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Abstract. The aim of this project was to design and build a test-rig that is 

capable of analyzing small unmanned aerial vehicles (SUAV) co-axial rotor 
systems. The intention of the test-rig development was to highlight important 
aeromechanical components and variables that dictate the co-axial units flight 
performance, with the intention of optimizing the propulsion systems for use on 
HALO® a co-axial SUAV designed by the Autonomous Systems Lab at 
Middlesex University. The major contributions of this paper are: an optimum 
COTS co-axial configuration with regards to motor and propeller variations, a 

thorough review and validation of co-axial rotor systems inter-rotor spacing 
which in turn identified an optimum H/D ratio region of between (0.41–0.65). 
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1   Introduction 

This paper details the background, concept and investigations into co-axial rotor 

systems used on full-scale helicopters through to Micro Air Vehicles, with the intent 

to highlight the key aerodynamic and aeromechanical components which contribute to 

the systems performance in the flight condition of hover.  
  The contra-rotating co-axial rotor design offers many advantageous attributes 

over single rotor systems, with the most often cited advantages being the reduction of 

the overall rotor diameter of the co-axial rotor system, and lack of need for a 

traditional tail rotor (which has been estimated to consume 5-20% of the total power 

produced). These areas are accentuated and highlighted when the design and 

optimisation of co-axial rotor system at the scale of small UAVs, which also requires 

a greater understanding of the performance variables that affect the co-axial 

propulsion system at low Reynolds Number (Re) operation, are investigated. 
Recent co-axial rotor research relies heavily upon outdated co-axial rotor system 

studies, theoretical modelling, and computational fluid dynamics. There is very little 

empirical data and evidence outside the report of Coleman [1], together with research 

commenced by a select few research and development departments at universities 

across the world that identify the optimum conditions of co-axial rotor systems, 

especially at the SUAV scale. Even with the current research and data available it is 

difficult to predict the performance and optimize a co-axial rotor system for a specific 

scale due to conflicting reports.  



Much of the funding, currently worth an estimated production value of US$ 2.05 

billion (2010-19), for the research of SUAVs (which incorporates co-axial rotor 

systems) is predominantly fuelled by the international military, where the SUAV 

rotary winged systems are pitched to play increasingly more vital roles in ISTAR 

(Intelligence, Surveillance, Target Acquisition & Reconnaissance) operations. The 

project and study of these exotic systems has been closely aligned with the co-axial 
tri-rotor small UAV, HALO™ which is in development within the Autonomous 

Systems Laboratory at Middlesex University. 

2   Co-Axial Rotor System Aerodynamics 

As aerodynamics and aeromechanics have the greatest influence on SUAVs in-

flight performance, this section is a summation of the core components that influence 

the co-axial rotor system in the flight condition of hover, and in turn have influenced 

the testing variables used during the analysis phase. Although the evaluation of 

forward flight is of interest, it was deemed too complex with respect to fabricating a 

controlled environment such a wind tunnel to be able to simulate these conditions and 

was considered unfeasible within the constrictions of the project time limit. 
The Figure of Merit (FM) when applied to a co-axial rotor system is a non-

dimensional efficiency metric that provides a basis to conduct a relative comparison 

of rotor performance. The FM uses the “ideal” power required to hover (calculated 

using the moment theory) that is in turn equated against the “actual” power required 

to hover. An equation for the Figure of Merit by Leishman [2] is given as follows: 
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In terms of the measured co-axial systems power, the definition for FM is: 
 

 measP

T

TT

C

C

CC

FM
l

Ul
































1
2

2657.1

2/32/3

 (2) 

Where: 

 
Ctu + Ctl = Rotor Thrust coefficient (Upper, Lower) 

Cpmeas  = Rotor Power coefficient measured 

σ  = Rotor solidity 

Cdo  = Minimum or zero-lift drag coefficient 

 



Rotor flow fields discussed by Leishman and Ananthan [3] are referred to as the 

vena contracta of the upper and lower rotors; it is also referred to as the slipstream of 

the co-axial rotors. To minimize the interference-induced power factor using the 

momentum theory the co-axial rotor system is theoretically set in a condition of “the 

rotors operating at balanced torque, with the lower rotor operating within the vena 

contracta of the upper rotor”[4] as discussed below.  Leishman goes on to discuss the 
ideal flow considerations noting that “one-half of the disk area of the lower rotor must 

operate in the slipstream velocity induced by the upper rotor” [3]. The flow model of 

a co-axial rotor system and the vena contracta are detailed in Figure 1. 

 

 

Figure 1 - Flow Model of a Co-Axial Rotor System [4]. 

The separation distance could therefore have an effect upon the severity of the 

interference-induced power loses, which would in turn possibly increase the 

efficiency rating (FM) of the co-axial rotor system. 

2.1   Testing Variables 

The investigation of the co-axial rotor system primarily revolved around four 

testing variables, with the aim of this paper focusing on the results on co-axial inter-

rotor spacing & system configuration:  

 

 Inter-rotor spacing – The separation distance (H) between the co-axial 

rotor system discs. Inter rotor spacing is one of the fundamental components 

of the SUAV co-axial system which has been tested due to the associated 

aerodynamic effects; interference-induced power losses, wake contractions, 



and rotors vena contracta. The H/D ratio is used as a non-dimensional figure 

to enable comparison of multiple systems across a range of scales. 

 

 

Figure 2 compares H/D ratios, incorporating full-scale co-axial helicopters 

to MAVs. The table demonstrates that the SUAV example systems have a 
significantly higher H/D ratio (average H/D = 0.315), when compared with 

the average for full-scale systems having an H/D = 0.09. 

 

Figure 2 - Inter-rotor Spacing Comparison Chart [5]. 

 Propeller Pitch - The propellers used in the co-axial tests are fixed pitch, 

but unlike full-scale rotor blades that have an almost uniform pitch 

throughout the diameter due the design preference of a symmetrical blade 

section [6]; the test propellers have a varying pitch. 

 

 Propeller Diameter (upper and lower) - The diameter of a propeller is one 
of the most important characteristics in determining the induced power of a 

rotor system: 
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It has been shown in studies by Leishman that the larger the rotor 

diameter the lower the disc loading, induced velocities, and a decrease in 

induced power requirements [2]. Andrews [8] notes that an 8% reduction in 

upper rotor radius enhances the performance of the lower rotor due to an 

increase of exposed clean air. This variable will be controlled only using a 

select „family‟ of propellers (rotors) to determine the performance attributes 
related to the decrease of the upper and lower rotors. 



 

 Co-Axial Rotor Configuration – The co-axial propulsion unit tested has 

individual motor units powering the upper and lower rotors. This allows for 

multiple variations and configurations of the orientation of the motors and 

propellers to be analysed and the results recorded respectively. 

3   Test-Rig Development 

Recent developments in the co-axial rotor system for the small-scale UAV sector 

have resulted from the technological advances in RC propulsion units [7]. One of the 
earliest recorded co-axial UAV studies was work commenced by Andrews [8] on a 

Westland Helicopter Ltd developed system called Mote, the system‟s handling and 

control qualities are discussed in detail by Faulkner and Simons [9]. It was these 

studies by Andrews [10] that demonstrated a decrease of 8% to the upper rotor radius 

enables “the enhanced performance of the lower rotor as proportionately more disc is 

exposed to clean air”. Andrews also discussed the inter-rotor spacing stating that there 

are no “practical” gains after H/D = 0.05. 

More recent test-rigs and co-axial rotor system investigations include the work of 
the Autonomous Systems Lab (ASL), ETH at Zurich. Bouabdallah has spearheaded 

the extensive work produced by this team [11]. The significant research 

systems/platforms developed by the ASL at ETH are CoaX and CoaX 2, both co-axial 

MAV‟s. Unlike many co-axial rotor studies the muFly team has designed and built 

their own co-axial rotor test bed, and recorded the study in detail. A similar system 

that enables the investigation of MAV co-axial rotor systems is the rig developed by 

the University of Maryland for the MICOR MAV. Both systems are designed for 

variable pitch rotor heads. 
 

   

Figure 3 – muFLY [11] & UMD MICOR co-axial rotor system test-rigs [12]. 

The test-rig‟s priority was to be able to test and measure various co-axial fixed-
pitch rotor system configuration variables. The components used in the setup for a co-

axial rotor system (using HALO‟s components as a datum) have dictated the majority 

of the test-rigs overall design. The motors used for the co-axial rotor system are the 

AXI 2217/20 electric Outrunner DC motor, which are inherently stable and give good 



efficiency ratings of approximately 82%. The propellers used range from dual-bladed, 

low pitch and slow fly APC 10 inch propellers up to 12 inch Master Airscrew tri-

bladed propellers. The range tested encompasses five „families‟ of propellers, each 

with their own performance benefits. 

Taking into account the co-axial rotor systems testing variables, and the known 

datum components set by the HALO configuration, mechanical solutions were 
developed. Linear motion technology in the form of a motor driven lead-screw was 

chosen for the inter-rotor spacing control of the co-axial rotor configurations. The 

desired range of inter-rotor spacing stemmed from using the GWS 1060X3 propeller 

as a datum measure (10 inch or 254 mm). This permitted the H/D range to be varied 

within the range (0.08–1.0). 

The optimization process of the co-axial rotor system was continually taken place 

as the testing commenced. To develop a portfolio of test data from the testing 

components, analyze the efficiency of particular component configurations and 
testing conditions a data logging and live monitoring tool has been employed. The 

Hyperion Emeter II is a high performance measurement tool that is able to measure, 

analyze, and log key performance factors used in electric systems and RC models. 

The Emeter is supplied with a remote data unit (RDU) which houses a high precision 

shunt that is capable of accurately handling high currents and voltages, and is able to 

feed this data back to the Emeter for evaluation purposes. 

4   Analysis and Results 

To be able to test the co-axial configuration in the optimal motor and propeller 

arrangement a series of tests containing various co-axial configurations were 

analyzed. Eight configurations were used for the optimal motor and propeller 
configuration for a co-axial propeller system, with only four having contra-rotating 

rotors. A comparison data set consisting of individual rotors at multiple orientations 

used in the co-axial configurations gave a datum result for each singular rotor‟s 

performance.  

The highest performing co-axial configuration, when plotting the measured system 

Thrust (g) Vs Speed (RPM x 1000), was when the motors are placed on the outside of 

each mounting arm on the test-rig using an upper – Pusher propeller, and lower – 

Tractor propeller setup. A similar overall performance measurement was seen when 
plotting Output Power (W) Vs Speed (RPM x 1000). This data coincides with the 

finding of Shkarayev [13], where the rotor configuration used on the SUPAERO 

MAV showed a 20–23% thrust increase when using a pusher configuration when 

compared to a tractor configuration. 

As co-axial rotor systems are compared to their singular counterparts in numerous 

studies, a study of the individual rotor and motor configurations used in the co-axial 

testing has also been undertaken. The points of interest and observations are detailed 

below: 

 When comparing the co-axial rotor configurations measured Thrust against 

the combined two singular rotor systems measured Thrust, the average 

Thrust output is 23.15% lower.  



 

 The Thrust/Current Ratio of the co-axial rotor system averages a 2.22% 

decrease per Ampere when compared to the combined singular Rotors. 

 

 Independently the individual tests of each singular rotor comparison gave 

unexpected and interesting results. Prior to the experimentation phase it was 
thought that a tractor and pusher propeller operate in an identical fashion, i.e. 

producing similar Thrust, and Output Power performances (allowing for the 

inaccuracies of the test-rig, and data logging). Figure 4 depicts the 

performance variation of the Tractor and Pusher GWS 1060X3 HD propeller 

in two configurations for each type of propeller. The pusher propeller placed 

on the upper arm had a thrust increase (at 7,000 RPM) of 7.11% compared to 

the Tractor Propeller; this trend was also observed on the lower rotor 

comparison, with the Pusher variant producing 8.29% (at 7,000 RPM) more 
thrust than its tractor counterpart.  

 

 

Figure 4 - Individual Motor Configurations - Comparison of Tractor and 

Pusher Rotors. 

 

Using the optimally determined configuration for the co-axial rotor system, inter 

rotor spacing tests were commenced with a range from 20 mm to 250 mm (0.08 < 
H/D < 1.0) at 10 mm increments. The system was operated at an unequal torque and 

thrust balance, with the objective of the testing to establish a co-axial rotor systems 

static thrust capabilities at a given H/D ratio. As the research is to coincide with the 

development of the ASLs‟ HALO™ SUAV the propeller and motor combination of 

primary focus was the GWS 1060X3 HD and the AXI 2217/20. 

Figure 5 is a select region of H/D ratios that provided a measurable increase in 

Thrust at a given Current (A). A range of 12–14 A was used to plot the variation in 

Thrust Vs H/D ratio, with an H/D ratio of approx. 0.5 showing the highest thrust. 
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Figure 5 - Variation of Co-Axial Thrust with H/D Ratio. 

5 Conclusions and Future Work 

There have been multiple areas explored in the process of optimizing a SUAV co-

axial rotor system, some of which have had limited research exposure and others 

which have been detailed thoroughly. 

One of the main areas of interest and which has had the greatest influence on the 

co-axial tests-rig design was the inter-rotor spacing attribute of the co-axial rotor 

system. The H/D ratio has been prominent in many significant papers, but lacking an 
empirical value or an optimal dimensionless condition. In this paper the H/D ratio of a 

SUAV has been explored thoroughly, reviewing the systems performance at 

incremental stages, the findings from this study have shown that a range of H/D ratio 

of between (0.41–0.65) is advantageous in the performance of SUAV systems. This 

finding lends itself to the theory of inter-rotor spacing is a non-dimensionally similar 

figure, which cannot be applied across a spectrum of systems; this could be attributed 

to the viscous losses of flight at low Reynolds Numbers (< 50,000). 

5.1   Test-Rig Review 

The foundation of the optimization process for the co-axial rotor system was the 

design and development work of the co-axial test-rig. The system was designed to 

cater for the requirements and variables that were initially deemed to cover all the 

testing attributes of a Small Unmanned Aerial Vehicle co-axial rotor system.  



Although the test-rig was able to cater for the fundamental components of the testing 

process it did however lack mechanisms and testing apparatus that would have in 

hindsight allowed for greater and more in-depth analysis of the co-axial rotor system, 

especially highlighting the individual motor performance within the co-axial unit. 

Current research within the Autonomous Systems Laboratory at Middlesex 

University involves the design and development of the Mark II co-axial test-rig. As 
briefly mentioned previously the test-rig is being designed to analyse some of the key 

attributes of the co-axial system that had been overlooked in the original test-rig.  

A critical appraisal of the original test-rig and an indication of future improvements 

are stated below: 

 

 One of the failings of the original test-rig was the lack of a real-time reaction 

torque sensor. Due to this lack of component it was difficult to measure and 

interpret the co-axial rotor systems yaw torque balance. As the testing 
process developed the need for the inclusion of this sensor became apparent.  

 

 Individual rotor thrust is calculated using the thrust constants and factors 

from the individual rotors static performance graph. For future work and 

developments to the test-rig, the design should incorporate individual load 

cells. This key attribute would enable a complete assessment of the operating 

conditions of the upper and lower rotors independently, and thus provide 

insight into the induced loses of the co-axial rotor system. 
 

 The future test-rig may incorporate an automated control and recording 

system such as NI LabView (for data acquisition and test bench control). 

When employed for further testing this would provide greater accuracy, data 

analysis and simulation possibilities. 

References 

1. C.P. Coleman, NASA Technical Paper 3675 (March, 1997) 32. 
2. Leishman, J.G. (2002). Principles of Helicopter Aerodynamics. Cambridge University 

Press: USA.  
3. Leishman, J.G. & Ananthan, S. (2006). Aerodynamic Optimization of a Coaxial Proprotor. 

Annual Forum Proceedings - American Helicopter Society, vol. 62, no. 1, pp. 64-86. 
4. Leishman, J.G. & Syal, M. (2008). Figure of Merit Definition for Coaxial Rotors. Journal 

of the American Helicopter Society, vol. 53, no. 3, pp. 290. 

5. Bell, J. (2010). Investigations into Optimal Co-Axial Rotor System Configurations for 
Small UAVs. (Published Masters Thesis). Middlesex University, UK. 

6. Lakshminarayan, V.K. (2009). DRUM: Computational Investigation of Micro-Scale 
Coaxial Rotor Aerodynamics in Hover. (Published PhD Thesis). University of Maryland: 
USA. 

7. Prior, S.D. (2010). Reviewing and Investigating the Use of Co-axial Rotor Systems in 
Small UAVs. International Journal of Micro Air Vehicles, vol. 2, no. 1, pp. 1-16, DOI: 
10.1260/1756-8293.2.1.1 

8. Andrews, J.M. (1981a). Coaxial Rotor Aerodynamics. (Published PhD Thesis) 
Southampton University, UK. 



9. Faulkner, A.J. & Simons, I.A. (1977). The Remotely Piloted Helicopter. Vertica, Vol. 1 No. 
3, pp. 231-238. 

10. Andrews, M.J. (1981b). Coaxial Rotor Aerodynamics in Hover. Vertica, vol. 5, pp. 163-
172.  

11. Schafroth, D., Bouabdallah, S., Bermes, C. & Siegwart, R. (2008). From the Test Benches 
to the First Prototype of the muFly Micro Helicopter. Journal of Intelligent and Robotic 
Systems, vol. 54, no. 1-3, pp. 245-260. 

12. Bohorquez, F. (2007). DRUM: Rotor Hover Performance and System Design of an 
Efficient Coaxial Rotary Wing Micro Air Vehicle. (Published PhD Thesis). University of 
Maryland, USA. 

13. Shkarayev, S., Moschetta, J. & Bataille, B. (2007). Aerodynamic Design of VTOL Micro 
Air Vehicles. MAV07 Proceedings, France. 


