual adjacency are used to initiate all possible connections among text spans. Then, all possible discourse relations betwcen text spans are posited based on cue pluases, $\mathrm{NP}^{-c u e s, ~ V P-c u e s ~ a n d ~}$ other cohesive devices (Le and Abeysiughe 2003). Based on his relation set; the system should generate the best discourse trecs, each of which covers the entite icxt. This problem can be considered as searching for the best solution of combining discourse relations. An algorithon that minimizes the seareh space and maximizes the tree's quality needs to be found. We apply a beam search, which is the optimization of the best-firsi search where only a predetermined number of paths are kept as candidates. This dgorithm is described in detail below.

A set called Subtrees is used to store sub-trees that have been created during the constructing process. This set starts with sentential discourse trees. As sub-trees corresponding to contiguous text spans are grouped together to form bigger trees, Subtrees contains fewer and fewer members. Whet Subtrees contains only one tree, this tree will represent the discourse structure of the input text. All possible relations that ean be uscd to construct bigger trees at a time $t$ form a h pothesis set Parentiallf. Lach relation in this set, whieh is called a bypollacsis, is assigued a score
called a hemristic-score; which is equal to the total score of all discourse cues contributing to this relation. A cue's score is betwecn 0 and 100 , depending on its certaisty in signating a specific relation. This score can be oplimized by a training process, which evaluates the correctness of the parser's output with the discourse trees from an existing discoursc compus. At present, these scores are assigned by our empirical research.

In order to control the textual block level, each sub-tree is assigned a block-level-score, depending on the block levets of their children. This block-level-score is added to the heuristic-score, aiming at choosing the best combination of subtrecs to be applied in the next round. The value of a block-level-score is set in a different valucscale, so that the combination of sub-trees in the same textual block always has a higher priority than that in a different block.

- If two sub-trees are in the same paragraph, the tree that connects these sub-Irees will have the block-lewel-some $=0$.
- If two sub-trecs acie in difleacnt paragraphs, the block-level-score of their parent tree is equal to $-1000^{*}$ ( $\mathrm{Lj} . \mathrm{L} 0$ ), in which LO is the paragraph level, Lit is the lowest block level. that two sub-trees are in the same unit. For: example, if two sub-tiees are in the same seetion but in different parghaphs and theme is no subsection in this section; then Li-1, 0 is equal to 1 . The negative valime $(-1000)$ means the higher distance between two text spans, the lower combinatorial priority they get.
When selecting a discourse relation, the relation corresponding to the node with a higher block-level-score has a higher priority than the node with a lower one. If relations have the same block-level-score, the one with higher hewristicscore is choscr.

To simplify the searching process, an accu-mulated-score is used to store the value of the search patio. The accumulated-score of a path at one slep is the highest predicted-score of this path at the previous step. The predicted-score of one step) is equal to the sum of the accumblatedscore, the herristic-score and the block-levelscore of this step. The searching process now becomes the process of scarching for the hypothesis with highest predicted-score.

At cach step of the beam scarch, we select the most promising nodes from Potemiallf that have
been generated so far. If a hypothesis involving two text spans $\langle\mathrm{T}\rangle$ and $\langle\mathrm{j}\rangle$ is used, the new sub-tree created by joining the two sub-trces corresponding to these text spans is added to $S_{u} b-$ trees. Subtreces is mow uprated so iban il docs mot contain overlapping sub-trees. Potentiallt is also updated according to the change in Subtrees. The relations between the new sub-tree and its adjacent sub-trees in Subtrees are created and added to Potentiallt.

All hypotheses computed by the discourse parser are stored in a hypothesis set callod Storedh. This set is nised to guaranice that a discourse sub-tree will not be created twice. When detecting a relation between two text spans, the parser first looks for this relation in StoredH to check whether il has already becn created or not. If it is not found, it will be generated by a discourse relation racognizer.

The most promising node from Patentiall is again selected and the process contimues. A bit of depth-first searching occurs as the most promisfigg bratich is explored. If a solution is thol fouthe, the system will start looking for a less promising node in one of the higher-level branches that had been ignored. The last node of the old branch is stored in the system. The searching process e turns to this node when all the others get bad enough that it is again the most promising path. In our algorithm, we limit the branches that the search algorithen can swith to by a number $M$. This number is closen to be 10, as in experiments we found that it is large enough to derive good discourse trees. If Subtrees contains only one tree, this tree will be added to the trec's set. ${ }^{3}$ The searching algorit)m finishes when the number of discourse trees is equal to the number of trees required by the user. Since the parser searches for combinations of discourse relations that maximize the accumulated-score, which represents the tree's quality, the trees being generated are often the best descriptions of the lext.

## 4 Evaluation

The expcriments were done by testing 20 documents from the RST Discourse Treebank (RS'fDT 2002), inchuding icn short documents and ten

[^35]long ones. The length of the clocuments varies from 30 words to 1284 words. The syntactic information of these docriments was takell from Penn Treebank, which was used as the input of the discomse segmenter. 'In order to cvalunte the systern, a set of 22 discourse relations (list, esquence, condition, ntherwise, hypothetical, antithesis, contrast, concession, cause, result, causeresult, purpose, solutionhood, circumstance, manner, means, interpretation, evaluation, stminary, elaboration, explanation, and joint) was used. ${ }^{4}$ The difference among cause, result and couse-result is the muclearity mole of text spans. We also carried out another evaluation with the set of 14 relations, which was created by grouping similar relations in the sel of 22 relations. The RS'I corpus, which was created by hmmans, was used as the standard discourse trecs for our evaluation. We computed the output's accuracy on seven levels shown below:

- Level 1 - The accuracy of discoutse scgments. It was calculated by comparing the segment boundaries assigned by the discourse segmenter with the boundaries assigned in the corpus.
- Level 2 - The accuracy of text spans' combination at the sentence-level. The system generates a corrcel combination if it comects the same text spans as the corpus.
- Level 3-The accuracy of the nuclearity role of text spans at the sentence-level.
- Level 4 - The accuracy of discourse relations at the sentence-lcvel, using the set of 22 rebtions (level 4a), and the set of 14 relations (level 4b).
- Level 5 - The accuracy of text spans' combination for the entire text.
- Level 6-The accuracy of the nuclearity role of text spans for the entire text.
- Level 7. The accuracy of discourse relations for the eutire text, using the set of 22 rehtions (level 7a), and the set of 14 relations (level 7b).
The system performance when the output of a syntactic parser is used as the inpul of our discourse segmenter will be cvaluated in the future, when a syntactic parser is intcgrated with our system. It is also intcresting to cvaluate the per-

[^36]| Level |  | 1 | 2 | 3 | 4 a | 4 b | 5 | 6 | 7 a | 7 b |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System | Precision | 88.2 | 68.4 | 61.9 | 53.9 | 54.6 | 54.5 | 47.8 | 39.6 | 40.5 |
|  | Recall | 85.6 | 64.4 | 58.3 | 50.7 | 51.4 | 52.9 | 46.4 | 38.5 | 39.3 |
|  | F-score | 86.9 | 66.3 | 60.0 | 52.2 | 53.0 | 53.7 | 47.1 | 39.1 | 39.9 |
| Human | Precision | 98.7 | 88.4 | 82.6 | 69.2 | 74.7 | 73.0 | 65.9 | 53.0 | 57.1 |
|  | Recall | 98.8 | 88.1 | 82.3 | 68.9 | 74.4 | 72.4 | 65.3 | 52.5 | 56.6 |
|  | $\overline{\mathrm{F}}$-score | 98.7 | 88.3 | 82.4 | 69.0 | 74.5 | 72.7 | 65.6 | 52.7 | 56.9 |
| $\begin{aligned} & \text { F-score(Human) - } \\ & \text { F-score(System) } \\ & \hline \end{aligned}$ |  | 11.8 | 22 | 22.4 | 16.8 | 21.5 | 19.0 | 18.5 | 13.7 | 17.0 |

Table 1. Our system performance vs. human performiance
formance of the discourse parser when the correct discourse segments generated by an analyst are used as the ioput, so that we can calculate the accuracy of our system in determining discourse relations. This evaluation will be done in our fiture work.

In our experiment, the ouput of the previous process was used as the input of the process following it. Therefore, the accuracy of one level is affected by the accuracies of the previous levels. The human perfomance was considered as the upper bound for our discourse parser's performance. This value was obtained by evaluating the agrecment between human! anotators using 53 double-annotated documents from thic RSY eorpus. The performance of our system and human agreement are represented by precision, recall, and F -scores ${ }^{5}$, which are shown in Table 1.

The F -score of our discourse scgnenter is $86.9 \%$, white the F -score of fuman agreement is $98.7 \%$. The level 2 's $[$-score of our system is $66.3 \%$, which means the error in this case is $28.7 \%$. This error is the accumulation of errors made by the discourse segmenter and errors in discourse combination, given correct discourse segments. With the set of 14 discourse relations, the F-score of discourse relations at the sentencelevel using 14 relations ( $53.0 \%$ ) is higher than the case of using 22 relations ( $52.2 \%$ ).

The most recent sentence-level discourse parser providing good results is SPADE, which is reported in Soricut and Marcu 2003). SPADE includes two probabilistic models that can be used to identify colus and build sentence-level discourse parse trecs. The RST corpus was also used in Soricut and Marcu (S\&M)'s experiment, in which 347 artictes were used as the training set

[^37]and 38 ones were used as the test set. S\&M evaluated their system using slightly different criteria than those used in this research. They computed the accuracy of the discouse segments, and the accuracy of the sentence-tevel discourse trees without labels, with 18 labels and with 110 labels. It is not clear how the sentencelevel discourse trees are considered as correct. The performance given by the human annotation agreement reported by $S \& M$ is, thereforc, different than the one used in this paper. To compare the performance between our system and Sl' $\triangle D E$ at the sentence-level, we calculated the difference of $F$-score between the system and the amalyst. I'able 2 presents the perfortance of SPADI when syntactic trees from the Penn Trecbank were used as the input.

|  | Discourse <br> segments | Un- <br> labelled | 110 <br> labels | 18 h- <br> bels |
| :---: | :---: | :---: | :---: | :---: |
| SPADE | 84.7 | 73.0 | 52.6 | 56.4 |
| Human! | 98.3 | 92.8 | 71.9 | 77.0 |
| $\mathrm{F}-\mathrm{score}(\mathrm{II})$ <br> -F -score(S) | $\mathbf{1 3 . 6}$ | $\mathbf{1 9 . 8}$ | $\mathbf{1 9 . 3}$ | $\mathbf{2 0 . 6}$ |

Table 2. SPADE perfommance vs. human performance

Table 1 and Table 2 show that the discourse segmenter in our study has a better performance than SP $\triangle D E$. We considered the evaluation of the "Unlabelled" case in S\&M's experiment as the cvaluation of Level 2 in our experiment. The values shown in Table 1 and Table 2 imply that the error generated by our system is considered similar to the one in SPADE.

To our knowledge, there is only one report about a discourse parscr at the text-level that measures accuracy (Marcu 2000). When using WS. dociments from the Penn Trechank. Marcu's decision-tree-based discouse parser eceived $21.6 \%$ recall and $54.0 \%$ precision for the
span nuclearity; $13.0 \%$ recall and $34.3 \%$ precision for discourse relations. The recall is more impnitant thnn the precisinn şince we want discourse relations thon are ns enrrest as passitho. Therefore, the discourse parser presented in llis paper shows a better performance. However ${ }_{1}$ more work needs to he clone to imprnve the system's reliability.

As shown in Table I, the accuracy of the discourse Irees given by human agrecment is ant high, $52.7 \%$ in case of 22 relations and $56.9 \%$ in case of 14 relations. This is because discourse is too complex and ill defincd 10 easily generate rules that can autnmatically derive discourse structures. Different people may create different discourse trees for the same text (Mann and Thompson 1988). Bceausc of the multiplicity of RST analyses, the discourse parser should be used as an assistant rather than a stand-alone system.

## 5 Conclusinns

We have presented a discourse parser and cvaliated it using the RST corpus. The presented discourse parser is divided into two levels: sentencelevel and lextslevel. The experiment showed that syntactic infomation and cue phrases are quite effective in constructing discourse structures at the sentence-level, especially in discourse segmentation ( $86.9 \% \mathrm{~F}$-score). The discourse trees at the text-level were generated by combining the hypothesized discoursc relations among nonoverlapped text spans. We concentrated on solving the combinatorial explosion in searching for discourse trees. The constraints of textual adjacency and textual organization, and $n$ beam search were applied to find the best-quality trees in a search space that is much smalier than the one given by Marcı (2000). The experiment on documents from the RST corpus showed that the proposed approach could produce reasonable results compared to human annotator agreements. To improve the system performance, future work includes refining the segmentalion rules and improving criteria to select optimal paths in the beam search. We would also like to integrate a syntactic parser to this system. We hope this research will aid the develnpment of text processing such as text summarization and icxt generation.

## References

Lynn Carlson, Daniel Märcu, and Mary Ellen Okı-
 in the I'ramework of' Rhetoricat Sirucuire 'Theory. In Curent Direchoms.in Discomrse and Dialogne. Kluwer Academic Publishers.

Kalherine Forbes, Eleni Miltsakaki. Rashmi Prasad. Anoop Sarkar, Aravind Joslii and Bommic Wehber 2003. D-LTAG System: Discourse Parsing with a Lexicalized Trec-Adjoibing Crammer. Jownal of Logic, Language mid Information, 12(3), 261-279.

Edward llovy 1993. Automated Discourse Gencration Using Discourse Structure Retations. Artificial hteligence. 63: 341-386.

Huong T. I.c and Gecihn Alicysinghe 2003. A Study io Impore the 「oficione of o Diveonase lemsing Sy:stem. In Proc of ClCi.ing-03, 104-117.
Dianc Litman and Julia Wirschberg 1990. Disamhiguating cue phrases in text and speech. In Proc of COIING-90. Vol 2: 25i-256.

William Mann and Sandia Thompson 1988. Rhetonical Structure Theory: Toward a Functional Theory of Text Organization. 7exi, 8(3): 243-281.

Daniel Marcu 2000. The theory and practice of discomre parsing and rimmmatization: MlT Press, Cambridge, Massachusctts, London, England.
Livia Polanyi, Chris Culy, Gian Lorenzo Thione and David Ahn 2004. A Rule Based Approach to Discourse Parsing. In l'rnc of SigDial2004.
Giscla Redeker 1990. Idealional and praginatic markers of discourse structure. Journal of Pragmatics. 367-381.

RST-DT 2002. RST Discourse Treehank. Linguistic Data Consortiunn, hltp://www.idc.upenn.cdu/Cata$\log /$ CatalogEntry.jsp?catalogld=ILDC2002T07.
Lloyd Rulledge, Brian Bailcy, Jacco van Ossenbruggen, Lynda Hardman, and Joost Gcurts 2000. Generating Presentation Constraints from Rhetorical Structure. In Proc of IIYPERTEXT 2000. is

Deborah Schiffrin 1987. Discourse markers. Cant bridge: Cambridge University Press.

Radu Soricut aad Danicl Marcu 2003. Sentence Level Discowse Parsing using Syntactic and Lexicn/ brformation. In Proc of HIT NAACL 2003.

Mark Torrance, and Nadjet Bouayad-Aghn 2001. Rhetorical structure analysis as a method for understanding writing procesises. In l'oc of MAD 2001.


[^0]:    ${ }^{1}$ Terminologies "discourse" and "rhetorical" are used interchangeably in this iliesis.

[^1]:    ${ }^{2}$ See Section 2.2.1 for a delailed description of rhetorical structures and rhetorical relations.

[^2]:    ${ }^{3}$ Terminologies "text span". "spon", and "discourse min" are used interchangeably in this thesis.

[^3]:    ${ }^{1}$ A focus space consists of representations of entities (i.e., objects, properties, and relations).
    ${ }^{5} \mathrm{~A}$ transition rule is the rute that specifies conditions to change an attentional state.

[^4]:    ${ }^{6}$ The research in Marcu (2000) is first established in Marcu's thesis (Marcu, 1997).

[^5]:    7 The square hrackets indicate the boundaries of discourse units.
    ${ }^{8}$ The biggest discourse corpius which currently exists to our knowledge is the RST Discourse Treebank (RST-DT. 2002), will, 385 Wall Street Journal articles. $\quad \because$

[^6]:    ${ }^{9}$ Only binary relations are considercd in this thesis. N -ary relations can bc casily constructed. from binary relations by a binary-to-n-ary conversion procedure. ( 1 n n-ary relation is a multi-nuclear relation that consists of theec or more nuclei.)
    ${ }^{10}$ The superscripts such as 2.6 .1 and 2.6 .2 are used to distinguish different 'discourse units fọused on in each example.

[^7]:    ${ }^{14}$ See Section 4.3.2 and Appendix 6 for the definition of rhetorical relations.

[^8]:    ${ }^{12}$ A text is split into sentences by another procedure before being used as the input of this module.
    ${ }^{13}$ In this chapter, "discourse segment" refers to a segment of a sentence that is generated during the segmentation process. "Elementary discourse unit" refers to the' final output of the segmentation process. $\Lambda$ discourse segment may be larger than an elementary discourse unit.

[^9]:    14 In some cases. DAS can assign the nuclearity roles at this process. For example. if the segmentation rule involves a noun phrase and its subordinate clause, lic noum plarase is assigned as the nucleus, the subordinate clause is cousidered as the satellite.

[^10]:    ${ }^{15}$ This fragmentation is beeause of the artificial segmentation principles of the RST Trecbank ( $\mathrm{RST}^{-\mathrm{DT}}, 2002$ )
    ${ }^{16}$ Same-Unit is not a rhetorical relation. It is an artificial relation to connect two strings, which belong to the same diseourse unit, being fragment by the anotation of helembedded unit.

[^11]:    ${ }^{17}$ In this thesis, a cue phrase that is strong enough to make a noun phrase become an elementary discourse unit is called a "strong cue phrase". Otherwise, it is a normal cue phrase or a weak cue plirase.

[^12]:    ${ }^{18}$ Due to lack of space, all nodes of this tree camnot be presented together in this figure. The nondisplayed nodes are replaced by ". ..".

[^13]:    ${ }^{19}$ If no relation is recognised between two discourse sub-trees, a .Joinh relation is assigned. Thus, a discourse tree that covers the entire text can always be found.

[^14]:    ${ }^{20}$ The Backgromen relation is merged will the Circmmstance relation in DAS.

[^15]:    ${ }^{21}$ The leflrole and rightrole of a tree node is empty (") when the nuelearity roles have not been assigned.

[^16]:    ${ }^{22}$ The definitions of rhetorical relations in this appendix are from Mann and Thompson (1988) and Carlson et al. (2002).

[^17]:    I For further information on "EDUs", see (Marcu, 1997)

[^18]:    ${ }^{2}$ We have chosen WordNel (WordNet, 2002), a machinereadabie thesaturus and scmantic network, for this putpose.

[^19]:    ${ }^{3}$ For further information on "rhetorical relation", see (Mann and Thompson, 1988).

[^20]:    ${ }^{4}$ Threshold $\theta$ is selected as 0.5 .

[^21]:    ${ }^{5}$ Total score is the accumulated scores of heurislic rules up to the current time.

[^22]:    ${ }^{6}$ The superscripts such as 5.1 and 5.2 are used to distinguish different discourse units focussed on in each example.

[^23]:    ${ }^{1}$ The biggest discourse corpms nowadays is the RS'T Discourse Trecbank from LDC, with 385 Wall Strect Joumal articles.

[^24]:    ${ }^{2}$ For further information on "cilus", sce (Marcu, 1997).

[^25]:    ${ }^{3}$ A thetorical relation involves two or more text spans (typically chanses or larger linguistic tuits) related such that one of them has a specific role relative to the other. For further intormation on "rhetorical relation", sce (Mann and Thompson, 1988).

[^26]:    ${ }^{4}$ Threshold 0 is selected as 0.5 .

[^27]:    5 The superscripts such as 6.1 and 6.2 are used to distinguish different discourse units focussed on in each example.

[^28]:    ${ }^{6}$ Due to lack of space, all nodes of this tree camot be presented together in this figure.

[^29]:    'For further information on "f:DU". sce [3].

[^30]:    2 The biggest diseonise corpmon than we know of la the RSS Discourse Trecbank [12]. with 385 Woll Sirect Joumal articles.
    ${ }^{3}$ The sentence's pauses can be recognised by a syntactic parser. In this experiment, infnrmation about sentence's pauses is in parsed documents of the Fenn Treebank.

[^31]:    4 UNKNOWN iext span specifics the text fragment iffer
     lian.
    'SAME-UNIT is a special relation, in which two text spans are on the same discourse unit [3]. SAMF-UNIT is not a discolirse relation.

[^32]:    ${ }^{6}$ All relation names mentioned in this paper are aiming at making discourse structures ciearer. Recognising discourse retations is not in this paper's scope.

[^33]:    'For further information on "edus". see (Mareu 2000).

[^34]:    ${ }^{2} \wedge n N P$-cue (VP-cue) is a special noun (verb) in the NP (VP) that signals discourse relations.

[^35]:    ${ }^{3}$ If no relation is found between two discourse sub-irees, a Joint relation is assigned. 'Thus, a discourse tree that envers the entire iext can always be found.

[^36]:    ${ }^{4}$ Sce (1.c and $\wedge$ beysinglic 2003) For a delailed description of this discourse retation set.

[^37]:    ${ }^{5}$ The F -score is a measure combining into a single figure. We use the F-score version in which precision ( $P$ ) and recall $(R)$ ate weighticd equally. defined as $2 * r^{+*} R /(\Gamma+R)$.

