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A B S T R A C T 

The objective of this thesis is to develop statistical models for mult ivari 

ate road accident data. Two directions of research are followed: graphical 

modell ing for contingency tables cross-classified by accident characteristics, 

and hierarchical Bayesian models for multiple accident frequencies of different 

types modelled jointly. 

Multi -dimensional tables are analysed and it is shown how to use collapsi-

bi l i ty to reduce the dimensionality of the analysis without the problems of 

Simpson's paradox. It is revealed that accident severity and the number of 

casualties are associated, and that these variables are mainly influenced by 

the number of vehicles and speed l imit . Graphical chain models allow causal 

hypotheses to be formulated and it is shown how they are valuable tools for 

empirical research about road accident characteristics. 

The hierarchical Bayesian models developed combine generalized linear 

models with random effects. The novelty of these models consists in the joint 

modelling of multiple response variables. The models account for overdisper-

sion and they are used for accident prediction and for ranking hazardous sites. 

A l l models are fully Bayesian and are fitted using Markov Chain Monte Carlo 

methods. It is shown that multiple response variables models are superior to 

separate univariate response models. 

Some theoretical problems are examined regarding the m a x i m u m likelihood 

estimation process for the two parameters negative binomial distr ibution. A 

condition is given that is equivalent with unique maximum likelihood estima-



iv 

tors. 

The two directions of research are connected by using graphs to describe the 

models. In addition, a new Bayesian mode! sélection procédure for contingency 

tables is proposed. This is based on Gibbs sampling and avoids problems 

associated vvith asymptotic tests. 

The conclusions revealed here can help practitioners to design better safety 

policies and to spend money more wisely on sites that really are dangerous. 
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Chapter 1 

Introduction 

1.1 Background 

The cost to society of road accidents is very high. According to The Institution 

of C i v i l Engineers it was estimated in 1996 as being between £14 bi l l ion and 

«£19 billion per annum in the TJK. although it is unmeasurable in terms of 

human lives (Carruthers, Bulp i t t , Gray. Holmes, M a c K i n v e n , Moore, Q u i n n , 

Zealley and Huxford, 1996). Since road accidents are random events, their 

occurrence cannot be predicted. Varions factors are thought to contribute to 

the réalisation of road accidents. Valuable information can be extracted from 

large and complex data sets with the help of Statistical methods. Al though 

the exact number of future accidents cannot be calculated, it is possible to 

predict or estimate this number and to identify some important contributing 

factors that can be measured and influenced if necessary. What makes ai l 

thèse possible is Statistical modelling. 

1 
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After the second world war the number of accidents increased dramatically 

but so did the number of vehicles. Governments all over the world were fac

ing a serious problem that needed major attention. Statistical methods were 

soon starting to be applied in this area of research too. However, the major 

turning point in the advance of scientific methodologies for analysing road 

accidents has been the development of the theory of generalized linear models 

(McCul lagh and Nelder, 1989). This new class of models is flexible enough to 

allow modelling of the accident frequencies with a Poisson error. There are sta

tistical methods for measuring the safety effect of engineering treatment and 

for taking into account the regression-to-mean effect (Hauer, 19S0; Hatter, 

N g and Lovell , 1989; Hauer, 1997; Wright, Abbess and Jarrett, 1988), and 

for relating the number of accidents at a site to road network characteristics 

(Maycock and H a l l , 1984; Maher and Summersgill, 1996; Mountain , Fawaz and 

Jarrett, 1996; A m i s , 1996). Comparatively little statistical work has been done 

on the relationships between accident characteristics such as severity, number 

of vehicles, pedestrian involvement, time of day and so on. The a im of this 

research is to contribute to the statistical modelling of large and complex road 

accident data using and developing appropriate multivariate techniques. 

1.1.1 Possible forms of analysis 

The statistical investigation of road accident data is a non-randomized study, 

a kind of observational study in which there is no direct control by the inves

tigator. The analyst just observes what is happening, making it very difficult 
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to establish causal relationships. The nature of this type of data makes im

possible any controlled randomization that would help in designing the study. 

This îs true for data collected for accident characteristics and summarised 

in contingency tables and it is also true for data collected for régression-like 

analyses. For the former case, the analyst takes into account the fact that the 

accidents already occurred so a rétrospective view is appropriate. In the latter 

case, the situation is somehow reversed, the task of the analysis being to pre-

dict future numbers of accidents using a statistical model that hts the current 

set of data, again an observational study. A practitioner aims to understand 

why accidents occur on a road network and what can be done to reduce the 

number of accidents to a minimum. There are two ways of extracting valuable 

statistical information from road accident data and thèse perspectives divide 

the thesis into two parts. 

First , various characteristics are recorded for ail accidents which occur in 

a given period of time. A t a national level this is done in U K each year i n a 

database like S T A T S 19. Then the practitioners might attempt to understand 

the associations between thèse characteristics that wi l l help them to design 

better safety policies. Primari ly , they are interested in identifying the causes 

of accidents. However, they cannot analyse each accident individually so they 

rely on a statistical analysis to identify factors contributing to a large num

ber of accidents. Then the local authorities design and implement the safety 

policies thought to manipula-te the identified factors in such a way to reduce 

the future number of accidents. It has to be remarked that in statistics the 
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word '"causal" is very often avoided in favour of a less powerful term, that 

is "association". Nevertheless, studies from other areas of research and some 

external information may help to identify causes and effects. Maycock (1985) 

studied 20 variables as road accident factors. VVriting about future possible 

research he said : 

"Fveryone knows that corrélation is not the same thing as cau-

sation but the existence of corrélations demand explanations and 

attempting to obtain explanations would lead into différent sorts 

of behavioural studies, but studies which were targeted towards 

explanations of established accident facts, 

Moreover, establishing and following up statistical associations 

in this way could provide fairly direct dues to the design of re

médiai measures for those involved in safety législation, éducation 

and training and the design and administration of driving test 

standards." 

For the analysis of accident characteristics the observational units are the 

accidents themselves. The variables are the characteristics of the accidents 

together with other more gênerai variables like road network characteristics, 

time spécifications and so on. They are analysed in this thesis as categorical, 

any continuous variables being categorised, and data is summarised i n con-

tingency tables. This type of data is most of the time recorded by police and 

it is possible to have miscategorization of some observations due to human 

error. As highlighted above, for this type of data, one purpose is to nnd a 
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model which explains how the categorical variables are interrelated. For three 

variables A, B and C , if the model suggests that only the pairs A , B and S , C 

are related, this is formulated statistically as a conditional independence be-

tween A and C given the values of B. In common language, knowing the 

values of variable B may provide some information about possible values of 

C, and moreover., Unding out any information about A would be irrelevant for 

discovering more information about C other than it is already known from B. 

For the first k ind of data, the approach proposed in this thesis is based on 

graphical modelling and its derivative, graphical chain modell ing. W i t h 6 or 

more road accident characteristics under study, the contingency table can be 

expected to be sparse. Due to the nature of the data it is a hnite population 

in a fïxed period of time. This particularity créâtes specific problems that are 

discussed in this thesis. On a real-world example, it is shown that relying on 

asymptotic inference gives différent results than exact conditional inference 

and the latter should ahvays be used in such instances. 

The second type of data is analysed by dividing the road network into small 

units, called sites, and then trying to relate the observed number of accidents 

to site characteristics, either environmental or socio-economical or géométrie. 

Depending on the results ot' the Statistical analysis, treatment policies are 

implemented to reduce the number of accidents. The units of the analysis are 

the sites and the variables are both discrète (e.g. accident frequeucies) and 

continuons (e.g. traffic flow). 

This second direction of research aims at modelling the accident counts as 
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numerical random variables. The units of the statistical investigation are the 

sites of the road network. The models proposed in this thesis can be used for 

prediction of future numbers of accidents, for describing possible correlation 

structures between accident frequencies of different type and for ranking the 

sites according to different criteria. Practical applications described here show 

the usefulness of the joint modelling of multiple accident counts. 

Analysing multivariate counts by statistical methods has been very difficult 

because of the lack of well-defined parametric distributions that can explain 

complex correlation structures. This problem is solved in this thesis using 

hierarchical Poisson multivariate models. The whole methodology used for 

generalized linear modelling (McCul lagh and Nelder, 1989) is incorporated and 

models with random effects and regression structures are easily and naturally 

included. However, the complexity of such models makes analytical methods 

unfeasible. In the modelling process integrals of dimension of hundreds have to 

be calculated and even numerical methods are not helpful because they are not 

feasible for dimensions greater than 20. This major difficulty is overcome in 

this thesis using Markov Chain Monte Carlo ( M C M C ) methods, in particular 

Gibbs sampling. 

The class of hierarchical Bayesian models proposed here is new to ap

plied statistical modelling of road accident data because multiple responses 

are jointly modelled, the models are fully Bayesian in specification and they 

can be used to answer different questions based on the same statistical M C M C 

output. Although hierarchical Bayesian models have been developed for re-
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peated measurements data in other areas of research, the hierarchical raodels 

developed in this thesis are tailored for road accident data. The multiple re-

sponses studied in this thesis represent counts of différent type of accidents, so 

the possible corrélation structure of the responses is not caused by studying 

the same model over time, like in longitudinal studies. The novel mult ipl ica

tive équations describing the models can be used by practitioners to predict 

changes i n accident type as well as frequency if treatment policies are imple-

mented. 

It is somehow regretable that the term "hierarchical" has différent mean-

ings in the two parts of the thesis. In connection with a log-linear mode! for 

contingency tables, hierarchical means an imposed rule of model spécification, 

very important for the interpretability of the models. Regarding a prédictive 

accident model, hierarchical is again about model spécification but in a totally 

différent manner. The observed data is combined wi th a prior distribution for 

the model parameters; the prior also dépends on some unknown parameters 

which follow a hyper-prior and the spécification may continue like that on 

several stages. The hierarchy is ended at some stage where ail the parameters 

are known. 

1.1.2 Graphical représentation 

The two directions of research are related by the basic method of represent-

ing hiérarchies, which is a graph. In the discussion of the articles given by 

Wermuth and Lauritzen (1990) and Edwards (1990), A . P . Dawid strongly sup-
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C 

Figure 1.1: Graphical association model 

portée! the use of graphs for communicating statistical modelling ideas. In this 

thesis, two types of graphical models, therefoi'e of graphs, are used. The first 

type, like the one illustrated in Figure 1.1, has vertices associated with ob-

served categorical variables representing accident characteristics. The graph 

synthesizes the conditional independencies revealed by the graphical model 

fitting the data. Similar graphs with a mixture of undirected and directed 

edges wi l l be encountered in the first part of this thesis. Regardless of the 

nature of the edges, thèse graphs are built using observed variables. 

The second type of graphs are used in this thesis again for model spéc

ification, more exactly for expressing conditional independencies. There are 

only directed edges due to the hierarchical structure of the models. The dif

férence relative to the first type consists in having vertices for observed and 

unobserved quantities. À simple example is giveu in Figure 1.2. The program 

W i n B U G S uses such a graphical model for simulation. 

In addition, there are some other links between the two main parts of 

the thesis. The analysis of the characteristics of accidents in Bedfordshire 
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Figure 1.2: Directed graphical model for Bayesian model spécification in Win-
BUGS 

and Hampshire data sets reveals that the accident severity and the number 

of vehicles involved in the accident are directly related. This suggests that 

developing separate régression models for thèse two variables may give unreli-

able results. The research carried out in the second part of the thesis conhrms 

this hypothesis and provides a feasible methodological solution. Regarding the 

model sélection procédures for (hierarchical) graphical models, a new method 

is proposed in a Bayesian framework, ernploying similar Markov Chain Monte 

Carlo ideas as those used for the multiple response variables models. This 

method provides another l ink between the two parts of the thesis. 

1.1.3 Data sets used 

T w o separate sources of data were used in this thesis. The first was the S T A T S 

19 database for 1995, obtained from U K E S R C Data Archive by the Trans-
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port Management Research Centre at Middlesex University. The two subsets 

of data extracted from S T A T S 19 and the subset of variables analysed were 

the author's choice. Some of the variables, like accident severity, were used as 

recorded in the database but others were recategorised to have a small num

ber of levels. For example, the number of vehicles involved and the number 

of casualties were considered with only three levels (one, two, three or more), 

road surface conditions with only three (dry, wet-damp, snow-ice-frost-flood). 

Other temporal variables were also categorised as it wi l l be seen in later chap

ters. 

The set of data analysed in the second part of the thesis contains the accident 

frequencies on 156 single-carriageway link sites between 1984 and 1991 in Kent . 

The data had been provided by Kent County Counci l to Middlesex Univer

sity's Transport Management Research Centre for a previous research project 

(Mountain, Jarrett and Fawaz, 1995; Mountain, Jarrett and Wright, 1994). 

The accident counts are known at a disaggregated level; four separate cate

gorises were investigated. The disaggregation was made by the author l inking 

the original set of data with the S T A T S 19 database. Covariate information, 

such as estimated traffic flow, speed limit and link length, was also available 

and used in the modelling process. Speed l imit was considered as a binary vari

able having only two levels: urban meaning 40 mph or less and rural meaning 

50 mph or 60 mph. 

It is well known that not all road accidents are recorded in S T A T S 19 data

base (Department of Transport, 1996). The number of unreported accidents 
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is not known and the analysts try to make the best of what is available. In this 

thesis the sets of data are used without trying to account for missing records. 

1.2 Aims of the thesis 

The overall a im of this thesis is to contribute to the development of sound 

statistical techniques that can be applied to road accident data. The intention 

is to develop statistical methods which improve the extraction of relevant 

information contained in the data, information that can be used subsequently 

by various organisations and traffic engineers to design safety measures. If the 

wrong sites are selected for treatment due to bad ranking methods, or policy 

measures are designed to improve irrelevant (from the safety point of view) 

characteristics of road accidents, the loss is very high i n terms of money and 

human life. 

Graphical models and graphical chain models are described as an ex

ploratory multivariate technique that can be applied to large sets of road 

accident data. It is intented to find out which variables, "environmental" , 

"road user", and so on, are associated with variables representing very impor

tant accident characteristics, such as accident severity, the number of vehicles 

involved and the number of casualties. 

More specifically, the first part of the thesis has the following objectives 

1. To investigate the associations and conditional independencies between 

several road accident characteristics for two fairly large datasets, corre-
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sponding to the counties of Bedfordshire and Hampshire, separately and 

pooled together. 

2. To investigate methods of reducing the analysis of large contingency ta

bles to the analysis of a smaller dimensional subtables defined by subsets 

of variables of particular interest. 

3. To investigate various model sélection procédures that can be used i n 

practice for selecting a graphical model; to discuss their advantages and 

limitations. 

4. To investigate the application of graphical chain models when Substan

tive research hypothèses are formulated prior to the Statistical modell ing 

process and to identify posible causal implications of such hypothèses. 

The research carried out i n the hrst part of the thesis wi l l use only categor-

ical variables, but continuous variables such as trafhc flow are also important 

in the study of road accidents. The problem is that the theory of graphical 

models is less well developed for a mixture of discrète and continuous variables. 

Partly for this reason, the research continues in the second part of the thesis 

by separating out the individual accidents according to location, in order to 

relate the accidents to the road network. 

In the second part of the thesis the author's aim is to propose a new class 

of models for différent type of accidents jointly modelled. Models including 

covariate information as well as models based only on parametric spécification 

are developed. It is shown how computational problems in developing such 
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comp lex mo ciels can be solved using M C M C . It is important to relate the 

observed number of accidents to environmental characteristics, such as speed 

lim.it, link length and estimated trafhc flow and this aim wi l l play a major 

rôle in this thesis in developing the hierarchical models for multiple accident 

frequencies. The objectives in the second part of the thesis are therefore 

1. To develop hierarchical Bayesian models for multiple accident counts. 

2. To discuss the problem of ranking the sites according to différent criteria 

and considering multiple response variables. 

3. To discuss estimation problems for Compound Poisson distributions. 

This research wi l l beneht authorities in designing new measures for traf

hc safety control and new methods for collecting data. A t the same time it 

wi l l provide some dues and starting points for future studies. The hierar

chical Bayesian models wil l provide a new and deeper Statistical modell ing 

methodology for road accident data. 

1.3 Overview of the thesis 

This introduction is followed by a Statistical literature review, Chapter 2, 

where some of the Statistical problems related to the ideas developed in the 

thesis are defmed and the solutions known so far are illustrated. Although 

the applications, for which the Statistical techniques are developed, concern 

road accidents, the same models can be adapted for other count data. The 

http://lim.it
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originality of this thesis consists in taking a multivariate approach for statisti

cal modelling, where ""multivariate" means several responses modelled jointly. 

Nevertheless the univariate case is also important and is better known in the 

literature. The role of the Chapter 2 is to review the most up to date statisti

cal modelling for the univariate case and to identify potential problems worth 

discussing in the multivariate setting. 

Chapter 3 is concerned with graphical modelling. It provides a motivation 

for applying graphical modelling to road accident data, describes the graph 

theory concepts used in the thesis, together with a short account of conditional 

independence, and gives a detailed description of various Markov properties 

necessary to develop graphical models and graphical chain models. The theory 

is almost everywhere accompanied by examples using road accident data. 

The inference process is described in Chapter 4. The starting point of dis

cussion is the class of log-linear models, a particular case of generalized linear 

models. When the researcher is interested in identifying conditional inde

pendence relationships between the variables (or between groups of variables) 

under study, graphical models are proposed as one of the best solutions. The 

theoretical framework and the most important results are described. More

over, since it is known that any log-linear model can be nested into a graphical 

model , it seems to be always useful to find out a graphical model f itt ing the 

data well and simply enough to assist interpretation. Various model selection 

procedures for log-linear models and graphical, models are reviewed and exem

plified. The theoretical aspects of graphical chain models are also developed. 
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The data subsequently analysed in Chapter 5 are aubsets of data extracted 

from the national road accident database for Great Br i ta in . S T A T S 19. It is 

expected that the contingency table summarising such data wi l l be sparse. 

This particular aspect makes the contingency tables more difficult to analyse. 

The classical tests based on asymptotic methods are not reliable so exact 

conditional tests, using Monte Carlo methods to overcome the computational 

difficulties, are described in the context of graphical models. Graphical mod-

els and graphical chain models for very large sets of data are proposed and 

important conditional independencies between road accident characteristics 

are identified. A comparison of asymptotic and exact conditional methods is 

investigated in relation to graphical chain modelhng, for a large subset of data 

regarding accidents with pedestrian casualties in Bedfordshire in 1995. 

Methods of reducing the dimensionality of the analysis are extremely use-

ful. Collapsibil i ty is a concept developed in the context of log-linear modelling 

that proves extremely belpful in reducing the amount of work necessary to ex

tract reliable information from data. This is done in an applied manner i n 

Chapter 6. 

Probably the most theoretical chapter of this thesis is Chapter 7 where esti

mation problems for Compound Poisson distributions are studied. T w o major 

cases, the Poisson-gamma and Poisson-log normal distributions, are discussed 

in greater detail. This chapter lias a special importance since many practition-

ers seem not to be aware of the difficulties presented by thèse two Compound 

distributions and Compound Poisson distributions i n gênerai. Chapter 7 con-
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tinues the discussion started in Chapter 2 about empirical Bayesian modelling 

but goes beyond that and opens the door to more complex and realistic models. 

Chapter 8 is dedicated to hierarchical Bayesian models for counts. Bayesian 

methods combining hierarchical models and regression techniques are devel

oped to extract information from a set of road accident data. In the first 

section the general methodology is explained in the context of univariate mod

els, thus making a straightforward connection with the second chapter of the 

thesis. M C M C methods are used to solve computational problems related to 

hierarchical models and are illustrated using two standard models. In the sec

ond part of Chapter 8 several complex hierarchical models are developed. A t 

the same time, an attempt is made to model multiple response count mod

els, based solely on the observed frequencies, using distributions such as the 

multivariate log-normal distribution, hierarchically specified. 

A new Bayesian model selection procedure is proposed for log-linear models 

for contingency tables. The computational side of the new method is solved 

again by applying M C M C techniques and this is the main reason why this 

section is included in this chapter. 

Given the applied character of this thesis, there is a companion Chapter 9 

to Chapter S in which a complex set of accident data is investigated at a mul

tiple response level. The set of data concerns accidents on 156 links in Kent 

between 1984 and 1991. The models analysed are fully Bayesian and range 

from simple log-linear regression models to mixed Poisson regression models 

wi th random effects. First , it is shown how to select a small subset of represen-
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tative models (3 models are identifiée!), and then, thèse rnodels are examined 

in greater detail. The sites can be ranked according to différent criteria using 

a single M C M C output, and the results are described and discussed towards 

the end of the chapter. 

The last chapter summarises the conclusions of this thesis, from both theo-

retical and applied points of vïew. It also contains a section proposing further 

research that would follow quite naturally from the results of this thesis. 



Chapter 2 

Statistical modelling of road 

accident data 

2.1 Introduction 

The purpose of this chapter is to présent the framework of the thesis in terms 

of the assurnptions made and the problems that wi l l be tackled, and also to 

review critically the contingent literature to thèse problems. 

Road accidents are among the more visible conséquences of an enormous 

number of failures in the daily volume of interaction between the people who 

use the road networks and the environment in which thev travel. A n accident 

that is predictable is a contradiction in terms. fn other words, when we are 

talking about an individual accident, no matter how much knowledge we have 

about the possible generating mechanisms. we are unable to predict exactly 

where, when and to whom the next individual accident wi l l occur. The best 

18 
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that can be done is to predict their approximate number. This is simply 

because, although an individual accident is impossible to predict, the total 

number of accidents of some kind may behave with an almost constant overall 

frequency in the long run. 

As defined in Hauer et al . (19S9) and Hauer (1997) safety is the property 

of some specific entity, most commonly a site of the road network. The prop

erty of safety (or more exactly the non-safety) for a site is quantified as the 

number of accidents expected to occur per unit of time and their adverse con

sequences. The important term is "expected" which makes a straightforward 

connection with the statistical approach. If all conditions that affect safety 

(traffic, weather, and so on) are frozen, expected means the "average" i n the 

long run. 

One a im of collecting and investigating road accident data is to identify 

significant clusters of accidents having common causal factors and to asses 

the expected numbers of road accidents. The list of problems includes the 

evaluation of safety treatments, the ranking and identification of hazardous 

locations, predicting the numbers of futures accidents and investigating the 

associations between characteristics of road accidents. The statistical mod

els proposed for solving these problems can be divided into three categories: 

models for accident frequencies, models for type of accidents and models for 

both accident frequencies and type of accidents. The first category has been 

well investigated at univariate level and it is reviewed next. 
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2.2 Models for accident frequencies 

The following methodological Framework is followed for studying accidents 

counts on a road network over a fixed period of time. The network is first 

divided irito units. usually cailed sites, like junctions or Stretches of the road. 

The Statistical unit is the road network element and the response variables are 

accident counts. 

2.2.1 The pure Poisson Model 

The main probability distribution used in modelling accident data is the Pois

son distribution. Accidents occur in time. Consider a fixed site for which ac

cidents are recorded i n a hxed period of time T. Part i t ioning the t ime period 

into n intervais of duration T/n, let YUii be the number of accidents recorded 

i n the i-th time interval. let Pnj — Pr(y n ] I - — 1) and let en,i ~ Pr(YnA > 2). 

The following assumptions are made 

1. The random variables Ynti, (i = 1 , 2 , . . . . n) are independent over i 

2- E S ï - P » , ; -> A € (0,co) as n -» co, 

3. maxi<i< n Pnj —» 0 as n —> oo, 

4- e n , i -* 0 as n -> oo. 

Then it is shown in Durrett (1991, Theorem 6.1) that 

>'n,i+Vn,2 + . . . + V- n, n ^ Pois(A) 
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vvhere d means that the convergence is in distribution. This justifies using the 

Poisson distribution for modeliing road accidents. This dérivation is concep-

tually différent from the one based on a homogeneous Poisson process and the 

Poisson distribution that characterizes it . The assumption of a homogeneous 

Poisson process is not valid for road accidents since it is natural to expect 

great variation of accidents by time patterns. 

The Poisson distribution is defined mathematically and whether a séries of 

events is i n agreement wi th it is an empirical fact. Dénote by Yk the number 

of accidents at site k during an observed time period Tk- The first assumption 

made in modeliing accident frequencies (Nicholson, 1985) is that 

Yk I mk '~ Pois (m A = A f c T*) 

where h = 1,2, ....N and A;, is the mean accident frequency per unit t ime 

at site k. The expected number of accidents, mjt, can then be linked with 

a covariate vector Xk = {Xk\, Xk2t • - • > X^q)'. representing for instance traffic 

flows and the géométrie characteristics of the site. The connection is made via 

a multiplicative équation which can be transformée! into a linear équation on 

the logarithmic scale. The unknown coefficients are estimated by fitt ing the 

model to data and thèse will be used for statistical inference. The fitting 

process, under this generalized linear statistical modeliing framework. can 

be done in G L I M or G E N S T A T , where maximum likelihood estimâtes are 

obtained using an itérative weighted least squared (WLS) procédure. The 
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most common goodness-of-fit measures used are 

k=N 
G2 

X2 

X ^ L l o g ^ ) 

(yk -mky 

- (yk - rnk) 

k=N f „ 2̂ 

(2.1) 

(2.2) 

where yk(k = 1 , 2 , . . . . iV) are the observed number of accidents and are 

the estimated means under the fitted model. The above notation for the 

Poisson model wi l l be used without any index accounting for différent sites 

when the theoretical model in itself is the same for each site and the model is 

self-explanatory. 

Regarding the accident frequencies observed on a fixed number of sites, 

there are two broad types of statistical investigations: 

1. before-after studies; and 

2. régression models regarding the prédiction of future number of accidents. 

2.2.2 Before-after studies 

A safety treatment of a site of a road network aims to reduce the number of 

accidents at that site. The usual way of assessing the effectiveness of a safety 

treatment is to compare tire accident frequency before the treatment has been 

implemented with that after treatment. 

A réduction in accidents at the treated sites does not necessarily imply 

that the treatment has been successful. Three reasons may be responsible for 

this. 
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• The number of accidents at a site may change in a random manner, 

increasing or decreasing. whether or not there has been any change at the 

site. Statistical methods are necessarv to consider this random variation. 

• The mean number of accidents may decrease without any connection 

vvith the treatment. In order to study these systematic factors it is 

important to compare treated sites with a control group of untreated 

sites. The confounding effects, such as time, can be overcome by selecting 

a control group of sites and observe the number of accidents at these 

sites over the same period as the treated sites. This design is called the 

before-after study and it uses a 2 x 2 contingency table 

Control Treatment 

Before nn ni2 

After «21 « 2 2 

defined by the time dichotomy, before-after, and the control-treatment 

dichotomy. 

• The thircL problem. is the régression-lo-mean effect, which means that 

for the many sites with a "low"'"' accident frequency before treatment 

there wi l l be a slight rise after treatment, for the few sites with a "h igh" 

frequency a greater fall ; while for all sites together, no change, (Hauer, 

1980). 

The first two problems can be solved by standard methods (Hauer, 1986; 

Hauer, 1980; Hauer, 1997). In terms of improvement due to the Statistical 
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analysis, the third problem is viewed as one of the most important. The 

regression-to-mean bias inadvertently results from the fact that only locations 

with a large number of accidents are generally selected for treatment, which 

may lead to biased conclusions. The standard solution to this problem is to 

use empirical Bayes (EB) models as developed in Abbess, Jarrett and Wright 

(1981), Jarrett, Abbess and Wright (1982), Brude and Larsson (1988), Mor

ris, Christiansen and Pendleton (1991). Hauer (1997) is a general reference 

explaining empirical Bayes methods for practitioners. 

The empirical Bayes (EB) method for estimation provides a general frame

work where different distributions can be studied in order to improve the qual

i ty of the estimators. The compound model 

Yk | ™>k l~ Pois(m/.) (2.3) 

mk ~ G'(-) ke {1 ,2 , . . . .JV} 

lead to estimates of the individual parameters using information from all 

sites under study. In studies using E B methods the variation of rajt from site 

to site is regarded as purely random. Then the Yk are marginally independent. 

If the unknown distribution G(-) has probability density g then the marginal 

density is 

PciVk) = / Po)s(yk\rnk)g(rnk)dmk 
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and the posterior density of mk is 

Poi$(yk\Tnk)g(mk) 

Pc(Vk) 
(2.4) 

If g is known. meaning that its parameters are given and do not have to be 

estimated. then the model is called fully Bayesian; if the parameters of g have 

to be estimated from data then this approach is called an empirical Bayes 

(EB) method. 

One of the first important empirical Bayes ideas for modelling counts was 

advocated by Robbins (1955) in a nonparametric form. For the componnd 

Poisson-G model described in (2.3), suppose that G is totally unknown. Under 

squared error loss ( S E L ) , the Bayes estimator is the posterior mean 

The M L E of m is y so raB is biased. However, m is preferred because of 

lower M S E . When G is known, the estimation is straightforward. For the 

case when G is unknown Robbins (1955) suggested to estimate pc[y) by the 

number of values Y in the sarnple Y\, V2, - - •, YN that are equal with Y, so 

m B E(m\y) 

(y + l ) p g ( y + l ) 

Pc(y) 

(2.5) 

(2.6) 

mu = {y + l) 

where is the indicator function. Therefore, the Bayes estimate m takes 
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information from other sites as well. Al though this procédure has some good 

asymptotic properties, it was shown that, even when the sample size is large, 

this method does not perform very well and a parametric approach is more 

suitable (Carl in and Louis, 1996). 

The prior distribution g (m) is usually assumed to be of gamma form, 

because the gamma distribution is the conjugate distribution for the Poisson 

distribution (George. Makov and Smith, 1993). Thus 

/ \ a a /rt -% m ~ gamma(a, o) = gamma 7 ; — • (2-0 
L6' 62 

where gam.ma(x | a, b) = J ^ x
a - l e - x b and the second parameterisation is i n 

terms of the mean | and variance ^ . Then it follows from the Bayes formula 

i n équation (2.4) that the posterior distribution of m is 

p( m 1 y) = T [ ^ y m ° + " " v ( m , m ( 2 ' 8 ) 

The marginal distribution of Y is then 

which is a negative binomial distribution NB(- j -^, a). As described by Morris in 

discussionof Haueret al . (1989), thewhole parametricmodellingmethodology 

for accident counts can be expressed in terms of a descriptive model and an 

inferential model, Both describe the distribution for the observed data and the 
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distribution of the unobserved parameters. The descriptive model is given by 

• observed data 

Y ^ Pois(m) (2.10) 

• unobserved parameters 

m \ a, 6 ~ gamma(a, 6) = gamma a a 

[V p 
(2.11) 

The inferential model is then 

• observed data 

Y ~ N B [ p = 
1 + 6' 

(2.12) 

• unobserved parameters 

m | y ~ gamma(a + y, b + 1) = gamma a + y a + y 
. 6 + l ' ( è + l ) 2 J 

(2.13) 

The Bayes estimate of m for the subpopulation of those sites at which y 

accidents occurred is 

E ( m | y) = 
a + y 
6 + 1 

(2.14) 

The régression efFect can then be defined by E ( m | y) — y- An. alternative 
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définition is the expected percentage change in the number of accidents 

R = 
E ( m \ y)-y 

x 100 

n + yf_ y 
b+ly 

x 100. 

In order to calculate the régression effect R the values of pararaeters a 

and b need to be estimated. The values of thèse parameters can be estimated 

by htt ing the négative binornial distribution, équation (2.9). to the observed 

data. This can be doue in G L I M using macros or more directly in G E N S T A T . 

Some examples of such analyses are in Persaud (1991), .larrett et al . (1982), 

Hauer (1997). 

The Bayes estimate mB is a convex combination of the overall expected 

accident frequency /i and the observed frequency y 

mB — E ( m I y) = 
a + y 

m = 

6 + 1 

ap + (1 - ct)y 

(2.15) 

(2.16) 

where a = 7^7, ju = E(m | a,6) = |. It is worth pointing out that a dépends 

on var(m) in the population of sites. 

Another way of modelling the effect of a safety measure implemented at a 

site is to define a coefficient 0 such that 

majt = 6 rribej 
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where the two m values represent the expected number of accidents, before 

and after the implementation. If the remédiai treatment has no effect then 

0 = 1. ï h e différence from this value can be interpreted as an increase or 

decrease by the same percentage in the expected number of accidents. The 

value of 0 is estimated as shown in Kulmala (1994). 

There are other methods for dealing with the regression-to-mean effect, 

though they are more difhcult to apply i n practice (Wright et a l . , 1988). 

However, only the E B methods are important for the development of the 

models considered in the second part of the thesis. Wright et al . (1988) 

describe four main problems about the assumptions made for ail methods 

that need to be carefully considered. 

1. The first problem is about the définition of the term "site". For treated 

sites this is done by local authorities and this may influence the estimate 

of the true accident rate for that site in future years. However. for the 

régression models considered i n the next subsection and later chapters, 

the road network is usually divided into nodes (jmictions) and links. 

2. The second problem is about defining the population. For a given site, 

do " a i l " the sites in the study area dehne the population or only "those" 

with similar physical characteristics as the treated site? The régression 

models allow the parameters of the gamma distribution to dépend on 

site characteristics, so the 'population' consists of ail sites with the same 

characteristics. 
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3. The third problem concerns the "gamma assumption". Following Abbess 

et a l . (1981). this means that the distribution of the true mean accident 

rates is gamma. This is very convenient from the mathematical point 

of view but it is a strong assumption. It would be very interesting to 

know how sensitive the results are to this assumption and whether other 

distributions such as log normal give satisfactory solutions. Some new 

approaches are described in this thesis in Chapters 7 and 9. 

4. The remedial sites are chosen for treatment because they have a large 

number of accidents which appear to have causal factors in common. The 

fourth problem is whether the regression-to-mean effect can be studied 

in terms of the overall accident frequency at each site. A simultane

ous analysis of accident frequencies of various type would certainly be 

more beneficial. Statistical models for doing this k ind of analysis after 

disaggregation are developed in Chapters 8 and 9. 

2.2.3 Regression models for accident frequencies 

Very often, a better prediction of future number of accidents is posssible when 

the covariate information available is linked to the observed number of acci

dents. This wil l help in establishing a straightforward method for prediction. 

Linear regression models using a normal distribution for the error term are 

not appropriate. Generalized linear modelling gives better modelling flexi

bil i ty and the predictive accident models developed in the last two decades 

are included in this general framework. This allows retention of the Pois-
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son assumption. Therefore, Poisson log-linear modelling is often used for the 

régression models for road accident data. 

A generalized linear model, McCullagh and Neider (1989), is specîfied by 

Y ~ f{9,è) (2.17) 

E(Y') = m (2.18) 

h(m) = X'ß. (2.19) 

In this, À' is a vector of explanatory variables. The relationship between the 

mean m and the linear predictor X'ß is modelled by the so called link function 

h. This is possible as long as there is a function h* such that 0 = h*(Xfß). 

When the error distribution /(0, <j>) is Poisson with mean m the canonical link 

0 = log (m) = X'ß leads to the standard log-linear Poisson-régression model. 

Regression models 

In the literature there are studied several classes of régression models. A 

Poisson cla-ss of models (Miaou and L u m . 1993) assumes that 

Y - Pois(m) (2.20) 

m = E(Y) - v[exp(X'ß)] (2.21) 

where v is an exposure factor. like time for instance. The rate function is 

A = exp (X'ß) which is very convenient being nonnegative. A modified Poisson 
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régression model, Maycock and Hal l (1984), is described by 

Y ~ Pois(m) 

m = E ( T ) =iA[exp(X'ß)] 

where the unknovvri constant ß0 rieeds to be estimated. If u is a good exposure 

measure then the estimated ß0 should be close to 1. 

As pointed out in Miaou and Lum (1993), the Poisson distribution is very 

useful not only because tests and confidence sets for the estimated régression 

coefficients can be calculated, but probabilistic statements can be made about 

Y. This is an important point in favour of using the Poisson distribution, which 

is discrète. Thcre is no need to look for some other continuous distributions, 

like the normal that is stil l used, quite inappropriately, i n some investigations, 

for example Amis (1996). 

For prédictive accident moclels traffic flow plays a major role, and should 

also be considered in before-after studies. Changes in trafFic flows influence 

changes i n accident counts between the "before" and "after" periods, and 

this should be accounted for before making any claims about the effectiveness 

of any treatment. Traffic flow is also important for estimating the expected 

accident numbers, and is usually included amongst the explanatory variables 

À'. Quite often accident rates like accidents/vehicle kilometer are used to 

account for changes in traffic flow as a measure of exposure. This would be 

correct if the expected accident frequencies like accidents/year were directly 
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proportion al to traffic flow. This common belief is seldom true; the coefficient 

of flow is significantly différent from 1. 

A further problein is that the exact values for traffic flows are not known 

and they are replaced by estimâtes. This may cause further problems if there 

are random errors in thèse estimâtes. If Q is the traffic flow count and z is 

the true annual average daily traffic ( A A D T ) flow. they can be modelled at 

the same time using the following model 

Y ~ Pois(m = AT) (2.22) 

Q ~ Pois (^) (2.23) 

m = 7 1 e x p [ X / ^ + l o g ( z ) 7 ] . (2.24) 

A n itérative procédure described in Maher and Summersgill (1996), can be 

used to calculate the estimâtes of the unknown parameters (/?,7). 

T h e Overdispersion problem 

One l imitat ion of the Poisson-régression modelling. well documented in the 

literature, is that the error variance bas to be equal to the mean Ë ( K ) in 

équation (2.18), see Cox (1983) and Dean and Lawless (1989). However, in 

practice count data very often shows overdispersion: the error variance is 

greater than the mean. Ignoring this phenomenon can be very troublesome. 

Although the maximum likelihood estimators of the régression coefficients are 

st i l l consistent, the variances of the estimated coefficients tend to be underes-
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t imated, which means that the significance levels of the estimated coefficients 

can be misleading. The phenomenon of overdispersion is well-known in many 

areas of statistics. There are several methods to overcome this difficulty but 

there is much research under progress searching for better solutions. Some pos

sible reasons for overdispersion in prédictive accident models are commented 

in Maher and Summersgill (1996). 

Overdispersion occurs quite often in modelling count data under a Poisson 

assumption. so the first attempts to solve this problem were based on making 

more complex distributional assumptions. One solution proposed by Wed-

derbnrn (1974) to correct for overdispersion is a quasi-Poisson model (QP)-

The différence from the classical Poisson model is that var (F) = r m , with 

the parameter r accounting for overdispersion. This parameter can. then be 

estimated by any of G2/{N - p), A" 2 /( iV - p), or G 2 / E ( G 2 ) , where N is the 

number of observations and /; is the number of parameters estimated. S im

ulation studies (Maher and Summersgill, 1996) have shown that the second 

performs better. For the estimâtes of the régression parameters there is no 

différence compared to the pure Poisson model, but their standard errors are 

inflated by a factor of %Jr. The asymptotic i-statistic for the coefficient of 

régression can be improved (Agresti, 1990) by mult iplying the value for the 

ini t ia l i-statistic, obtained from the Poisson régression model, by T ~ 2 . One 

may obtain the correct adjusted asymptotic standard errors by mult iplying 

the values given by traditional generalized linear modelling software by the 

scaling factor y/r = JX^KN — p). The inference is then performed in the 
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classical manner using thèse adjusted asymptotic standard errors. It can be 

immediately seen that, when r > 1. Le. there is overdispersion, the confidence 

intervais obtainecl after adjusting are larger than the unadjusted confidence 

intervais. Thus. the inferential process is improved by using the correct as

ymptotic standard errors. 

A n alternative is to use another discrète distribution instead of the Poisson 

distribution. Following a Bayesian approach as described above, it seems that 

the negative binomial distribution (NB) is more suitable, as it allows the 

variance to be greater than the mean. A third more gênerai solution is to use 

a more gênerai family of negative binomial distributions for which (QP) and 

(NB) models are just two special cases (Cameron and Trivedi , 1986). This 

gênerai model is given by the following assumptions 

Yk ~ ?o\s{\kTk), for ail A 

\ k ~ gamma(r?.6) = gamma 

(2.25) 

(2.26) 

(2.27) 

where a is a constant factor and the overall mean f_i is estimated from the 

data. From the model spécification it follows that 

p(Yk | ß,b) = N B 

E(Yk\fL,b) 
lTk 

,b + Tk 

var(V* 1/1,6) = E(Yk \ ^ b)b-±J± = //f, ( l + ^ ) 

(2.28) 

(2.29) 

(2.30) 
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Using équation (2.27) it follovvs that b = afiJ~l, and this means that 

u2~jT2 

var(y f c | ii, b) = fxTk + h- k-
a 

as mentioned in Mäher and Summersgill (1996). Thus, j = 0 implies that 

?/ = a and this is the ciassical N B model used. If j = 1 it follovvs that n = a/j, 

so the shape of the gamma distribution is not constant and it dépends on its 

mean. In this case 

var(V f c |/ i ,6) = / / r ^ l + ^ 

and if Tk = T then this model becomes a (QP) model with r = 1 + ~. 

This methodology can be extended to incorporate covariate information; 

the parameter \i is then a function of the covariate vector X. In this family of 

models, for the T R L studies, like the T R L 4-arm roundabout study (Maycock 

and H a l l . 1984), it seems that the (NB) model is more adéquate than the (QP) 

model. 

2.3 Selecting sites for treatment 

2.3.1 Introduction 

The main job of traffic safety engineers is to correct hazardous sites. F i rs t , 

they have to identify the risky locations, then to détermine remedial schemes 

and in the end to implement the best feasible treatment. Choosing the wrong 

sites is damaging in two ways: firstly, some hazardous sites may be left un-
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treated and secondly, large amounts of public money are was ted. Ideally, sites 

should be ranked by the values of their true means m. These are unknown, 

but because of random variation, observed numbers of accidents are not en-

tirely reliable. Statistical modelling is often used to improve the methodology. 

Similar problem s are addressed in mediane (Morris and Christiansen, 1996), 

where profiling hospitals lias become very important in récent years, and in 

éducation (Laird and Louis, 1989), where ranking schools based on pupil per

formance data is required for public information and for implementation of 

better éducation policies. 

Ranking and sélection are related to either a "relative" given set of Statisti

cal units, in our case sites, and then the units are just compared to each other, 

or to an "absolute" standard like a given threshold and the purpose is then 

to identify those units that exceed the threshold. Ranking can be successfully 

used to indicate good or bad performance. Ranks should contain Statistical 

information that avoid misrepresentation of the précision of estimation. If 

régression methods can be used to explain the whole between-sites variation 

there is no basis for ranking. 

Generally, sites are ranked according to some safety measure such as acci

dent count or rate. Higle and Witkowski (1988) were the first to propose (EB) 

methods for ranking locations. The (EB) methods were used to give greater 

weight to those sites having greater exposure. They were not used because of 

sélection bias, which is not of concern here. The site estimâtes are différent 

i n their reliability. For example, if a large number of accidents y\ is observed 
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at a site with a high exposure, then there is more confidence that yi is close 

to its true mean value than for a large number yi accidents observed at a site 

with low exposure. 

Ranking the sites by their empirical accident frequency, without consid

ering the uncertainty of each estimate, may not correctly identify the worst 

locations. Nothing can be said about the probability that the worst sites have 

been selected or about the extent to which the selected sites are really haz

ardous compared with the non-selected ones. Bayesian and empirical Bayes 

methods have been used to overcome some of these difficulties, see Hauer 

(1980), Higle and Witkowski (1988), Davies (1990), Christiansen, Morris and 

Pendleton (1992). A recent study, proposing hierarchical Bayesian models as 

a general solution to all the problems highlighted above, is given in Schluter, 

Deely and Nicholson (1997). 

Ranking and selection are based on solving one or more of the following 

problems (Morris and Christiansen, 1996), here translated for road accident 

sites. 

1. Estimate the maximum or minimum of all means or even find the dis

tribution of this quantity. 

2. Determine the site or family of sites that are likely to be the best (or 

worst). 

3. F i n d the sites that are likely to exceed a given threshold. 

4. Obtain the predictive distribution for each of the N sites and calculate 
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the probability that, for a fixée! future period, each site wi l l have the 

maximum (or minimum) number of accidents 

Methods for solving thèse problems can be based on a Bayesian framework. 

Given a tolérance level S. Higle and Witkowski (1988) called a site k haz

ardous when the probability that A* , the expected accident frequency per unit 

time, is greater than a specified upper l imit A (a possible acceptable underlying 

accident mean) exceeds S. In another study (Davies, 1990) sites were classified 

by the ratio p between the accident mean at each site and the pooled acci

dent means at the remaining sites. For each site under scrutiny, the posterior 

distribution of p is used to obtain the similarity measure 

a = Pr(p < 1 I yi,.,. ,yN). 

When a is small the corresponding site has a higher underlying accident mean 

than the other sites pooled together and it is therefore selected. 

Christiansen et al . (1992) developed a hierarchical Bayesian model for 

estimation and for ranking the accident sites. The posterior accident mean es

timâtes, adjusted for costs and future trame volume, are ranked in a decreasing 

order and sites are selected until a hxed budget constraint is met. 

2.3.2 Statistical modelling methodology 

Suppose there are N sites labelled k — 1.2, . . . , / V , and at site k there is a 

total of Vfc accidents over a period of time Tk. The counts Vfe are assumed 
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independent with means A^, where Xk > 0. 

The hierarchical models are developed in several stages. First of a l l , the 

mean per unit t ime Ajt is considered a random variable with prior distribution 

/(* | 0, i/). Then the hierarchical Bayesian method considers a hyper-prior 

distribution h on the parameters ß and i/, in a second stage. Under the 

assumption of exchangeability the prior distribution of A = ( A i , . . . , A/v) is 

fW = i i IT I ß,v)Kß>")dßfo- (2-31) 
Ju Jß fc=1 

The hyper-prior h(ß.v) can be factorised as 

h(ß,v) = h1(ß)h2(v\ß) (2.32) 

using prior information about the nature of parameters ß and v. The posterior 

distribution of the parameter of direct interest A, given the observed data 

2/ = ( y i , . . . ,i/iv), can be written as 

« " • ' - f f ^ * - < ' - - ' 

/(A | y) = r T/(A | ffl0,,,)P&!lMÄ2^ | ß)kx(ß)dßdu (2.34) 
./o io p(y) 

where 

f / p ( H / M ^ H / W W ^ 
0 

(2.35) 
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is the marginal distribution of the observed data y. Because the Bayesian 

calculus involves only the expectation of the posterior distribution or other 

measures such as mean or mode, the exact form of the posterior distribution 

is not a matter of specific concern. However, it has to be remarked that 

under the gamma assumption, p(y \ ß^u) is a product of negative binomial 

distributions. The spécification of the hyper-prior distribution h(ß,v) is not 

easy. Schlüter et al . (1997) provide an interesting discussion in connection 

with the ranking problem. 

Based on the previous methodology, Schlüter et al . (1997) proposed three 

criteria for ranking. These wi l l be explained in turn. 

Ranking using the posterior probability that a site is the worst site 

For a given type of accident or the total number of accidents, if A^ is the 

accident mean at the site k, then the posterior probability that the site k is 

the worst one can be calculated as 

Pk(v) = Pr(A f c > v \j, for all j / k \ y) 

where v £ [0, co). If v ~ 1 then p*(u) is the probability that the site k is 

the worst site. Only for this value of v the surn of pjt(u) equals 1. so they 

are true probabilities. The practitioners specify v a priori . Then either the 

first r largest values Pk(v) or the smallest group of sites with summed values 

Pk(v) greater than some threshold value _P*, are selected. If the results are not 

satisfactory, for instance only two or three sites are selected, then the value of 
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v can be lowered and the ranking process repeated. This criterion is designed 

for long term projects and calculâtes a measure of uncertainty, based on a 

pre-specified distance quantity v. 

Ranking using the prédict ive probability of future accidents 

For a given threshold number n 0 . if Yk is the future number of accidents in 

the next period at site k, then 

pd f c(no) = Pr(Y* > n0\y) = / p(yk | A,y)/(A | y)dX 

is the Bayesian prédictive probability that the future number of accidents w i l l 

exceed an important future target accident number. Again , the sélection is 

made by taking either the first r largest pdj.(no) values or ai l the sites having 

pdk(nc) > Pq, where P0 is fixed. This criterion is designed for short term 

objectives because it uses the probability of future numbers of accidents in 

the next period. 

Ranking using the posterior mean 

The posterior mean 

E(A f c | y) = / \kf{\k | y)dXk 

is the most commonly used measure. Sélection is made either by taking the r 

largest E(Ajt | y) or by retaining ail sites for which E(Afe | y) > e 0 , where eo is 
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a given threshold value. This measure is probably the most easily calculated 

of ail three. It is an estimate of the underlying mean and it can be used for 

long term forecasts. 

Howe ver, as pointed out by Laird and Louis (1989) and Morris and Chris

tiansen (1996), this approach can be misleading. A more reliable method is to 

estimate the actual ranks of the parameters of interest corresponding to the 

observational units, which in this thesis wi l l be the meaJis A^ of the Poisson 

distributions. The beauty of the Bayesian methodology coupled wi th M C M C 

methods is that the entire posterior distribution of ranks can be estimated. 

It would be very useful if the above methodology could be further devel-

oped and hierarchical models for multiple counts considered to rank the sites 

according to différent criteria. Nothing has been done apparently about rank

ing hazardous locations when multiple accident counts are jointly investigated. 

Practitioners prefer to use data at an aggregated level, mainly because of lack 

of S ta t i s t i ca l models that can be used for multiple counts. For the same period 

of observation, if one site has a total of 30 accidents, out of which 6 are K S I , 

and another site has a total of 15, out of which 10 are K S I , then, looking only 

at the totals, the first site seems more hazardous than the second one. But if 

only the number of K S I accidents is considered then the second site is more 

hazardous than the first one. Therefore developing models for ranking mult i 

ple accident counts would provide a much better analysis. Three hierarchical 

Bayesian models are investigated for ranking 156 link sites i n Chapter 9. 

Another hierarchical model used for ranks was proposed by Maher and 
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Mountain (19SS). The model is specified in three stages 

and the différence At — Sk represents the quantity by vvhich the mean accident 

frequency at the site k exceeds the average mean for a site wi th fixed char-

acteristics of that type. Maher and Mountain (1988) ranked the sites by the 

potential accident réduction criterion ( P A R ) , that is by yk — 6k, where 6 is 

an estimate. It was shown that this criterion is better than ranking based on 

annual accident totals, provided that the estimation of 6 is accurate enough. 

This model is an improvement because it is not based only on the observed 

total accident counts at each site and because covariates can be easily in-

cluded. Although ( P A R ) shows great promise there are several drawbacks 

for using this model in this form. One major crit icism is that the estimated 

average means 6 and the observed counts y are assumed to be sufficient for 

calculating the ranks. The environment may expérience dynamic changes in 

many unobserved ways with results in increasing or decreasing the number of 

accidents. The plain observed counts are unreliable for ranking purposes, but 

fully Bayesian or E B methods combine the data from other sites and therefore 

are more reliable, especially if random effects are employed. for estimating 

E(Àjt | y) or for ranking the sites. In addition, nothing bas been said, re-

Pois(A f c) (2.36) 

(2.37) 

(2.38) 
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garding the ( P A R ) criterion, about the uncertainty associated with the ranks. 

Even when two sites hâve différent ranks, if their uncertainty intervais are 

quite overlapped then the différence may be due to the particular estimation 

procédure chosen. A solution to ail thèse problems is sketched in Chapters S 

and 9, using hierarchical models combining régression with random effects in 

a Bayesian framework. 

2.4 Models for type of accidents 

The flrsfc category of studies described in Section 2.2 focused on statistical 

modelling of accident frequencies as random variables. A second category 

of applications is looking at the characteristics of the accidents which have 

occurred, such as the severity of injury, the date (day, month, year), location, 

speed l imi t , road classification and so on. The unit of the statistical an.al.ysis is 

différent from that in the previous category of studies. Each accident is a unit 

of the sample and the random variables are the characteristics of the accident, 

given that the accident has occurred. 

There wi l l typically be a large nurnber of variables. There is an obvious 

interest in identifying the association or independence relationships among 

the variables. A n example is in Salminen and Heiskanen (1997), where the 

corrélations between accidents in traffic, at work, at home and during sports 

and leisure time were investigated. The product moment corrélation was used 

as the main tool. Even after logarithmic transformations, the corrélations 

http://an.al.ysis
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were unchanged and stil l low. The study used data for 3 years 1980. 1988 and 

1993, the matrix of corrélation changing over time. 

Another study of which declared purpose was to investigate the charac

teristics of pedal cycle accidents at T-junctions is Henson (1992). A number 

of ten variables representing various accident factors were analysed using log

linear models for data summarised in contingency tables. The analysis was 

conducted on several marginal two dimensional. and three dimensional tables 

and it was inconclusive. Henson (1992) required a larger database to get bet

ter results. The data was indeed sparse, comprising only 272 reported injury 

accidents, but the Statistical methodology used, analysing several marginal ta

bles, is potentially misleading. However, there are better techniques available 

for studying associations between variables that wi l l be described and applied 

in this thesis in Chapters 3, 4 and 5. It wi l l be shown in this thesis how to 

conduct an exploratory analysis on a single large table cross-classified by ail 

variables under study. It wi l l also be shown how to avoid model sélection 

problems for sparse tables by using exact conditional tests. 

Studies of accident characteristics are observational in the same sensé as 

studies regarding accident frequencies at individual sites. A rétrospective view 

is taken, conditioning on the fact that accidents have occurred, so only char

acteristics of observed accidents are recorded. In this thesis we wi l l call by 

"road accident characteristics" features of accidents such as accident severity, 

the number of casualties, the number of vehices involved in the accident; char

acteristics of the road network such as road class, speed l imit ; environmental 
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conditions such as road surface conditions, hazardous objects on the road; 

temporal characteristics such as day of the week, hour of the day and so on. 

The report book, that was used by Thames Valley Police to collect data about 

contributory factors of accidents, contains a total of 33 variables of this kind. 

There are some studies about road accident characteristics (Taylor and 

Barker, 1994-1995; Maycock, 1985), but the approach is more descriptive 

rather than trying a Statistical inferential approach. Generally there is a lack 

of exploratory studies of large data sets i n this area. Several applications wi l l 

be given in this thesis in Chapters 5 and 6 continuing the work described in 

Tunaru and Jarrett (19986) and Tunaru and Jarrett (1998a). 

For tables of small dimension cross-classified by accident characteristics 

the class of log-linear models has been used (Fienberg, 1980) successfully for 

Statistical modelling. A subset of data of this type extracted from Kih lberg , 

Narragon and Campbel l (1964) has been analysed in textbooks, see Fienberg 

(1980) and Christensen (1990). This small table is used in Chapters 3, 4, 6 

and 8 as a gênerai example to illustrate the theoretical concepts involved. A n -

other example of a log-linear analysis is described in Agresti (1996), examining 

the characteristics of passengers in cars and light trucks involved i n accidents. 

The 4-dimensional contingency table contains data on 68,694 passengers in 

the state of Maine in 1991 and the analysis revealed that, even for a large 

sample size, asymptotic significance tests can be unreliable. This conclusion 

wil l be reconhrmed by the results obtained in Chapter 5. 
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2.5 Models for accident frequencies and type 

of accidents 

The previous two catégories of variables are sometimes studied jointly, devel-

oping models for relating road environment factors to both accident frequency 

and the type of accident. The models falling into this category try to relate 

the total number of accidents at a junction or along a length of road to a 

number of explanatory road environment variables, and also to investigate 

which variables are associated with the type of accident (Amis , 1996; M o u n 

tain et al . , 1996). In A m i s (1996), an exploratory stepwise multiple régression 

approach was proposed in the flrst stage in order to détermine which covari-

ates should be retained for further régression modelling. If the square root is 

taken to normalise the Poisson variable, the mode! proposed fîrst is 

y/Yk = a + Xkß + e 

where Yk is the number of accidents at the site k, ß is a vector of parameters, 

Xk is a vector of covariates and e is an error term having the standard normal 

distribution. In the second stage generalized linear models are fitted either for 

accident frequencies or for accident type. For example, if the site is defined as 

a junction, then the generalized linear model for accident frequencies proposed 

in Amis (1996) is 

Yk - Pois ( M * x (exp(a + X'kß))) 



CHAPTER 2. STATISTICAL MODELLING OF ROAD ACCIDENT DATA 49 

where M * is either the time period or the link length. A logistic model is 

discussed in the same paper for accident type. 

Stepwise multiple regression applied in an automated way can easily lead 

to misleading results. A particular covariate can be evaluated as significant as 

well as non-significant, depending on what explanatory terms are included in 

regression. This model selection procedure should be used with great caution. 

In addition, instead of attempting to normalise the Poisson variable, it would 

be better to use a Poisson or N B regression model. However, the idea as a 

whole is very interesting and further research could usefully be done in this 

area. This may require a multivariate approach a.nd a general framework is 

proposed now. 

Suppose that there are Y^i accidents of type i, at site k, that are Poisson 

distributed with mean A ^ , where i — 1 , 2 , . . . , M , k = 1 , 2 , . . . , A^. Given the 

means A*,-, the accident frequencies Yki are assumed independent from site to 

site, but accident frequencies of different types are not assumed independent. 

From the properties of Poisson distribution, the total number of accidents of 

type i is Kj-t ~ Pois(A + ^). Conditioning on the total number of accidents over 

all sites Y++, it follows (Santner and Duffy, 1989) that 

( K + l , Y + 2 , . - . , V W ) | { Y + + = n} ~ M u l t i ( n , p O 

where the probabilities pi — Making a strong assumption that the mean 

number of accidents can be calculated, multiplicatively as a product of a site 
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efFect and an accident type effect, A*» = ßk^i-, it follows that A + 1 - = fi+9i and 

therefore pi = J^. The next step is to consider a log-linear model for the vector 

of probabilities (p,)i=i,2,....Af • Therefore. this is a log-linear analysis of accident 

characteristics. Thus, conditioning on the fact that the accidents h ave oc-

curred and knowing various information about the characteristics of accidents 

and road network, the relationships between thèse categorical variables can 

be investigated and the conclusion can be drawn about accidents as a whole 

on that road network. Since there are many variables of interest regarding 

accident characteristics, the log-linear modelling, in this context, should be 

able to deal. with large probability vectors in an efficient manner. A Statistical 

technique that does just that is graphical modelling which wi l l be the subject 

of the following four chapters. 

2.6 Summary 

In this chapter a number of différent Statistical models for road accidents have 

been reviewed. Statistical modelling for road accident data was greatly im-

proved by applying generalized linear models. Accident data can be viewed as 

an example of count data in gênerai and therefore models for counts developed 

in other areas of research can be also applied here. Nevertheless, accident data 

has some specific characteristics that makes it more difficult to analyse. Data 

corne from observational studies and it is almost always sparse. that is many 

counts are zéro or very small . This means that classical techniques applied 
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in other areas cannot be always applied here and various changes need to be 

made. 

More powerful statistical methods are required to handle large and complex 

road accident datasets. Graphical modelling offers a solution to study the 

relationships between the variables under study, usually a large number, and 

multiple response variables models would give accident prediction modelling 

a new dimension. 

Predictive accident models were developed mainly at an univariate level. 

The lack of models for joint types of accident gives the statistician an op

portunity to research a vast area. The benefits would be a better and more 

structured information for local authorities that could in return spend the 

money more wisely and help reducing the number of accidents further. 



Chapter 3 

Graphical log-linear models 

3.1 Introduction 

In the last décade graphical modelling has become an important tool in applied 

Statistical modelling. A graphical model is usually identified with a pictorial 

représentation of a Statistical model, thus making a straightforward connection 

with graph theory. Graphical models are mainly used to represent conditional 

independencies and they cover exploratory studies, where ail variables are 

treated as response variables, and more causal approaches where the variables 

are divided into response and explanatory blocks. The potential of applications 

includes biostatistics, genetics, sociology, éducation studies- see the examples 

i n Edwards (1995) and Mohamed, Diamond and Smith (199S), and credit 

scoring in finance (Hand, McConway and Stanghellini, 1997; Stanghellini, 

McConway and Hand, 1999) among others. These models can be also ap

plied to econometrics (Lyngaard and Walt her, 1993) and theoretical statistics 

52 
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(Stangheilini. 1997). A directed graph representing an econometric model for 

traffic fatalities lias been illustrated in Roh, Bessler a,nd Gilbert (1999)-

In addition, the concept of graphical rnodel is fundamental in the devel-

opment of Mar ko v Chain Monte Carlo stratégies for applied Bayesian statis-

tics. It is also used as a tool for communicating complex Statistical models 

analysed in the computer program W i n B U G S : see Spiegelhalter, Thomas and 

Best (1998). 

In this chapter, the theoretical éléments on which graphical modelling is 

based are reviewed, and some terminology from graph theory, used in the 

subséquent chapters, is introduced. A 4-dimensional contingency table is used 

throughout to illustrate various concepts related to graphical modell ing. 

In Section 3.2 the motivation for applying graphical modelling for analysing 

large contingency tables is given. Section 3.3 contains a short revision of con-

ditional independence and a list of various concepts of graph theory used later 

on. Then, in Section 3.4, the Markov properties deflning the graphical mod

els and the methodological skeleton for practical applications are outlined. 

Chain graphical modelling is a généralisation of graphical modelling for situ

ations when variables are ordered by some causal a priori assumption. The 

corresponding Markov properties and other results are summarised in Sec

tion 3.4.2. Various model sélection procédures are discussed in Chapter 4 and 

a nevv battery of Bayesian model sélection procédures that can be applied for 

contingency tables is proposed in Chapter 8, Section 8.4. 

Chapters 5 and 6 are com p lernen t. ar y to this one, discussing some practical 
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applications to large and sparse contingency table sumrnarising road accident 

data and methods of reducing the dimensionality of the Statistical analysis 

vvith the help of a collapsibility concept and corresponding theoretical results 

as given in Asmussen and Edwards (19S3). 

3.2 The need for graphical modelling 

A national road accident database wil l contain a large number of variables rep-

resenting characteristics of the recorded road accidents. A n important problem 

is then to identify the associations, or in a complementary way, the conditional 

independence relationships between the variables under study. For Statistical 

analysis, the data can be summarised in a multi-dimensional contingency ta

ble cross-classified by the variables under study. Because of the Yule-Simpson 

paradox (Simpson, 1951), the analysis of marginal tables, involving only two 

or three variables at a time, can be very misleading. 

Consider, for instance, a subset of data reported in Kih lberg et a l . (1964). 

The variables are 

• A = Driver ejected (No / Yes) 

• B — Car type (Small / Standard) 

• C = Injury type (Not severe / Severe). 

and the data is shown in Table 3.1. 

The Statistical analysis of contingency tables like this, where all variables 

are viewed as response variables, is based on the class of log-linear models, 
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Table 3.1: A 3-way contingency table of road accidents 
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Driver Car 
Ejected type Not Severe Severe 

In jury type 

No Small 
Standard 

410 
2026 

262 
1426 

y es Small 
Standard 

45 
133 

103 
426 

Source: K ih lberg et al . (1964). 

which is perhaps the most useful class for contingency tables (Haberman, 1974; 

Bishop, Fienberg and Holland, 1975; Christensen, 1990). Log-linear models 

express the logarithms of the cell probabilities as sums of main effects and 

interaction terms, by analogy with analysis of variance ( A N O V A ) models for 

continuous data. The parameter pijk represents the probability of the cell at 

the intersection of level i of A, levelj/ of B and level h. of C. The saturated log-

linear model for a three dimensional contingency table can be parameterised 

as 

l°gPr7fc = U + «1(0 + «2(» + «3(Ä) + u12(tj) + «13(tfc) + u23{3k) +^123(tjfc), 

where, for instance, the term «12(1» represents the interaction between vari

ables A and B. The terms i i 1 2 (^) , uys(ik)> u23(jk) a r e ealled two-way interac

tion terms and Ui23(tjfc) <s calted a three-way interaction term. The mutual 

independence model. that is the model which spécifies that ail variables cross-
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classifying the table are independent, is 

56 

\°&Pijk = u + u ] { i ) + w2(j) 4- w3(jt), 

and the all two-way interaction model is 

Since there are more parameters on the right side of the équation than on the 

left side, the représentations are overparameterised. Thus, in order to have a 

unique représentation, sorne A N O V A - l i k e constraints are imposed. The main 

effects are always kept in the model because it is very hard to interpret a 

model having a higher-order relative term of a main effect not présent in the 

model. 

Since there are only three variables involved in this example, it is possible 

to test the fit of all possible modets. The results are shown in Table 3.2. In 

this table, the model formula is expressed using only the terms of highest in

teraction. Thus, for example, [^][ß][C] dénotes a log-Linear model containing 

the main effects of the factors A, B and C. while [AB][i?C] is an abbreviation 

for A B + C -Y A.B + B.C. a model containing ail the main effects and 

the interactions between factors A and B and respectively, between B and C. 

The scaled déviance (McCul lagh and Neider, 1989) is the statistic employed 

to test the model. The saturated model [ylfîC] fits the data perfectly and has 

déviance 0. In gênerai, the scaled déviance is the generalised log-likelihood 



CHAPTER 3. GRAPHICAL LOG-LINEAR MODELS 57 

ratio statistic for comparing each model with the saturated model. Under the 

null hypothesis that a particular model is correct, the scaled déviance is as-

ymptot ical ly distributed as chi-squared with the indicated number of degrees 

of freedom (denoted by df). This distribution is used to calculate the P-value, 

the probability of obtaining the observed or a larger déviance. There are two 

Table S.S: Models fitted to the collision-rollover data 

Model Formula Scaled déviance df P- value 
1 [A}[B}[C] 298.69 4 0.000 

2 [AB]{C] 289.89 3 0.000 
3 [AC][B] 12.69 3 0.005 
4 [BC][A] 297.93 3 0.000 

5 [AB][BC] 289.13 2 0.000 
6 [AB][AC] 3.89 2 0.143 
7 [BC][AC] 11.93 2 0.003 

8 [AB][BC]{AC] 1.15 1 0.284 
9 [ABC] 0.00 0 1.000 

models that fit the data well, models [ A B ] [ £ C ] [ 4 C ] and [A£][AC]. The sec

ond model is nested within the first one so it is preferred because it has fewer 

parameters and is easier to interpret in terms of conditional independencies. 

The model informs us that car type, B, and injury type, C , are independent 

given driver ejected, A. This means that. knowing whether the driver has 

been ejected or not in an accident, fmding out the type of the car w i l l not 

help in any way to predict the type of injury in that accident. Therefore, B is 

irrelevant to C when A is known, or in other words it is only A which is associ-

ated with C. This conditional independence relationship is denoted, following 
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Dawid (1980), by B IL G \ A. À similar notation will be used throughtout 

the thesis for the conditional independence of sets of random variables. 

The problem here is that there is more information available and there is a 

fourth variable D — Accident Type (Collision / Rollover) so the Table 3.1 can 

be further cross-classifled. Even if the interest is focused on the relationship 

between type of injury, type of car and driver being ejected it is not wise to 

take out of the analysis the variable D, the accident type. The ful l data is 

shown in the 4-dimensional Table 3.3. 

Table 3.3: Jrway contingency table of road accidents 

A B C 
Driver Car Accident Injury type 
Ejected type type D Not Severe Severe 

No Small Collision 350 150 
Rollover 60 112 

Standard Collision 1878 1022 
Rollover 148 404 

yes Small Collision 26 23 
Roi lover- 19 80 

Standard Col li si on 111 161 
Rollover 22 265 

Source: Kihlberg et a l . (1964). 

One of the models that fits Table 3.3 well is [ACD][BCD]. The impor

tance of this model wi l l be better described in the context of various model 

sélection procédures compared in Chapter 4. This model can be again inter-

preted in terms of conditional independence such as A _LL B \ {C, D}7 which 

means that driver ejected is independent of car type given accident type and 
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injury type. In addition, B and C are not conditionally independent which 

seems to contradict the analysis of the 3-dimensional table. Moreover, the 

conditional independence between A and B is in contradiction with the previ

ous conclusion. This phenomenon, where a relationship between two variables 

is changing to the opposite when more (or less variables) are considered, is 

called Yule-Simpson paradox or just Simpson's paradox and it highlights the 

importance of taking a multivariate approach, by involving al l relevant vari

ables under study. Therefore a powerful technique is needed to analyse large 

tables in an efficient manner without losing important information or arriving 

at misleading conclusions. 

This looks like a problem without any solution. O n the one hand al l the 

variables under study should be considered in order to avoid Simpson's para

dox, and on the other hand there is a natural tendency to simpLify the picture 

to have more reasonable interpretations. This is where graphical modelling 

comes i n as a very useful exploratory technique for describing the conditional 

independencies between the variables. 

3.3 Preliminaries and terminology 

3.3.1 Background 

The seminal ideas of graphical modelling can be found in several areas of 

science where statistics plays an important role: 
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1. in statistical physics, Gibbs (1902) studied a large system of particles of 

a gas or a solid where, for a subgroup of particles, only the interactions 

between the particles in the subgroup and the neighbour particles are 

considered significant. 

2. in genetics, path analysis (Wright, 1934) was proposed for studying heri

table properties of natural species using graphs with arrows from parents 

to children. These ideas were later taken up in economics and social sci

ences for developing causal models (Wold. 1954; Wold, 1960; Blalock, 

1971). 

3. in theoretical statistics, Bartlett (1935) used interactions for contingency-

tables in a similar way to their use in statistical physics. The counts in 

a group of cells of the table were independent of the counts i n the rest 

of the table , given the counts in the boundary of the group. 

Graphical models have been developed for categorical variables as a subclass 

of hierarchical log-linear models (Darroch, Lauritzen and Speed, 1980; Lau-

ritzen, 1996; W h i t taker, 1990; Wermuth and Lauritzen, 1990; Edwards, 1995), 

for continuous Gaussian variables, better known as covariance selection mod

els (Wermuth, 1976; Whittaker, 1990; Lauritzen, 1996), and for a mixture 

of continuous Gaussian and categorical variables (Lauritzen, 1989; Edwards, 

1990; Edwards, 1995). In the first part of the thesis only graphical models for 

categorical variables and graphical chain models are considered. Other forms 

of graphical models, like directed graphical models or graphical chain models 
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with categorical, discrète and continuous (not necessarily normal) variables, 

are used implic i t ly in conjunction with Markov Chain Monte Carlo methods 

applied, in the second part of the thesis. 

3.3.2 Graph theory concepts 

The account of the éléments of graph theory in this subsection follows Lau

ritzen (1996). Formally, a graph is a pair G = (V, E) where V is a hnite set of 

vertices (which i n this thesis correspond to the variables under examination) 

and E is the set of edges, which is a subset of the set of ordered pairs of dis

tinct éléments of V". The number of vertices in V is clenoted by |V|. A l l the 

graphs in this thesis are assumed to be simple, that is no mult iple edges or 

loops are allowed. ff (a, 6) 6 E but (6, a) ^ E. then the edge is called directed 

and is represented by an arrow from. a pointing towards b; it is said that a is 

a parent of b and b is a child of a. denoted by a —> 6. The set of parents of 6 is 

denoted by pa(6) and the set of children of a as ch(a). ff both (a. b) € E and 

(6, a) 6 E then the edge is undirected and represented by a line joining a to b; 

the vertices are then called adjacent or neighbours, denoted by a ~ b. The set 

of neighbours of a vertex a is denoted by ne(a). For a subset of vertices A, the 

notations pa(*4), ch(.4) and ne(„4) dénote the collection of parents, children 

and neighbours respectively of vertices i n A that are not themselves éléments 

of A. For example, i n the graph in Figure 3.1, 5' and N are both parents of A 

whereas {S,T,L} is the parental set of the set {A.N}. In the same time, R 

has only one neighbour L and N has none. In spite of the fact that iV has no 
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Figure 3.1: A simple graph, neilher directed nor undirected 

neighbours, this node has parents and children so the concept of houndary of 

a set of vertices A, defined as bd(.4) = pa(̂ 4) U ne(.4), is just a natural exten

sion of the set of neighbours for situations where there is a mixture of directed 

and undirected edges. Another useful concept from graph theory that wi l l be 

used later is the closure of a set of vertices A, defined as cl(^4) = A U bd(>l). 

A graph with. only undirected edges is called an undirected graph, and if a i l 

edges are directed the graph is called directed. The undirected graph obtained 

from G by replacing arrows with. lines is called the undirected version G~ of 

G- A set of vertices that has ail possible pairs adjacent is called complète. 

A subset A Ç V is a clique if it is complète and there is not other subset 

B. A Ç B Ç V that is also complète. 

A path of length n from a to 6 is a séquence a = a 0 ; . . . . an = b of distinct 

vertices such that (a»_i,ai) G E for ai l i = 1 , 2 ; . . . . T Î . A n n-cycle is a path 

of length n with a = b. The cycle is called directed if one or more of its 
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edges are arrows. If there is a path from a to 6, denoted by a h-> 6. and if in 

addition 6 i—»• a. it is said that a and 6 are connected. This is an équivalence 

relationship and the équivalence classes are called connectivity coraponents. A 

subset S Ç V is said to be an (a, b) separator if ail paths from a to 6 intersect 

5. The subset S is said to separate A from. # if it is an (a,b) separator for 

every a € A, b 6 B. For the graph in Figure 3 . 1 , {S,N} séparâtes {A} and 

{R,Tj L). The vertex a such that a i—» b and 6 a is called an ancestor of 

6, and the vertex b is called a descendant of a. The set of ancestors of ail 

vertices from the subset b is denoted by an(6) and the set of descendants of 

ai l vertices from a subset a is denoted by de[a). The set of non-descendants 

of a is denoted by nd(a). For the graph in Figure 3 . 1 , the ancestors of A are 

R,L,T, S,N and A lias no descendants. 

If bd(a) Ç A for ail a E A then A is said to be an ancestraî set. In an 

undirected graph, the ancestraî sets are unions of connectivity components. 

The intersection of a collection of ancestraî sets is again. ancestraî, so there 

is a smallest ancestraî set containing A which is denoted by An(A). For 

example, in the graph of Figure 3 . 1 , A n ( { R , £ , j V , S , T } ) - {R,L,N,S,T} 

whereas A.n({A, LyN}) = {A,N: S,L,T, R). 

Chain graphs are graphs where the vertex set V can be partitioned into 

numbered blocks, forming a so-called dependence chain V - V ( 1 ) U - • - U V ( T ) , 

such that ail. edges between vertices in the same block are undirected and ai l 

edges between différent blocks are directed, pointing from the blocks with lower 

numbers to the blocks with higher numbers. Thèse graphs are characterised 
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vii). .Y.(2), 
A 

B i i D 

Figure S.2: Chain graph with dependence chain {A, B} U {C, D} U {E} 

by having no directed cycles. The connectivity components indicate the block 

partitioning of the chain graph. A graph Q is a chain graph if and only if its 

connectivity components induce undirected subgraphs. It is easy to identify 

the chain components simply by removing all directed edges before taking 

connectivity components. The graph in Figure 3.2 illustrates the definitions 

given above. The boxes are not part of the graph, but are used to indicate 

the partit ion into blocks of the chain graph. The connectivity components 

are easy to determine: they are {A. .£?}, {C, D} and {E} and these are the 

blocks. If there had been an arrow from C to A , the graph could not have 

been a chain graph, even after determining the new connectivity components, 

which would have been {A, B, C\ D] and {E}. The reason is that there would 

be a directed cycle A —> B —> C —> A and this is not allowed by definition 

because it wi l l create problems regarding interpretability of the model and 

model specification. 

The moral graph Çm of a chain graph Q is the undirected graph with the 

same vertex set V but with a ~ b in Çm if and only if either a —> 6 or b —* a 
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or if there are <$i,<!>2, connected in the same block, such that a —> 6\ and 

b —> ¿2- For a directed. acyclic graph. that is a directed graph with no cycles, 

the moral graph is obtained from the original graph by "marrying parents" 

wi th a common child and subsequently deleting directions on all arrows. 

A triangulated graph is an undirected graph with the property that every 

cycle of length n > 4 has a chord, that is two non-consecutive vertices that 

are neighbours. This type of graph is sometimes also called ckordal. 

3.3.3 Conditional independence 

Suppose that Xv = (X^,,.. ,X<i) is the entire set of random variables of 

interest (often denoted by the index K ) , where each variable Xv takes values 

in. a set $lv. Then Xv takes values in Ï7 = Oy = Üvev^«- Ii A C. V let 

— riveA éléments of QA wi l l be denoted by XA ~ (X-V)VÇA and 

the corresponding vectors wi l l be denoted as XA = (XV)V^A-

In this thesis, / (or sometimes p) is used as a generic symbol for the 

probability density of the random variables involved. The random vectors X 

and. Y are called conditionally independent given the random vector Z if and 

only if 

f(z,V | z) = f{x \ z)f(y \ z) 

for all triples (x,y,z) for which f(z) > 0. Given the applied character of 

the thesis, only variables having a positive density probability function, for 

continuous variables, or a positive mass probability function, for discrète vari-
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ables, are taken înto account. This wi l l ensure that ail conditional densities 

are defined. 

Several équivalent définitions of conditional independence are 

f(x,y,z) = f(xtz)f(ytz)/f(z)1 

f(x \y,z) = f(x | z) , and 

/(.t, y, z) = h(x, z)k(y,z), for some h, k. 

It is very easy to prove the following properties (Lauritzen, 1996), where h, 

dénotes an arbitrary measurable function on the sample space Qx' 

( C l ) : if X AL Y \ Z then Y AL X \ Z (Symmetry) 

(C2) : if X AL Y \ Z and U = h{X) then. U AL Y \ Z (Réduction) 

(C3) : \î X ALY \ Z and U = h{X) then X AL Y \ (Z, U) (Redundance) 

(C4) : if X AL Y \ Z and X AL W \ ( K Z) then X IL (V, W) \ Z 

(Contraction) 

(C5) : if X AL Y \ Z and X AL Z \ Y then X AL (Y, Z). (Strong contraction) 

It should be noted that the assumption of the positive densities or mass 

functions is needed to prove (C5). 

Axioms of irrelevance for road accident characteristics 

A s pointed out in Lauritzen (1996) the first four properties ( C l ) - ( C 4 ) can be 

interpreted in a non-probabilistic language as gênerai axioms of irrelevance. A 

model of irrelevance is given by the graph séparation property for undirected 
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graphs. [f A,B and C are subsets of the vertex set V of an undirected graph 

G 
Q = (V, E) the séparation of A and B by C is denoted by A _L B \ C. Then 

it can be easily checked that 

Q Q 
( C l ) Symmetry: if A _L B \ C then B LA\C 

(C2) Réduction: if A 1 £? | C and IJ Ç A then U LB\C 

(C3) Redundance: if v4 î £ | C and U Ç A then A 1 £ | (C7 U U) 

(C4-) Contraction: if A _L £ | C and A ± D \ (B U C) then 

A i ( ß u D ) |C 

If the subsets are disjoint then 

G G G 
(C5) Strong contraction: if A J_ B \ C and A 1 C \ B then A 1 ( S , C ) is also 

true. This correspondence shows that graphs can be used to conceptualise 

and communicate complex scientific ideas. The use of graphs in this way wi l l 

become particulary important in Chapters 8 and 9 where, in relation with 

Bayesian graphical modelling, it gives a basis for computation as implemented 

in W i n B U G S (Spiegelhalter. Thomas and Best, 1996). 

3.4 Graphical models for contingency tables 

3.4.1 Graphical Models 

Let Xy = {Xv)vev be a vector of d — |V| caiegorical random variables. The 

catégories are labelled by positive integers so that each variable Xv takes values 

in flv = /„ = { 1 , 2 , . . . , rv}. Let T = Ylvçv h dénote the set of ail possible 

configurations of Xy. For any subset A. Ç V, let XA = YIVÇA h- The cells of 
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the contingency table resulting from cross-classification of Xv are indicated 

by i € T, and i_\ E 1A dénotes a cell from the marginal table of XA- Suppose 

that observational units are classified according to factors in V and the data 

is summarised in contingency tables, by counts n = {n(i) : i G Î ) where n(i) 

is the number of units that fall in the ith cell. The table has dimension equal 

to the number of variables d. For A C V the counts on the A-marginal table 

= {n(iA) : ÎA G XA] are given by summation over all cells in Ty\A so for 

A = 0 it follows that 

n(i$) = ^n(i) = |n| = ./V, 
iei 

the total number of observations. Considering B C V and a cell ig € Xß, the 

iß-slice of the table is obtained by classifying only those observations for a 

fixed level of each. variable in B. This means that the i^-slice has cells in TA 

where A = V \ B, and counts n^B(iA) — nfz^, iß) where the %A is variable and 

IQ is fixed. 

For the purposes of this thesis only three différent sampling schemes are 

considered. 

1. A l l cell counts and the total number of observations are random. This 

situation appears when counting the number of events in fixed time pe-

riods (such as traffic accidents) and classifying them accordingly to type 

of road. accident severity. day of the week etc. The sampling scheme 

assumes that the cell counts {n(i)}i^j are independent and Poisson dis-
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tributed. The joint distribution of counts is 

P r [ n ( 0 , x 6 I ] = n - M î T « « P ( - m ( 0 ) 

where E(n(i)) = m(i). 

2. The total number of observations is fixed but cell counts are otherwise 

random. This sampling scheme assumes that the observations are inde

pendent and the probability that a given observation belongs to the cell 

z is p(i) > 0, so the joint distribution is a mult inomial distribution 

By conditioning upon the total number of observations N the Poisson 

distribution becomes multinomial . 

3. The number of observations n(is) — Y,iA&iA
n%°^A) in each ¿o-slice is 

fixed for some B C V. The sampling scheme is based on the assumption 

that the counts in the slices are independent and multinomially distrib

uted as in case 2, with cell probabilities in slice ig equal to P(Í,\\ÍB)- The 

joint distribution is product-multinomial (also called restricted multino

mial) 

P r [ n ( ¿ ) , ¿ € 2 ] = J[ 

= n 

r w , n - M ! ¿ i p ( , A 1 ,B> 
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This distribution can be also obtained from the Poisson distribution by 

conditioning, in addition to the condition shown for 2. on n(tg), is £ 1B-

The log-linear models are based on expansions for either log(./Vp(¿)) or 

logp(i) (whîch is not much différent since log ¿V is a constant for the multino-

mial sampling) as a sum of main effects and interaction terms 

logp(¿) = 53 U o(0» 
aÇV 

subject to A N O V A - l i k e constraints to make the expansion unique. The terms 

it£ are called |a|-order interaction terms. The first order interaction terms 

are also called main effects and should usually be included in the log-linear 

models. If the u-terms are written in the form tt̂  , then the subscript (in 

this case a) shows the subset of variables and the superscript (V in this case) 

shows the set of variables for which the log-linear model is proposed. For 

small dimensional tables a more straightforward notation, depending on the 

context, is used. 

For a given log-linear model, denoted for convenience by X , a graph can 

be associated, called the interaction graph, which is an undirected graph with 

vértices corresponding to the variables in V , and an edge between two vértices 

(variables) v and w if and only if there is an interaction term u^v wy in L. The 

properties of the interaction graph are studied in Darroch et al . (1980). 

A hierarchical log-linear model L is specified by its associated generating 

class. This is defined as the class of subsets a of V , maximal with respect to 
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inclusion, such that ua ^ 0. The subsets a are called the generators of the log

linear model and the model may be specified by enumerating the generators in 

square brackets. For instance, the log-linear model A + B-rC-r A.B + A.C wi l l 

be specified as [A£][AC]. Différent hierarchical models may have the same 

interaction graph. The simplest example is given by the models [ A £ C ] and 

[AB}[AC]\BC]. 

The restriction La, of a log-linear model L to a set o Ç V , is a log-linear 

model for the set of probabihties pa, whose generating class can be determined 

from the generating class of L by removing all factors i n ac — V \ a, the 

variables i n V which are not i n a, and then removing the redundant subsets. 

Graphical models can be described as a sub-class of hierarchical log-linear 

models wi th the maximal permissible higher-order interactions corresponding 

to a given graph. More formally, a graphical model is a family of proba-

bility distributions Pg which satisfies some Markov property over a graph G 

(Whittaker, 1990; Lauritzen, 1996). More détails about the Markov proper-

ties of a family of probability distributions, over a graph, are given below. 

The decomposable models are graphical models whose interaction graphs con-

tain no cycle of length greater than 3 without a chord (Lauritzen, Speed and 

Vijayan, 1984). This class of log-linear models is better known in the l i t -

erature (Haberman, 1974; Bishop et al . , 1975; Christensen, 1990; Santner 

and Duffy, 1989), one reason being that, for decomposable models, m a x i m u m 

likelihood estimators have closed forms. 

From the inference point of view, the three sampling distributions are 
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related and without loss of generality, the main results can be illustrated 

using only one distribution, like the multinomial distribution (Agresti , 1990). 

The unknown quantities that are the subject of Statistical modelling are the 

probabilities p(i) of the cells i of the contingency table. The table of counts 

is a sufficient statistic for the parameters p = (p(i))ter (Whittaker, 1990). 

In this thesis all log-linear models are assumed to be hierarchical so in 

the model formula only the maximal terms need to be specified. A hierarchi

cal model is based on the assumption that if a lower-order interaction term 

is miasing then all its higher level relatives interaction terms are out of the 

model. So if any of u i 2 , U i 3 , u23 is set to zéro then U123 should be also set to 

zéro. Graphical models require an extra condition in a somewhat opposite d i 

rection. For a graphical model, if ail interaction terms of some lower level are 

included in the model then the higher relative interaction term should be also 

included. For example, if Ui2 ; Wi4 ,u 2 4 are in the log-linear expansion then U\24 

should also be included. Graphical models are fully interprétable in terms of 

conclitional independencies. In addition, it is worth pointing out that, because 

the saturated model is graphical, any log-linear model can be nested within a 

graphical model. This suggests that for any log-linear modelling relative to a 

contingency table, it may be useful to find first the simples! graphical model 

fitting the table and then try to renne the analysis. 

Some graphical models have already been encountered in Section 3.2. Some 

other simple models are described now to explain the différence between a 

graphical and a hierarchical model. W i t h only three variables A , B and G for 
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simplicity, the saturated log-linear model (which is hierarchical and graphical) 

is 

The log-linear model 

l o gPijfc = « + Ul(t) + «2( j ) + u3(k) + Ul3(ifc) + «23(jJfc) 

is hierarchical, but 

logpi j i = U + + W2(j) "I- W3(fc) + Ui3(ifc) + U23(jk) + «123(yA) 

is not hierarchical. The hierarchical model of no three-way interaction 

log Pijk =U-\- + U2(j) + U3(A) + tii2(tj) + ^13(ifc} + u23(jA:) 

is not graphical because the inclusion of uv¿, u 1 3 and u 2 3 would require the 

inclusion of «123 too. 

The interaction graph of a graphical model for categorical variables, is 

equivalent to the conditional independence graph, which is the main tool i n 

graphical modelling (Whittaker, 1990). The conditional independence graph 

(for short the independence graph) is an undirected graph Q = (VtE) where 

the set of vertices V = {1,2, ...,d] is corresponding to the set of variables 
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B 

D 

C 

Figure 3.3: Undirected graph Q = where V = {A, B,C,D) and E = 
{AB,ACtBC,BD} 

under study Xy = {Xi,... ,X^}, and where is not i n the edge set E if the 

variables Xi and Xj are independent given the remaining variables Xv\{i,j}> 

Very often the random quantifies are denoted with the labels of their nodes 

i n the graph. 

Markov properties on undirected graphs 

A probability measure P on Ù has: 

(P) the pairwise Markov property, relative to G-, if for any pair of non-adjacent 

vertices a ^ b, 

a Al b | V \ {a,b}; 

thus, in Figure 3.3 A is independent of D conditional on B, C ; 

(L) the local Markov property. relative to Ç% if for any vertex a £ V\ 

a Al ( V \ c l ( a ) ) | bd(a); 

again on the graph in Figure 3.3, D is independent of A, C given bd(£>) = B: 
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Figure S.Ą: The global Markov -property 

(G) the global Markov property, relative to Q, if for any triple (A,B,S) of 

disjoint subsets of V such that S separates A from B in Q, 

A1LB\S. 

The global Ma.rkov property can be understood as a separation property, see 

Figure 3.4. If all paths connecting nodes from A to nodes from B intersect 

at least one node from S then A _IL B \S. Because of the general regularity 

assumptions made, it is true that if A i L B | C U D and A i L C \ B U D then 

A IL (B U C) I D for any disjoint subsets of variables A,B,C,D. The main 

result regarding these Markov properties is described next. 

T h e o r e m 3.1 If G is an undirected graph then the global Markov property 

(G), the local Markov property (L) and the painoise Markov property (P) are 
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all équivalent. 

For a proofj see Lauritzen (1996). 

The most important property is the global Markov property because it 

gives a gênerai criterion for dcciding when two groups of variables A and B 

are conditionally independent given a third group of variables S. 

Under the assumption. that the joint density f(V) is everyvvhere positive 

the local Markov property is also équivalent to the following factorisation of 

f(V) 

f(v) = n m»C) 

where C is the set of cliques of the graph Ç (Lauritzen, 1996). Hence, for the 

graph in Figure 3.3 the joint density can be factorised as 

f{V) = ii>l{A,B,C)H,D) 

because the cliques of the graph are {A, B, C} and {D}. 

The process of building a graphical model, or equivalently its corresponding 

conditional independence graph. can be illustrated using the collision-rollover 

data in Table 3.3. The set of vertices of the graph corresponds to the variables 

under study. In this case four vertices are needed, that can be denoted again 

by A.BtC and D. Then an edge is présent for each two-way interaction 

term in the model. This is the same thing as having no edge between two 

vertices when they are conditionally independent given the remaining set of 

variables. This pairwise Markov property is used for building the graph which 



CHAPTER 3. GRAPH (CAL LOG-LINEAR MODELS 77 

C 

D 

Figure 3.5: Conditional independence grapk for collision-rollover data; A is 
Driver ejected. ß is Car type, G is Injury and D is Accident type 

is obviously an undirected graph. The independence graph corresponding to 

the rnodel [ACD\[BCD] h as the following set of edges: AG, AD,CD, BC, BD 

and is represented in Figure 3.5. 

Because all Markov properties are équivalent, after constructing the condi

tional independence graph, the independence relationships between the vari

ables can be read directly from the graph, using the global Markov property. 

The variables B and A are not directly connected on the graph but they are 

linked via either the variable C or the variable D. This is telling us that B and 

A are independent given {C, D}. Although in this case it does not look that 

global Markov property is more helpful than the pairwise Markov property 

used to build the graph, vvhen a large number of variables is used, and the fi

nal graphical model is proposed as a resuit of a sélection algorithm, the global 

Markov property (G) is a valuable tool to read the conditional independencies 

correctly. 
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3.4.2 Graphical Chain Models 

Chain graphs are a combination of directed and undirected edges such that 

there are no directed cycles in the graph (Section 3.3). They originated in 

statistical modelling of substantive research hypotheses in the social sciences 

(Wermuth and Lauritzen, 1990; Cox and Wermuth, 1993). Quite often, the set 

of the variables under study can be divided into blocks by some prior ordering 

criterion. The partitioning imposed by the research hypotheses requires nat

urally that variables i n the same block are to be treated on an equal footing, 

and variables from lower-numbered blocks influence the variables i n the blocks 

with higher order numbers. In a chain graph G, the vertex set V is partit ioned 

into disjoint blocks V = V(l) U • • • U V{T) such that the vertices within each 

V(f ) has undirected edges between vertices, and the arrows point from vertices 

in blocks with lower number to those with higher number. Thus a directed 

acyclic graph is a chain graph where each block contains only one vertex and 

an undirected graph is a chain graph with only one block. For t < T, define 

C ( i ) = l / ( l ) U - U V ( i ) . 

Given a particular chain graph Q it is said that a probability P satisfies: 

(PB) the pairwise block-recursive Markov property if for any pair a f/> b it is 

true that 

aMb\C(t*)\{a,b] 

where i * is the smallest t that has a. b E C(/); 

(PC) the pairwise chain Markov property, if for any pair a ^ b wi th b a 
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non-descendant of a, 

a AL b | nd(a) \ {6}; 

( L C ) the local chain Markov property, if for any vertex a 6 V , 

a AL nd(a) | bd(a); 

( G C ) the global chain Markov property if for any triple (A,B,S) of disjoint 

subsets of V such that S séparâtes A from B in {pAn(AjtfuS)) > the moral 

graph of the smallest ancestral set containing A U B U 5 , it is true that 

AALB\S. 

The same chain graph can have attached différent dependence chains. The 

property ( P B ) is relative to a particular dependence chain. It can be shown 

(Lauritzen. 1996) that 

Theorem 3.2 For a chain graph Ç, the global chain Markov property (GC), 

the local chain Markov property (LC), the pairwise chain Markov property 

(PC) and the pairwise block-recursive Markov property (PB) are ail équivalent. 

A useful practical resuit is that a chain graph Ç possesses the Markov prop-

erties of its associated moral graph Qm (Whittaker, 1990). Frydenberg (1990) 

shown that (LC) is équivalent to a factorisation of the joint distr ibution as 

f(v) = Ilf(V(t)\p4V(t)]), 
t 

(3.1) 
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V ( l ) 
B 

V(3) 

D 

C 

Figure 3.6: Chain graph with the dependence chain {A} U {B,C} U {D} 

where a £ p&[V{t)] if there is a directed link from a to a vertex of V ( f ) . This 

factorisation is similar to the case of a directed acyclic graph where each block 

has been considered a single vertex in the directed graph. Moreover, each term 

in the factorisation (3.1) can be further factor-ised into 

where Ct is the set of cliques of the undirected graph with the set of vertices 

( V ( i ) U p a ( V ( i ) ] ) , edges consisting of the undirected links between the vertices 

of V(i), the arrows between pa[V(£)] and V(t) transformed into undirected 

lines, and a complète set of lines between the vertices of pa[V/(t)]. Thus for 

the chain graph in Figure 3.6 the following factorisation takes place 

f(V(t) | pa[y(t)]) = n Mvc) (3.2) 
cect 

f(A,B,C,D) = f{D\B)!(BX\A)f(A) 

where 

f(D\B) = MB,D) 
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Figure S. 7: Chain graph corresponding to graphical chain model for collision-
rollover data, with dependence chain {B,D} U {A} U {C} 

an< 

f(B1C\A) = th(BiC)M^C). 

The variables cross-classifyirig the collision-rollover data in Table 3.3 can 

be divided into three blocks: first the car type B and the accident type D, 

then A driver-ejected and the third block is the injury type C. The chain 

graph for this graphical chain model is described in Figure 3.7. 

Al though the research hypothèses are obvious from the chain partit ion-

ing, the conditional independencies should be read on the associated moral 

graph in Figure 3.8. The moral graph is complète so there seern to be no 

conditional independencies. Apparently this contradicts the conditional inde-

pendence between car type B and driver ejected A revealed by the conditional 

independence graph in Figure 3-5. However, the sampling schemes are différ

ent. For simple graphical models ail variables are treated as response variables 

in a joint framework, so multinomial sampling is used, whereas for graphical 

chain models some prior assumptions require the factorisation of the joint dis-
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V.(3) 

Figure S.8: Moral graph for the chain graph corresponding to graphical chain 
raodel for collision-rollover data, with dependence chain {B,D} U {A} U 
{C}.The dependence chain is superimposed for comparison and clarification. 

tribution into conditional distributions according to the block division. The 

same data was used to exemplify all situations but the modelling problems to 

be solved are différent. Moreover, during the modelling process which is car-

ried out sequentially, it can be noticed that, when just the first two blocks are 

considered, the arrow from B to A is missing which means that B IL A | D. 

There is nothing wrong with this. If the question is whether B IL A | D i n the 

final chain graph with all three blocks, then the moral graph of the smallest 

ancestral subset covering {B, D , A} needs to be considered. The moral graph 

^An(BuDuA) = GBUDUA a n G ^ * s described in Figure 3.9. The conditional inde-

pendence between B and A given only D is obvious now. The lesson to learn 

is that the füll moral graph can hicle some independence relationships. 

The graphical model illustrated in Figure 3.5 is différent from the graph

ical chain model with the chain graph in Figure 3.7 in terms of assumptions, 

fitting process and conclusions implied. The graphical model is based on the 

assumption that all four variables A.B,C,D are response; the fitting process 
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B 

A 

D 

Figure 3.9: Moral subgrapk of {A, B. D] 

is based on multinomial sampling and the model fitted uses the factorisation 

f(A, 5 , C, D) = f(A, C , D)f(B, C, D). (3.3) 

The graphical model is the family of probability mult inomial distributions 

satisfying équation (3.3). 

O n the contrary, the graphical chain model starts by assuming that B, D 

are pure explanatory variables, A is an intermediate response and C is a 

pure response. Because of this assumption the joint distribution modelled is 

not f{AtB,C,D) but f(C | A,B,D)f(A \ B,D)f(B,D), so the product-

mult inomial distribution is employed. In this case each conditional distrib

ution is fitted to the data separately. The graphical chain model selected is 

given by 

f(C\A,B,D)f(A\D)f(B,D)t (3.4) 

so the data contains Statistical évidence of a simplification of only the second 

factor f(A \ B,D). The graphical chain model is the family of product-
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multinomial distributions satisfying équation (3.4). If another partit ion of the 

set variables is chosen, a différent graphical chain model may be selected. This 

Highlights the importance of choosing appropriate ordering of the variables in 

practice. A graphical chain model where car type follows after injury type 

does not make much sensé although the inference process would fit the model 

to the data and would give some (meaningless) estimâtes. 

More complicated graphical chain models wi l l be investigated in Chap-

ter 5. The process of building the chain graph corresponding to a graphical 

chain model will be described in detail on an example in Section 5.4. In addi

tion, graphical chain models are mentioned in the context of response variable 

models i n Section 6.2.1. 

3.5 Summary 

This chapter contained a brief revision through examples of the main con

cepts from graph theory and probability theory that are needed to under-

stand graphical modelling. The emphasis was on graphical models and graph

ical chain models because thèse two classes of models wi l l be applied in the 

following chapters of this thesis. 

Graphical modelling is useful because of the need to analyse large contin-

gency tables. Graphical chain modelling is designed to be applied to situations 

were some external knowledge is available and the models then become more 

sophisticated in interprétation. 
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Although both classes of models are represented by graphs there is a major 

distinction between them. Graphical chain models are built relative to depen

dence chains. Great care is needed when interpreting such models because the 

dependence chain describing the partition plays a major role in extracting the 

conclusion. 



Chapter 4 

Inference and model sélection 

4.1 Introduction 

In ttiis chapter the estimation ancl model sélection processes are reviewed. The 

first section highlights, from an applied perspective, the results on which the 

vvhole inference process for graphical log-linear models is based. More détails 

can be found in the standard accounts of Whittaker (1990) and Lauritzen 

(1996). The second section describes several model sélection procédures that 

can be applied for selectïng graphical log-linear models. The problems are 

explained with the help of the collision-rollover 4-dimensional table. For this 

particular example, it wi l l be shown that ail log-linear models selected by 

various methods can be nested into the same graphical model. This highlights 

the idea that graphical modelling can be used to select a small number of 

models that can be interpreted in terms of conditional independencies and 

that are good ini t ia l models for further analysis. 

86 
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Estimation and testing procédures are briefly described for graphical mod-

els and graphical chain models. Although thèse two classes are conceptually 

différent, the inferential process for the latter mimics sequentially the fitt ing 

and testing process for the former class. The collision-rollover 4-dimensional 

table used in this thesis as an omnibus example has been analysed i n classical 

textbooks (Fienberg, 1980; Christensen, 1990) in the context of log-linear mod

els but the analysis output and the graphical chain approach presented here 

are the author's contribution. More complex tables are analysed in Chapter 5. 

4.2 Inference 

4.2.1 Graphical modelling 

Statistical inference can be based on the (scaled) déviance (McCul lagh and 

Neider, 1989) which is a generalised log-likelihood ratio. Denoting the current 

model by M and the saturated model by M s , the déviance d e v ( M ) is twice the 

différence between the maximised log-likelihood function under the saturated 

model Ms and the maximised log-likelihood function under the model M: 

IÏ • 
dev(M) = 2 Ç n , l o g - ^ % 

This is the same quantity as G2 given in équation (2.1) because it is easy to 

show that Yli{ni — NpM(i)) = 0 knowing that = jV. This statistic is 

asymptotically distributed chi-squared with degrees of freedom equal to the 
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number of free parameters. Thus the overall déviance can be used as a measure 

of goodness-of-fit. For testing nested models M0 C M\ the déviance différence 

that Mo is true, d has an asymptotic chi-squared distribution with degrees of 

freedoin equal to the différence in the number of free parameters between M0 

and M\. The asymptotic test based on the déviance différence is more reliable 

than that based on the overall déviance so it is always better to use the former 

for model sélection. Another generally used measure of goodness-of-fit is the 

Pearson chi-squared statistic 

having the same asymptotic distribution as the déviance; again this may not 

provide a reliable test. Both this and the déviance are special cases of the 

power family of test statistics introduced by Read and Cressie (1988) 

which also covers other well known statistics such as Freeman-Tukey and Ney-

man; see Bishop et al . (1975). The Pearson X2 is obtained for A = 1 and 

the déviance is obtained for A = 0 by taking the l imit of Ix when A —> 0. It 

has been suggested (Read and Cressie, 1988) that /a is more reliable than the 

more common dev and X2, especially for sparse tables. 

The dérivation of the likelihood équations for the maximum likelihood 

d = dev(Mo | M\) = dev(vV/0) — dev(Afi) is appropriate: under the hypothesis 

x 2 = E 
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estimators of the table of probabilities p , satisfying a graphical model given 

by formula M = [A^, j(-•-j[À^ c], is based on the fact that a set of minimal 

sufficient statistics is given by the set of marginal tables n a corresponding to 

the generators i n the model, that is for ail cliques a = du ... ,dc. Then the 

maximum likelihood équations are formed by equating the minimal sufficient 

statistics to their expected values under the model M 

for a i l cliques a = d\,...,dc. A proof of this resuit is given in Whittaker 

(1990). 

If the graphical model M is based on one single conditional independence 

relationship 

then there are exactly two cliques in the independence graph, a U c and b U c, 

and the likelihood équations are 

n a = A'p; a (4.1) 

Xa IL | Xc 

NpM(iac) = n{iac) and Nf4(ibc) = n{ibe). (4.2) 

The probabilities can then be calculated as 

p M ( ' a c ) p M f o c ) (4.3) 

n(iac)n(ibc) 
Nn(ic) 

(4.4) 



CHAPTER 4. INFERENCE AND MO DEL SELECTION 90 

Denoting by ra,7'& and r c the number of cells of the marginal tables given 

by Xa,Xf, and Xc, the déviance of the graphical model M : Xa AL Xf> | Xc is 

and it has an asymptotic x2 distribution with rc(ra — l){'f'b — 1) degrees of 

freedom. As an immédiate conséquence, the déviance for testing the exclusion 

of only one edge (u, w) in a gênerai independence graph G is 

D e c o m p o s a b l e models 

The fîrst graphical models investigated were a subclass of log-linear models 

for contingency tables that h ave closed-form maximum likelihood estimâtes 

(Darroch et al . , 1980). Those models werecalled decomposable models because 

the joint density function can be factorised into the product of marginal density 

functions on cliques. Recalling the model with the independence graph in 

Figure 3.5, specified by [ADC\[BCD]. this îs a decomposable model and its 

joint density function can be calculated from 

dev( M) = 2j2n(iabc)\og 
n(igbc)n{ic) 
n(iac)n(ibc) 

<Aev(Xv IL Xw | XV\{v,uf}) = 2 ^ n ( z v ) l o g n{iy)n(iy\{v,w}) 

n(iV\v)n(iV\w) 

p(A, B , C, D) = p(A, C, D)p{B, C, D). 

Decomposable models are characterised in terms of graph theory as those that 

have triangulated (or chordal) independence graphs (Lauritzen et a l . , 1984). 
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Being able to calculate maximum likelihood estimators in closed-form is very 

attractive but numerical methods can overcome this difficulty easily for non-

decomposable models. Other reasons why statisticians might restrict their 

attention to this subclass of graphical models is that exact conditional tests 

are available only for decomposable models (Lauritzen. 1996) and this is very 

important for model sélection in sparse tables (Kreiner, 1987). 

4.2.2 Hypothesis testing 

There is specialised software called M I M which was designed for graphical 

modelling (Edwards, 1995). It includes several methods of model sélection 

and testing. The model sélection procédures are discussed in greater detail in 

Section 4.3 but for grasping a complète view of the graphical modell l ing from 

the beginning to the end, M I M ' s backward élimination procédure is briefly 

described. 

The procédure of backward élimination starts from the saturated model 

and at each step it removes the edge for which the déviance différence test 

for edge removal has the largest P-value greater than or equal to a specified 

significance level a. The edges that are significant (with P-values smaller than 

a) at one stage of the analysis are not tested again at further stages but always 

retained in the graph. In the end, when no further edge can be deleted, the 

corresponding model should fit the data well. Furthermore, the conditional 

independencies can be read directly from the graph. The backward élimination 

procédure is usually preferred to a forward inclusion procédure since it is passes 
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through a séquence of models, ail of whïch fit the data, and the models become 

simpler at each step. 

E x a c t t e s t i n g 

One a im of this thesis is to apply graphical modelling to large tables. In 

Chapter 5 tables with 6, 9 and 10 variables are investigated. Even if the 

sample size is very large, contingency tables summarïsing road accident data 

can be expected to be sparse, with many very small cell frequencies. This is 

due to the nature of road accident data in combination wi th a large number 

of cells. For instance, when accident severity is one of the variables, the total 

number of fatal accidents wil l be relatively small; when they are distributed 

across the cells resulting from the cross-classification of the levels of the other 

(more than 5) variables, many cells are likely to have zéro frequencies. This is 

one important problem that should not be overlooked in modelling accident 

tables. 

The usual methodology employing asymptotic tests for the déviance are 

then not very reliable. The asymptotic P-values in the case of large sparse 

tables tend to underestimate the real P-values. Exact tests are required 

(Kreiner, 1987) to overcome this difficulty and M I M provides options for them. 

Consider, for instance, a 3-dimensional table of counts. For testing the hy-

pothesis H0 : Xi IL X? \ X3 exact tests are constructed by conditioning on the 

marginal totals. Dénote by *P the sample space of ail possible 3-dimensional 

tables n = [n^jt] with the same fixed margins as the table of observed counts. 
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ï h e n the P-value for the test criterion T is 

93 

Pots = P r ( T > Tob$ | Ho) (4.5) 

(4.6) 
iien:r{n)>Tobî 

where 

Pr(n \Ho) = U 
IL n^lflj^+jfc! (4.7) 

This approach is implemented only for decomposable models, so tfiat closed 

form estimâtes exist, and it is easily generalised to higher dimensional tables 

(Whittaker, 1990; Lauritzen, 1996). The exhaustive enumeration method, cal-

culating T ( n ) and P r ( n | H0) for each table n in is not always feasible. 

The alternative is to use Monte Carlo sampiing. Following the algorithm in. 

Patefield (19S1), K random tables are sampled from $ such that the proba-

bil ity of sampiing a table n is from the right distribution. For the table n r , 

dehne zr to be 1 if T ( n r ) > T0f,s and to be 0 otherwise; then estimate P0bs by 

Pobs ~ Hr=i 7f-

4.2.3 Graphical chain modelling 

In Chapter 3 it was noted that chain graphs extended graphical modelling 

to studies where Substantive information is available, the variables V being 

divided into blocks V(l) U . . . U V(T), ordered by a. prior causal assump-

tion. Great attention should be given to the meaning of the adjective causal 
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(Cox, 1993). The meaning of the concept causal requires both the sensé of 

Suppes underlying Granger-Wiener causality in econometrics and the sensé of 

R u b i n (Holland, 1986), and also that there is a Substantive process underlying 

the dependence structure proposed. Subject matter knowledge and théories 

indicate the type, direction and even the strength of the associations. These 

hypothèses, describing actual properties of observational units, are called Sub

stantive research hypothèses or just research hypothèses (Wermuth and Lau-

ritzen, 1990). They are différent from Statistical nul l hypothèses which play 

only the rôle that they should be rejected by the observed data. 

Once again graphs are used to formulate research hypothèses. The spéci

fication considers two types of direct association: dircctionat associations for 

pairs of variables where one is a response variable and the other is explanatory; 

and Symmetrie associations where variables are treated on an equal footing. 

Changing the direction of some associations would resuit in changing the re

search hypothèses. 

A graph can serve three purposes: to formulate research hypothèses, to 

describe conditional independencies, and to characterise a Statistical model. 

In the first case, from subject knowledge, prior to the Statistical analysis, 

the variables under study are divided into several blocks indicated by boxes 

superimposed on the graph. The boxes are in a one-to-one correspondence 

wi th the blocks, of number T say, and they dehne a dependence chain with 

T concurrent sets of variables. A dependence chain can be also defined as 

an ordered partitioning of the set of vertices V into chain éléments such that 
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edges within chain elements are undirected, and edges between chain elements 

are directed in the same direction. 

In the second case the graph is a mathematical object as used in graph 

theory. Such a graph is called a chain graph if a dependence chain can be at

tached to it . Different dependence chains can have the same chain graph which 

means that they will describe the same conditional independence structure. A 

cautious approach should be taken when interpreting chain graphs. 

The third case relates a chain graph to a statistical model called a graphical 

chain model by specifying the joint distribution as a product of distributions 

over the blocks of the dependence chain. Graphical chain models are mult i 

variate response models for V(t) given V'(l) U . . . V(t — 1). The joint density 

f{x\,X2..... Xd) can be factorised as 

f(V(l))f( 1/(2) | V(l))...f(V(T) | C ( r - 1 ) U V ( T - 2 ) . . . U V ( 1 ) ) . 

The chain graph pictures the conditional independence restrictions on the 

joint distribution. The case of just two blocks is generic because the inference 

process is based on fitting two blocks at a time. The first block V'( l ) is 

considered a set of covariates Xi,... , Xv and the second block V(2) a set of 

response variables Y\,..., Yr. If all p + r variables were responses it can be 

shown (Whittaker, 1990) that the number of possible models decreases from 

+ 2(2), which is an improvement. 

To see that note that there are two types of conditional independence rela-
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tionships usée! to build the chain graph; (J) possible conditional independencies 

between pairs of responses given the remaining responses and ail covariates; 

and pr possible response-covariate pairwise conditional independencies given 

the remaining responses and remaining covariates. The response-response and 

covariate-covariate edges are represented by Unes, the covariate-response edges 

by arrows and response-covariate edges are forbidden. For categorical vari

ables, in the class of log-linear models. it was stated in Section 3.4.2 that ail 

chain Markov properties are équivalent and also équivalent with the factorisa

tion of the joint density as given in Equation (3.1). This factorisation implies 

that the fitting process can be done by focusing on only two blocks at a t ime 

The conditional independence structure is then conveyed by combining ail 

T — 1 conditional independence graphs into a chain graph. The independence 

relationships can be read using the global Markov property on the associ-

ated moral graph. obtained by replacing arrows with lines and by Connecting 

vertices that have connected children in the same block, see Sections 3.3.2 

and 3.4.2. Considering just the case of two blocks, the conditional indepen

dence graph for a mode! with the conditional distribution of V"(2) | V ( l ) is 

the same as the conditional independence graph for the model with the joint 

distribution of V ( l ) and V(2) , having the subgraph corresponding to V ( l ) 

complète. Moreover, the graph has the global Markov property wi th respect 

to the conditional distribution /(V'(2) | V ( l ) ) . 

The modelling process can be carried out sequentially. A t each step, the 

current block of variables is considered as response variables and ai l the pre-
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vious blocks are considérée explanatory. The conditional model can be fitted 

in the joint framework making sure that the subgraph of the explanatory 

variables is complète. The htt ing process for a single graphical chain model 

requires that only pa.(V(t)) to be complète, so not necessarily the entire set 

of explanatory variables. However, for model sélection purposes, when ail 

possible models are tested. it is indeed a necessary condition. 

F i t t ing a conditional distribution in a joint distribution is not possible in 

gênerai but, for contingency tables under multinomial sampling, it is because 

the mult inomial distribution is closed under marginalisation and conditioning. 

Ànother example when this is possible is for continuons Gaussian variables, the 

normal distribution being again closed under marginalisation and condition

ing. Thus ail the methods of estimating and inference available for graphical 

models can be used. 

In gênerai, two graphical chain models are équivalent if they have identical 

joint distribution and identical conditional independence structures. A chain 

graph détermines (Frydenberg, 1990) the conditional independence structure 

and the joint distribution of a graphical chain model. In the sarne time, 

substantive research hypothèses based on différent chain graphs may have 

équivalent statistical models. In this case, spécifie research hypothèses cannot 

be distinguished just by a statistical analysis of data. 
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4.3 Model selection 

In this section. some model selection procedures for log-linear models, that 

are used for graphical models as well, are reviewed and compared. The overall 

deviance can be used as a measure of goodness-of-fit for a given model M. For 

nested models M0 C M i it is preferable to have tests on the deviance differ-

ence d = d e v ( M 0 ) — d e v ( M i ) because it has a better x2 Approximation and 

the deviance differences are asymptotically independently distributed when 

they are components of a single sequence of nested models passing from the 

maximal to model minimal (Whittaker, 1990). Apart from knowing its as-

ymptot ic distribution there are some other advantages for using the deviance 

as the main tool for statistic inference. Edwards' specialised Software M I M for 

graphical modelling includes several methods of model selection and methods 

for estimation and testing. 

For any log-linear model there is a graphical model such that the log

linear model is nested within the graphical model. Therefore, different model 

selection procedures for log-linear models can be applied and several models 

identified. Then, from this set of final models the graphical models can be 

selected and interpreted in terms of conditional independencies. 

The methodology of model selection used below generally follows the stages: 

1. Identify some init ial models; for example the saturated model is a conve-

nient starting model since it fits the data perfectly. Other init ial models 

can be the main effects model (all variables mutually independent), the 
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models proposed by Brown's method (Brown, 1976; Christensen, 1990; 

Whittaker, 1990). models proposed in connection with A i t k i n ' s method 

( A i t k i n , 1979; Christensen, 1990: Santner and Duffy, 1989). 

2. From the starting model proposed above use a stepwise model selection 

(backward, forward or combined) or other method (for example A i t k i n ' s 

method, Whittaker : s method, Edwards and Havranek method) to deter

mine simplified models that fit the data well according to some criteria. 

The stepwise methods do not necessarily give the best model based on 

any overall criterion of model fit and they can be very sensitive to the 

cutoff values used and to the initial model. Consequently, it is better to 

use several variations and to propose several candidate models. 

3. Compare the list of these final models using the Akaike information 

criterion. This criterion is used lor selecting models that maximizes 

a type of information proposed by Akaike (1973), information that is 

contained in the statistical model. For log-linear models, in practice this 

means that the model with the min imum diference between the deviance 

and twice the number of degrees of freedom is selected. 

4. For final models study the residuals, the influential cells and the inter-

pretability of the models. 

5. C a n a proposed model give some simple answers to some important 

questions? 

There is no doubt that it would be useful to identify a small set of graphical 
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models, fitting the data well and that cari be used for further research. 

4.3.1 Aitkin's method 

This method is a backward sélection procédure. It sélects an ail j interaction 

terms model and then it searches ail models between ail j interaction terms 

model and ail j — 1 interaction model. This method was desîgned to control 

the o ver ail rate for ail tests performed using simultantous testing. 

Let dénote the model with ail possible maximal u-terms of jth order 

interaction and let dj be its associated degrees of freedom. Examples for a 

of-dimensional contingency table are 

M ( 1 ) : logpi = un + £ « ( ) 

the mutual independence model, and 

M(2) : logpi = u9 + ^2ut + £ UjWfc, 

tev .i.fcev 

the ai l 2-factor effects model. 

The ini t ia l model for this procédure is the model that fits the data 

well while the model M ' - ' - 1 ' does not fit the data. The cutoff points 7j for 

X 2 ( l — 7J,C/J_I — dj) should be chosen such that there is a probability no 

greater than 7 € (0.25,0.5) of rejecting the main effects model when this 

model is adéquate. When complète independence is true the various tests for 
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j-order interactions are asymptotically independent, so 

i - 7 = n ( i - T i ) -

A i t k i n (1979) suggests using I — 7j = (1 — O J ) ^ and choosing an a level 

that yields a 7 E (0.25,0.5). For a 4-dimensional contingency table, choosing 

Table All j-factors models 

all j- factors Model formula df deviance 
4 [ABCD] 0 0 
3 [ABC] [ABD] [ACD] [BCD] 1 0.67 
2 [AB] [AC] [AD] [BC] [ BD] [C D] 5 7.33 
1 [A][B][C][D] 11 1193.10 

74 = 0.05,73 = 0.185 and 72 = 0.265, it is calculated that 7 = 0.431. For 

the collision-rollover data in Table 3.3, Chapter 3, there are 4 models to be 

compared, which are described in Table 4.1. Based on calculations in Table 4.2 

the model selected is model M^3\ given by the largest value j such that 

d e v ( A f ( j ' _ 1 ) ) - d e v ( M ^ ) > / Y
2 (1 7 „ ^ - i - dj). 

Table Tests for Aitkin's model selection procedure 

j-1 vs j dev(Mü-V) - dev(M^) y 2 ( l - 7j ,^--i dj) 
3 vs 4 0.67 - 0 = 0.67 x 2 (-95, 1) = 3.841 
2 vs 3 7.33 - 0.67 = 6.66 x 2 ( .S15, 4) = 6.178 
1 vs 2 1193.10 - 7.33 = 1185.77 x

2 ( . 7 3 5 , 6) = 7.638 
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This overall criterion was criticised by D . R . Cox in the discussion of A i t k i n ' s 

paper ( A i t k i n . 1979). Christensen (1990) tried to improve the method by 

choosing 

Following Christensen's idea for a = 0.1 it results that 7 = 0.271 and the 

model M * 2 ' is selected. 

A i t k i n ' s model sélection procédure continues by examining the models be-

tween and M ( 2 ) . A model M vvill be rejected if 

Using the concept of coherence as introduced by Gabriel (1969), the submodels 

of a rejected model wi l l be definitely rejected too and models which contain 

an accepted model wi l l be accepted too. This is of great help especially for 

tables with a large number of variables. The models selected by this procedure 

are enumerated i n Table 4.3. A l l these are non-graphical log-linear models. If 

Table 4.3: Models selected by Aitkin's procedure 

a = 72 = • - • = 7fc-

d e v ( M ) - d e v ( M ( 3 ) ) > x 2 ( l - fjjj d3) =x 2 ( . 815 ,4 ) = 6.178. 

Model formula dev(M' t I M<3Q d f ( M Q - d f ( M ^ ) 
Mi : \ABC\\ABD)\CD\ 
M2 : [ABC][ACD][BD] 
Mz : [ABC][BCD}[AD] 

M4 : [ABD}[AC][BC][CD] 
M 5 : \ACD}[AB}\BC}[BD} 
M6 : [BCD)[AB][AC)[AD] 

4.04 2 
4.S6 2 
4.86 2 
4.51 3 
4.90 3 
4.99 3 

only one model should be proposed then Akaike's information criterion can be 
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used, fînding the model Mi for which dev(M t ) — d f ( M , ) ïs m i n i m u m . Using 

the décomposition of déviance (Whittaker, 1990) 

dev(jV/0 = dev(M, | M ( 3 ) ) + d e v ( M ( 3 ) ) 

d f ( M ; ) - df(M,- | M ( 3 ) ) + d f ( M ( 3 ) ) , 

it is easy to calculate the values of Akaike's criterion in Table 4.4. The model 

Table Akaike's criterion values 

Model formula dev(Mf) dev(Mj) - df(M,-) 
M a : [ABC][ABD}[CD] 4.04+6.66=10.70 10.70-2=8.70 
M 2 : [ABC][ACD\[BD\ 4.86+6.66=11.52 11.52-2=9.52 
M 3 : [ABC}[BCD][AD] 4.86+6.66=11.52 11.52-2=9.52 

M , : [ABD][AC][BC][CD} 4.51+6.66=11.17 11.17-3=8.17 
M5 : [ACD][AB][BC][BD] 4.90+6.66=11.56 11.56-3=8.56 
M 6 : [ i ? C P ] [ / i f f p C ] [ / t D ] 4.99+6.66=11.65 11.65-3=8.65 

selected is MA : [A£.D][ J4C'][.BC'][C£>]. Because ai l the models should have 

ai l two-way factors the simplest graphical model that contains this model 

as a nested submodel is the saturated model, which is not very informative. 

Therefore nothing can be said about the conditional independencies that might 

be true. 

However, considering the slight alternative proposed by Christensen, the 

init ial model M ^ is selected. There is only one simpler model that fits the 

data well and this is 

M 7 : [AC][AD]\BC][BD\[CD]. 
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This model also is not graphical because AC, AD and CD are included in the 

model but ACD is not. However, it can be nested within a graphical model , 

the simplest being Ms '• [ACD][BCD]. The conditional independence graph 

of this graphical model is illustrated in Figure 3.5. 

4.3.2 Brown's method 

This method can be used to détermine an init ial model. For each term i n the 

saturated model , marginal association and partial association (Brown, 1976) 

are tested. For a 3-dimensional table and interaction between variables A 

and a marginal association test compares [.A][i?] with [AB] and a part ial 

association test compares [v4C][i?C] with [AC][f?C][AB] . The extension to 

larger tables is obvious. The models considered are built considering 

1. either ai l ternis for which either the marginal or the partial test is sig

nifie ant 

2. or ail terms for which both the marginal and partial tests are significant. 

The first method gives the largest model and is suitable for backward élimi

nation and the second method gives the smallest model and can be used for 

torward sélection. For collision-rollover data Brown's tests are described in 

Table 4.5. The stepwise backward sélection can start either from 

[AB] [AC] [AD] [BC] [BD] [CD] 
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Table 4-5: Marginal and partial association iests 
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Partial Marginal 
Interaction Association clev P-value Association clev P-value 

AB 1.69 0.19 8.79 0.00 
AC 220.24 0.00 401.69 0.00 
AD 114.84 0.00 285.99 0.00 
BC 57.48 0.00 52.96 0.00 
BD 15.58 0.00 0.38 0.00 
CD 441.89 0.00 601.42 0.00 

ABC 1.10 0.29 0.07 0.79 
ABD 2.92 0.08 1.15 0.28 
ACD 2.94 0.08 1.71 0.19 
BCD 1.22 0.27 1.44 0.23 

(at 0.05 significance level here), or from 

[ABD][ACD][BC] 

with calculations made at 0.1 significance level. This procedure wi l l select 

the final models [ACD][BC][BD) and [AD}\AC}[BC}\BD}\CD]. None is a 

graphical model but both are submodels of the graphical model [/1C7D][BZ)C]. 

Apply ing a forward selection (a = 0.05 or a = 0.01) started from the ini t ia l 

model [AC][AD][BD][CD] leads to the final model [BCD][AD][AC]. This is 

again a non-graphical log-linear model which can be nested into the graphical 

model [ACD][BDC]. 
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4.3.3 Edwards-Havranek model sélection procédure 

This is a fast model sélection method with the potential to identify a set of 

simple models all Utting the data well. In this respect it is différent from a 

stepwise model sélection which identifies ont final model. This single model 

is most of the time used for any inferences, neglecting uncertainty about the 

model itself, leading to underestimation of measures of uncertainty such as 

standard errors. ït is always good practice (Christensen, 1990) to look at sev-

eral well-fitting models and the method proposed by Edwards and Havranek 

(1985) is perfect for this task. It can search through the class of graphical mod

els between a maximal model and a minimal model that can be specified before 

starting the search. The models are then classified as 'accepted', which means 

that they fit the data well, or 'rejected'. The cohérence principle from Gabriel 

(1969) is applied, submodels of rejected models being considered rejected and 

models containing "accepted 5 ' models being accepted without further testing. 

This principle improves the speed of the model sélection procédure. A t any 

step, based on the asymptotic x'2 distribution of the déviance, a model M is 

accepted if its corresponding P-value is higher than the significance level a. 

More détails are given in Edwards and Havranek (1985) and Edwards (1995). 

For the collision-rollover data summarised in Table 3.3, using a 0.05 sig

nificance level and searching between the saturated model [ABCD] and the 

complète independence model [-4][B][C][-D], the Edwards-Havranek procédure 

identifies a unique minimal accepted model [ACD][BCD\. This is the same 

model as selected previously and being the only one gives greater confidence 
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about the conditional independence implied by the model. Moreover, the 

model has a deviance equal to 5.87 with 4 degrees of freedom providing a very 

good fit . P = 0.21. This set of data is not very complex but the method can 

be very useful for a higher dimensional contingency table, as illustrated in the 

next chapter. 

It seems that all methods lead to one graphical model [ACD][ßCD]. 

Therefore, various relationships can be studied using this model. In Table 4.6 

the deviance residuals ± (2n^| logf/ii/m;)!) 1^ 2 are given, where m ; = E(n,-) and 

sign used when ri{ < m ; . Overall , the fit seems to be good, although 

Table 4-$: Deviance residttals for the model [ACD][BCD] 

Driver Car Accident Injury type 
Ejected type type Not Severe Severe 

No S mal l Coll ision -.22 .04 
Rollover -.75 -.29 

Standard Collision .10 -.01 
Rollover .50 .15 

ves S mall Collision .88 -.10 
Rollover 1.55 .35 

Standard Collision -.40 .04 
Rollover -1.18 -.19 

simpler models might be more informative. 

4.4 Summary 

The estimation and model selection framework was highlighted in this chapter. 

A graphical log-linear model is built in parallel with its corresponding condi-
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tional independence graph. Undirected independence graphs have a missing 

edge for any pairwise independence of two variables conditioned on the rest. 

This means setting to zéro ail two-way and higher-order interaction terms 

containing that pair. Empirically, the interaction terms, u, are estimated by 

maximizing the appropriate likelihood function. this being a well-developed 

process for log-linear models that can be done in gênerai in widely known 

software like SPSS, S A S , S-Plus and G L I M . 

Graphical chain models require the same inferential procédures as graphical 

models. However, their interprétation is made i n a différent framework, where 

the variables under study are partitioned by some partial order relationship 

with possible causal reasoning. The conditional independencies i n this case 

should be read on the moral graph. 

Road accident data is usually sparse and therefore asymptotic tests are 

unreliable. For model sélection exact conditional tests should be used and 

when an exhaustive enumeration is impossible, Monte Carlo sampling provides 

a feasible solution. 

There are many model sélection algorithms that have been proposed for 

the log-linear models and that can be used for graphical models as well. A p -

plying various mode! sélection procédures can be bénéficiai in providing a set 

of good models. F,dwards-Havranek procédure is very fast and can be used 

to select more than one model. The collision-rollover data was used here for 

exemplification but a better example with six variables is given in Chapter 5. 



Chapter 5 

Applications to road accident 

data 

5.1 Introduction 

This chapter contains several applications for road accident characteristics, 

following the methodology described in earlier chapters. Large tables are 

investigated for two U K counties, Bedfordshire and Hampshire. Thèse two 

counties vvere chosen because they have a relatively small number of records 

wi th missing information; bot h have a large sarnple size Hampshire having 

almost four times more records than Bedfordshire, so some comparisons can 

be made. There are two aims in this chapter. To investigate the relationships 

between a relatively large number of characteristics and to show, on a particu-

lar case, that asymptotic inference may lead to very différent results compared 

with exact conditional inference. 

109 
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For thèse two sets of data graphical models wi l l be selected i n an ex-

ploratory manner and graphical chain models wi l l be proposed in relation 

with a prior ordering of the variables given by the temporal order of variables 

related to the accident. 

5.2 Bedfordshire data 

5.2.1 Graphical model with 6 variables 

The data under study consists of ail accidents in the S T A T S 19 database 

for the county of Bedfordshire i n 1995. The data can be summarised in a 

contingency table cross-classihed by the following variables: 

• A = Accident severity (fatal, serious, slight), 

• L = Light conditions (daylight, darkness), 

• N = Number of vehicles involved in the accident (one, two, three or 

more), 

• R = Road surface conditions (dry, wet-damp, snow-ice-frost-flood), 

• T = Road Type (major roads, minor roads, where major roads are mo-

torways and A roads, and minor roads are B, C and unclassified roads), 

and 

• S = Speed Limit (< 40 mph, > 40 mph). 
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The author believes thèse variables to be the six most important road accident 

characteristics. but the choice of variables does not afFect the principle of 

graphical modelling. There are 1,951 accident records summarised in a 6-

dimensional contingency table of order 3 x 2 x 3 x 3 x 2 x 2 . The variables are 

ai l considered response variables. The conditional independence relationships 

between the variables can be studied in an exploratory manner, with the 

a im of finding an init ial model that can be investigated further using more 

sophisticated techniques. The analysis below follows the lines of Tunaru and 

Jarrett (1998a). 

The contingency table summarising the data is sparse. For instance, there 

are 42 fatal accidents spread over 2 x 3 x 3 x 2 x 2 = 72 cells, giving an average 

cell frequency of 0.58 in this part of the table. Model sélection procédures 

based on the asymptotic % 2 tests are therefore unreliable (Kreiner, 1987). Ex

act conditional tests using Monte Carlo simulation are implemented to over-

come this difficulty. This can be donc in M I M (Edwards, 1995) which is an 

easy and élégant computer platform for graphical modelling. In this case back-

ward élimination, under exact and asymptotic inferential procédures, leads to 

the model represented in Figure 5.1. That both procédures lead to the same 

model might be just a coïncidence; for other sets of data, as wi l l be shown 

later, the différences are striking. 

The graph of Figure 5.1 can be interpreted as follows. Grouping the vari

ables as a = = {^ ,¿7} and c = {L,R,T} it is easy to verify the con

ditions relative to the global Markov property. Directly on the independence 
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Figure 5.1: The final graphical model for Bedfordshire data with 6 variables; 
A is accident severity (fatal, serious, slight), N is the number of vehicles 
involved (1, 2, 3 or m,ore), S is speed limit (< 40 mph, > 40 mph), L is 
lighting conditions (day, night), T is road type (major, minor), and R is road 
surface (dry, wet-damp, snoiv-ice) 

graph it can be read that, given the number of vehicles N, and the speed l imit 

S, accident severity A is independent of lig ht conditions L, road surface R: and 

road type T. This is not saying that those three variables are not important 

regarding accident severity, but conditioning on the fact that an accident has 

happened, the information provided by those three variables is important for 

accident severity only as a vvay of influencing speed l imit (which is regarded 

here as a proxy for the actual speed of the vehicle) and the number of vehicles 

involved. Thus the important variables for explaining accident severity seem 

to be speed l imit and the number of vehicles. 

There are many variables involved in a study of road accident data. C o l -

lapsibility (summing over a subset of variables to obtain the marginal table 
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of the others) breaks large problems into small problems. Looking at the 

graph in Figure 5.1, let 6 = {L,T, R} and a = {AiS1N}. The boundary of 

6 is {S.N}. which is complète, so the model can be collapsed over 6, as is 

proved later in Chapter 6, Section 6.2. This means that the conditional inde-

pendencies between A , 5', N are preserved in the independence graph of any 

graphical model fitting the marginal table defined by A,S,N. In addition, 

since the mult inomial distribution is closed under marginalisation, the proba

bi l i tés of this marginal table PASN can be estimated from the marginal model 

of {A. S, N}. In other words, attention may be restricted to the marginal table 

defined by the variables A, N and S instead of looking at the 6-dimensional 

table, without introducing problems with Simpson's paradox. 

The graphical model presented above suggests that there is a three-way 

interaction between accident severity, speed l imit and the number of vehicles 

involved, and that studying the marginal three-way table defined by thèse 

variables wil l lead to the same result. This lower dimensional table (the ré

duction in dimension is from 216 to 18 cells) is more robust to asymptotic 

tests and it is not sparse as it can be seen from Table 5.1. For this table, 

the likelihood ratio tests for the three possible conditional independencies are 

reliable. Therefore the analysis can be further continued on this particular 

subtable. 

The likelihood test for A IL S \ N is calculated as 

dev(A i L S \N) = 2 £ £ E ' " g 

v-\ s=\ a=ï na+vn+sv 
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Table 5.1: 3-way marginal contingency table of road accidents 

114 

Accident Speed Number of Vehicles 
Severity Limit 1 2 3 > 

1 1 5 2 1 
2 13 12 9 

2 1 77 72 15 
2 39 58 31 

3 1 307 640 113 
2 162 271 124 

where, for clarity, v is used to index the levels of iV; this is equal to 

3 ( 2 3 

d.ev(A J L 5 | J V ) = è J 2 è è nasv log 
u—1 l. s=l o=l 

If the value of variable N is known, the quantity inside the brackets is the 

Table 5.2: Partitioned déviance tests; the P-values are with 3 décimais 

Variable Déviance df P- value 

N = 1 10.41 2 0.005 
N = 2 28.51 2 0.000 
iV = 3 9.36 2 0.009 
Sum 48.28 6 0.000 

5 = 1 24.33 4 0.000 
5 = 2 2.69 4 0.611 
Sum 27.07 8 0.000 

A = \ 1.65 2 0.439 
A = 2 15.43 2 0.000 
A = 3 40.83 2 0.000 
Sum. 57.90 6 0.000 
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déviance for testing independence between the variables A and S in the sub

table given by N = v. In this way the likelihood test can be calculated at 

each level of the conditioning variable N. Similar calculations and partitions 

can be made for the other two possible conditional independence hypothèses 

A _U_ N | S and S AL N | A , as sumraarised in Table 5.2. The unpartitioned 

tests are named by the gênerai vvord "Sum" and it can be remarked that the 

sums of the partial déviances equal the total déviances and the same for the 

degrees of freedom. Nevertheless, the situation is not quite the same for P-

values, the quantities that are driving the inference process. The tests for 

the number of vehicles TV does not reveal anything new but for speed l imit 

S and accident severity A there are some noticeable exceptions. Although 

A AL N | {S = 1} is strongly rejected by a P-value of 0.0001, the other 

specified conditional independence hypothesis A AL N \ {S = 2} cannot be 

rejected at ail and this is i n spite of the rejection of the gênerai hypothesis 

A AL N | S. în a similar manner S AL N \ {A = 1} cannot be rejected because 

the corresponding P-value is 0.439, although overall S AL N \ A has a P-value 

much smaller than the critical value 0.05. 

Consequently, the conditional independence structure revealed by this set 

of data is more appropriately described by the conditional independence graphs 

i n Figure 5.2. From thèse graphs it can be easily concluded that, for urban 

areas, accident severity and the number of vehicles are associated and for rural 

areas they are not. In addition, for fatal accidents speed l imit and the number 

of vehicles are conditionally independent, the opposite being true for serious 
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Figure 5.2: Conditional independence graphs revealing a more detailed associ-
aiion structure 

or slight accidents. 

Edwards-Havranek model selection 

As stated in the previous chapter it is better to look at several models instead 

of basing inference on a single model. The reason for this is that uncertainty 

i n the model may be overlooked and as a consequence parameters of interest 

be underestimated. The approach proposed by Edwards and Havranek (1985) 

seeks the simplest models Atting the data well. This searching procedure can 

screen models between a maximal model known to fit the data well and a 

minimal model known not to fit the data well; both models are specified in 

the initialising stage. In M I M , by default the method searches between the 

saturated model and the complete independence model so all possible graphical 
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models are eligible for sélection. The procédure is very fast. För the same 

data studied above, at the 0.05 signihcance level, between the saturated model 

[ALNRST] and the complète independence model [A][L][Af][P][5'][:T] only 288 

models are tested out of 2 1 5 = 32768 possible graphical models which is a great 

improvement. This happens because once a model M has been accepted ail 

models containing M as a submodel wi l l automatically be accepted without 

further testing and also, once a model M has been rejected ail its submodels 

are considered rejected too without further testing. This procédure splits the 

set of possible models i n three sets: accepted models. rejected models and 

non-tested models. The algorithm is testing marginal non-tested models unt i l 

this set is empty and the minimal accepted models are retained. 

For Bedfordshire set of data, the minimal accepted models wi th the cor-

responding déviance tests and P-values are given in Table 5.3. The model 

selected by a stepwise backward élimination procédure using exact condi

tional tests or approximate asymptotic x'2 tests, namely \RL][LTSN][ASN], 

is not included in Table 5.3 because some of its submodels, like the last model 

[P][A5iV][.£SX][LSA/], are listed. If the analyst would like anyway to select a 

unique model to work with, the Akaike information criterion (Akaike, 1973) 

is helpful. The idea is to pénalise complex models with a large number 

of parameters and to look for parsimony as recommended by Occam's ra-

zor principle. The Akaike information criterion favours the model M with 

m i n i m u m différence between the déviance dev(M) and the degrees of free-

dom d f ( M ) . The calculations are made in the last column of Table 5.3. 
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Table 5.3: Minimal acceptée models by Edwards-Havranek procédure 

Model M dey (M) dî(M) P- value dev(iW) - df ( M ) 

[ALR)[LRS][LST][LSN] 211.22 180 0.055 31.22 
[ALR][ALT][LST][LSN] 210.34 180 0.060 30.34 
[AL] [AN] [RSN] [LST] [STN] 205.21 ISO 0.095 15.21 
[ALT][LRS][LST][LSN] 215.48 184 0.056 31.48 
[ALN)[LR][LST][LSN] 209.06 184 0.099 25.06 
\AN][LSTN}[RS] 213.97 182 0.052 31.97 
[R][ALN][LSTN] 204.75 178 0.083 26.75 
[AL][RS][LSTN] 211.10 184 0.083 27.10 
[A L] [AN] [RST] [LST] [STN] 216.64 184 0.050 32.64 
[AL][LR][LSTN] 206.01 184 0.127 22.01 
[AL][AN][LRS\[LST\[STN\ 211.21 184 0.082 27.21 
[AS][LR][LST][LSN] 209.81 192 0.180 17.81 
[AS][LR][LST][STN] 219.68 192 0.083 27.68 
[R][A.LS][LST][LSN] 214.95 190 0.103 24.95 
[AS][LST][LSN][RS] 214.90 192 0.123 22.90 
[R][AST][LST][LSN] 222.81 190 0.052 32.81 
[R][AS][LSTN] 205.50 186 0.156 19.50 
[AL][RSN][LST][LSN] 216.29 184 0.052 32.29 
[R][ASN][LST][STN] 210.55 186 0.105 24.55 
[AL][LRN][LST][LSN] 215.90 184 0.054 31.90 
[ALN][RS][LST][LSN] 214.15 184 0.063 30.15 
[AS}[LST}[RS)[STN] 224.77 192 0.053 32.77 
[AS] [LST] [LSN] [RN] 218.76 190 0.075 28.76 
[R][ASN][LST][LSN] 200.68 186 0.219 14.68 

The last model \R\[ASN\[LST}[LSN] is chosen. This difFers from the final 

model [RL][LTSN][A.SN], chosen by other model sélection procédures, by 

having two missing edges RL and TN as can be seen on its independence 

graph in Figure 5.3. However the main conditional independence relationship 

A IL {RjT,L} | {S, N] is still valid and again the model can be collapsed 

onto A,S,N. Regarding the variables A , S. N there are no différences com

parée! vvith the model given by the graph in Figure 5.1. The total independence 
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Figure 5-3: Graphical model for Bedfordshire data, chosen by Akaike crite-
rion from the minimal accepted models by Edioards-ffavranek model sélection 
procédure 

of road surface conditions R as implied by the model in Figure 5.3 seems a 

bit strong. A possible explanation is that the stepwise backward élimination 

procédure used in M I M does not test again for removal of the edge RL if it is 

found signihcant at one step of the procédure. 

This model sélection procédure can be used when the a im is to select a sub-

set of models in order to investigate the strength of some relationships between 

the variables. One major concern is that the testing is donc asymptotically. 

flowever, decomposable models can be retested using exact conditional tests. 

5.2.2 Graphical chain model with 6 variables 

In this section, graphical chain modelling is applied to the same six variables 

investigated in the previous section. This type of analysis has more causal 
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implications and it w i l l be expanded in the next section to ten variables. 

The Bedfordshire data is considered again. The six variables are par-

titioned into three ordered blocks: V"(l) = {LiR7SiT},V{2) = {-'V'} and 

V(3) = {A}. This partitioning was the authors choice motivated by a tempo

ral argument. Imagine a journey during which an accident happens. Accident 

severity is decided after the accident takes place, sometimes few days past be-

fore an accident can be categorised as fatal or serious. The number of vehicles 

is established right away at the place of accident and the variables in the first 

block are known previous to the accident. 

The first block contains the variables light conditions, road type, road 

surface and speed l imit and they are considered purely explanatory variables. 

The independence graph for this block may or may not be of interest. However, 

it was decided to investigate the conditional independence relationships among 

the variables in this block. There are two edges missing. between R and T 

and between R and S. This means that, given daylight conditions L, road 

surface R is independent of road type T and speed l imit S. The first step to 

build the graphical chain model is to fit the conditional model for the first two 

blocks. The subgraph defined by L , R, 5 , T is assumed complète and there 

is only one missing arrow, between R and N. The next step is to consider 

accident severity, A, the single variable of the third block, as a response and 

to keep hxed the complète subgraph defined by ail variables in the first two 

blocks. There are three arrows missing, between R and A, between L and 

A and between T and A. The chain graph is described in Figure 5.4. The 
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V'(l) V(2) V(3) 

S A 

Figure 5.Ą: Graphical chain model for Bedfordshire data with the dependence 
chain {R, L,T,S}U{N}U{A} 

sequential process of building a graphical chain model is described in greater 

detail in Section 5.4. 

Thïs model has an obvious causal interprétation. The speed l imi t , road 

type and daylight conditions ail influence directly the number of vehicles in-

volved in the accident. Road surface has no direct influence to the number 

of vehicles but acts only through its association with daylight conditions. F i -

nally, accident severity is influenced only by the speed l imit and the num

ber of vehicles. The conditional independence relationships can be read on 

the moral graph of the chain graph in Figure 5.4. The moral graph in this 

case is obtained by replacing the directed edges with undirected edges. So 

A AL {L,R,T} ] {N, S] which means that accident severity is independent of 

daylight conditions, road type and road surface given the number of vehicles 

and the speed l imit . This is the same conclusion as before. Using thèse condi

tional independencies, the model is given by the following factorisation of the 
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joint density fonction 

122 

f(a,l,n,r,s f(l,rts t)f(n I l,rit,s)f(a | l,rA,s,n) 

f(a,ln,r,s 0 /(/,r,s t)f(n | lA,s)f(a | s,n) 

0 
f(l>r)I(l,3,t) 

/(0 
/(n | l,t,s)f(a | s,n) 

where the last factorisation is of less interest than the first two. 

5.2.3 Graphical chain model with 10 variables 

It is possible to consider a larger number of variables. The table wi l l then be 

more sparse and using exact conditional methods becomes essential. For the 

same county Bedfordshire, another four variables, regarding time characteris-

tics, location characteristics and accident characteristics, are considered: 

• C = Number of casualties in the accident (1, 2, 3 or more), 

• D = Day of the week ( Sunday, Monday-to-Thursday, Friday, Saturday), 

• H = Hour of the accident (0-6, 7-9, 10-14, 15-18, 19-23), 

• P = Pedestrian crossing within 50m of the place of the accident (no, 

It seems more appropriate not to consider ail 10 variables in a symmetric 

way. The possible history of the accident provides a clue about how the 

variables can be partitioned into recursive blocks. Consider the first block 

of variables { D , H , L , P , /?,S,T}; the reason for choosing thèse variables is 

yes). 
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Figure 5.5: Graphical chain model for Bedfordshire data with 10 variables, A 
is accident severlty, C is the number of casualties, N is the number of vehicles, 
S is speed lirait, H is hour of the day, D is day of the week, P is présence of 
a pedestrian crossing, T is road type, L is daylight conditions and R is road 
surface conditions 

that their values related to a site of a road network are established well in 

advance of the occurrence of the accident. The number of vehicles is the only 

variable i n the second block and the last block contains accident severity and 

the number of casualties { A , C } . The values of thèse last two variables can 

be known only after the accident happens. Backward élimination, using exact 

conditional tests leads to he chain graph of Figure 5.5. The graphical model 

for the first block of variables may be of interest or not, but directly from the 

graph it can be seen that 

P AL {DJIJ,,R} | {S,T} 

{S,T} AL {KD} | {//,£}. 
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Model l ing the number of vehicles, N, as a response variable, it can be seen 

directly on the chain graph that 

N AL {D,L,P,R} | {H,S.T} 

and for the accident severity, A and the number of casualties, C, 

{A,C} AL {P.,R,T} ] {D,H,LjV.,S} 

C AL {L,P,R7T} \ {A,D,H,N\S}. 

These relationships can help us understand what variables influence either 

the accident severity or other related variables of interest such as the number 

of vehicles and the number of casualties i n the accident. The number of 

vehicles is independent of daylight conditions, day of the week, road surface 

and présence of pedestrian crossing given hour of the day, speed l imit and road 

type. Accident severity and the number of casualties are influenced directly 

only by day of the week, hour of the day, daylight conditions, the number 

of vehicles and speed limit. The direct association between accident severity 

and the number of casualties suggests that, when data is disaggregated by 

thèse two variables, the analysis should consider modelling multiple accident 

frequencies jointly. This idea is followed in the second part of the thesis in 

Chapters S and 9. 
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5.3 Bedfordshire and Hampshire data 
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5.3.1 Graphical models for the Hampshire data and 

comparisons 

In this section several graphical models are investigated for the Hampshire 

data and a comparison is made with the models obtained for the Bedfordshire 

data. 

After deleting 68 observations having missing variables, the data corre-

sponding to Hampshire for 1995 contains 7242 accident records, a much greater 

nurnber than that for Bedfordshire. Starting with the same 6 variables sym-

metrically treated. the Edwards-Havranek model sélection procédure search-

ing between the saturated model [ALNRST] and the complète independence 

model [A][£][A ,][tf][5][T], tested just 24 models out of 2 ' 5 possible models. 

This procédure was used because the 6-dimensional table is not so sparse, hav

ing a cell frequency average of 2.76 for fatal accidents. It was aimed to select 

some models for comparison purposes. Only two minimal models, consistent 

wi th the data, are proposed. The first one is [ASN][LST][RSTN] having a 

déviance equal to 182.06 with 164 degrees of freedom, which has the indepen

dence graph in Figure 5.6. The second one is [ASN}[LST][LSN][RST\[RSN} 

having a déviance of 173.91 with 172 degrees of freedom. The independence 

graph for the second model is showed in Figure 5.7. As opposed to the first 

model, the second model is not decomposable because of the chordless 4-cycle 

R — T — LJ — N. This means that the estimâtes have to be calculated by 



CHAPTER 5. APPLICATIONS TO ROAD ACCIDENT DATA 126 

R N 

A 

T 

L 

Figure 5.6: Graphical model for Hampshire data with 6 variables, where A is 
accident severity (fatal, serious, slight), N is the number of vehicles involved 
(1, 2, 3 or more), S is speed limit (< 40 mph, > 40 mph), L is lighting 
conditions (day, night), T is road type (major, minor), and R is road surface 
(dry, wet-damp, snow-ice) 

iterative methods. Anyway, both models st i l l support the main conditional 

independence relationship identihed in the case of Bedfordshire county, which 

is 

For both counties, the independence relationship (5.1) is true. It is worth 

pointing out that this does not necessarily imply that this wi l l be also true for 

the pooled set of data ; combining the accidents from Bedfordshire with the 

accidents from Hampshire. It could be just another instance of Simpson's para

dox. The most generał model under which the conditional independence (5.1) 

can be tested is [ANS]\RTLNS). For Bedfordshire and Hampshire combined, 

the déviance of this model is 178.43 with 132 degrees of freedom. giving a P-

A i l {R, T, L }\{S,N}. (5.1) 
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value of 0.004. Therefore. after pooling data for Bedfordshire and Hampshire 

into one table, it is not true anymore that accident severity is independent of 

road surface conditions, road type and daylight conditions given the values of 

speed l imit and the number of vehicles involvecl. 

Figure 5.7: A graphical non-decomposable model for Hampshire data with 6 
variables, whe-re A is accident severity (fatal, serions, slight), N is the number 
of vehicles involved (î, S, S or more), S is speed limit (< 40 mph, > 40 mph), 
L is Hghting conditions (day, night), T is road type (major, minor), and R is 
road surface (dry, wet-damp, snow-ice) 

This may happen because the two counties have différent geographical 

conditions, différent socio-economic characteristics, différent percentages of 

roads of some type and so on. The two sets of data are observational studies 

from différent populations. 
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5.3.2 Graphical chain model with 10 variables 

As revealed in the previous section, an interesting question is what happens 

when more data is collected. It may be thought that there is no need for 

exact conditional tests and Monte Carlo methods as there are data available 

for other counties as well and by pooling the data, the contingency table wi l l 

cross-classify a larger and larger number of cases keeping fixed the number 

of cells. However this is not the case. Considering the data from S T A T S 

19 for 1995, for Bedfordshire and Hampshire, cross-classified by the same 

10 variables as before, the resulting table is st i l l sparse in spite of the large 

sample size of 9193 accidents. This is due to the nature of the data and it has 

nothing to do with the sampling method. The table is expected to have small 

frequencies in the cells corresponding to fatal accidents and large numbers i n 

the cells corresponding to slight accidents, for example. A p p l y i n g the same 

methodology as before the chain graphical model in Figure 5.8 is obtained. 

There are some interesting causal relationships revealed by the chain graph. 

The presence of a pedestrian crossing, P, does not affect the number of vehi

cles, N', the accident severity, A, or the number of casualties, C. The day of 

the week. D, influences directly the number of vehicles, the accident severity 

and the number of casualties. The accident severity and the number of casu

alties are directly connected, suggesting that a multivariate regression model 

may be more appropriate than ordinary regression models. 

Following the modelling process step by step, it can be informative to 

describe the conditional independence relationships. From the chain graph it 
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Figure 5.8: Graphical chain model for Bedfordshire -f Hampshire data 

is easy to see that 

N AL {P,T} | {D,H,L,R,S} 

and secondly 

C AL {P,R} | {D,H,L,N,S.T} 

{A,C} ALP | I , j V , . R , S, T } . 

Thèse conditional independence relationships suggest that safety measures. 

aiming at a réduction in accident severity and the number of casualties, should 

not consider primarily the présence of pedestrian crossings. The variables in 

the conditioning set are those that should be targeted because they influence 
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directly the variables of interest. accident severity and the number of casual

ties. The above conditional independence relationships reveals that. knowing 

that the accidents have occurred. we expect that the présence of pedestrian 

crossing to be irrelevant regard!ng accident severity and the number o l casu

alties, from the statistical information point of view. This does not mean that 

pedestrian crossings are useless. They are designed for reducing pedestrian 

casualties. A more detailed analysis in the next section, only for accidents 

with pedestrian casualties, reveals that the présence of pedestrian crossing is 

directly influencing the number of casualties in such accidents but not the 

accident severity. Other road characteristics and accident characteristics con-

tribute to accident severity. 

5.4 Graphical chain modelling at a disaggre-

gated level 

5.4.1 Accidents with pedestrian casualties 

The accidents where there is a pedestrian casualty might have différent con-

tributory factors from those with no pedestrian casualties. For this reason it 

seems advisable to analyse separately the two classes of accidents. Table 5.4 

and Tables B . l , B.2, B.3 in the Appendix B contain the results needed to 

bui ld the graphical chain models for Bedfordshire only and for Bedfordshire 

and Hampshire pooled together, at critical levels a = 0.05 and a = 0.01. For 
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comparison the results obtained using decomposable model sélection, unre-

stricted model sélection and exact Monte Carlo sampling model sélection w i l l 

be given. Unrestricted models sélection means that all graphical decompos

able and non-decomposable models are searched. Before doing so, it is hei pfui 

Table 5.4: Bedfordshire 1995 ; a = 0.05 

Variables Model formula Method 
A //, T [DH][HT] 

[DH][HT\ 
[T] [DH] 

Dec. 
Unres. 
Exact . 

L,R,S\ D,H,T [RS] [DLST] [DHLT] 
[RS] [HR] [LS] [HL] [D HT] [DS] 

[RS][HLST][DHST] 

Dec. 
Unres. 
Exact . 

P,N | L,R,S,D,H,T [NRS] [DHPRT] [D HERST] 
[NS][PST][DHLRST] 
[NS][PRT][D HERST] 

Dec. 
Unres. 
Exact 

A,C | P,NiLiRiSiD.HiT [ADHNPRT] [ACHNPR] [DHLNPRST] 
[AST][CS][DHLNPRST] 

[ART] [CHNP] [DHLNPRST] 

Dec. 
Unres. 
Exact 

to explain the building process of a chain graph using exact testing. The re

sults in Table 5.4 contain ail the necessary information. The choice of blocks 

of variables was based on. the same principles as before. However. the previ-

ous set of explanatory variables was further divided into a block of temporal 

variables, day of the week, hour of the day together with road type, which are 

some sort of fixed variables, and a block of environmental variables: daylight 

conditions, road surface conditions and speed l imit . Speed l imit is included in 

the second block because it may change from time to time. The third block 
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Figure 5.9: Initial step of building the chain graph for accident data witk 
pedestrian casualties in Bedfordshire} 1995: D is day of the week, H is hour 
of the week and T is road type 

includes présence of pedestrian crossing and the number of vehicles as fac-

tors that influence directly the number of casualties in the accident. Accident 

severity and the number of casualites are known only after the accident takes 

place. 

First the ini t ia l set of variables {D, T] is investigated and conditional 

independencies between thèse three variables, in the marginal table defined 

by them, are revealed in the graph of Figure 5.9. This step is not really 

necessary and can be skipped. The sequential process is modell ing just two 

sets of variables at a time, one explanatory and one response. 

The next set of variables to be considered is {L, S}. The edges between 

{D.H.T} are not relevant and they can be left out of the graph. The two 

blocks are delimited in Figure 5.10 by dash boxes. As described in Chapter 3, 

there are arrows pointing towards the variables 'm the new block and undi-

rected lines between the variables inside this block. From Table 5.4 it can be 

seen that there is only one line between R and S and 5 arrows, 3 pointing 
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Figure 5.10: First step of building the chain grapk for accident data with 
pedestrian casualties in Bedfordshire, 1995; R is road surface, S is the speed 
limit and L is lighting conditions 

towards S (out of 3 possible) and 2 pointing towards L (out of 3 possible). 

The second step consists i n considering ail the variables i n the hrst two 

blocks as one single explanatory set, so therefore a single block, and the th ird 

block, in order, of variables, that is {P,N}, takes the place of the response 

variables block. Again there are two types of edges; arrows pointing towards 

P or N and a possible line between P and N. The graph at this intermédiare 

stage is presented in Figure 5.11 and is based on the inferential results from 

The last step, the third, brings the last set of variables {A, C] as the 

response block and all the previously investigated variables are playing the 

role of explanatory variables as in Figure 5.12. From Table 5.4, there is no 

line between A and C and there are 5 arrows between R, T and A , and between 

H7N,P and C. 

The intermediary graphs look quite simple, revealing simple association 

structures. Now the chain graph, with the associated dependence chain, can be 

Table 5.4. 



CHAPTEK 5. APPLICATIONS TO ROAD ACCIDENT DATA 134 

y [ l ) U V ( 2 ) _V(3). 
D R P 

/ 
Ż 
T L 

• 

N 

Figure 5.11: Second step of building the chain graph for accident data with 
pedestrian casualties in Bedfordshire. 1995; P is the présence of pedestrian 
crossing within 50 m and N is the number of vehicles involved 

Figure 5.12: Third step of building chain graph for accident data with pedes
trian casualties in Bedfordshire. 1995; A is accident severity and C is the 
num.ber of casualties 
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Figure 5.13: Graphicaî chain model for Bedfordshire data; accidents with 
pedestrian casualties only 

clrawn putting ail the previous steps together. The graphicaî chaiu model has 

the chain graph in Figure 5.13. Although this graph looks a bit complicated, 

the actual sequential building process shows the opposite. However, great 

care should be taken when reading the conditional independencies. The moral 

graph has to be used, replacing arrows by lines and Connecting vertices that 

have common children. For example N and F should be connected by a line 

in the moral graph because both have C as their child. It can be seen from the 

chain graph in Figure 5.13 that accident severity and the number of casualties 

are not associated, that speed limit is a very important variable absorbing the 

information from a group of other variables like day of the week, hour of the 

day, road type, daylight conditions and road surface; that accident severity 

is directly infiuenced only by speed l imit and road type; that the number of 

casualties is directly inüuenced only by the hour of the day, the number of 
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vehicles involved and the présence of pedestrian crossing. 

Howcver, the conclusions are slightly différent from a similar previous 

analysis considering all accidents, with or without pedestrian casualties, pooled 

together. From the author's point of view, the results found here do make 

sense. The accident severity is affected by the speed Limit and the type of the 

road where accident occurred. Speed l imit is also influenced by the type of the 

road, as characteristics of accidents with pedestrian casualties. which again is 

sensible, but speed l imit is not enough to explain accident severity, otherwise 

there would be no arrow from road type T to accident severity A. 

It is evident from Table 5.4 that the results are quite différent for the other 

methods, decomposable or unrestricted. This means that some false inference 

can be made when asymptotic rather than exact conditional methods are 

used. Since large accident tables are very offen sparse it is better to base 

the inference on exact conditional testing. A drawback of this method is that 

the selected models are always decomposable so simpler non-decomposable 

graphicaî models are not even tested with this approach. In the author's 

opinion it is better to have a reliable rnodel rather than a simple unreliable 

one. 

5.4.2 Accidents without pedestrian casualties 

This section contains the complementary analysis for accidents without pedes

trian casualties. For this type of accidents, the présence of pedestrian crossing 

was considered to have no importance and it was removed. Although the de-
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pendence chain is very similar. it wi l l not be surprising if the selected graphicaî 

chain models will be différent from those discussed earlier for accidents wi th 

pedestrian casualties. One major change revealed here is that accident severity 

and the number of casualties are directly associated. 

Table 5.5: Bedfordskire 1995; a = 0.01 

Variables Model formula Method 
D, H, T \HT\[DH} 

[HT][DH] 
[HT][DH] 

Dec. 
Unres. 
Exact . 

L,R,S \D,H,T [LST}[HLT\[HLR][DHT] 
[LST][HLT][HLR][DHT] 
[LST] [H LT] [HR] [D H T] 

Dec. 
Unres. 
Exact . 

N | L,R,S\D}H/T [DHNRST] [DHLRST] 
[HNST][DHLRST] 
[HNST][DHLRST] 

Dec. 
Unres. 
Exact 

A,C | N,L,R,S,D,H,T [ACDHLNRST] 
[AS}[CNS]\DHLNRST] 

[ACNS] [A D UNS] [DHLNRST] 

Dec. 
Unres. 
Exact 

The Tables 5.5, and B.4, B.5 in the appendix B are for accidents without 

pedestrian casualties. It can be easily seen that exact inferential methods 

provide différent results than asymptotic inferential methods. In addit ion, 

there are différences between the graphicaî chain models for accidents with 

pedestrian casualties and the graphicaî chain models for accidents without 

pedestrian casualties. However this is not a surprise. The analysis at the 

more disaggregated level is more fragile because of the sparse character of 

the contingency tables. When there is a particular interest in one type of 
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the accidents, like accidents with pedestrian casualties, this difficulty can be 

overcome by collecting more data over a l arger period of.time or over a larger 

spatial area. 

5.5 Summary 

Graphicaî chain models provide a useful exploratory technique for disentan-

gling the potential factors which influence variables such as accident severity 

or the number of casualties. However, some care needs to be taken in the 

choice of Statistical test used to select a well Utting model. Using the same 10 

variables, the graphicaî chain models for Bedfordshire, and for Bedfordshire 

and Hampshire together, are différent. This is not surprising since the sec

ond model was based on more data. It was pointed out that for Bedfordshire 

data alone, when just six variables are used, the graphicaî chain models ob-

tained using différent methods of testlng and model sélection are the same. 

For the 10-variables table, différent final models are obtained if asymptotic 

(chi-squared) methods of testing are used instead of the exact Monte-Carlo 

method used here. As the contingency tables becomes larger and more sparse. 

the classical tests are not reliable and the use of exact tests and Monte Carlo 

simulation procédures become essential. 

Graphicaî modelling and graphicaî chain modelling provide a sound alter

native for investigating a large number of road accident characteristics at an 

aggregated level and at a more specific level of aggregation. In addition, there 
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is strong empirical évidence that, for large sparse tables, asymptotic methods 

and exact conditional methods give very différent results. the second type of 

inference being more reliable. 



Chapter 6 

Collapsibility in contingency 

tables 

6.1 Introduction 

This chapter aims to show how data analysis can be reduced i n dimensional-

ity, în a reliable manner, and questions of particular interest can be answered 

using other statistical tools following the results of graphical modell ing. C o l 

lapsibil ity was briefly used in Chapter 5 for continuing the analysis in a mar

ginal table of interest. There are différent concepts of collapsibility defined 

i n the literature (Bishop et al . , 1975; Whittemore, 1978; Asmussen and E d 

wards, 1983; Davis, 1986), and although there are some équivalence results 

(Davis, 1986), the collapsibility concept used hère concerns the présence or 

not of interactions terms in the log-linear expansion. This can be called rnodel 

collapsibility but being the only collapsibility type investigated in this thesis 

140 
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it wi l l be simply called collapsibility. 

For Statistical model ling. the more parameters a log-linear rnodel has the 

better is the fit to the data. The saturated model has one parameter for 

each data value, so it wi l l fit the data perfectly. However. the saturated 

model cannot be used for prédiction because for another sample from the same 

population the results wi l l be différent. The statistician is confronted with a 

dillema. One tendency is to put more parameters into the model to explain 

the complexity of the data. The other is to have less parameters because 

they are more efficiently estimated, A l t h a m (1984), and the model is more 

easily interpreted. The solution is collapsibility, which breaks large problems 

down into small problems. It is very useful to know when lower dimensional 

marginal tables can be analysed instead of very large high-dimensional tables. 

6.1.1 Simpson's Paradox 

This phenomenon has been described in many classical textbooks like Bishop 

et al . (1975), Edwards (1995), Whittaker (1990), which show that collapsing 

tables can lead to misleading conclusions. This phenomenon is not just of 

académie interest. A set of examples from the real worlcl is presented by 

Wagner (1982). A n example of Simpson's paradox in the context of road 

accident data was discussed in Section 3.2. 

Simpson's paradox is the result of collapsing a contingency table that 

should not be collapsed. Possibly the confusion starts with the analogy be-

tween log-hnear models and A N O V A models. For a three-factor A N O V A 
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model , when there is no three-way factor interaction, a i l of the two-factor 

interactions can be examined from the corresponding two-factor marginal ta

ble. O n the contrary. for tables of counts, for a log-linear model that has no 

three-way interaction but ail two-factor interactions, it is not correct to draw 

conclusions about two-factor interactions from the two-factor marginal tables. 

Simpson's paradox appears when the complex analysis of large tables is 

unwisely replaced by a séries of investigations of marginal s mail dimensional 

tables. Some studies that can be criticised on this ground are Henson (1992) 

and Taylor and Barker (1994-1995). In analysing large tables there is one 

last obstacle that needs to be overcome. The tables may be sparse and the 

asymptotic tests are unreliable. As it was shown in Chapters 4 and 5 exact 

conditional tests with Monte Carlo sampling can be extremely helpful in such 

situations. 

6.2 Collapsibility 

Asmussen and Edwards (19S3) introduced a définition of collapsibility based 

on the relationship between maximum likelihood estimators computed on the 

joint and marginal tables of counts n . 

Definition 6.1 The hierarchical log-linear model L is collapsible onto the sub-

set of variables a if one of the following équivalent conditions hold: 

1. for ail p(i) € L, it is truc that p(ia) € La 

2. for ail ia, p(ia) = pa{ia). 
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The hat dénotes the maximum likelihood estimator and pa is the vector of 

probabilities under model La. The next theorem and its corollary, proved by 

Asmussen and Edwards (19S3). are possibly the most important properties of 

collapsibility for contingency tables: 

Theorem 6.1 (Asmussen and Edwards) A hierarchical log-linear model 

L is collapsible onto the subset of variables a if and only if the boundary of 

every connected component of ac is contained in a generator of L. 

Corollary 6.1 If L is a graphical model, the condition in Theorem 6.1 means 

that the boundary of every connected component of ac is complète and L is 

said graphically collapsible onto a. 

The collapsibility as presented above is based on the idea that. for log-linear 

models, the présence or not of the interaction terms is important, and not the 

exact values of the log-linear parameters. 

The graphical model, proposed for Bedfordshire data following Edwards-

Havranek model sélection procédure and having the independence graph in 

Figure 6.1, is not collapsible onto a = {T, TV, A} because the connected com-

ponents of a c = {R.L,S} are {R} and {5, L] and their boundaries are 

bd{R) = {0} bâ{L,S] = [T.N.A] 

and although the empty boundary means that it is possible to collapse, the 

second boundary is properly incomplète and this means that the graphical 

model is not collapsible onto {T, N, A}. More generally, if the variables under 
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Figure 6.1: Graphical model for Bedfordshire data: A is accident severity, S is 
speed limit, N is the number of vehicles invoived, T is road type, L is lighting 
conditions, R is road surface 

study Xv are partitioned into (Xa,X(,), knowing the independence graph of 

Xy-, what can be said about the independence graph of À' a? This question 

has an answer in the concept of graphical collapsibüity as defined in Corol-

lary 6.1. The important resuit, (Whittaker, 1990), is that, if Xy = (À"a, Xb) is 

graphically collapsible onto Ä'„, then the conditional independencies between 

the variables of Xa, in the independence graph of (Xa,Xb)-, are preserved in 

the independence graph of Xa. Again using the graphical model illustrated in 

Figure 6.1, for the partition a = {A.S,N} and b = {./?, L,T}, it can be seen 

that b d ( £ , T ) = {S-,N} which is complète, and so the model is collapsible 

onto a and the three-way interaction between accident severity, speed l imit 

and the number of vehicles is preserved in the model for the 3-dimensional 

marginal contingency table defined by these three variables. This means that 
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the only simpler hierarchical log-linear model that could fit this 3-way table is 

the model of no three-way interaction [A5][ÀÎV](SiV]. which is not graphical. 

Ànother question of interest concerning collapsibility is whether the pre-

dicted distribution, calculated by marginalising the fitted model of the joint 

distribution, can be recovered by modelling the marginal data. This is a 

CorapariaoD of urban and rursJ aieas 
tu . 

Humbcr of Vehkks 

Figure 6.2: Probabiiities that an accident on urban and rural roads in Bed-
fordshire is fatal 

question of commutativity of fitting and marginalisation, which means that 

a model fab for the joint distribution fab can be fitted first and then one can 

marginalise the fitted model to fa or marginalise first the joint distribution and 

then fit the marginal distribution fa and get the same resuit /„. Collapsibi l i ty 

in this sensé means that the fitted cell probabiiities are the same irrespective 

of the order of fitt ing and collapsing. A necessary and sufficient condition 

for the commutativity of the maximum likelihood estimâtes is graphical col

lapsibility together with the closure under marginalisation of the parametric 
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distribution. Then the estimated probabilities for Xa are the same calculated 

using the model for Xy or the model for Xa. 

The model of no three way interaction [/!A7][v45][iV5] is the only simpler 

log-linear model fitting the marginal 3-way table defined by A, N and S. It 

has a déviance equal to 7.29 with 4 degrees of freedom which gives a P-value 

of 0.12. For practitioners it might be of interest to compare the probability 

to have a fatal or serious accident on urban areas and rural areas. From 

Figures 6.2 and 6.3 it can be easily concluded that a fatal or serious accident 

is more likely to occur on rural roads than on urban roads. 

Compatisoa of urban and rural areas 

.i J , I lïbm 
î i i 

Number of Veine 

Figure 6.3: Probabilities that an accident on urban and rural roads in Bed-
fordshire is fatal or serious 

Another example where graphical collapsibility can be applied is the model 

with the independence graph in Figure 3.5, Chapter 3, Section 3.4.1, with 

b = { £ } , and a = {A,C,D}. The boundary of b = {B} is {C, D}\ which is 

complète, so the model can be collapsed graphically over B and the conditional 
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independencies between A,C,D are preserved in the independence graph of 

Xa. As our model is graphically collapsible over {B}. and it is well known that 

the mult inomial distribution is closed under marginalisation, the probabilities 

of interest can be estimated from the marginal model of {A, C , D}. In other 

words. the marginal table defmed by the variables A , C and D is sufficient 

for estimation and there is no need to look at the 4-dimensional table. A t 

the same time there are no problems wi th Simpson's paradox. The same 

argument is true for the subtable defined by B,C and D. The counts of the 

two subtables are given in Table 6.1. For each subtable the model of no three-

Table 6.1: Observée, counts for subtables BCD and ACD of collisïon-rollover 
data 

B Â 
C D 1 2 C D 1 2 
1 1 376 1989 1 1 2228 137 

2 173 1183 2 1172 184 

2 1 79 170 2 1 208 41 
2 192 669 2 516 345 

way interaction (Bartlett's model) hts the data well and it is the only one, 

apart from the saturated model 

àev[AC}[CD][AD\ = l.ï\, df = 1, P = 0.19 

dev[BC][BD][CD] = 1.44, df = 1, P — 0.23. 

The estimâtes for the models [BC][BD][CD] and [/1C][AD][C0] are given 
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Table 6.2: Estimates for subtables BCD and ACD of collision-rollover data 

B A 
c D 1 2 C D 1 2 
1 1 382.35 1982.65 1 1 2234.10 130.90 

2 166.651 1189.35 2 1165.90 190.10 

2 1 72.65 176.35 2 1 201.90 47.10 
2 198.35 662.65 2 522.097 33S.90 

in Table 6.2. Considering that the variables are standing for rows, columns 

and layers, the model of no three-way interaction is equivalent to the model 

of equal odds ratios for rows and columns given the layer. The interpretation 

can be permuted by fixing either rows or columns. The Bartlett model can be 

examined by looking at the estimated odds ratios and see if they are approx

imately equal. This can be done using the unrestricted estimates of the p^k 

which are p»¿jt = The index for the ACD table is i for C. j for D and 

k is for A. Thus, using the counts of Table 6.1, the estimated odds ratios for 

table ACD are 

PM1P122/P112P121 = 2.553 (6.1) 

P211P222/P212P221 = 3.3919 (6.2) 

Remember that the threshold value for the odds ratio is 1 and its distri

bution is not symmetric. To overcome this small difficulty, log odds ratios 

are considered. The hypothesis of interest is whether the two odds ratios are 

equal. In other words whether the ratio of these odds ratios is 1 or, equiva-
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lently whether 

A confidence interval can be easily calculated for this statistic. which bas 

the observed value 3.3919/2.553 = 1.3286. The standard déviation is 

The 2 variabLe is °D
2^~° = 0.4071. The confidence interval for the ratio of 

odds ratios is (0.6045 , 2.9182) which includes the value 1. To conclude, for 

both types of accident, the odds of having a severe injury are almost 3 times 

larger if the driver is ejected than if the driver is not ejected and the odds 

of having a not severe injury when the driver has not been ejected are about 

3 times larger than the odds of having a not severe injury when the driver 

has been ejected. This shows that if the driver is ejected in an accident then 

this substantialty increases the probability of being severely injured. Similar 

conclusions can be deduced by regrouping the variables. 

For the table BCD the estimated odds ratios are 

P111P221/P121P211 = 5.2822 (6.3) 

P112P222/P122P212 = 6.6164 (6.4) 

Fbllowing the idea described above and fixing variable car type, the hypothesis 

of interest is 



CHAPTER 6. COLLAPSIBILITY IN CONTINGENCY TABLES 150 

tic, which has the observed value 6.6164/5.2822 = 1.2526, can be constructed. 

The confidence interva! for the ratio of odds ratios is (0.6708 , 2.3382) which 

includes 1. Thus, for both types of car, the odds of having a severe injury i n 

the case of a rolJover accident are 5 or 6 times larger than the odds of having 

a severe injury in the case of a collision accident. 

6.2.1 Response variable models 

Very often it is known a priori that the variables under study do not play a 

Symmetrie role. Some of the variables, say a, are viewed as explanatory (ex-

ogenous. treatment-control. independent) for the rest of variables, say 6, which 

are considered response (endogenous, dépendent). Ignoring this type of infor

mation can be misleading. Graphical chain models described in Chapters 3 

and 4 are suitable for this framework. For categorical variables the modelling 

process was done sequentially as explained in Section 5.4, using the classical 

log-linear framework. This does not mean that there are no graphical chain 

models that can be htted outside the log-linear framework. 

This section contains a discussion of collapsibility in relation to a class of 

models introduced by Goodman (1973) for modelling explanatory and response 

The Z variable is 0.2252-0 
0.7071 = 0.3185 and a confidence interval for this statis-
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variables together. Some connections with the class of graphical chain models 

w i l l be made and some useful results stated. Goodman's models factorises 

the joint density of (a, 6) into a product of the marginal density of a and the 

conditional density of b \ a such as: 

and then a log-linear mode! M is specifled for pM(ia) and a log-linear model 

G' for pc(ib \ ia)- The model M is htted in the marginal table of n B and G is 

fitted as a model for the whole table and since the model is conditioned on a, 

a i l the interactions between the variables in a have to be included. The final 

joint model J bas the fitted values m calculated as 

Using the additivity property of the déviance (and the corresponding degrees 

of freedom of the asymptotic x2 distribution) inference for the marginal model 

and conditional model can be performed separately. However, the class of log-

linear models does not coincide with the class of response variable models, 

see Asmussen and Edwards (1983). In order to détermine the intersection of 

thèse classes some additional notation is necessary. Let C be the set of log-

linear models for the table of counts n , AAa be the set of log-linear models for 

the marginal table of counts n a , Ca the set of conditional models (having ua 

fixed i n the log-linear expansion) and Ja the set of response variable models 

pJ(z) = p M ( i . ) p c ( i t I t.) (6.5) 

mJ{i) = mM{ia){mc(i)/n{ia)}. (6.6) 
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generated from M.a and Ca. The most important resuit regarding the response 

variable models is given in the next theorem (Asmussen and Edwards. 1983). 

What the author believes to be a more elementary proof is given in detail in 

Appendix , Section A . 

Theorem 6.2 // L € C. then L Ç Ja if and only if L is collapsible onto a. 

In that case M = La and C = [a] U L\>, where b = c l (a c ) . 

The reverse question, when a response variable model is a log-linear model , 

lias an answer in the following theorem, proved in Asmussen and Edwards 

(1983) 

Theorem 6.3 Lei J = ( M , C ) € Ja be a response variable model. Then 

J E C if and only if the boundary of every connected component of ac is 

contained in a generator of M. Moreover, L = M U Cb, where 6 = cl (a c ) . 

To summarise the results, the log-linear models are appropriate for con-

tingency tables with response and explanatory variables if and only if they 

are collapsible onto the explanatory variables. For the graphical model in 

Figure 3.5, Chapter 3, Section 3.4.1, considering car type and accident type, 

{B, C], the explanatory variables and driver ejected and injury type A, D as 

response variables it is easy to see that b d { A , D} = {B. C } , which is complète 

and so the graphical model is collapsible onto the explanatory variables. This 

means that the graphical model with the independence graph in Figure 3.5 is 

appropriate. O n the contrary. considering just D as a response variable, the 

same model is not appropriate because it cannot be collapsed onto the explana-
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tory variables {A,B,C} because b d { 0 } = {AyB.C} which is not complète. 

In a similar manner, the model in Figure 5.1, Chapter 5, Section 5.2.1, with A 

accident severity as the only response variable, is appropriate because it can be 

collapsed onto the explanatory variables 7?, L , T, N since bd{/l} = {5,/V} 

which is complète. 

A généralisation of the class of response variable models is the class of 

graphical chain models described in Chapter 3. For thèse models, variables are 

divided into blocks V'( l ) U V(2)... U V(T) , by a partial ordering relationship, 

given by time or any other possible causal prior Substantive knowledge. Dehne 

the sets dQ = V(i),dt = V(i + 1) U dt-U for ai l ¿ 6 ( 1 , . . . . ^ - 1}. Then the 

class of graphical chain models is defined by the following factorisation of the 

joint density which describes the log-linear models Co, C L , • • •, CT-I on the 

corresponding marginal tables 

pJ = pc°(d0)Tflpc^di\di.l). 
i=i 

The collapsibility results for response variable models are generalised, As-

mussen and Edwards (1.983), in the next theorem. 

T h e o r e m 6.4 A log-linear model L € C is a graphical chain model if and 

only if it is collapsible onto dt, for all i Ç. { 0 , 1 , . . . , T — I}. 

Conuersely, a graphical chain model J = ( C 0 , C i , . . . , CT-\) is log-linear if 

and only if the boundary of each connected component of V{i + 1) under C% is 

containeâ in a generator of Gx-\, for ail i G {1 ,2 , . . . , T — 1}. 
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Figure 6.Ą: Graphical chain model for Bedfordshire data with 6 variables 

A n example of a graphical chain model that is log-linear is the model in 

Figure 6.4. It is relatively easy to see that 

do = V(l) = {R,L.T,S} 

dl = V(2)UdQ = {N,R,L,T,S} 

d2 = V(3)Ud1 = {A,N,R,L,T,S} 

and therefore 

bd(V(2) I C i ) = bd(N | Cx) = {S, T, L] Ç [STL] 

bd(V(3) I C2) = bd{A I C2) = { 5 , A ' } C [ 5 / V ] 

A n example of a graphical chain model which is not a log-linear model is the 
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model with the chain graph in Figure 3.T. For that model 
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V(l) = {BiD}1 V{2) = {A}t 1/(3) = {C}. 

B u t 

hd(A I C i ) = {D} Ç [BD] 

b d ( C | C 2 ) = {A,B,D} 

which is not included in any generator of C\ defined by 

p(A,B,D) = p(A,D)p(D,B) 

Conversely, there are log-linear models that are not graphical chain models. 

For example, the log-linear model 

LY = [RL][TS][LSA][NT][LN] 

is not a graphical chain model for the dependence chain {T, R, L. S} U {N} U 

{A}. This is because it should be collapsible onto do = {T, R. L, S] and this 

by definition means that bd(JV) = {T, L} and bd(A) = {S.L} are complete, 

which is not true for the first boundary. This model can be made a graphical 

chain model if the interaction between L and T is allowed in the model. 
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M i n i m a l c o l l a p s i b l e set 

Very often there is some particular interest in a subset b of variables of a larger 

set of variables V. It is not always possible to collapse onto 6, so the problem 

is then what is the minimal subset 6^6 Ç bi Ç V. such that the log-linear 

modcl L can be collapsed onto ô x? This problem has an ans wer when the 

log-linear model is decomposable. 

The results are based on the concept of simplicial vertex and a version of 

Graham's algorithm known as Sélective Acyclic Hypergraph Réduction, pro-

posed by Tarjan and Yannakis (1984). A vertex is called simplicial if its 

boundary is complète. The Sélective Acycl ic Hypergraph Réduction algo

r i thm, ( S A H R ) , follows the steps: 

1. draw up a list of cliques of the corresponding interaction graph; 

2. remove a simplicial vertex which is not in b; 

3. delete from the list of cliques any redundant clique; 

4. repeat the last two steps until neither is applicable. 

The minimal collapsible set is given by the subset of vertices left. The main 

resuit, Madigan and Mosurski (1990), is given by the following theorem. 

T h e o r e m 6.5 Lct L be a decomposable log-linear model having the interaction 

graph Ç = (V. E) and let b be a subset of variables of interest b Ç V. Then 

the SA HR algorithm provides the minimal set b C by Ç V, such that L can 

be collapsed onto b\. 
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Let consider again the graphical model for Hampshire data with the cor-

responding conditional independence graph in Figure 6.5. This model is not 

collapsible onto {A,T} because bd{/ü, jV, S, L] = {A ,T } is not complète on 

the graph. Howe ver, suppose that there is an interest in collapsing this 6-

dimensional table onto a smaller one containing A, T. For the S A H R algo

r i t h m let 6 = {A,T} so bc = {R,_N,S:C}. It is easy to verify that R and L 

are simplicial , that is that their boundary is complète, and that N and S are 

not simplicial . The algorithm starts with the cliques 

[RNST][ASN][SLT] 

and in the first step it removes the simplicial vertex R. Thus, the next set of 

cliques is given by 

[NST][ASN}[SLT] 

and in the second step of the algorithm the vertex L is eliminated. In con

clusion the minimal subset, containing the variables {A,T}7 onto which the 

model in Figure 6.5 can be collapsed is { A , T , S , j V } . This can be checked by 

seeing that 

hd{{A,T,S,NY) = b d ( { f l , £ } ) = {T,S,N} 

which is a complète subset on the graph. 
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Figure 6.5: Graphical model for Hampshire data 

6.3 Summary 

The concept of collapsibility relative to log-linear models for contingency ta

bles are extremely important, Not taking into account whether collapsibility 

équivalent conditions allow a multi-dimensional table to be collapsed and a 

marginal small-dimensional table to be analysed instead, may lead to Simp-

son's paradox. 

Reducïng safely the dimension of the analysis has important benefits, es-

pecially when the large table is sparse and asymptotic tests are unreliable. 

This was shown on a particular example in this chapter. The analysis of a six 

dimensional table was focused on a three dimensional marginal table deflned 

by accident severity, speed l imit and the number of vehicles, doing also esti

mation of some probabilities of interest. It was also shown how the analysis 

of a 4-dimensional table can be safely decomposed into two separate analyses 
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of 3-dimensional tables, the analysis being continued on some odds ratios of 

interest. 

Graphical chain models are helpfulfor situations where the set of variables 

under study can be classified as response and explanatory. It was described 

in this section hovv to apply some collapsibility results and décide whether a 

log-linear model is a response variable model. 

When the model cannot be collapsed onto a desired subset of variables 

6 it is sti l l possible to find out a minimal subset of variables />l5 containing 

the subset 6, such that the model is collapsible onto b\. This can help once 

more to reduce the complexity of the model by analysing a reduced number 

of variables. 



Chapter 7 

Problems for Compound Poisson 

distributions 

7.1 Introduction 

The analysts using likelihood or empirical Bayes methods "estimate" some 

unknown parameters describing the Statistical model and then provide infer-

ence as if the data lias been generated by the model with those estimated 

parameters. The estimation process is.therefore crucial and bad estimation 

can lead to false inference. 

For count data, it is very common to use a Compound Poisson-gamma 

distribution for modelling since this distribution helps to overcome overdis-

persion. This implies that the marginal distribution of the observed data 

follows a negative binomial distribution with two unknown parameters. 

In this chapter, an insight into the process of maximum likelihood esti-

160 
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mation ( M L E ) for both parameters is given and a new proof of when there 

is such an estimator is given. The new approach does not give an answer to 

the question of whether this bivariate M L E estimator is unique but it does 

provide a numerical équivalent condition that can be checked on the computer 

for any set of data. 

Because the first part of this chapter suggests that the inference process 

may be sensitive to the choice of prior a numerical technique is developed 

i n the second part of the chapter for investigating the change i n posterior 

inference due to the change in prior distribution. A n example based on road 

accident data is also described. 

7.2 Estimation problems for NB distribution 

Let Y = ( V ' i , . . . . Yn) be a sample of size n from a négative binomial distribu

t ion 

n b ( s \P,K) = ( " + r i )p- i ( i - P r (î-i) 

for x = 0 , 1 , 2 , . . . , and where 0 < p < 1 and K > 0. The combinatorial term 

( K + * - 1 ) ) which is equal to (""^Ll 1 ) , is generally used for K positive integer, but 

when K is real it is equal to ^ f ^ - This is equal to 1 when x is zéro. 

When the parameter K is known, the négative binomial distribution is of 

exponential type and the estimation process for p is simple and straightfor-

ward. O n the contrary, when K and p are both unknown then the négative 

binomial distribution is no longer a mernber of the exponential family and 
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there are some unforeseen problems regarding the estimation of K. 

This distribution arise often in a Bayesian context. It is not therefore 

surprising that some parameters are estimated by biased but m i n i m u m vari-

ance estimators. In the exponential family of distributions there is always a 

complète sufhcient statistic so minimum variance unbiased estimators can be 

identified. However. this is not the case for the N B distribution with /c un-

known. The next theorem, proved in Wil lson, Folks and Young (19S6), is just 

the tip of the iceberg. 

T h e o r e m 7.1 The order statistic Y(\), Y(2)-, • • • •> Y(n) is minimal sufficient but 

not complète for the negative binomial family of distributions, when n > 3. 

This means that given an unbiased estimator of (p, K) the well known Rao-

Blackwell theorem for determining an unique unbiased estimator, for the same 

parameters, caimot be applied. Therefore, there may exist several unbiased 

estimators, all functions of the minimal sufficient statistic, for which we cannot 

compare their variances. This situation is due to having both parameters of 

the negative binomial distribution unknown and it gives a hint that there may 

be some problems regarding the M L E estimators for the N B distribution. 

Wi l l son et a l . (1986) found that an uniformly minimum variance unbiased 

estimator of K cannot be obtained in the usual manner. A n explanation was 

offered by Wang (1996) and it is desciibed in the following theorem: 

T h e o r e m 7.2 There is no unbiased estimator of K for NB(p , K). 

Proof : Let T(Yi,..., Yn) be an estimator of K for N B ( p , « ) . This estimator is 
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unbiased if and only if 

E{T(Y)\n,p) = K , for all K > 0 and p 6 (0,1). 

Hence, using the density function given in (7.1), if T is unbiased then 

n ( v ' + r i ) 
Li=l 

P™(i-p)^=^T(y) = K 

where y = ( y 1 ? . . . ,yn) and the summation is taken over all n-uples of positive 

integers. Rearranging the terms it follows that 

r(o)...1o)ir+ £ n(" + -0 p""(i-p)2"-wr(») = <t 

For «; = 1 and p —• 1 we get that T ( 0 , . . . , 0) = 1 and taking K ̂  1 and p —* 1 

we get that jT(0, . . . ,0) = which is obviously a contradict ion.• 

This simple but powerful result is not altogether surprising from a Bayesian 

point of view. In general, for a univariate parameter #, the Bayes estimator 

T(Y) = E(0|V) is biased no matter what prior distribution 7r(#) is used. 

The following theorem summarises some known results and provides at the 

same time a motivation for using Bayesian estimators rather than classical 

frequentist estimators. 

T h e o r e m 7.3 Consider a statistical model with observed data y = {y\...., yn) 

and an univariate parameter 6. Then, i/T(Y) = E(0|V') is the Bayes estima

tor, 
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1. for any prior distribution ir(0); if vax(T(Y)) > 0 then T(Y) is biased. 

S. T(Y) is an admissible estimator of 0 relative to squared error loss 

MSEe = E((T{Y)~0)2\e) 

3. If the risk ofT(Y) is finit e, tkat is E(MSEQ) < oo, then 

E{MSEÔ{T)) < E(MSEe{U)) 

for any other estimator U(Y) and the equality is obtained if and only if 

T(Y) = U(Y) almost everywkerc. 

The fact that there is no unbiased estimator for the parameter /c of the negative 

binomial distribution N B suggests that, in this case, estimators wi th good 

properties are very likely to corne from a Bayesian approach. 

The negative of the corresponding log-likelihood function is, up to a con

stant factor, 

where the last sum has a zéro term contribution when yi = 0 and this wi l l 

be true for ail the subséquent calculations. The tr ivia l case when the sample 

contains only zéros, that is ^ = 0 for ail i = 1 , 2 , . . . , n, is not of interest in 
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this thesis and it seems bard to imagine an application where this sample is 

meaningful. Therefore, the assumption that at least one element of the sample 

is différent than zero. is natural and such a sample wi l l be called non-trivial . 

The likelihood équations are 

E l p » = ^ ¿ „ - - = 0 (7.2) 
dp 1 - p ^ p 

= _ „ l o g p _ g g _ = 0 . (,.3) 

From likelihood équation (7.2) the M L E of p is p = where m = ~ YA=I Vi-

Replacing p in (7.3) the following likelihood équation is obtained 

m 1 n V i ~ l 1 

It can be easily seen that there are no closed form solutions of this équation. 

If S2 — ^J2i(Vi — m ) 2 i Anscombe (1950) conjectured that there is only one 

positive solution H when S2 > m and none otherwise. Johnson and Kotz 

(1969) proved that there is at least one positive solution K when S2 > m. Ross 

and Preece (1985) described how to fit the N B for real data in the computer 

program M L P . It is not known if the M L E of K is unique and it seems that it 

has not been proved that there is no solution when S2 < m. Aragon, Eberly 

and Eberly (1992) claimed to hâve proved the existence and uniqueness of 

the maximum likelihood estimator for the two-parameter negative binomial 

distribution but Wang (1996) showcd that there is a mistake in their proof 
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and moreover, he could not correct it . 

The N B distribution is frequently used for Utting biological data and the 

related Statistical hterature lias grown considerably over the years. However 

précise estimation of K has been elusive and other methods of estimation were 

proposed and compared (Willson, Folks and Young, 1984; Wil lson et a l . , 1986) 

and simulation and graphie tools like contours and 3-dimensional plots of the 

log-likelihood function provided to show that the possibilities about M L E of 

K. are not encouraging. The log-likelihood can be very flat instead of being 

peaked and this means that the M L E of K, could be sensitive to small changes 

i n sample values. A fully Bayesian approach may be more informative. 

It w i l l be shown that there is at least a positive M L E of a différent proof 

being given in Wil lson et al. (1986), that there is no solution when S7 < m , 

and a sufhcient condition wi l l be identihed when there is a unique solution K 

of the M L E équations. A dehnite answer is not given, but this criterion can 

be checked on computer for any set of data. 

The profile function /(«;) = /i(^,/>(«)) is 

n y,•-1 

/(K) = n[(n + m) log(/t + m) - /clog K - m log m] - S l o e ( K + •?') 

= n[« log(/c + m) — K log K, + m log(*; + m) — m log m] 

- E X > g ( K + ; ) . 

The next step is to transforrn the parameter K by the one-to-one transforma

tion /?(«) = /c[log(/c + m) — log/c], where ß : (0,oo) —> (0 ,m). This is a 
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strictly monotone increasing concave function because 

711 
ß'(tt) = log(re + m) - log« > 0 

K -r m 
m2 

for any K > 0. Moreover l i m ^ o ß M = 0 and l i m ^ œ ß(n) = m. The 

transformation ß is one-to-one and instead of studying whether the profile 

log-likelihood function / = J[K) has a positive root, / can be studied as a 

function of ß. To prépare the grounds a few preliminary results are proved 

first. 

L e m a 7.1 For a non-trivial sample y = . . . , y n ) from the N B ( p , K) distri

bution, the application f and parameter ß introduced above. it is true that 

l im — = — oo. 
«\o dß 

Proof: B y the chain rule 

df df dK 
hm — = hm - — — 
«\o dß *\o dK dß 

,. df dß 
= l i m — / — 

«\o are are 

= l i m 
n[log(« + m) - log K] - E ? = 1 

*\o log(/c + m) — log re — -

Denoting by r the number of non-zéro y,-, z = l , . . . , n , and separating the 
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terms in the double sum for which j = 0, it follows that 

df 1 : _ n[log(« + m) - log K] - l - E L i E j L - i 1 

«\o dß *\o log(/c + m) - log K - ^ 

= u + l i m ^ l i m —7 í ; 

*\o log(/í + m) - log /c - ^ 

and applying l 'Hopital rule for the second term 

,. df rnopiui .. - m n « + I Í ^ + « ( Í C + m ) 2 E L 1 E r i
i

i ^ ) t 

hrn. — = n-\- l i m • v ' 
K\O dp Í S \ O —rn 2 

t .. mn« r(/t-(-m)2 « ( « + ™ ) 2 E"=i E ^ / 7^7y? 
= n + l i m — — + hm — — — + h m ' ; 

K \ O m¿ *\o —m¿tí K\O —m2 

r ( M - m ) 2 

= n -1- hm - i 
«\o —m¿K 

- o o . ü 

L e m a 7.2 7/m 5' 2 = £ E¿(y* — m ) 2 rtre ^ e m e a n and the sample variance 

of a non-trivial negative binomial sample y = (yu, .., yn)} and f and ¡3 as 

above. then it is true that 

hm — = —(¿> -m). 
°o dp m¿ 

Proof : As before, using the chain rule followed by l 'Hopi ta l rule, we can 

calcúlate 

, df df .dß 
h m —- = hm -j- ~r 

dp K^°° d.K dtí 

l'Hospital ,. <Pf , d2ß 
h m —— / ——-

du2 dK¿ 
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-mn _j_ -T-^TI -1 1 

l i m 
K — » C O 

Lim 
- m n ( s + m) + « (« + mf E L i E£=Q1 (~T. 

—m' 

— l im m n 
n Ui—1 / i \ 

t , \ c i \ r r S K + m 

( Ä + m ) - ( « + m ) X ; E 77x7^2 ¿=1 j=o l K + 

—- l im (/c + m) 
m2 

—- l im (K + m") 

j n î/i-l 

i n ÎN-1 

1 " 

" K ( K + m) 
™™ - > > -r T T 1 

s e i + 

i=l j=0 V 0 + j ) 2 

(« + m ) [ « ( 2 j - m ) + j 2 ] 

(* + ; ) 2 

7 3 - m ) 2 + E m ï f - Y , v i - Y , m ' 
m 
_1 
771 

n 

\i=i i=i i=i ¿=1 

2 ( n 5 2 4- m 2 n — m n — ?TL2TI) 

( S 2 - m ) . G 

Therefore. because ^ is a continuous function and using the above lemmas it 

is obvious that ^ = 0 has at least one positive solution when S2 > m. 

T h e o r e m 7.4 For the negative binomial distribution NB(p,«;) , there is at 

least one MLE of K. Moreover, the MLE is unique if ^ is a strict monotone 

function. A sufficient condition to have a unique MLE is that ^ > 0. 

Proof: If there are two roots ß\ and ß2 o l the équation ^ — 0 then. because 

^ is differentiable, there must be at least one solution ß" of the équation 
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= 0. where ß* is between and /?2. It is easy to see that 

dß2 dß\dß) 
d?f dß d7ß df 
dx? du dn2 du 

d§_ 
dK 

The condition ~m > °> which wi l l prove that there is unique M L E of K, means 

that 

ê]_ dß cPß df 
du2 du du2 du 

which is équivalent to 

1 1\ » ^ 1 
n l : + E E 7 7 Iog(/c + m) — log K — m > 

m 
K(/C 4- m)2 

n yi-l 

n(\og{K + m) - log /c) - E E 
i=i j=o *- + 3 

m 1 n Vi~l 1 
m ' n + K ( K + m) I (Ä + m ) l o g ( l + — ) - m E E / , ^2 

K J t=i 7=0 i K + 

—mnn i o g ( 1 + ^ ) _ m ^ ä , g _ l _ > 0 ( 7 . 5 ) 

£ î ^ (* + j) 

It seems that this complicated formula cannot be further simplified or 

proved. Therefore, a definitive answer is not known whether the M L E of n 
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is unique. However, for a given set of data, it can be checked on a computer 

whether the left side of équation (7.5) is strictly positive. It cannot be strictly 

negative because of the results in Lemmas 1 and 2. 

The worst situation that may occur is that there are many solutions of the 

M L E équations and they are widely spread. If the likelihood of K is not peaked 

around the mode but it has a very hat top, a small change in the sample may 

resuit in large shifts in the M L E solutions and therefore the inference results 

may change dramatically. Therefore, it would be extremely useful to be able 

to investigate a large range of priors, or i n other words a large range of the 

mixing distributions G for the Compound Poisson-G distributions. Another 

advantage of being able to do this is that the so called "gamma assumption", 

discussed in Chapter 2, Section 2.2.2, can be challenged and other types of 

mixing distributions can be investigated. 

A numerical procédure that is doing just that is described in the next 

section. 

7.3 Sensitivity analysis of priors in Compound 

Poisson modelling 

In this section, a method is proposed for investigating the sensitivity of prior 

choice in Compound Poisson modelling. After a theoretical dérivation, a prac-

tical example involving a road accident data set is described. 
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7.3.1 Theoretical dérivation 

Most of the time, accident count data shows overdispersion. This is quite 

natural because of the unobserved changes in environmental conditions, social 

changes and so on that take place ail the time and that are not reflected in 

the data at the covariate level. The most used model to account for this 

pheriomenon is the Compound Poisson-gamma rnodel. This model can be 

described by 

Yk\\k ~ Pois(A Ä ) , for ail h = l , 2 , . . . , y V 

A f c | a, 6 ~ gamma(a,6). 

Assuming that a and 6 are known quantities, it is relatively straightforward 

to calculate the posterior means 

E ( A t | „) = &±£. (7.6) 

for ail sites A = 1 , 2 , . . , , Af and where y = (iji,.... y,v) and A = ( A i , . . . , A,v). 

The gamma distribution, is used as a mixing distribution mainly because of 

computational simplicity. This prior distribution wil l be considered in the 

following as a référence prior and wil l be denoted by pre/. The distribution of 

another prior investigated for compaiïson wi l l be denoted by pnew Following 

a resuit due to Kass, Tierney and Kadane (1989), if A^ ~ pnew then, the 
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posterior expectations of can be approximated by the formula 

K n e t e t | y) & ^ ^ E r e / ( A f c I y) 
6(A) 

(7.7) 

where 6(A) = pnej|x) ' ^ maximizes log[Afcp(y | A)p r e^(A)] and Â maximizes the 

référence log-likelihood !og[p(y | A)p r e ^(A)]. 

Taking pnew = logN(^, u 2 ) , that is the log normal distribution, it can be 

easily calculated that 

6 ( A i , . . . , A,v) = 
V{a)N N 

•N II ( V e x p [ A , 6 - ^ ( l o g A , - tfty . (7.8) 

The only thing left is to calculate À and Â. Since 

l o g ï % I A)p«/(A) ex E l f e + a ~ l ) l o g Afe - A*(ô + 1)] 
Jt=i 

the optimising solutions are 

\ k = V k + a 1 , for ail A = 1, 2, . . . , N 
6 + 1 

(7.9) 

under the requirement that a > 1. It can be easily remarked that, for a = 1 

and sites with = 0 observed accidents, the above formula is not convenient 

because it implies that A& is zéro. Therefore, either a référence gamma prior 

with the shape parameter a greater than 1 is used or estimation of posterior 

means is done separately for sites with zéro observed accidents. 
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Similarly, because 

N 

log[A f cp(y | A ) P r e / ( A ) ] « ^ [ ( y l - + a - l ) l o g A I - A i ( 6 + l ) ] + ( ^ + a ) l o g A f c - A j t ( 6 + l ) 

it can be easily shown that 

% = * ± j L - L , for a l l a i t 

r - y* + a 
= T + T 

and again a > 1 is required in order to bave convenient solutions, otherwise 

sites vvith zéro accidents must be treated separately. 

Plugging the solutions from Equations (7.S), (7.9), (7.10) and (7.11) into 

formula (7.7), for the Compound Poisson-log normal distribution the posterior 

means are approximately 

FNEW(XK | y) * e W 1 ^ l o s ^ [ l o g ( irf* 2 " J ) . (7.12) 

7.3.2 Application to road accident data in Kent 

In Chapter 8 différent Compound Poisson models, fully Bayesian specified, 

are fitted to the total number of accidents between 1984 and 1991, on 156 

single-carriageway link sites in Kent. The posterior Bayes estimâtes for the 

gamma prior parameters are a -- 0.58 and b = 0.02 and for the log normal prior 

Parameters are a = 2.44 and a = 2.45. There are some weaknesses about these 

(7.10) 

(7.11) 
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ErrfJrlcal me»nsvejsus posterior means 
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Figure 7.1: Approximate posterior means, calculated from gamma(0.58,0.02) ; 

against the posterior means of Poisson-log normal model with p = 2.44 and 
a2 = 2.45; sites xoith zéro observed accidents are mÂssing 

two priors that should be acknowledged. From table 7.1 it can be seen that 

the variances of thèse two priors are very large. Thus, the value of the means 

does not play any rôle. The variance of the log normal prior is 8 times higher 

than the variance of the gamma distribution but in real terms both can be 

understood as infinite. Due to this non-informative or largely diffuse character 

of the priors used it follows that the data wil l dominate the priors so it is not 

surprising to see a very close agreement between the posterior estimâtes and 

the observations. The elicitation of prior distributions is subject of intensive 

research and it is known to be difficult. The priors used in this section play 

a rather illustrative purpose rcgarding the method proposed for studying the 

sensitivity of the priors in Compound Poisson modelling. The research done by 

Doss and Narasimhan (1994) can be also useful for investigating. for Poisson-

régression modelling, the effects on results of a large range of priors. 
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Table 7.1: Means and variances oftwo prior distributions 

prior distribution mean variance 
gamma(0.5S J0.02) 29 1450 

logN(2.44,2.45) 38.86 11604 

In this section the above approximation machinery is used to calculate the 

posterior means of accidents for all 156 sites, with an unknown log normal 

distribution as the new prior and gamma(0.58,0.02) as the référence distrib

ution. Since the shape parameter of the G a m m a prior is a = 0.58 < 1 sites 

with zéro accidents do not have a solution. For comparison a parallel calcula-

tion is made, doubling the value of a to 1.172. In this second situation, with 

garnma(1.17,0.02). approximate solutions are possible for ai l sites. 

Errpfrieal rrcjns versus posterior nrans 
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Figure 7.2: Approximate posterior means, calculated from gamma( l . 17, 0.02), 
against the posterior means of Poisson-log normal model with p = 2.44 and 
a2 = 2.45; ail sites represented 

Both sets of posterior means can then be compared with the posterior 
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means under a fully Bayesian Poisson-log normal model, with the estimated 

posterior parameters ft = 2.44 and a = 2.45. The comparison is made by 

plotting the approximated means, as calculated from Equation (7.12), against 

the posterior means given by the fully Bayesian Poisson-log normal model 

iuvestigated later in Chapter 8. The plots are i n Figures 7.1 and 7.2. The 

fit seems to be very good, so the approximation method advocated in the 

previous section can provide reliable and easy calculations. 

This method can be used as a tool to investigate the use of différent pr i -

ors, like the log-normal already investigated here, or the inverse Gaussian, or 

other more complicated distributions which are not implemented in standard 

packages and whose usefulness has not been yet confirmed. 

7.4 Summary 

Great care should be taken in applying even the most known estimation meth-

ods relative to the two-parameter negative binomial distribution. The M L E 

équations are non-linear and analytical solutions are not tractable. W i t h this 

excuse, the majority of applied studies using negative binomial fitting for road 

accident data employés the method of moments for estimation. This circum-

vent the estimation problems for the parameter K and the Statistical inference 

is obtained relative to a single estimate. 

Another proof of some gênerai inference results for the N B distribution 

has been given i n this chapter. A sufficient condition with the uniqueness 
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of M L E estimators for NB(p,&), that can be verified for each set of data, 

has been proposed. From the applied point of view, after fmding by some 

numerical procédures the M L e of p and the condition given by équation (7.5) 

gives a straighforward answer to the question whether there could be multiple 

solutions to the likelihood équations. If there is a unique solution then the 

conclusions can be based on this set of estimâtes; otherwise a more i n depth 

analysis is required. 

Compound Poisson models are often proposed for modelling count data in 

gênerai and accident data in particular. The Poisson-gamma model is one of 

the well-known instances. The choice of the prior distribution, or the Com

pound distribution, is a relative matter and although the choice of gamma 

distribution is motivated by the conjugacy with Poisson distribution, other 

distributions having a positive support may give a better ht to some sets of 

data. A numerical procédure for studying the sensitivity of prior choice has 

been developed and applied for a set of accident counts. The advantage of 

this procédure is that avoids complicated calculations and a wide range of 

distributions can be investigated easily. 



Chapter 8 

Bayesian models for accident 

counts 

8.1 Introduction 

Statistical science was cleveloped in the 19 U l and 20th centuries by the founders 

such as Francis Galton, K a r l Pearson, Sir Ronald .A. Fisher, Jerzy Neyman 

and Egon Pearson. Although at the beginning there was no clear distinc

tion between the frequenlist approach and the Bayesian approach, the former 

was preferred in most of the 20th century because of the mathematical de-

velopments supporting the méthodologies defining the frequentist school of 

thought. Bayesian methods experienced a révolution in the last décade due 

to the development of Markov Chain Monte Carlo methods and are getting 

more and more enthusiasts attracted by the flexibility of this type of Statistical 

modelling. Paradoxically, the Bayesian approach is older. starting wi th the 

179 
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original 1763 paper by the Rev. Thomas Bayes. The controversy surrounding 

the two approaches is not the subject of this thesis. One of the strongest 

arguments against the use of Bayesian statistics was the lack of closed-form 

mathematical results and what frequentist school called the lack of objectivity. 

It is not the aim of this thesis to discuss the pros and cons of the Bayesian 

methodology. We are more interested in the benefits of the Bayesian method

ology for the applied work. Some of the problems analysed in this thesis, like 

modelling multiple count response variables, seem to have a solution only i n a 

fully Bayesian framework. There is no free lunch, of course, and the choice of 

prior distributions can be seen as a lack of objectivity. However, i n this thesis 

the majority of priors were largely spread, a non-informative approach being 

used for the empirical work. Mathematical solutions could be developed only 

for a l imited range of probability distributions, such as the normal distribu

tion. Multivariate problems in a Bayesian framework lead sooner or later to 

the calculation of multi-dimensional integrals of very high order. For a while, 

the inability to calculate such integrals hampered the development of these 

methods. The computational problems related to hierarchical models concern 

multi-dimensional integrals of order higher than 20, so a more sophisticated 

approach is needed. 

Helped by the advances in computer science, this major difficulty has been 

overcome using numerical methods and simulation. For applied statisticians, 

the real breakthrough was the paper by Geman and Geman (1984). Since 

then, a new class of methods has emerged, generally called Markov Chain 
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Monte Carlo methods ( M C M C ) , which are designed to solve specific applied 

Bayesian problems. For generał introductions to Bayesian data analysis and 

M C M C algorithms see Gelman, Car l in , Stern and Rubin (1995) or Car l in and 

Louis (1996). 

Bayesian methods have been used for Statistical analysis of road accident 

data in the last two décades. The approach was empirical^ either nonparamet-

ric, making use of Robbins' formula as described i n Chapter 2 (Robbins, 1955) 

or parametric, estimating the parameters from the marginal l ikelihood of those 

Parameters (Morris, 1983; Mar i tz and L w i n , 1989; Carl in and Louis, 1996). 

However, in this part of the thesis a fully Bayesian approach is taken and the 

application of M C M C methods seems to be the only computational solution 

available. Generalized linear models with random effects are developed for 

road accident frequencies. The models are hierarchically specified i n several 

stages, assuming that the parameters of probability distributions are random 

variables with some other probability distributions, up to the last level of 

hierarchy where ail parameters are known. These models can become quite 

complicated and the level of coniplexity is substantially increased when mul

tiple response models are considered. The estimation process is i n this case 

very difficult and computational problems are in abundance. M C M C meth

ods, Gibbs sampling in particular, offer a good solution for computational 

problems and they wil l be applied in Chapter 9. A good starting point on 

modelling based on a Gibbs sampling approach can be found i n Zeger and 

K a r i m (1991). Various other hierarchical Bayesian examples are described in. 
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Gi lks , Richardson and Spiegelhalter (1996). 

This chapter focuses on models of counts with particular emphasis on prac

tical applications regarding accident frequencies on road networks. There are 

two problems investigated. Firstly, fully Bayesian models with univariate re

sponse are investigated. These are models based on compound Poisson dis

tributions and they are discussed in terms of theoretical improvements and 

interpretability. The Markov Chain Monte Carlo methodology is explained 

using a Poisson-gamma model and a Poisson-log normal model. A Poisson-

double exponential model is used as an unusual compound Poisson model and 

all three models are compared on a set of data by the Deviance Information 

Criterion (Spiegelhalter, Best and Car l in , 1998). 

Secondly, the hierarchical Bayesian modelling process is explained in the 

context of developing two classes of models for multiple response counts: 

hierarchical Poisson-regression models with random effects and multivariate 

Poisson-log normal models. Both classes are multiple response models. They 

are very complex and M C M C methods, employing Gibbs sampling and the 

Metropolis-Hastings algorithm overcome computational difficulties. The De

viance Information Complexity criterion (DIC) is used in Chapter 9 to compare 

the fit of 11 models and to choose a small set of good fitting models. 
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8.2 Univariate Hierarchical Models of Counts 

Suppose that for N units (sites) accident counts Y* , with k — 1 , 2 , . . . ,7V 

are observed over a fixed time period. The modelling process starts with the 

assumption that 

Yk Pois(A f c ) for all ¿ = 1 , 2 , . . . , N. 

This model is not very useful because it is saturated. To improve it , the 

unobserved parameters A are modelled as random quantities from the same 

distribution G , 

Ák ~ O. 

The next step is to make some specific distributional assumptions about the 

prior distribution G. 

8.2.1 Choice of the form of prior 

Historically, the choice of a suitable parametric class was often governed by 

mathematical convenience because, until software was widely available, statis

ticians were restricted to closed analytical calculation. In a Bayesian context, 

it was helpful to consider the density g of G to be a conjugate distribution of 

the likelihood distribution. 

Therefore, when Yk ^ Pois(A^), the gamma distribution with probability 
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distribution function 

g(x | a , 0 ) = gamma(x|a î (5) = ^ r i " - ^ ^ , 
V(a) 

with a > 0,/? > 0, was very convenient. This yields the marginal distr ibution 

of the observed counts as the négative binomial distribution 

with y — 0 , 1 , 2 , - . . as already seen in équation (2.9) in Chapter 2. A i l that 

needs to be done is to estimate somehow the hyper-parameters a and (S. 

This procédure has become standard in modelling count frequencies i n 

the social sciences. Using a négative binomial mode! seems more appropriate 

than using a simple Poisson model. The négative binomial distribution is here 

the resuit of compounding the Poisson distribution with a gamma distribution. 

Nevertheless, the parametric distribution G can be any other distribution wi th 

non-negative support. 

A log normal distribution, for instance, is a possible alternative, 

g(x) = logN(x|^,a 2 ) = _ L exp ( - ^ ( l o g x - y)2) , 

where \i G R, o2 > 0. x > 0. 
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But now the marginal distribution of Y cannot be calculated in closed form 

p(y|/*V) = |Pois (y|A)logN(A| M , a 2 )dA (8.2) 

oc I A » - 1 + 5 e x p ( - A - ^ [ ( l o g A ) ' ] ) d A 

where "oc" means equality up to a normalizing factor, a convention followed 

every where in this thesis. The last integral cannot be expressed in closed form. 

It is possible to estimate the parameters of this Compound distribution either 

by moment estimators or maximum likelihood estimators (Shaban, 1988). The 

M L E estimâtes require numerical intégration techniques. Not very much is 

known about the properties of M L E estimators for the Poisson-log normal 

distribution, whether they are unique or not or under what conditions. The 

computational problems are further complicated when régression terms are 

involved and where multiple response variables are investigated. 

8,2.2 A fully Bayesian approach 

However, Markov Chain Monte Carlo methods are designed specifically for-

situations like this. Under a fully Bayesian framework, some further prior 

distributions for the hyper-parameters fi and a2 have to be set up. A n init ial 

approach can be based on setting non-informative priors for the parameters, 

or in other words, not very much is known a priori about thèse parameters. 

Non-informative priors are usually very flat. close in a sensé to an uniform 
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distribution over a large range of values. For computational s implicity it is 

common to assume that 

P(u) = N[>|0S 0.001) (8.3) 

p(r) = gamma(r|0.001,0.001) 

where r = l/cr 2 . 

The Poisson-Iog normal model is described by 

Yk\Xk ~ Pois(Afc), for ail A: = 1 , 2 , . . . , TV (8.4) 

Xk\fi-,T ~ LogN(^,r) 

p ~ N(0,0.001) 

r ~ gamma(0.001,0.001) 

The parameterisation of the normal distribution and of the log normal dis

tribution is not in classical form, the second parameter is the inverse of the 

variance, also called précision. Therefore a very small précision means a very 

large variance. The actual value of the mean is not important when the vari

ance is so large. 

Bayes theorem provides the posterior distribution calculated as 

p(A,p>T\y) ce p(y\X,p,r)p(A,r). (S.5) 

where A and y represent vectors. 
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( m u ) ,f tau ) 

^*/theta[(J^sY*' 

( Y [ k ] ^ ) 

fortklN 1 :Nî 

Figure 8.1: Direcled graphical model for a mixed Poisson-log normal model 

The conditional independencies between the quantifies involved, observed 

data and unobserved parameters are very important. They are used for simpli-

fying the mathematical calculations and to represent mathematically scientific 

assumptions made before the actual Statistical modell ing exercise. The best 

way to communicate thèse relationships is v ia a directed graphical model. For 

example the Poisson-log normal model is based on the graphical model i n F ig 

ure 8.1. This graph is similar to a directed acyclic graph. In order to be able to 

define a joint distribution over this type of graph, the graph must be acyclic. 

that is not containing directed cycles. By analogy with chain graphs described 

in Chapter 3, a directed local Markov property can be defined, stating that any 

vertex v is independent of ail vertices that are not descendants of v, given its 

parents pa[u] (Frydenberg. 1990). No positivity requirement is necessary to 

prove that this property is équivalent to assuming that the joint distribution 
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of all quantities V factorizes as 

p(V) =l[p{v\ pa[t;]). 
vEV 

It follows that, in order to specify the joint distribution p(V)~ only the parent-

child distributions need to be provided. In W i n B U G S , there are two types 

of arrows, a normal type corresponding to stochastic relationships and hol-

low type, corresponding to deterministic fonctions, that is logical nodes. For 

reading the conditional independencies only the first type should be consid-

ered so the graphical model should be collapsed over ai l logical variables before 

attempting to read any conditional independence between the stochastic vari

ables. 

The conditional independencies are easy to read directly on the graph 

Yk AL r | A i , for all k = 1 , 2 , . . . , N 

Yk AL n\\k. for ail A; = 1 , 2 , . . . , N. 

The équation (8.5) can then be simplihed as 

(8.6) 
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This means that 

N jV 
p(K f-1; r\y) cc J J Pois(^|Ajk) [ J logN(A t |/ i ; r ) 

k=l k=\ 

(X 

xiV(/i|0,0.001)gamma(-|0.001 ; 0.001) 

II " V i - II y - e x p ( - - ( l o g A , - ft) J 

0.001 ..2 

xe 2 ^ R 

fc=jV 

^^O-OOl-^-O.OÜlT 

oc ^ II A p - l e - X f c e - ? t l o « A * - ^ 

X e - Ł ^ Ł i i 3
7 . o . o o i - i e - o . o o i T i 

X 

The joint posterior distribution of all parameters of interest cannot be sim

plified further. Markov Chain Monte Carlo methods overcomes the lack of 

closed form analytical methods by a simple and brill iant idea. Denoting by y> 

al l parameters of interest, taking values in a sample space a Markov chain 

is simulated with the space state $ and whose equil ibrium distribution is ex

actly p{tp\y), the target distribution. So when a sample from p(<p\y) cannot 

be simulated directly it might be possible to simulate a Markov chain wi th 

the properties just described and after a sufficient number of iterations, having 

some confidence that it has become stationary, any sample from the stationary 

part of the Markov chain is a (dependent) sample from p(ip\y). Methods for 

simulating a Markov chain with all these properties have been identified and 

depend on the type of model investigated. The most famous method of sam

pling is Gibbs sampling. This algorithm starts by calculating al l conditional 

distributions of separate parameters, or block of parameters where appropri-
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ate, conditioning on everything eise. For the above model it follows easily 

that 

P(KP>T I y) « 

k=N 

k=i 

e - ^ - M 2
r D . 0 0 1 - l e - O . O O l T 

The conditional densities of separate parameters (possibly vectors) are calcu-

lated by retaining only those terms in the above product that are necessary. 

For example to calculate the conditional density p(Xk \ y, p. r ) only the factors 

containing A^ are retained, everything eise being considered as a part of the 

normalizing constant, so for every site k 

p{Xk\y,p,r) oc A f - 1 + ^ e - A f e - ^ l 0 S ' ^ 2 ] (8.8) 

/ I \ \ 0 .001 2 » r 2 „ 

p{p\y,X,T) oc e * " IT k 
k=l 

(8.9) 

p(T\y,\,n) « r f + o . o o . - i e - r [ o . o o i + i E : l 1 ( i " e ^ - ^ ] (8.10) 

( N 1 
cc gamma I r | — + 0.001-, 0.001 + - £ ( l o g A f c - p)' 

k=\ 

Starting from some arbitrary points {X^\ p^\r^), the Gibbs sampler goes 

through the following scheme 

1. Draw X[l) ~ p{Xk\y, ^ ° ) , r<°>), for all ¿ = 1 , 2 , . . . , N. 

2. Draw ~ p(p\y, X^, T<°>) 
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3. Draw - p{r\y, A< [ ) , M
( 1 ) ) -

If (X^\p^\r^) | y is the Markov chain resulting from the Gibbs sampler 

described above then it can be proved under appropriate regularity conditions 

that ( A ^ , / i ^ . r^)\y - i (A, p, r)\y ~ p(A, p, r\y) as t —• oo. For a proof and 

a gênerai description of the conditions under vvhich this theorem is true see 

Besag (1974), Geman and Geman (1984), Roberts and Smith (1993). 

The hierarchical spécification of the Poisson-log normal model, équation (8.4), 

can be followed for the Poisson-gamma mode! in a similar manner 

Yk \ \k ~ Pois(A*) (8.11) 

\k | ct,P ~ gamma(a,/9) 

a ~ logN(0,0.0001) 

P ~ gamma(0.001,0.001) 

The directed graphical model describing the conditional independencies is 

given in Figure 8.2. This is a füll Bayesian model as opposed to an empirical 

Bayesian model which, instead of setting hyper-priors for the parameters a and 

ß. estimâtes them from the data. As above, in order to be able to simulate 

from the joint posterior density p(A,a,/3|y), the conditional densities are first 

calculated. From the model assumptions it follows that 

p(A,a,/? | y) ce p(y | A)p(A | a, ß)p{a)p(ß) 

r N 

oc Yl Pois(i/fc I Ajb)gamma(Afc | a,P) 
Lfc=i 

logN(a | 0,0.0001) 
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f&rfkIN 1 :N) 

Figure 8.2: Directed graphicaî mode! for a mixed Poisson-gamma model 

xgamma(/? | 0.001,0.001) 

oc 
N 

n 
lk=\ 
n \Vkr-*k \<*-lr-0\k I Ê - ^ - ( i o g « ) 2 ^ o . o o i - i e - o . o o i ^ 

a 

The conditional densities are calculated now by retaining only the relevant 

factors from the above product. Therefore 

p(\k\y,a,{3) oc A f c ^ - V ^ 1 " ^ 

oc gamma(y* -f a , £ + 1) 

(8.12) 

H J v a , A ( ] ( ] ( ) ] \ 

p(a\y,\,fi) ce - ^ ( I ^ = 1 A l . ) ° - V - 1 e x p ( - ' ^ ( l o g « ) 2 J ( 8 . 1 3 ) 
[r(a)] 

p09|»,A,a) oc ^ w " + 0 J » , - , e x p ^ ( f ; A t + 0.001)j (S.14) 

oc gamma(//a +0.001. £ A * + 0.001) 

Compound Poisson models are very useful but cannot provide a good solu

tion for situations when there are several types of counts, possibly correlated. 
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In Section 8.3 these models are expanded further to allow multiple response 

counts to be analysed jointly. The computational problems w i l l be more de-

manding but the same M C M C techniąues w i l l be used in a similar manner to 

solve these problems. 

Let see now how the inferential process is execu.ted in practice. 

8.2.3 Monitoring the convergence and inference 

Markov Chain Monte Carlo methods can be prone to serious errors when the 

convergence is very slow. If the simulated Markov chain has not converged to 

the stationary distribution, the inference can be false. M a n y papers included 

in Gi lks et al. (1996) emphasize how dangerous M C M C methods can be when 

the convergence is not monitored. The simulated Markov chain shonld "forget" 

its starting point after a sufficient number of iterations and the starting point 

should not influence the inference process. 

Based on this simple idea. the following criterion for monitoring conver-

gence has been proposed (Gelman et a l . , 1995, Section 11.4). Several parallel 

seąuences started from different init ial points are simulated. If convergence is 

attained then the empirical distribution of each seąuence is almost identical to 

the empirical distribution of the seąuence obtained by mixing all the sequences 

together. If convergence is not reached, the variations within each seąuence 

are smaller than the variation within the mixed seąuence. B y analogy with 

the analysis of variance, for each parameter of interest, the within-seąuence 

variance W and the between-seąuence variance B are calculated, and then 
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used to estimate the variance of the parameter of interest i n the stationary 

distribution. 

Suppose there are m parallel sequences (simulated Markov chains) each 

with n values, and denote the parameter of interest by <f>. Denote by <f>{ the 

sample mean and by S'f the sample variance of the «th sequence. If 4> = 

^ Xw=i <Pi then the between-sequence variance is 

and the within-sequence variance is 

i m 

Under the assumption of stationarity of the simulated Markov chain, 

varO) = ?—^W + -B 
n n 

is an unbiased estimate of the variance of </>. If the chain has not yet converged 

then it overestimates the variance; then each sequence has less variability than 

the mixed sequence, so W underestimates the variance of <j>. When stationarity 

is reached both vâr(^) and W estimate var(^). Gelman et al . (1995) proposed 

using 

(8.15) 

known as the Gelman-Rubin statistic, as a tool to monitor convergence. When 
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the simulated Markov chain converges to the stationary distribution then the 

R decreases to 1. In practice, a value of R less than 1.1 indicates convergence. 

The program W i n B U G S l . 2 allows an easy simulation of several paral

lel chains simultaneously so convergence can be also checked by looking at 

the dynamic plots of the parameters monitored against iteration number. 

The Gelman-Rubin convergence statistic as improved by Brooks and Gelman 

(199S) is calculated in this program. It should be noted that no diagnostic 

tool can be considered a " p r o o f of convergence of a M C M C algorithm be

cause it is feasible to use only a finite sample of the chain. However, these 

monitoring tools help avoiding cases where the mix ing is slow and the con

vergence is unconfirmed. Another recommended practical point (Carl in and 

Louis, 1996; Gelman et al . , 1995) is to simulate several chains starting from 

dispersed ini t ia l points. 

A t this point, having a sample from the joint posterior distribution p((p\y), 

any summary inferences (means, medians, quartiles, credible intervals, modes, 

ranks, density estimation), or predictions of future observations, can be pro

vided. 

8.2.4 Residual examination 

The particular choice of a model or of a list of models should be checked 

by comparing the observed statistics with the expectations of these statis

tics as given by the models. A simple way to check the fit of a model is to 

consider the residuals yk — E(Y't) or even better, the standardised residuals 
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(yk — Ei(Yk))/yJvax(Yk)- Large residuals indicate observations that are unlikely 

to be provided by the probabitistic model proposed. If Yk ™ Pois(A^) it fol-

lows that E(Yk) = var(ifc) = A* . Est imating the unobserved quantity A* by 

tlie posterior mean E(A f c | y) , where y dénotes all the data under study, the 

standardised residual in this case is (yk — E(A* | y))/yjE(\k \ y). 

Another équivalent way to look at the fit of the model is to plot the pre-

dicted values E(A^ | y) against the observed values yk- A good fit would have 

the points evenly scattered around the line with a 45 degrees slope. This idea 

wi l l be exploited i n Chapter 9 to compare the fit of two hierarchical Bayesian 

models. 

8.2.5 Déviance Information Criterion 

Another method to check the fit of a model was proposed by Dempster (1974). 

It is similar to the use of the déviance measure in generalized linear modelling 

(McCul lagh and Neider, 1989) but, being in a Bayesian framework, it is the 

posterior distribution of the log-likelihood of the observed data that is exam-

ined. 

If the model is given by the data Y and parameters tp = (O.VJ), the joint 

distribution can be generally factorised 

i.'he fit of the model is directly influenced by the parameters 0, because they 
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affect directly the observed data y. The models are compared using the pos-

terior distribution of 

D{6) =-2\ogv(y\6). 

The quantity D{&) is called Bayesian déviance (Spiegelhalter, Best and Car

l in , 1998). The posterior distribution of D(9) is calculated using p{B\y) oc 

p(y\B)p{Ô) and the fit of a model M is then measured by 

D = Eo\y[D]= J D(0)p(ô\y)d9. 

One aspect that should not be neglected, especially for hierarchical mod

els, is the nnmber of parameters used. Hierarchical models combined with 

régression models provide a very good solution to fit sparse data. Typical ly, 

hierarchical models have more parameters than data observations. However, 

thèse models do not provide a perfect ht. This is because the parameters 

are structured in several layers in a hierarchical structure and they are not 

independent parameters like in the classical case. Thèse models allow a better 

description of the stochastic machinery that is assumed to generate the data. 

The parameters are considered random variables. Thus. the parameters i n 

the second layer are used just to describe the probability distributions of the 

parameters in the hrst layer. 

Models with large number of parameters should be penalised i n the same 

way the Akaike information criterion (Àkaike, 1973) does for régression or 

log-linear models. The effective number of parameters pjy is a measure of 
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complexity of the model and is defmed by 

193 

pD = D-D(E91V[$]) 

= D - D($) 

whîch means the posterior expectation of the Bayesian déviance minus the 

Bayesian déviance calculated by replacing 0 with their posterior expectations 

9. 

The Déviance Information Criterion puts thèse two measures together 

D I C = D+PD 

and this new measure allows the cornparison of arbitrarily complex models. 

D I C is a measure of fit together with a measure of the effective number of 

Parameters, based on the posterior distribution of the log-hkelihood under 

each model. It was shown, Spiegelhalter, Best and Car l in (1998), that this 

criterion is a natural généralisation of Akaike's Information Criterion. 

Another advantage of using this tool is that D and po are easy to compute 

from a M C M C output analysis. Both the Bayesian déviance D(0) and para-

rneters 9 are monitored during an M C M C and D equals the sample mean of 

the simulated values of D(9), while po is D minus D(9) calculated using the 

sample means 9. The models with smaller D I C are preferred. 

For a Poisson model, YK ~ Pois(Àjt), where the unknown parameters are 
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the unobserved means A,t, the scaled déviance is 

Ds{0) = 2'£ 
k 

» * l o g - ^ - ( » * - e » ' ) (3.16) 

where log A* = ôk. The Bayesian déviance is obtained by retaining only those 

terms that dépend on 0. The other terms depending only on data do not affect 

the comparison of différent models so they can be left out. 

This criterion can be easily calculated in a M C M C analysis, no further 

calculations being required outside the M C M C Output. D f C w i l l be used for 

model comparison in Section 8.2.7 of this Chapter and in Chapter 9. It should 

be noted that D I C is not recommended to select a unique model (Spiegelhalter. 

Best and Car l in , 1998). A unique model should be selected using background 

knowledge. 

8.2.6 Global goodness-of-fit tests based on Bayesian p-

values 

A compromise between Bayesian and fréquent ist model checking procédure 

was introduced by Gelman et al . (1995) and it is described in this section. 

The discrepancy between the model under scrutiny and the data is measured 

by a test quantity T(y.9)y which is a scalar summary of parameters, jointly 

denoted by Ö, and data, jointly denoted by y. In classical statistics, 9 is 

considered known or estimated, and the fit of the data can be measured by 

the tail-area probability, called the P-value. T'hen the test statistic dépends 
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only on the observed data y and the P-value is calculated as 
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Pr(T(?/ r e p) > T(y) \ 9) 

where y r e p is a replicated set of data, a hypothetical future value of y if the 

conditions that produced data y are unchanged. Therefore, the probability in 

calculating the P-value is taken over the distribution of yrep wi th Ô known. 

A n estimate of B is used in gênerai to calculate this probability. 

In a Bayesian framework, point estimâtes of the parameters 9 are not 

needed. Instead. the ht of the model is measured by comparing the observed 

data y with the posterior prédictive distribution. The test quantity T dépends 

on the data y and the parameters 0 as well, and it is calculated over a sample 

frorn the posterior distribution of 9. The P-value is called Bayesian P-value 

and is defined as the probability that the replicated data y r e p has a test T 

more extreme than the test calculated for the observed data y 

pT = -Pi(T(y"--v,6)>T(y,9)\y). (8.17) 

A subtle différence is that a Bayesian P-value is conditioned over the data y 

and not over the parameters 9. 

For applications, for each value 0j, of a sample of size q from p($ | y) , 

a value for y™p is simulated from the posterior prédictive distribution. The 

Bayesian P-value is easily calculated as the proportion of thèse q draws for 

which the T(yr^p,6j) > T(y.93), where j ~ 1,2,...(/. A set of data with a 
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very small or very large Bayesian P-value provides évidence against the model. 

However, this does not mean that a single good value qualifies a model as being 

very good. Other aspects of the models investigated, such as those discussed 

in the previous two sections, may help in making better décisions regarding 

mode! sélection and criticism. 

A discrepancy measure that w i l l be used for hierarchical multiple response 

models in Chapter 9 is the x2 discrepancy 

where the sum is taken over ai l observations. 

8.2.7 A comparison between différent compound Pois

son models 

For a given set of data, différent distributional spécifications for G may lead to 

différent results. Here a gamma distribution is used because analytical calcu-

lations are possible i n this case. This does not mean that other distributions, 

such as log normal or even the double exponential cannot be used. M C M C 

methods can easily accommodate complicated calculations required by thèse 

two distributions. 

Consider road accident data, described in greater détail later at a disag-

gregated level i n Chapter 9, concerning accidents between. 1984 and 1991 on 

156 single-carriageway link sites in Kent. Without considering any covariate 

k 

(yk - E(Yk | 0)f 
var(F t | 9) 

(8.18) 
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information, the following three prédictive models are compared 

M i : Poisson-gamma model 

202 

Yk\Xk ~ Pois(A f c) 

Xk | a, b ~ gamma(a, b) 

a ~ Ëxp( l ) 

b ~ gamma(0.1,1) 

where Exp(-) is the exponential distribution. This model is not exactly the 

same as the Poisson-gamma model given by équation (8.11). It was chosen 

because it can be shown (George et al . , 1993) that this leads to a posterior 

for b which is a gamma distribution but leads to a non-standard posterior for 

a which requires the use of Gibbs sampling; 

M 2 : Poisson-log normal model 

Yk\Xk - Pois(Ajt) 

Afc | f.1, r ~ logN(/A, T) 

ti ~ N(0,0.0001) 

r - gamma(0.001,0.001) 

M$: Poisson-log double exponential model 

Yk | Xk ~ Pois(A f c) 
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log(Ajt) | u.r ~ DE(//,r) 

v ~ N(0,0.0001) 

r - gamma(0.001,0.001) 

where the double exponential probability density function is 

The posterior summary for the quantities of interest of each model is given in 

Table 8.1. The inference is based on a sample of 10000 values after a burn-in 

period of 20000 itérations. The so called burn-in period is the part of the 

Markov chain simulated before the user is confident that the convergence has 

been reached. This part of the chain is discarded and a sample is selected 

from the next part of the chain. The actual modelling in W i n B U G S took less 

than 100 seconds for 10000 itérations on a Pent ium II personal computer wi th 

100 M H z . The three models can be comparée! in terms of fit to the data by 

the Déviance Information Criterion. (DIC) . 

Before looking at the results one might expect the Poisson-gamma and 

Poisson-log normal models to be quite close in terms of fit because they have 

similar shapes and they have been used in the applied statistical literature 

as compound distributions for the Poisson distribution. Nothing is known 

from other studies about the Poisson-log double exponential. so vve would not 

be surprised if the third model did not fit the Kent data well. The quantities 



CHAPTER 8. BAYESIAN MODELS FOR ACCIDENT COUNTS 204 

Table 8.1: Posterior calculations for all 3 models compared 

Model M i 
node mean sd 2.5% median 97.5% 
a 0.58 0.07 0.46 0.58 0.72 

b 0.02 0.003 0.02 0.02 0.03 

deviance 151.9 17.57 119.7 151.4 188.6 

Model M2 

node mean sd 2.5% median 97.5% 

ß 2.44 0.14 2.17 2.44 2.71 

T 0.41 0.06 0.3 0.40 0.54 

deviance 173.2 18.5 139.1 172.7 211.7 

Model iV/3 

node mean sd 2.5% median 97.5% 
V 2.76 0.12 2.51 2.76 3 

T 0.75 0.70 0.62 0.75 0.90 

deviance 159.9 18.04 126.7 158.9 197.3 

required for calculating D I G are described in Table S.2 and it can be easily seen 

that, for this set of data, the gamma distribution is the most appropriate out 

of the three compared. It is also surprising that the log double exponential 

distribution gives better results, for this set of data, than the log normal 

distribution. One explanation for that might be the shape of the distribution. 

Having some sites with zero counts, the histogram of the data suggests that 

a gamma distribution with a shape parameter a £ (0,1) is appropriate. This 

is the case indeed and the log double exponential distribution is closer in 

resampling a gamma distribution of this shape than a log normal distr ibution. 
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Table 8.2: DIC calculations for ail S models comparée 

Model D D{B) pD D I C 
M{ 152 11.68 140.32 292.32 

M2 173.2 22.96 150.24 323.44 

M 3 159.9 16.89 143.01 302.91 

Another way to measure the adequacy of the models is to compare the 

Pearson resïduals calculated as yk~E(-Xk\y) f o r e a c h site h = 1 , 2 , . . . , 156. The 

box plots of Pearson residuals for the three models are presented i n Figure 8.3. 

A i l three models fit the data very well. However, there are a few points worth 

mentioning. The Poisson-gamma model tends to give higher estimâtes than 

the observed numbers of accidents. The Poisson-log normal model would be 

the best model if the extrême residuals about -1 were ignored. The sites giving 

thèse residuals close to -1 are sites with zéro accidents observed. The Poisson-

log normal model predicts a mean value around 1 for those sites whereas 

the Poisson-gamma model predicts values around 0.5, closer to the observed 

data. Therefore, taking out the sites with zéro accidents, it is likely that 

the Poisson-log normal model outperforms the Poisson-gamma rnodel. The 

Poisson-log double exponential is a good compromise between the previous 

two, and according to the D I C criterion better than the Poisson-log normal 

model, because its prédictions for sites with zéro accidents are better. 

In conclusion, for any Bayesian model, the M C M C modelling process wi l l 

go through the following stages: 
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RESP3)E HESPSLN 

Figure 8.3: Box plots for the models comparée; RESPSGA dénotes residuals 
for Poisson-gamma model, RESPSDE dénotes residuals for Poisson-log double 
exponential model and RESPSLN dénotes residuals for Poisson-log normal 
model 

1. Start simulating either a single long chain or several parallel chains that 

will be considérée! in the end as a mixed chain: it is a good idea to start 

from some init ial values that are not very far frora the région i n which 

likelihood is positive. 

2. Monitor the convergence of the chain using the Gelman-Rubin conver

gence tool and the dynamic plots of the values for some of the parameters 

of interest, and make sure that the chain has become stable. 

3. Using the Markov chain output, calculate the Bayesian P-values for one 
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or more appropriate test criteria and make sure that the model is not 

rejected by the data, that is the Bayesian P-values are not too small . 

4. If everything is fine, any inferential statistics can be calculated now on 

the same M C M C output. 

These four steps are used in M C M C analyses for all models investigated in 

Chapter 9. 

8.3 Multivariate Hierarchical Models of Counts 

Techniques for modelling multiple counts jointly have not been extensively 

developed in the statistical literature, mainly because of the lack of a mult i 

variate discrete distribution that could support complex correlation structures. 

Bayesian and E B research related to multiple response variables has concen

trated on longitudinal studies for clinical trials or biostatistical data (Breslow 

and Clayton, 1993; Zeger and K a r i m , 1991; Gilks et ah, 1996) and (Carl in 

and Louis, 1996) or educational studies (Goldstein, 1979). In this section, 

multiple response models for counts are developed. Several classes of models 

based on mix ing the Poisson distribution with other known distributions are 

proposed. Some real-world applications involving accident frequencies on the 

road network are described in detail in Chapter 9. A l l the models are specified 

hierarchically and are fully Bayesian. 
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8.3.1 Hierarchical Poisson-regression models with ran

dom effects 

Suppose that there are N units of the analysis ( for example the sites of a 

road network). A t each unit, M different counts Y\, Y 2 , . . . , YM are recorded 

(for example the numbers of accidents of different levels of severity in a finite 

t ime period). Typical ly , the counts are modelled wi th a Poisson likelihood. 

It is possible that the counts are correlated so multiple response models are 

desirable. Depending on the information available, the statistical analysis can 

be based entirely on the observed counts. Alternatively, covariate informa

tion (for example environmental characteristics) can be linked to the observed 

counts through some regression equations. 

A framework mean-variance model 

The proposed models offer solutions to, at least, two of the well-known prob

lems in modelling counts: overdispersion, and. possible correlation between the 

M counts for each unit. The following mean-variance model can be used as a 

framework. A similar model has been proposed (Loveday and Jarrett, 1992) 

at an univariate level for spatially correlated accident frequencies. 

For all k 6 {1 ,2 , . . . ,N], z € { 1 , 2 , . . . , M } let Yki be the count of type i 

at unit k. Then the assumptions of the model are 

E ( Y W I Xki) = var(y f c l- | \kl) = \kx (8.19) 

and \ki = fikie\p(Xl
kipi). 
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Hère Xki dénotes a vector of explanatory variables, each of which can be fixed 

or random; /?, dénotes the vector of the régression coefficients, and fik{ is a 

random quantity independent of the X&. In addition, the random variables 

{.iki (for k = 1 , 2 . . . . ,N) are independently and identically distributed. with 

for a i l fc € { 1 , 2 , . . . , iV} , z, j 6 {1 ,2 , . . . , M } . The mean of the random effects 

Pki can be always taken equal to 1. If it is not 1 from the beginning then 

^ = ft/E(ft) has mean 1 and the factor IfE(fi) can always be included in the 

régression component. The following proposition illustrâtes the value of this 

approach. 

Proposition 8.1 For the mean-variance model described above 

Proof : Because of the independence assumption over units the index k can 

be dropped to simplify the notation. Moreover, the results can be proved a 

bit more generally assuming a gênerai positive covariate structure O^i instead 

of exp(X'kifti) and this will be used below again for simplicity. Using the 

properties of conditional expectation it follows immediately that 

E(/Xfc») = 1, COv(fiki}f.Lkj) = <7, 

1. var(lk | X) > E(Yki \ X) 

2. cov{Yki,Ykj | X) = Gxp(X'ki 

E(Y; I G) EM(E(V;|0,M)) (8.20) 

E,.(MA) 
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= 0,-. 

var(K I 0 ) = E M (var(y; | X, /;)) + var, 4(E(K- I 0 , /u)) (3.21) 

= E m ( ; Í , -0¿) -f- var^/^0;) 

= E M ( / i i ) 0 i + var ( 4 (> i )0? 

= 041 + ^0.] 

> 0 ¡ . 

Similarly, 

Final ly , 

c o v ^ Y } 0) E i t ( cov(K- ,V; 10^)) + 

+ c o v l i ( E ( ^ | 0 , / i ) 5 E ( ^ | 0 , / i ) ) 

Since the 0,- are positive 

corr(yfcl,yfc j I 0)| 0 Ą K (8.22) 
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where pu = is the corrélation coefficient of the random effects a-, and 

fij. It can also be seen that sgn(cov(V^, Ykj \ ©)) = sgn(o-^). 

Taking a more specific parametric approach, the following hierarchical 

models, combining random effects with log-linear regression, are suitable for 

disentangling the complex structure of multivariate discrete data. 

A Poisson-regression model with gamma random effects 

This is a hierarchical Bayesian model combined with hxed explanatory vari

ables that is specified in three stages. For all sites k = 1 , 2 , . . . , N and al l 

types of accident i := 1 , 2 , . . . , j W 

Yki I Xki 

ind Pois(A f c i ) (8.23) 

log Xki = 0ki = \ogpkl 4 X'kiPu 

ind gamma(cv,-, c^) = gamma 1; 
1 1 

ad N(0,0.001), and 

iid gamma(a, b) 

where a, 6 are known values. The shape and scale parameters of the gamma 

distribution of pki are chosen to be equal in order to ensure that the random 

efFects are distributed with mean equal to 1. The hyperprior for the regression 
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coefficients (ft,-) is non-informative, and typically a and b are chosen to make 

the hyperprior for the gamma precision parameters (a») non-informative also. 

The random effects (pki) account for missing information, uncollected data 

or unobserved changes in data over the observed period of t ime. There is no 

correlation structure for so this model is a simplification of the general 

mean-variance model. 

The directed graphical model encapsulating the conditional independen

cies of the above model is illustrated in Figure S.4. This graphical model is 

different from the graphical models investigated in the first part of the thesis 

in connection with road accident characteristics, because some vertices corre

spond to unobserved quantities. For example the vertex denoted on the graph 

by lambda[k,i] does not correspond to an observed variable. It is just a variable 

used for model specification. The regression part of the model is concentrated 

into the variable denoted on the graph by theta[k,i]. It can be easily seen that, 

given the values of lambda[k,i], the variable y[k,i] is conditionally independent 

of a l l the other variables i n the model. This is in agreement with the hierarchi

cal specification of the model given in (8.24). A similar graph was illustrated 

in the Section 8.2 with a reduced number of vertices also representing observ

able and unobservable variables. The graph illustrated here is more complex. 

The joint posterior distribution of all parameters p, ¡3 and a can be calculated 

as: 

p( ,̂ftcv | y) <x p(y | fi,P) p((i | a) p{a) p(f3) 
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X[k,i] 

forfkIN 1 : N) 

Y[k,i] 

forfllN 1 : M) 

Figure 8-4- Directed graphical model for Poisson-régression m.odel wiih gamma 
random effects 

N M N M 
a n npois(^' i n nsamma(/^ i 

fc=l i = l k=l i=l 
M M 

x ]̂ [ gamraa(Q, | a, b) JJ I ] N ( A i I 0, 0.001) 
¿=1 t=i j 

N M ( 

oc n U ] ^ ^ ' ^ ^ 0 ^ • 
fc=i i=i L 

x fî < - v ^ n n « - ^ 
i=i ¿=1 j 

r(«.) 
(8.24) 

If dim/? dénotes the number of régression coefficients used then there are 

MN -f M -\- dim/3 parameters. The model is very complex and it is not 

possible to sirnulate directly a sample from p(p,(3^a \ y). Again the Gibbs 

sampler is a simple, feasible solution, at the cost of computational effort. The 

conditional distributions required are 

p(/.« | y,0,a) oc / 4 - + - - 1 e - " - < - + ^ ' " ' ) 
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= gammaf/ijt,- | yki + ai:ai -f ex'^0i) (8.25) 

P(*t\y,v,0) a ^ ^ j ^ n ^ e - ^ E L - . + O o T i (8.26) 

Na{+a-\ / N jv 
<x — e - ° ' - ( - E * = i L o

S^ + E f c = i (g 27) 
0>>))* 1 0 ] 

p(fr\y,p,a) oc e E ^ ^ ^ . - f t e - E . ^ ^ P ^ f t c - ^ W - ( 8.28) 

where we shall use block conditional distribution for all the regression para

meters, that is a multivariate normal distribution instead of a set of separate 

univariate normal distributions wil l be used for updating the priors. 

A Poisson-regression model with multivariate normal random effects 

Starting from the previous model several alternative models are possible. For 

example ; instead of a gamma distribution with mean 1, a multivariate M-

dimensional normal distribution for the random effects p might be considered 

as more appropiate. In addition, other hyper-priors are required. The model 

is given by 

Yki \ Xki ~ Pois(A f c l ) (8.29) 

l o g A t i = jj.ki + X'kiPi 

A i ~ N(0, 0.001) 

T - Wishar t (R ,p) 
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where N¿v/(0,v/-, T) is the jV/-dimensional multivariate normal distribution with 

mean vector having all elements equal to 0 and with T the inverse of the co-

variance matrix, also called the precision matrix. The hyper-prior parameters 

R and p > M are known, usually taking p — M for non-informative priors. 

The Wisfiart probability density function, as used in this thesis, is 

/ ( X l ü . p J a l f l l f l X l ^ e - ^ ™ » 

where X is an M x M symmetric and positive-definite matr ix , p > M is the 

degrees of freedom and R. is a M x M symmetric and positive-definite (non-

singular) matrix. The Wishart prior is used for the inverse of the covariance 

matrices of multivariate normal distributions and because E ( X ) = p ( i ? ) - 1 , 

R~x is best interpreted as the expected prior precisions of the random ef

fects //. Small values of p correspond to vaguer prior distributions and it is 

recommended (Spiegelhalter, Thomas and Best, 1998) to take p = M. 

This is a complicated version of the mixed Poisson-gamma model and the 

differences can be seen easily on the graph in Figure 8.5. The Gibbs sampler 

requires the knowledge of conditional distributions of the unknown quantities 

of the target distribution, the posterior joint distribution 

p((p I y) = p(\,n,8,T I y) 

in this case, and this requirement cannot always be satisfied. For these sit

uations a more general M C M C method, called the Metropolis-Bastings algo-
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forfi IN 1 : M) 

Figure 8.5: Directed graphical model for Poisson-regression model with multi
variate normal random effects 

r i thm, offers a solution: see Car l in and Louis (1996) Section 5.4.3 and Gelman 

et al . (1995) Section 11.2.. The simulation process moves around in the ip-

space according to a candidate probability density q{y>,y) from which a draw 

ip" is made. Then the jump from the current value to the candidate value tp* 

is made with probability r where 

r = m m 1. / / / — . — - . (8.30) 

This is called the acceptance probability and is always equal to 1 for the 

particular case of Gibbs sampling. The Metropolis-Hastings algorithm is used 

by default i n W i n B U G S for situations where Gibbs sampling is not possible. 

The acceptance rate can be easily monitored and together with other measures 

on the output it is an indication of the performance of the algorithm. The 

Poisson-regression model with multivariate normal random effects requires the 
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use of Metropolis-Hastings algorithm. 

A simplifiée! version of the Poisson-régression mode! with gamma random 

effects is obtained by approximating the logarithm of the gamma distributed 

random effects /t̂  by a normally distributed quantity b^i- Then 

logAfcf = bki + X'xßu (8.31) 

bu ~ N ( 0 , r ) , 

r - gamma(0.001,0.001). 

Sometimes the random effects 6^ can be separated into effects arising from 

variation among the sites and from variation among accident types 

bki = «fc + «i (8.32) 

uk ~ N ( 0 , T U ) 

Vi ~ N ( 0 , T V ) 

ru - gamma(0.001,0.001) 

rv ~ gamma(0.001,0.001) 

A l l models described in this class are hierarchical and for inference M C M C 

methods are necessary. These models wi l l be applied and further discussed i n 

Chapter 9. 



CHAPTER 8. BAYESIAN MODELS FOR ACCIDENT COUNTS 218 

8.3.2 Bayesian models using the multivariate Poisson-

log normal distribution 

For multivariate continuous data the multivariate normal distribution provides 

a sound base for statistical modelling. B y contrast, for multivariate counts, 

there is a lack of discrete multivariate distributions that could play the role 

of Poisson distribution in the univariate case. A consequence is that some

times inappropriate methods employing continuous multivariate distributions 

are proposed in order to support a complex correlation structure. The study 

of A m i s (1996) is an example of a good applied statistical work that can be 

further improved by applying the hierarchical Bayesian methodology proposed 

in the previous section. Because the aim of A m i s ' paper was to investigate 

accident counts and the associations between accident types and some envi

ronmental variables, hierarchical models seem to be perfectly suitable for this. 

The probability distribution described bellow can also improve another exam

ple of applied work involving road accident, done by Salmmen and Heiskanen 

(1997). 

Tn this section, a discrete multivariate distribution is described as a fea

sible solution for discrete data modelling with multiple responses. The idea 

is simple, (Aitchison and Ho, 1989). but powerful computational methods are 

needed to put it into practice. For all k € {1, 2 , . . . , i V ) , i £ {1, 2 , . . . , M} we 

write 

Ykl\Xkt & P o i s ^ - ) , (8.33) 
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(log(A A 1), . . . , log(A f c M))1/x,T ~ N M O , T ) (8.34) 

where T = £ 1 is the precision matrix. The probability density function of 

the M-dimensional log normal distribution is 

p(\\fc.T) = (2T)-*(nA,-)-l|T|-* exp ( - ^ l o g A - p y r a o g A - / , ) ) 

The multivariate Poisson-log normal distribution, that wi l l be denoted by 

PAM(fitT)*t is the mixture of independent Poisson distributions wi th mult i 

variate log normal distribution for the Poisson means. The probability density 

function of PAM(fx,T) is exactly the marginal density of Y's conditioned on 

fi and T only. 

f M 

P{yii---,VM\V;T) = / Y[?o\s(yl\Xl)p(Xl\p,T)dXl---dXM (8.35) 

where y i , • . •, y.,vf = 0 , 1 , . . . . The important moments of this distribution can 

be easily calculated. If £ = (<7ij) then 

E(Yi) = E(E{Yi\\i)) = E{\i) (8.36) 

1 X 

= exp(/i(- + -<7U) = (ii 

var(y0 = E(var(y;|A f)) + var(E(y;-|Al-)) (8.37) 

- E(A.-) + var(A0 

= a. + ftj(exp (<rri) - 1) 
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c o v ( y ; , ^ ) = E(cov(y;,y^|A)) + cov(E(y;|AO ! E(v j |A J -)) (8.38) 

= cov(Ai. Xj) = rt,-fij(exp (atj) — 1) 

T w o immediate consequences are that, for each unit k G {1,2,. . . , A''}, 

v a r ( n 0 > Wki) 

which means that there is overdispersion for the marginal distributions, and 

\coTT(Yki,Ykj)\ < |corr(A f c i. Xkj)\ 

sgn(corr(y f c i , Ykj)) = sgn(corr(A A i , A^)) 

which are special cases of the results of the mean-variance model. Altogether 

M{M+3) p a r a m e t ; e r s a r e needed to specify the PAM{ft,T) distribution. Nega

tive and positive correlations are supported by this mixed distribution, which 

gives it an advantage over other multivariate discrete distributions such as 

multinomial or negative multinomial. However, the estimation of the pa

rameters is not straightforward. For maximum likelihood estimation, a re-

parameterization and a mixture of Newton-Raphson and steepest ascent meth

ods are helpful but computationally intensive, (see Aitchison and Ho (1989)). 

Here we shall use M C M C methods (Metropolis-Hastings algorithm) to 

obtain inference summaries about the parameters ft and and T. In a fully 

Bayesian context, further prior distributions, probably non-informative, are 
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faffklNI :N) llll || 

forfHN 1 :M) | | 

Figure 8.6: Directed graphical model for a multivariate Poisson-log normal 
model 

required for p and T. The recommended parametric distributions are normal 

for p and Wishart for T (Carlin and Louis, 1996; Ge lman et ah. 1995). Such 

a model is described by the directed graph in Figure 8.6 and it can be easily 

seen that it is a straightforward generalisation of the directed graphical model 

in Figure 8.1 that represented a univariate Poisson-log normal model. 

Covariate information can be introduced easily in this model by regres

sion components like pki — X'kip{. The information value of the explanatory 

variables Xki can be examined by comparing models without regression with 

models wi th regression. Many other variations on this model structure are 

possible by making small changes, like considering that the regression coeffi

cients p do not depend on accident count type or repararnetrising p.ki — Ufc-i-w;, 

a site random effect and an accident type random effect. Models that have 

more parameters tend to fit data better. In a Bayesian context, for hierarchi-
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cal and régression models, the number of parameters is usually very large but 

not all are effective. This class of models wi l l be added to the class of models 

proposed i n Section 8.3 and both wi l l be applied and compared on a set of 

data in Chapter 9. 

8.4 Bayesian model sélection 

In this section a new group of model sélection procédure for hierarchical log-

linear models is proposed in a Bayesian framework. Other model sélection 

procédures were investigated i n the hrst part of the thesis. The reason why 

thèse methods are discussed here is that they employ Gibbs sampling for solv-

ing the computational side. The objective of thèse model sélection procédures 

belong in the hrst part of the thesis but the solution belongs in this second 

part. 

Since graphical models are log-linear models this method can be used for 

this subclass as well. The idea on which this model sélection algorithm is 

based is similar to a suggestion of Lindley (1969, Section 5.6) in connection 

with a classical test of a point null hypothesis. It is a compromise between 

Bayesian and classical statistics. The significance test at level a is conducted 

using the crédible set, which is roughly equal to the highest posterior région 

(Carl in and Louis, 1996). 

For hierarchical models only the maximal interaction u-terms (the genera-

tors of the model as they were described in Chapter 4) need to be specined and, 
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as wi l l be seen later, they efïectively drive the technique proposed hère. For 

log-linear models many sélection algorithms have been proposed; see Chap

ter 4. Some of thèse methods were applied to the collision-rollover data in 

Chapter 4 and the Edwards-Havranek method was also applied to Bedford-

shire data in Chapter 5. Each of thèse known methods has a différent moti 

vation, but ail share the same drawbacks: practical sensitivity to the choice 

of stopping rule and of ini t ia l model; lack of information about the power of 

différent procédures; being able to apply standard distribution theory only 

for a fixed model; and lack of information about the influence of the model 

sélection procédure on the sampling distribution of the model that is fitted. 

In addition, some of thèse algorithms are based on asymptotic distributions 

of déviance (G' 2) or Pearson chi-squared ( A ' 2 ) , which are unreliable when the 

data is sparse (Kreiner, 1987). Forward sélection procédures starting from 

the mutual independence model are dubious because this model rarely flts the 

data, and the hypothesis testing of nested models involves models known to 

fit the data badly. 

The idea of this new approach in this section is to overcome thèse diffi-

culties by avoiding classical hypothesis testing and asymptotic methods. In-

stead, forward, backward and bidirectional procédures are proposed using fully 

Bayesian inference for the maximal w-terms eligible for sélection (inclusion or 

élimination). These model sélection algorithms can be used for data sum-

marised in contingency tables thus making a straightforward connection with 

the first part of the thesis. However, the computational side of thèse algo-
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rithms is mainly based on Gibbs sampling, used in this second part of the 

thesis, motivating the inclusion of thèse model sélection procédures hère. 

Fach stage of the sélection methods presented below is in correspondence 

with an order of interaction and, in any stage, only the maximal u-terms 

for that order of interaction are tested. The main effects k G V , are 

always kept in the models. Other terms might be included i n the models 

because of sampling design spécification. For example, if the sampling scheme 

is a product-multinomial , some interactions terms need to be included in the 

model without any further testing. The procédures end when there are no 

maximal eligible u-terms left. The final model is a hierarchical interaction 

model. If the maximal u-terms correspond to the cliques of the interaction 

graph then the final hierarchical model is graphical (Whittaker, 1990) and the 

model is interprétable in terms of conditional independencies. 

The idea driving the model sélection methods proposed here is to consider 

the maximal u-terms under scrutiny as random effects and ail the other u-

terms in the model as fixed effects. For each interaction term ua (where a is 

a subset of vertices from V ) considérée! random effect, the following distribu-

tional assumptions are made 

ua ~ N ( 0 , r o ) (8.39) 

ru = \ ~ gamma(0.001,0.001) (8.40) 
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and all the other fixed terms have very flat normal priors 

225 

u 6 ~ N ( 0 , 0 . 0 0 0 1 ) 

The posterior distribution of the random efFects ua is p(ua\n(i) : i £ X ) , and 

this distribution is used to calcúlate the equal tail crédible set C S ( u a ) for 

ua, (see Car l in and Louis (1996. Section 2.3.2)), simply taking the a/2 and 

(1 — a)/2-quartiles of the posterior distribution p(ua\n(i) : i £ T). The equal 

tau crédible set is not always equal to the highest posterior density crédible 

set (unless the posterior distribution is Symmetrie and unimodal) but being 

just a bit wider it is more convenient for the applied statistician to work wi th 

the former. If 0 ^ CS(t¿ a) then ua should not be eliminated from the model. 

8.4.1 Bayesian forward sélection 

This procédure starts from the mutual independence model 

(8.41) 

In any stage S^ the inclusion of each maximal eligible j -order of interaction 

terms ua is tested. If the final model selected at the end of stage S^ i is 

yVfO' 0 : logÀp then, in the stage S^\ the posterior distributions of each 

eligible ua is calculated from the model 

i o g A r > = i o g A r > + ua. (8.42) 
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Therefore the credible sets are calculated independently for each ua. The final 

model of this stage, M^\ is obtainecl by adding to M ( j ~ ^ all ua selected for 

inclusion. that is all ua with 0 ^ C S ( u 0 ) . In the following stages these terms 

are considered fixed terms. 

It is worth mentioning that, in a given stage, maybe not all maximal a-

terms are eligible for inclusion. For example, if U i 2 has been eliminated in a 

previous stage then u^a are automatically excluded because we require the 

log-linear model to be hierarchical. 

8.4.2 Bayesian backward elimination 

The procedure starts with the saturated model 

where the sura is over all subsets of V, including the empty set. In any stage 

S^. all the maximal (d — j)-order u-terms, wtthout a higher order relative in 

the final model of stage S^-1\ are considered simultaneously random effects 

and all the other terms fixed effects. As before, the final model selected at the 

end of stage S^ is denoted by M ^ _ 1 * : log A ^ - 1 ' . The posterior distributions 

of all eligible maximal interaction terms ua, a G A £ 2 V > are calculated ac-

cording to the model M^~1^ but the status of the terms w a , a 6 A. is changing 

from fixed effects (stage S ^ - 1 ' ) to random effects (stage S^). 

The credible sets C S ( u a ) are calculated for each of the ua and only those 
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terms whose crédible sets do not overlap zéro are kept in the model. The 

différence between this procédure and the Bayesiau for ward sélection procé

dure is that, in a given stage, the crédible sets for the eligible u-terms are 

calculated based on the sarne log-linear model. Note that, at any given level 

of interaction excluding tr ivial cases, there may be lower, higher or the same 

order of interaction terms that are fixed terms and not eligible. 

8.4.3 Bayesian bidirectional sélection 

A bidirectional procédure combining the above two procédures of Sections 8.4.1 

and 8.4.2 can be easily developed. Starting from an ini t ia l model, such as the 

mutual independence model of équation (8.41), a one-stage forwaxd inclusion 

is performed followed by a one-stage backward élimination. This combined 

computation is made until ail eligible terms are screened. 

For any of thèse three model sélection methods, at any stage, the zi-terms 

giving the model under considération can be partitioned into random effects 

u a , a G A 6 2 V , and hxed terms b G B G 2V. If u = {(ua)a€A, ( u ^ ^ g ) and 

T — {Ta)a€.A &re the corresponding précision parameters, the joint posterior 

distribution of ail parameters is 

(8.44) 

oc nPois(n(i)|u) u N(u f t|0.T)gamma(T o|0.001.0.001) 

x f i N(u 6|0,0.0001) 
6Ç5 
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For for ward inclusion, A = {a} because the inference is done separately for 

each maximal eligible ua. Replacing in (8.44) the known densities. the joint 

posterior density of all quantities, observed and unobserved, is. 

p(u,r\n) oc fi A , ( « ) n ( i ) e - A ' W II ( T . ) 0 ' 0 0 1 - ^ - ^ - 0 ' 0 0 1 ' " J[ e^^'^SAb) 

and it is obvious that this expression cannot be manipulated analytically. For 

example, the marginal posterior density of ua wi th a € A is 

p(ua | n) oc Jp(u,T\n)drduA\adus 

which requires the calculation of a complicated multidimensional integral. 

Such calculation is impossible to be done in closed form. 

However, an advanced Gibbs sampling method can be used to overcome 

this computational problem (Gilks> 1992) and the analysis can be done in 

W i n B U G S , (see Spiegelhalter, Thomas and Best (1998)). 

8.4.4 Applications to road accident tables 

Collision-rollover data 

It was shown that the 4-dimensioual table 3.3 in Chapter 3, summarising the 

collision-rollover data from Kihlberg et al . (1964), can be safely decomposed 

into two 3-dimensional subtables AC D and BCD without evoking problems 

with Simpson's paradox. The model sélection procédures used in log-linear 
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modelling cannot identify a simpler graphical model and the only simpler log-

linear mode! fitting the data well is the no three-way interaction model , for 

both subtables. In this subsection, forward and backward Bayesian model 

sélection are applied to each subtable. The results are presented i n Tables 8.3 

and 8.4. It can easily be seen that for the subtable ACD the model of no 

Table 8.3: Bayesian model sélection for ACD subtable 

Forward e s 

Model u-term me an 2.5% 97.5% 
[AC] Ui2 

1.73 1.56 1.90 

[AD] U\3 l .S 1.64 1.95 

[CD] U23 1.45 1.27 1.63 

[ACD] «123 0.15 -0.12 0.59 

Backward 
[ACD] «123 0.15 -0.12 0.59 

[AC][AD][CD] U]2 1.38 1.20 1.56 
^13 1.60 1.44 1.76 
«23 1.01 0.82 1.21 

three-way interaction is selected both by the forward and backward bayesian 

model sélection criteria. For the second subtable BCD, by forward bayesian 

sélection the model [.8C][C0] is selected and by backward élimination the 

model [BC][5D][(7.D] is selected. This illustrâtes the point that forward and 

backward Bayesian procédures do not necessarily select the same model. 

A corner point parameterisation (Bishop et a l . , 1975) was used for the 

log-linear expansion, that is ai l u-terms having at Least one index equal to 1 is 
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Table 8-4- Bayesian model sélection for BCD subtable 

Forward CS 
Model u-term mean 2.5% 97.5% 

[BC] ûT2 -0.61 -0.7S ^043 

[BD] u}3 0.04 -0.08 0.17 

[CD] «as 1-79 1.63 1.95 

[BCD] uns 0.15 -0.12 0.59 

Backward 
[BCD] u 1 2 3 0.11 -0.14 0.45 

[BC][BD][CD] un -0.74 -0.91 -0.56 
«13 0.29 0.11 0.45 
«23 1.83 1.67 2.00 

set to 0. and because ail the variables are binary the tested i^j-terms are ai l 

Utj[2,2], the other values being constrained to zéro. 

Bedfordshire data 3-dimensional subtable 

The collapsibility results discussed in Chapter 6 suggests that it may be 

vvorthwhile to analyse the 3-dimensional subtable defined by three variables, 

accident severity, number of vehicles involved and speed l imi t . There is no 

simpler graphical model than the saturated model for this subtable and it was 

shown in Section 5.2.1, Chapter 5, that the conditional independence struc

ture is worth further exploration. In this subsection, forward and backward 

bayesian model sélection procédures are applied to this small subtable, in an 

attempt to understand whether a simpler log-linear model can be selected or 
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Table 8.5: Bayesian forward sélection for Bedfordshire data, ANS subtable 

Forward C S 
Model u-terni mean 2.5% 97.5% 
[AN] « i 2 [2 ,2 ] 0.12 -0.36 0.78 

«,2(2,3] -0.15 -0.69 -0.16 
« i 2 [3 ,2 ] 0.66 0.11 1.29 
«12(3,3] 0.02 -0.40 0.38 

[AS] «i3[2,2] -1.31 -2.36 -0.45 
« i 3 [3 ,2 ] -1.71 -2.76 -0.90 

[NS] tx23[2,2] -0.09 -0.30 0.06 
« 2 3 [3 ,2 ] 0.85 0.56 1.14 

[ANS] «123(2,2,2] 0.15 -0.54 0.95 
«i2 3 [2 ,3 ,2] 0.20 -0.53 1.20 
«i23[3,2,2] -0.37 -1.24 0.19 
«123(3,3,2] -0.23 -1.30 0.39 

not. 

The results in Tables 8.5 and 8.6 show that indeed the saturated model 

cannot easily be simplified. In both approaches, forward or backward, there 

are two problems. Consider the u 1 2 term, where index 1 stands for accident 

severity A and 2 stands for the number of vehicles N. This u term, which 

accounts for the pairwise interaction between A and N, would be rejected from 

the model if the corresponding CS for 1*12(3.2] overlapped zéro. Unfortunately 

this does not happen and therefore, the interaction between A and N can 

neither be included or excluded from the model. A similar situation occurs 

with the u 2 3 interaction term, for which 2 values, « 2 3 (2 ,2 ] and « 2 3 ( 3 , 2 ] , should 

be tested. The three-way interaction term is rejected from the model by 

the backward élimination procédure so the model [A5][SAf][A/V] remains a 
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Table 8.6: Bayesian backivard élimination for Bedfordshire data, ANS subtable 

Backward C S 
Model u-terni mean 2.5% 97.5% 
[ASN\ u 1 2 3 [2 ,2 ,2] 0.15 -0.54 0.95 

«123(2,3,2] 0.20 -0.53 1.20 
ui23[3,2,2] -0.37 -1.24 0.19 
«i 23[3,3,2] -0.23 -1.30 0.39 

[AN}[AS][SN] «12(2,2] 0.03 -0.46 0.57 
«12(2,3] -0.14 -0.65 0.24 
«12(3,2] 0.55 0.04 1.08 
«12(3,3] 0.11 -0.26 0.60 

«13(2,2] -1.58 -2.53 -0.78 
«13(3,2] -1.97 -2.9 -1.21 

« 2 3 [2 ,2 ] -0.06 -0.26 0.09 
«23(3,2] 0.86 0.57 1.14 

candidate. This is not a graphical model so from the conditional independence 

point of view it does not reveal any new information. However ît can be used 

for other purposes, like making inference about odds ratios. 

The major drawback of this procédure is that each mode! investigated 

during the model sélection process fias to be fitted separately. There is no 

program available that would make possible an automated implementation. 

8.5 Summary 

In this chapter two classes of hierarchical Bayesian models have been intro-

duced. The first class was based mainly on mixed Poisson-régression models 

with random effects. They are ail specified hierarchically in three stages and 
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use the same régression part. The différence between them consists in the 

distributional assumption for the random efïects. A gênerai mean-variance 

framework model was introduced at the beginning of this chapter, which of-

fers a good solution for accounting for overdispersion and corrélation between 

observed frequencies. 

A i l the models investigated were fully Bayesian and have computational 

difficulties given by the lack of closed-form analytic inferential methods. The 

main points of the methodology for applying M C M C techniques, in particular 

the Gibbs sampler and the Metropolis-Hastings sampler, were pointed out and 

some relatively simple applications were given. A simple case of three possible 

Compound Poisson distributions for the accident totals on 156 sites in Kent 

was discussed, the same road accident data that wi l l be investigated at a more 

disaggregated level in the next chapter. 

A new group of model sélection procédures for hierarchical log-tinear mod

els for contingency tables has also been introduced. The novelty of thèse 

procédures consists in being formulated entirely in a Bayesian framework and 

avoiding classical hypothesis testing. 

The emphasis was more theoretical in this chapter, the applications being 

discussed in greater detail in Chapter 9. The main idea of this chapter is that 

hierarchical Bayesian models coupled with M C M C techniques offer a Statistical 

modelling solution to a wide range of problems related to analysing complex 

datasets such as road accident data, Moreover, the multiple response models 

proposed here open a new area of research and they can be easlly adapted to 
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count data sets from other areas of research. 



Chapter 9 

Mult ip le response models for 

road accident data 

9.1 Introduction 

In this chapter the techniques introduced in Chapter 8 are applied to a set 

of road accident data. Several models are fitted and the results are discussed 

and compared. The ability to model joint responses provides another dimen

sion to Statistical modelling of road accidents. It is shown that the ranking 

of hazardous sites can be improved by looking at several types of accidents 

simultaneously. The advantage of using M C M C techniques is that the same 

model Output can be used to provide inference on several problems like model 

sélection, goodness-of-ht, ranking the units of the analysis according to différ

ent criteria, and so on. This type of analysis is believed to be the first of this 

kind in the area of Statistical modelling of road accident data. 

235 
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9.1.1 Data analysed 

The units of the analysis are 156 single carriageway link sites i n Kent and the 

data includes ail accidents between 1984 and 1991. The links are defined as 

road sections between two major junctions, or between changes in carriageway 

type (single or dual), or between changes in speed l imits . Figure 9.1 shows a 

map of the relevant part of the Kent road network. The nodes on the road 

network defining the junctions and the carriageway types were taken from 

digital maps supplied by Kent County Council and the speed limits were taken 

from the S T A T S 19 records. The speed l imit plays another important rôle as a 

Figure 9.1: Part of Kent road network 

proxy for the actual speed. Speed is a variable that is known to have a major 

impact on the number and severity of accidents (Taylor and Barker, 1994-

1995; Tunaru and Jarrett, 1998a; Baruya, F inch and Wells, 1999). The other 
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expla.na.tovy variables used in this chapter are link length, in kilometers, and 

estimated traffic flow ( A A D T x 3 6 5 ) . in millions of vehicles per year. These two 

variables are continuous but speed l imit , as it was used here. is dichotomous 

(40 mph or less, greater than 40 mph) so the interactions between speed 

l imit and the other two were also considered. The original set of data had 

speed limit with several levéis. It was the author's choice to dichotomise this 

explanatory variable. The traffic ñows carne from mostly manual counts with 

some automatic counts. The manual counts can be sparse in both location 

and time but simple linear regression was used to fil l in the missing years and 

account for some of the variation in individual counts. The estimated traffic 

flow was averaged o ver all se ven years. 

This set of data was provided by the Transport Management Research 

Centre at Middlesex University which took it from Kent county council for 

a previous research project. The number of accidents at each site was disag-

gregated by accident severity, having two levéis KSI = fatal or serious and S 

= slight, and the number of vehicles involved, with two levéis, 1 vehicle and 

2 or more vehicles. Therefore, there are four accident counts for each site. 

This further classification of the observed accidents was entirely the author's 

choice and it was motivated by the direct association between accident sever

ity and the number of vehicles revealed by the graphical modeis proposed in 

Chapter 5. 

The cross-classífication of these two categorical variables gives four pos-

sibly correlated groups of observations and the log-linear Poisson regression 

http://expla.na.tovy
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équations for each group of accidents might be différent. The observed number 

Table 9.1: Total number of accidents for each category of accidents 

Severity Number of Total number 
vehicles involved of accidents 

fatal or serious 1 443 

2 or more 852 

slight 1 796 

2 or more 2160 

of accidents in each group is given in Table 9.1 and it is also worth pointing 

out that there are sites with zéro accidents for any type of accident and for 

the total number of accidents as well. 

9.2 Hierarchical Poisson-régression models for 

multiple accidents 

This section contains the applied statistical modelling results for the models 

combining hierarchical Bayesian spécification with covariate information. The 

models reveal qualitative and quantitative relationships between the numbers 

of road accidents on one side and speed l imit , estimatecl trafnc flow and link 

length on the other. Some parts of this section hâve been published in Tunaru 

(1999). 

Three road characteristics, speed l imit . link length and traffrc flow, mea-
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sured for each site, are used in the regression equation. The traffic flovv was 

averaged over all years and denoted by Q. Speed l imit S was coded —1 for 

less than 40 mph and +1 for less than 60 mph. link length / was transforrned 

on a logarithmic scale to log /, and the same for trame flows to log Q. 

The múltiple responses analysed in this paper correspond to the four types 

of accidents according to severity and the number of vehicles involved. The 

numbers of fatal or serious accidents with only one vehicle involved are de

noted by V i , the fatal or serious accidents with two or more vehicles involved 

are denoted by Ví, the slight accidents with only one vehicle are denoted by 

y 3 and the slight accidents wi th two or more vehicles by Y\. A more detailed 

analysis might consider múltiple responses obtained by cross-classifying the 

accidents according to more than two criteria. For example, pedestrian in-

volvement might be of interest in addition to the criteria used in this paper. 

Moreover, other explanatory variables can be used i n addition to those studied 

here. The data as provided by the Transport Management Research Centre 

contained dual carriageway sites as well so an explanatory variable with two 

levéis single-dual would be a natural candidate. ffowever, there were very 

few dual carriageway sites and a preliminary analysis revealed that it was not 

worth including those sites. 

The explanatory variables were standardised in order to improve the speed 

with which the simulated Markov chain approach its stationary distribution, as 

recommended in Spiegelhalter, Thomas and Best (1998). Therefore /* and Q*. 

the standardised valúes of the logarithms of the l ink length and estimated link 
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traffic, were in place of log / and log Q. This standardisation was calculated by 

subtracting the sample mean from each value in the sample and then dividing 

it by the sample standard déviation, The terms accounting for the interactions 

between speed l imit S and link length or link traffic were transformed in a way 

sim'ilar to that used for centring second order terms in polynomial régression. 

Hence, thèse terms are given by 

S U = {Sk - 5)(log lk-\ôfl)- (Sk - 5)(log h - \5fl) 

= Sk\oglk-Jï^t^{Sk)\^l~{loglk)S-v2S^t 

and 

S T , = {Sk-S)(logQk-\dgQ) - {Sk - S){\ogQk - logQ) 

= & l o g g J b - 5 T ^ - ( 5 0 K g Q - ( l o g Q J t ) 5 + 2 5 l 5 i Ô 

where the bar indicates the sample mean of the corresponding variable. This 

transformation helped to reduce the autocorrélation between successive sam-

pled values of the Markov chain. Otherwise the Gibbs sampling algorithm 

would stay for too many itérations in a small région of the sample space, and 

it would be necessary to simulate a much larger number of values than usual 

in order to cover the whole sample space. 
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9.2.1 A Poisson-régression model with gamma random 

effects 

The model given below in (9.1) wi l l be called (P-ga) and it is a particular 

case of the Poisson-régression model with gamma random effects dehned in 

Section 8.3. The explanatory variables are spécifie to the set of data analysed 

in this chapter. For ail sites k = 1 , 2 , . . . , 156 and accident groups i = 1,2,3,4 

Yki | A f c l- ~ Pois(A f c l ) , (9-1) 

where 

Log(AjfeO = log^fcO + A i + fal*k + faQl -rfaSk + faSU + faSTk, 

and 

fiki\oti '~ gamma(ûj ,a i ) , 

- N(0.0,0.0001), 

cti ~ gamma(3,1). 

The précision parameter for the régression coefficients is very small so 

the normal prior distribution is vague (quite flat). In practical terms this 

means that we do not have any information about what the actual values of 

régression coefficients might be. In other words, the régression coefficients 

rnay take almost any real value. The gamma(3,1) prior for the a parameters 
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is motivated by approximating the logarithm of a gamma random variable 

wi th a normal variable. This particular choice of the parameters is explained 

later in conjunction with a mixed Poisson-log normal model. 

The directed graphical model associated with this particular model is pre-

sented in Figure 9.2. The two plates correspond to the two différent indices. 

k for sites and i for accident type. For this model, the results were calculated 

Figurę 9-2: Directed graphical model for the hierarchical Baycsian model with 
gamma random effects 

from. a sample of 10000 values of a single long chain, with a burn-in period 

of 45000 iterations, and from a mixed sample of 10000 of two parallel chains, 

aft er a burn-in period of 10000 iterations. The Gelman-Rubin monitoring sta-

tistic was very good, less than 1.05 for all parameters of interest, and also the 
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dynamic plots showed that the chain had attained convergence. 

The Bayesian P values for the x2 discrepancy, équation (8.18) in Sec

tion S.2.6, for each type of accident, are 0.72 for K S I accidents with one vehi-

cle, 0.62 for K S I with two or more vehicles, 0.51 for S with one vehicle, 0.53 

for S with two or more vehicles. Thèse values shows that the data does not 

contradict the model so the inferences are reliable. The hyper-parameters (c^) 

Table 9.2: Posterior means of régression coefficients for mixed Poisson-gamma 
model 

Response 1 /* Q* S SL ST 

Yi 0 n 014 016 

0.55 1.20 0.60 -0.29 0.04 -0.38 

Y2 022 023 024 025 026 

0.85 1.49 0.72 -0.29 0.09 -0.01 

Y* 032 033 034 035 036 

1.09 1.28 0.57 -0.16 -0.10 -0.26 

VA A i 042 043 044 045 046 

2.00 1.29 0.69 -0.35 -0.00 -0.08 

can be estimated by the following posterior means «7 = 4.5, cv̂  = 6-0, = 

3.5,04 = 3.0. This shows that the random effects for différent types of acci

dent have différent gamma distributions. The parameters a are the précision 

of the random effects fi. The différence in values of a by différent accident 

types may be due to différent missing information for each type of accident. 
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The largest précision. ÔT̂  = 6.0 is for killed or seriousty injured accidents wi th 

two or more vehicles involved and the lowest précision is for slightly injured 

accidents with two or more vehicles. This means that for the latter type the 

corresponding random effects ¡14 are more volatile so there is more missing 

information. 

The posterior means of the régression coefficients are shown in Table 9.2, 

other quantiles are described in Appendix G extracted from Tunaru (1999). 

The four régression équations are 

log(A A 1 ) = l o g ( ^ i ) + 0 . 5 5 + 1.2ÛZÏ + Û . 6 0 0 î - 0 . 2 9 5 f c + 0.04SLjfc 

- 0 .38ST* 

log(A f c 2 ) = log(juM) + 0.85 + 1.49/î + 0 . 7 2 Q Î - 0 . 2 9 5 f c + 0.09SL f c 

- 0 . 0 l S T f c 

log(A f c 3 ) = log(/ijb3) + 1-09 + 1 . 2 8 ^ + 0 . 5 7 Ç Î - 0 . 1 5 5 * - O . l O S L f c 

-0 .26ST* 

log(A f c 4 ) = log(^ f c 4 ) + 2.00 + 1.29i; + 0.69<3;-0.355jfc- 0.005SLfc 

- û . 0 8 S T f c 

Thèse estimated équations point to some interesting conclusions. 

• The interaction SL between speed limit and link length is almost nul l 

or very weak for ail 4 régression équations. This can be easily seen 
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looking at the posterior median. 2.5% and 97.5% percentiles given in 

Appendix G . A l l credible intervals overlaps zero. This means that the 

difference in number of accidents between a rural road of 10 k m and an 

urban road of 10 km is the same between a rural road of 5 k m and an 

urban road of 5 k m . 

• There is a non-negligible interaction between speed l imit and link traffic 

only for the regression equations corresponding to single vehicle acci

dents. This means that, for accidents with only one vehicle, reducing 

the traffic flow by a factor equal to S, that is from Q to 5Q, and keeping 

all the other covariates the same, wi l l result in a reduction of the number 

of accidents depending on 6 and the speed l imit 5". It is shown bellow 

that the percentage in accident reduction is (1 — ̂ j 0- 8 8- 0- 3 3 5) for fatal or 

serious accidents with one vehicle and (1 — £ ° - 9 6 - ° - 2 6 5 ) f o r slight accidents 

with one vehicle. There would be no speed l imi t S in these formulae if 

there were no interactions between speed l imit and link traffic. 

• For slight accidents the speed l imit effect for accidents wi th two or more 

cars is more than double in absolute value the speed l imit effect for ac

cidents with only one vehicle involved. A possible explanation might be 

that, for this category of accidents, the interaction between speed l imit 

and the other two variables, link length and traffic flow, is very weak, 

whereas for slight accidents with only one vehicle, there is considerable 

interaction between speed l imit and the other variables. 
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• Speed l imit has a négative effect in the linear régression équation given 

above for ail four types of accidents and the effects seem to be the same 

for fatal or serious accidents with one vehicle and with two or more ve-

hicles. respectively. However. because of the définition of the interaction 

terms, the effect of speed l imit on the number of accidents can be better 

understood from the multiphcative équations (9.3)—(9.6). 

The log-linear regresión équations can be re-expressed i n multiplicative 

form as 

A„ = /.„ exP(/3- + ^ S k ) l f ^ S t ) Q f ^ ' ' S t ) . (9.2) 

The new coefficients marked with a star can be recalculated from the ini t ia l 

pki- The coefficient {3^ can be included i n the constant factor but the above 

form was preferred for symmetry. For (P-ga) model, the régression équations 

can be rewritten as 

A H = exp(-0 .50 + 0 . 0 9 5 t ) / r 9 + 0 ' O 4 5 ' ) g i 0 ' 8 8 - o ' 3 8 S ' t ) (9.3) 

h2 = ^ e x p i - O ^ e - O . S l S , ) / ! 1 ' 0 9 ^ 0 ^ ^ ! 0 - 9 6 - 0 0 1 ^ (9.4) 

A « = ^ e x p i O . l S + O . l l S , . ) / ' 0 9 8 " 0 1 0 5 ' ' ^ 0 - 8 1 " 0 - 2 6 5 0 (9.5) 

A u = M H e x P ( 0 . 9 4 - 0 . 2 7 S t ) / ( a 9 6 - 0 0 0 5 S " ) Q < O £ M - 0 O 8 S ' » (9.6) 

where the posterior distribution of random effects can be inferred as 

l¿ki ~ gamma(4.5,4.5). f.Lk2 ~ gamma(6,6) 

(Xh3 ~ gamma(3.5,3.5). / i * 4 ~ gamma(3,3). 
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The multiplicative equations have different forms, implying that a single 

response model rather than a multiple response model would lead to unreliable 

conclusions. For example, a single response model using a single regression 

equation would have only one value for the regression coefficient corresponding 

to the speed l imit or to the interaction between speed limit and link length. 

It can be easily seen from equations (9.3)—(9.6) that there is a lot of variation 

across the four types of accidents for this coefficients. A single value cannot 

synthesize the whole picture. 

The regression equations developed as a major part of the hierarchical 

Bayesian models proposed can be used by practitioners to understand the 

behaviour of the mean number of accidents given the explanatory variables. 

They can also be used to predict how the mean number of accidents at a given 

site would change if some or all the explanatory variables were changed i n 

some way, and to predict future accident rates given that the conditions are 

unchanged. If the local authority were to build a bypass around one of the 

villages on the road network (and they have since 1991) they would want to 

predict the effect on accidents. Most of the traffic that used to travel through 

the village would use the bypass and the only traffic using the old road would 

be traffic travelling to the village. The cost savings in accidents can then 

be calculated. The novelty of this approach is that predictions can be made 

simultaneously about the changes in accident type as well as the frequency. It 

is worth pointing out that many T R L studies investigated, at the univariate 

level, the relationships between traffic flows and various types of accident such 
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as lorries, trucks, bikes, accidents classified by manoeuvre and so on. The work 

presented here is multivariate, looking at several correlated types of accident 

at the same time. 

We can see what happens when the traffic flow Q is changed to 8Q. where 

6 > 0. Momentarily we wil l drop the site index k. For all accident types, 

from equations (9.3)—(9.6), it can be easily shown that there is a reduction in 

the mean number of accidents A if and only if 8 < 1, that is if the traffic is 

reduced. The reduction in the number of accidents can be calculated as 

This formula is applied for each type of accident based on the multiplicative 

equations (9.3)—(9.6) and the calculations can be finalised by specifying the 

speed l imit variable, urban S = —1 and rural 5 = 1 . 

For fatal or serious accidents with 1 vehicle 

A; 
x 100% = 1 - T M x 100%. 

For fatal or serious accidents with 2-f- vehicles 

) x 100%. 
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For slight accidents with 1 vehicle 

1 - &\ x 100% = (1-6 O.S 1-0.265 ) X 100%. 

For slight accidents with 2+ vehicles 

1 " v ) X 1 0 ° % = ( 1 " 8 
0.94-0.0SS ) x 100%. 

The final results are presented in Table 9.3. 

Table 9.3: Proportional réductions in accidents when traffic flow is reduced, as 
resulted from the Poisson-régression m.odel with gamma random ejfects 

Severity No of vehicles Speed l imit Réduction 

fatal or serious 

slight 

1 urban ( 1 - ¿1.26) 

rural ( 1 - - S0-5) 

2-f urban ( 1 -
¿0.97) 

rural ( 1 -
¿0.95) 

1 urban ( 1 -
¿1.07) 

rural ( 1 -
¿0.55) 

2+ urban ( 1 -
¿1.02) 

rural ( 1 - ¿0.86) 

The conclusion of this analysis is that reducing the traffic flow by a factor 

of S wi l l reduce différent type of accidents in différent ways. In a similar way 
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the percentage increase in accidents can be calculated if the traffic is increased 

by a multiplicative factor 6. 

9.2.2 Comparison with a simpler scénario 

One may wonder why a multiple response approach would give better results 

than fitting separate Poisson-régression models for accident counts of each 

type. Therefore in this section the following model vvill be investigated 

YkilXki - Pois(A,0 (9.7) 

Pi, ~ N(0.0,0.0001) 

and the results wi l l be compared with those given by the (P-ga) model. Fol

lowing the usual M C M C modelling steps, two chains were simulated i n parallel 

and after a burn-in period of 15000 itérations a sample of 10000 values was 

retained for inference. The régression coefficients were estimated by their pos-

terior means given in Table 9.4. Comparing Table 9.2 wi th Table 9.4, the 

only major différences are between the coefficients of the interaction terms 

between traffic flow and speed lim.it. If this model was proposed for inference 

the following multiplicative prédictive équations would be used 

A t l = exp(-0.50 + 0 . 2 5 5 f c ) 4 0 - 8 7 + 0 ' 0 1 S ' ) Q r S " ° " , 8 5 f c ) (9-8) 

http://lim.it
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Table 9-4: Posterior raeans of régression coefficients for Poisson-régression 
•model 

Response 1 Q* S SL S T 

Yi A i 012 A s A4 A s 016 

0.56 1.17 0.58 -0.24 0.01 -0.48 

Y2 A i A 2 A s A 4 A s 026 

0.91 1.37 0.71 -0.21 0.09 -0.13 

Yz A i A 2 A s A 4 A s 036 

1.12 1.20 0.59 -0.07 -0.12 -0.46 

Y4 A i A 2 A 3 A 4 A s 046 

2.00 1.28 0.74 -0.30 0.01 -0.24 

\ k 2 = e X p ( - 0 . 1 9 - 0 . 0 9 5 t ) 4 L O O + 0 ' 0 9 5 t ) Q i 0 - 9 7 - o a 3 S * » (9.9) 

A W = exp(0.04 + 0 . 4 l 5 ' , ) 4 O ' 9 2 ' O ' l 2 S O Q i O 8 8 " a 4 6 S ' ' ) (9.10) 

A i 4 = exp(0.79 - 0 . 0 5 S t ) ; l ° ' 9 6 + o ' o l 5 t ) ( 3 i 1 ' o ^ o ' 2 4 S y (9.11) 

Comparing thèse équation with équations (9.3)—(96) it is easy to see that the 

values for traffic flow are différent, and this wil l change prédictions in model. 

The percentages of réduction in accidents when the traffic flow Q is re-

duced by a factor of 6 are différent from before as can be seen from Table 9.5. 

The simple Poisson-régression model overestimates the réductions in accidents 

resulting from reducing the traffic for ail urban areas, that is it gives higher 

réduction percentages for S = —1, and underestimates the réductions in acci-
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Table 9.5: Reductions in accident percentages when traffic flow is reduced, as 
resulted from the Poisson-regression model without random effects 

Severity No of vehicles Speed l imit Reduction 

fatal or serious 

slight 

1 urban ( 1 - ¿1.36) 

rural ( 1 - - S°A) 

2+ urban ( 1 -
¿1.10) 

rural ( 1 -
¿0.84) 

1 urban ( 1 -
¿1.34) 

rural ( 1 -
¿0.38) 

2+ urban ( 1 -
¿1.28) 

rural ( 1 -
¿0.80) 

dents in rural areas, that is it gives smaller percentages for 5 = 1. 

In conclusion fitting accident counts of different type at an univariate level 

would result in different inferential results. In a Bayesian framework, it can be 

easily seen that this simpler model is rejected by the data since the Bayesian 

P-values for x2 for each type of accident are respectively 0.013, 0.005, 0,000 

and 0.000. These values are calculated as described in Section S.2.6 by for

m u l a (8.17) for the test statistic given by formula (8.18). The model is rejected 

by the data if the Bayesian F-values are too small . It can be easily seen that, 

for the first type of accident, it is just accepted at 0.01 level but for all the 

other three the rejection is clear. Thus, the model without random effects 

cannot model the data well and therefore the inclusion of random effects seem 
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to be necessary. This is not surprising since only three explanatory variables 

are used as covariate information. The role of the random effects is to account 

for missing explanatory variables. 

This emphasizes that even after ensuring that the Markov chain has con

verged and parameters are reliably estimated it is necessary to check the 

goodness-of-fit of the model before applying the results. Hence the joint-

response model is superior to four separate univariate response models. 

9.2.3 A Poisson-regression model with log normal ran

dom effects 

The logarithm of a gamma distributed random variable is approximately nor

mal so it is worth considering a model where the random effect is normally 

distributed. This assumption can be exploited to simplify computation since 

al l the parameters describing the regression equations are normally distrib

uted. This model is also specified hierarchically i n 3 stages and it wi l l be 

called (P-logN). For all sites k = 1 ,2 , . . . ,156 and i = 1,2,3,4 

Yki I hi ~ Pois(AjtO, (9T2) 

where 

log(AfcO = ^ + ft1+A2^ + A 3 ^ + fe^ + A 5 S U + A - 6 S T A 

and 
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h\r Ä N ( 0 . 0 , T ) , 

ßij ~ N(0.0,0.0001), 

r ~ garnma(3,1). 

For the precision distribution r a prior gamma(3, l ) was used. The reason 

Figure 9.3: Directed graphical model for the hierarchical Bayesian model with 
log normal random effects 

for choosing a gamma(3,1) prior is based on an idea described in Smith , 

Spiegelhalter and Thomas (1995). The model just described might support 
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the assumption that 95% of the sites having identical covariates 

X'kl = (\.Jt,Qt,Sk,SU.STk), 

wil l hâve a log(A) between —1.%/y/r and 1.%/y/r. Assuming (from a sub

jective point of view) that sites with the same covariates have expectations 

varying within one order of magnitude log 10 = 2.3 but not over two orders of 

magnitude log 100 = 4.6, the équation 

2 x 1.96A/f 2.3 

implies that r ?a 2.9 is a good approximation for E ( r ) . In addition, an ap

proximation of a low value for r is obtained. from 

2 x 1.96/>/f ~ 4.6 

and this lower l imit equals 0.73. W i t h tbe prior distribution gamma(3,1), 

r has the mean 3 and P r ( r > 0.73) — 0.96 which shows that this gamma 

distribution is appropriate for our subjective assumption. 

The joint distribution of the observed and unobserved quantifies, data 

and parameters, factorises i n a similar way to the previous model. Al though 

the graphical model in Figure 9.3, representing the conditional distributions 

assumed by the model, is very similar to that describing the model (P-ga) in 

Figure 9.2, it should be noted that différent parametric distributions are used 
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Table 9.6: Posterior means for mixed Poisson-log normal régression coeffi
cients 

Response 1 Q* S SL S T 

Yi 011 

0.41 

pii 

1.25 

013 

0.60 

01.4 

-0-29 

015 

0.05 

016 

-0.34 

Y2 Pn 

0.73 

022 

1.49 

023 

0.75 

024 

-0.29 

025 

0.12 

026 

0.04 

031 

0.97 

032 

1.28 

033 

0.59 

034 

-0-13 

035 

-0.10 

036 

-0.29 

Y4 041 

1.82 

042 

1.39 

043 

0.78 

044 

-0.38 

045 

0.04 

. 046 

-0.06 

for corresponding nodes of the graph, and différent logical expressions for the 

means lambda[k,i]. Furthermore, the précision parameter tau for the normal 

random effects b[k], does not dépend on the accident type or the site. 

Two parallel chains were simulated and after a burn-in period of 15000 it

érations a sample of 10000 itérations was selected for inference. The Gelman-

R u b i n statistics were very good for ail parameters of interest and the Bayesian 

P-values for the four types of accidents were 0.58 for K S I wi th 1 vehicle. 0.53 

for K S I wi th 2+ vehicles, 0.07 for S with 1 vehicle and 0.04 for S with 2+ vehi-

cles. The fit of this model seems to be good. for the first two accident types and 

not very good for the last two types. The variance of the random effects can be 

estimated by its posterior mean 0.50. The results obtained for this model are 
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shown i n Table 9.6. They are very similar to those obtained using a gamma 

random efFect. However, the observed ranges of the standardised logarithmic 

link length l'k and the standardised logarithmic estimated traffic flow Q*k are 

between -2.7 and 1.6, which is quite narrow. Therefore, small différences in the 

estimated values of régression coefficients may resuit in substantial différences 

in the fit of the two models. This problem wi l l be investigated further i n the 

next subsection. 

M o d e l comparison 

A simple way to check the fit of a model is to compare the posterior predicted 

mean given by the model with the data values. A close linear relationship 

would suggest a close fit. This can be done in parallel for the two models 

(P-ga) and (P-logN). First , the observed pooled number of accidents at each 

site is plotted against the sum of the predicted means of accidents at the same 

site. It seems that model (P-logN) perforais slightly better. 

A better insight is plotting each type of accident separately and this is 

done i n Appendix C. There, the model (P-ga) seems to fit the data well for 

ail four types, and for each type better than the (P-logN) model. This can 

be expected since it was shown i n Chapter 8 that the log normal distribution 

wi l l not perform very well with the extreme observed values. In addition, 

the random effects dépend only on site so they can account only for missing 

information about the site and not about the accident class. In summary, both 

models fit the data well at an aggregated level, the second model appreciably 
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Figure 9.4: Scatter plots of totals Figure 9.5: Scatter plots of totals 
for model (P-ga) for model (P-logN) 

better. But at a disaggregated level, clearly the first model fits the data 

better than the second one. The aim of this analysis was to extract statistical 

information at a disaggregated level so it is vital to have a good fit for each type 

of accident. The difference in the form of random effects and the distribution 

used is important. 

9.2.4 Poisson-regression model with multivariate nor

mal random effects 

The (P-ga) and (P-logN) models studied above provide a good start for the 

statistical modelling process but there is no correlation structure assumed for 

the random effects p and as a consequence these two models may overlook 

an important aspect of the real data. The next model, that w i l l be called 
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( P - M N r e ) . tries to overcome this difficult probiem as well. It can be viewed as 

an extension of the two previously studied models, the only différence being 

in the distributional assumption for the random effects p. 

For ail sites fc = 1 . 2 , . . . , 156 and accident groups i = 1,2,3,4 

Yki\Xki ~ P o i s ( A w ) , (9.13) 

w here 

log(Ajbi) - /i f e l - + fti + ft2/i; + /?aÖfc + Ä45jfc + ft5SLfc + ft6STfc, 

and 

(Mfci)i-t 4 | T ™d N 4 ( 0 , T ) , 

ßü ~ N(0.0,0.0001), 

T ~ Wishart(Ä,4). 

The covariance structure of the random effects is given by the covariance 

mat rix S = X - 1 , so the parameterisation is again based on the inverse of the 

variance-covariance matrix. For computational simplicity, a Wishart hyper-

prior distribution is required for the matrix T and the matrix [R)~x accounts 

for our prior beliefs about the précisions between random effects ß of différent 

types of accidents; the second parameter of the Wishart distribution is chosen 

to be as small as possible (in this case 4) to reflect our ignorance about T. 
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For this model the inference process is based again on M C M C methods but 

the Markov chain has to be generated using the Metropolis-Hastings algorithm 

(see Gelman et al . (1995)), because the Gibbs sampler does not work in this 

case. W i n B U G S has both methods implemented so the models can be fitted 

using the same software platform. To improve speed, an ini t ia l run can be 

made using some arbitrary values for i?, and then the posterior means of the 

elements of £ _ l = T are used for the R values. 

The posterior distribution for the model ( P - M N r e ) , with multivariate nor

mal random effects, gave the posterior means for the regression coefficients 

i n Table 9.7. A burn-in period of 30000 iterations was used before a sample 

of 10000 was taken as representative for the posterior distribution of all pa

rameters of the model. Very similar results were obtained when two parallel 

chains were simulated. After a burn-in period of 15000 iterations a sample 

of 10000 iterations was taken. The Gelman-Rubin convergence statistics were 

al l less than 1.05 for all parameters of interest /3,T, £ and also, the Bayesian 

P-values indicated a good fit of this model. The values were 0.87, 0.80, 0.65 

and 0.65 for the four types of accident in order, showing a good fit to the 

data. Apart from the intercept terms 0n, there are no major differences in 

the signs and absolute values of the regression coefficients as compared with 

the Poisson model with gamma random effects, (P-ga). The matrix given in 

(9.14) contains the posterior means of the elements of X , the inverse of the 
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Table 9.7: Posterior means of regression coefficients for the Poisson-regression 
model with multivariate normal random effects 

Response 1 I* Q* S SL S T 

011 012 013 014 0r 5 016 

-0.65 1.27 0.63 -0.30 0.04 -0.34 

Y2 021 022 023 024 025 026 

-0.31 1.55 0.78 -0.31 0.11 0.00 

Y3 031 032 033 034 035 036 

-0.14 1.35 0.60 -0.16 -0.08 -0.25 

041 042 043 044 045 046 

0.73 1.36 0.77 -0.34 0.00 -0.06 

covariance matrix. 

T = 

( \ 
4.65 -1 .75 - 1 . 5 -0 .1 

-1.75 6.12 -0 .86 -1 .35 

- 1 . 5 -0 .S6 3.25 - 0 . 5 

-0 .1 -1 .35 - 0 . 5 2.3 
\ 

(9.14) 

Eléments close to zéro in the inverse covariance matrix T indicate that the 

corresponding random effects a are conditionally independent given the val

ues of the random effects not in the pair. For instance, T u = —0.1 indicates 

conditional independence between the random effects for fatal or serious ac

cidents with only one vehicle and slight accidents with two or more vehicles, 
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which is not surprising. What is surprising is the weak association between 

slight accidents with one vehicle and slight accidents with two or more vehicles. 

T34 = - 0 . 5 . 

9.3 Multivariate Poisson-log normal model 

In the previous chapter, the mixture of a Poisson distribution with a multivari

ate log normal distribution was described, equation (8.35), as a discrete mul

tivariate distribution for modelling multiple counts. Starting from this mul

tivariate Poisson-log normal distribution a hierarchical, fully Bayesian model, 

that wi l l be called ( P - M N 1 ) , is proposed. 

YKT\XKT W Pois(A f c l-) (9.15) 

(log(Afc»))t=i A\^T S N 4 (/* ,T) 

Hi ~ N(0,0.0001) 

T ~ Wishart(i?. ; 4) 

where the parameterisations are the same as used for the previous models. A 

variant of this model, ( P - M N 2 ) , would be to add another level to the hierarchy: 

Pi ~ N(l/.7„) 

v ~ N(0,0.001) 

ra ~ gamma(0.001,0.001) 

(9.16) 
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and keeping everything else the same. This allows a comparison between 

two nested models. The matrix parameter R for the Wishart distribution is 

proposed by analogy with model ( P - M N r e ) . 

The graphical model associated with model ( P - M N l ) is illustrated in F ig 

ure 8.6. The conditional independence structure is remarkably simple. The 

graphical model for model ( P - M N 2 ) would have an extra two vertices for u 

and ra as parents of the vertex ft{. 

The same strategy for simulation was used as for the model (P-ga). Thus 

the inference results were based on either a sample of 10000 values, taken from 

a single chain after a burn-in period of 45000 iterations, or on a mixed sample 

of 10000 taken from two parallel chains, after a burn-in of 20000 iterations. 

The Gelman-Rubin convergence statistics, equation (8.15) i n Section 8.2.3, 

were very good, with values less than 1.1 for all parameters of interest. 

The Bayesian P values for the x2 discrepancy, equation (8.18), for each 

type of accident, are 0.87 for K S I accidents with one vehicle, 0.77 for K S I 

accidents with two or more, 0.71 for S accidents with one vehicle and 0.62 

for S accidents with two or more vehicles. These values are a bit larger than 

the corresponding Bayesian P-values for model (P-ga), but they are st i l l good 

and shows that the data does not contradict the model so the inferences are 

reliable. 

The posterior estimates of the parameters of interest for the multivariate 

Poisson-log normal model ( P - M N l ) is given in Table 9.8. The covariance 

matrix £ = T - 1 is provided because it makes a straightforward link with 



CHAPTER 9. MULTIPLE RESPONSE MODELS FOR ROAD ACCIDENT DATA 264 

possible covariance structure of the observed data. 

Table 9.8: Posterior estimation of parameters of multivariate Poisson-log nor
mal model 

parameter mean scl 2.5% 97.5% 
o n 2.15 0.41 1.46 3.09 
012 2.34 0.41 1.65 3.29 
0"l3 2.10 0.39 1.48 3.00 
014 2.25 0.38 1.62 3.11 
021 2.34 0.41 1.66 3.29 
0~22 3.04 0.54 2.16 4.27 
023 2.48 0.45 1.78 3.54 
0"24 2.78 0.45 2.04 3.79 
031 2.10 0.39 1.48 3.00 
032 2.4S 0.45 1.78 3.54 
033 2.49 0.47 1.75 3.61. 
034 2.39 0.41 1.73 3.32 
(74i 2.25 0.38 1.62 3.11 
0~42 2.78 0.45 2.04 3.79 
0~43 2.39 0.40 .1.73 3.32 
0-44 3.04 0.47 2.25 4.09 
^1 0.28 0.15 -0.034 0.56 

0.67 0.16 0.34 0.97 
0.79 0.16 0.46 1.08 

P4 1.65 0.15 1.35 1.94 

The matrix given in (9.17) contains the posterior means of the elements of 

X , the inverse covariance matrix. 

T = 

( \ 
4.42 -1 .55 -1 .65 -0 .55 

-1 .55 3.76 -0 .99 -1 .52 

-1 .65 - 0 . ! 3.18 -0 .36 

-0 .55 -1 .52 -0.36 2.44 

(9.17) 

There are weak partial corrélations between KSI accidents wi th 1 vehicle and 
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slight accidents with 2+ vehicles, between K S I accidents with 2+ vehicles and 

slight accidents with 1 vehicle and between slight accidents with I vehicle and 

slight accidents with 2+ vehicles. 

Having so many models under study, some of them nested, some of them not, 

it would be helpful to check the fit of the models and identify the best ones 

for further analysis. In a Bayesian context, this can be done uslng the poste-

rior distribution of the log-likelihood, as suggested by Dempster, but because 

extremely complex models should be penalised for using a large number of 

parameters, the déviance information criterion, D I C , offers a better solution. 

For comparison, several simpler nested and non-nested models are inves-

tigated. The previously discussed models were denoted by (P-ga), (P- logN), 

( P - M N r e ) , ( P - M N 1 ) and ( P - M N 2 ) . The following models are considered as 

well 

(P-difreg): A Poisson-régression model without random effects but différent 

régression coefficients for différent accident types 

9.4 Model sélection using DIC 

Yki | A fo
in d Pois(A f c z ) (9.18) 

Pij 
iid N(0.0,0.0001) 

(P-ureg): A Poisson-régression model wi th random effects and with the same 
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régression coefficients for ail types of accidents 

Yki\Xki - P o i s ( A H ) (9.19) 

log(A f c i ) = hg(tiki) + Pi + falî + P3Ql + P4Sk + psSLk + 0eSTk 

a*; | oti *~ g a m m a ( û i , Q i ) 

P3 ~ N(0.0,0.0001) 

cti ^ gamma(3, l ) 

(P-classic): A Poisson-régression model with identical régression coefficients 

for ail types of accidents and without random effects 

Ykl\Xki ^ d Pois(Afo) (9.20) 

log(A, t ) = ft + ft/I + A O Î + A f t + ftSLjt + ftSTjt 

p3 - N(0.0,0.0001) 

(P-logN2): The same Poisson-log normal régression model as before but with 

différent hyper-prior parameters, gamma(0.001, 0.001) 

Yki I A*, Pois(A f c l ) (9.21) 

log(A f c i ) = 6, + fti + pi2lt + P*QÎ + piASk + ftsSLfc + ft6STfc 

6fc | r ~ N(0.0 ,r ) 

Pu ~ N(0.0,0.0001) 

r ~ gamma(0.00l, 0.001) 
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(P-add): A n additive random effects model; there is no covariate information 

and the effects are split into terms accounting for site variation and terms 

trying to explain site by accident type variation 

YKT \ X K I Pois(A f c l ) (9.22) 

bk\r Ä N(0 .0 , r ) 

pki\cxi *~ gamma( a*,a t-) 

ai ~ gamma(3,1) 

T ~ gamma(3,1) 

(P-add2): The same additive model as before with différent hyper-prior para-

meters, gamma(0.001,0.001). 

YK I X K I Pois(A f c l ) (9.23) 

log(Ajtt) = 6 f c - f l o g ^ 

bk\r ~ N(0 .0 , r ) 

fiki\a{ l~ gamma(Qt, a*) 

ax ~ gamma(0.001,0.001) 

r - gamma(0.001,0.001) 

In the table 9.9, D I C is calculated for ail models using the method described 

in Section 8.2.5. If the analysis had been based only on the posterior mean of 
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Table 9.9: Déviance Information Criterion calculations 

M O D E L random with différent D D{&) PD D I C 
effects régression 8 

(P-ga) V 427.50 255.30 172.20 599.70 
(P-difreg) v y/ 1180.40 579.35 601.05 1781.45 
(P-ureg) 427.10 68.52 35S.58 785.68 
(P-classic) 2621.80 1308.27 1313.53 3935.33 
( P - M N r e ) V 383.32 127.42 255.90 639.22 
(P-logN) V 530.40 212.44 317.96 848.36 
(P-logN2) V V 530.50 213.35 317.15 847.65 
(P-add) V 409.79 60.66 349.13 758.92 
(P-add2) y 412.62 60.7S 351.84 764.46 
( P - M N l ) 389.38 119.40 269.98 659.36 
( P - M N 2 ) 389.65 60.00 329.65 719.30 

the Bayesian déviance, D, then the models ( P - M N r e ) , ( P - M N l ) and ( P - M N 2 ) 

would have been preferred. Taking into account the complexity of the models 

using D I C as a yardstick, the model (P-ga) is preferred followed closely by 

models ( P - M N r e ) and ( P - M N l ) . 

In making this comparison, several points are worth noting. First the 

simplest model (P-classic) has a very large D I C = 3935.33. Therefore the 

improvement due to including random effects or allowing the régression coeffi

cients to dépend on accident type can be gauged relative to this basic model. 

Just adding the random effects /*, as in the model (P-ureg), results in a ré

duction of 3149.65 in D I C . Secondly, nested models like some pairs in the first 

fîve or the last two models in the table can be compared in terms of D I C . For 

example, the model ( P - M N 2 ) and its submodel ( P - M N l ) per form equally well 

in terms of the posterior mean of the déviance, but when we take into account 
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the number of parameters the D I C clearly indicates that the model ( P - M N l ) 

is better. Thirdly, the models retained, (P-ga), (P -MNre) and ( P - M N l ) , are 

very flexible and reveal various aspects of the data analysed. Notice that 

model ( P - M N l ) does not use any regression structure, although to do that is 

quite easy l inking the mean of the multivariate log normal distribution with 

explanatory variables. 

9.5 Ranking the sites 

Identifying hazardous sites is the first important step for developing road en

gineering measures. This problem is vi ta l since designing and implementing 

remedial measures is based on the characteristics and factors related to those 

sites. Moreover, engineering treatment is applied only to sites selected. Large 

amounts of money can be wasted just because the right sites have not been 

identified as dangerous. Several approaches proposing some solutions were 

discussed in Chapter 2. A l l previous work was developed for univariate re

sponse models, nothing apparently having been done for mult iple responses. 

This section investigates ranking the 156 sites from Kent , with four types of 

accidents. 

The three hierarchical multiple response models that have been selected 

by the D I C criterion, that is (P-ga), (P -MNre) and ( P - M N l ) , wi l l be used. 

Therefore, for each measure, the ranking calculations are made for three mod

els by four types of accident. Under a restricted budget, the analysis proposed 
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here (using several criteria of ranking) would help the practitioners to select 

the hazardous locations, vvhere "hazardous" has many facets. Modell ing mul

tiple counts jointly makes ranking just a bit more difficult but more rewarding 

in the same time. A practitioner may compare the sites according to différent 

point of views and hidden aspects might corne to the surface in this way. 

9.5.1 Ranking by the probability that a site is the worst 

The posterior probability that the site k is worse than ail the others by a factor 

of for the accident type is 

pki{v) = P r ( A f t i > v\ji for all j ^ k\y) 

where v > 0. For example, when v — 1 this is the probability that the site is 

the worst one. The factor v should be established prior to the analysis by the 

practitioner. The posterior probability that is usecl as a criterion for ranking 

represents a measure of how much worse one accident site is compared wi th 

ail the others. In practice arbitrarily selected v- values like v = 1,1.1,1.25 are 

used. The practitioner then can see différent lists and make an ad-hoc décision 

accordingly. The point to bear in mind is that the list of selected sites should 

not contain just a few sites or too many sites. The value v = 1 is always a 

good start and depending on the results obtained, the practitioner can modify 
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v accordingly. When v = 1 it is true that 

X>,-(i) = i 
k 

and this is convenient for checking that the calculations are correct. 

Table 9.10: Ranking probabilities for KSI accidents with î vehicle 

model (P-ga) model (P-MNre) model ( P - M N 1 ) 
Site No P r Site No P r Site No P r 

11 0.0023 11 0.0020 
12 0.0070 
14 0.0257 14 0.0048 14 0.0076 
23 23 0.0002 
38 3S 0.0012 38 0.0002 
41 0.1427 41 0.1244 41 0.1332 
42 0.0003 42 42 0.0004 
46 0.0330 46 0.0204 46 0.0280 
50 0.0007 
68 6S 0.0004 
76 0.0023 76 76 0.0004 
77 0.0046 77 0.0028 77 0.0058 
90 0.7573 90 0.8132 90 0.7934 
91 91 0.0016 91 0.0004 
95 95 0.0048 95 0.0058 

118 118 0.0008 
143 143 0.0264 143 0.0218 

Only the sites with corresponding probabilities larger than 10"'' are pre-

sented in the tables sumrnarising the results. The tables contain the probabil

ities for the same type of accident, given by ail three raodels for comparison. 

The sites with the largest probabilities need to be treated. If fatal or seriously 

injured accidents with only one vehicle involved are of particular interest, it 

is obvious from Table 9.10 that the worst site is number 90, urgent measures 
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Table 9.11: Ranking probabilities for KSI accidents with 2~h vehicles 

mode! (P-ga) model (P -MNre) model ( P - M N l ) 
Site No P r Site No P r Site No Pr 

4 4 0.0004 4 0.0018 
11 0.1200 11 0.1444 11 0.1252 
12 0.2173 12 0.1900 12 0.1194 
14 0.3630 14 0.3144 14 0.2732 
24 0.0023 24 0.0004 24 0.0018 
41 41 0.0014 
46 0.2061 46 0.2520 46 0.3228 
76 0.0076 76 0.0060 76 0.0032 
77 0.0007 77 77 0.0002 
90 90 0.0004 90 0.0064 
98 0.0596 98 0.0408 98 0.0348 

102 0.0169 102 0.0040 102 0.0028 
118 0.0062 118 0.0472 118 0.1070 

being required: also sites 41, 46, 14 and possîbly 143 should be investigated. 

Site 90 is the worst site for accidents with slight injuries as well, see Tables 9.12 

and 9.13. but, as can be seen from Table 9.11, it is not as bad regarding fa

tal or seriously injured accidents with two or more vehicles. Therefore, the 

statistical analysis at the disaggregated level provides practitioners with more 

valuable information as what might be the problems at a spécifie site. 

Table 9.12: Ra^nking probabilities for slight accidents with 1 vehicle 

model (P-ga) model (P -MNre) model ( P - M N l ) 
Site No Pr Site No P r Site No Pr 

14 14 0.0008 14 0.0008 
41 0.0019 41 0.0004 41 0.0010 
46 0.0062 46 0.0008 46 0.0036 
90 0.9919 90 0.99S0 90 0.9946 
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The results are qnite similar for ail three models. B y the measure studied 

i n this section, it seems that there are not many dangerous sites for slight 

accidents with only one vehicle. One reason might be that site 90 is so bad 

that almost the whole probability is concentrated on this site, and there is 

not very much left to distinguish between the others. This site is particulary 

interesting. It is the urban link that runs along the sea front at the resort 

of Margate. Thus, there would be a high volume of holiday makers bot h 

pedestrian and drivers. The high pedestrian fiow distinguishes it from the 

other links and spécial safety measures need to be implemented. 

Table 9.13: Ranking probabilities for slight accidents with 2+ vehicles 

model (P-ga) model (P-MNre) model ( P - M N I ) 
Site No P r Site No P r Site No P r 

11 11 0.0004 
12 0.1200 12 0.0820 12 0.1054 
14 0.0923 14 0.0512 14 0.0626 
24 0.0185 24 0.0304 24 0.0220 
41 0.2338 41 0.2368 41 0.2144 
46 0.0035 46 0.0048 46 0.0036 
76 0.0031 76 0.0028 76 0.0022 
77 0.0007 77 0.0004 
90 0.4869 90 0.5640 90 0.5688 
98 0.0412 98 0.0276 98 0.0206 

9.5.2 Ranking by posterior distributions of ranks 

The second criterion for ranking sites investigated here is based on the ranks 

of the mean parameters X^i which are the site spécifie parameters. The 

ranking process is made again for each type of accident i. The posterior means 
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E(Afei | y) are optimal estimâtes vvhen the a im is to produce iriference about 

Afc,. However, if the ranks of A*,- are of interest, the conditional expected ranks 

(or a discretized version of them when they are not integers) are opt imal . It is 

known that ranking the observed data or even the posterior means can perform 

poorly (Laird and Louis, 1989; Morris and Christiansen, 1996). Consequently, 

this ranking method is developed using the posterior distribution of the ranks, 

that is p(r \ y), and not the posterior distribution p(A | y). This differs than 

the approach proposed by Schlüter et a l . (1997). 

Ranks are notoriously uncertain and it is useful to know the uncertainty 

associated with them. The approach followed here easily calculâtes the corre-

sponding crédible intervais of the estimated ranks. The ranks w i l l be estimated 

by the posterior médians, mainly because they are easier to calculatè. For each 

model and each accident type, the posterior median ranks and the associated 

2.5% —97.5% crédible intervais are plotted together for comparison. Sites wi th 

ranks to the far right are more dangerous and sites with ranks to the far left 

are more safe. 

The ranking process should be adjusted for including covariate information. 

There are two ways for doing that. A weak adjustment is already implicit in a 

Bayesian framework on the estimation process. For Poisson-régression models 

like (P-ga) and ( P - M N r e ) . a stronger approach considers the ranks not of A ^ 

but of some quantities like random effects or regression-line intercepts or their 

sum, after removing the covariate information. Note that if the covariates 

included in the model are sufhcient to explain ail the variation between the 
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sites then there is no reason for ranking. When no covariate information is 

used, as in Schlüter et al . (1997), obviously no adjustment of this type needs 

to be done. Model ( P - M N 1 ) is specified without any covariates so the ranking 

is based on the ranks of À^. 

The plot in Figure 9-6 illustrâtes the estimated statistics of the ranks of 

Afci relative to the model (P-ga), the Poisson-régression model with gamma 

random effects. It can be remarked on the plot in Figure 9.6 that sites with 

the lowest and. respectively highest, rank values, have quite small crédible 

intervais. The local authorities may décide to treat a i l the sites that are 

Figure 9.6: Ranks of means: Poisson-régression with gamma random effects 

ranked after 120. for example, where 156 is the worst. The plots like the one 

in Figure 9.6 can be used to draw a vertical line at the point rank 120 and 

KSI accidents with 1 vehide 

(P-ga) model 

model 
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select all the sites whose credible intervals are intersected by this threshold line 

or to the right of this line. In this way it is accounted for the uncertainty in 

the calculation of ranks. Although two sites may have ranks wi th a difference 

of 20 between them, if their credible intervals overlap this means that it may 

be possible that the situation to be not so different, so both should be selected. 

This discussion applies to the other two models (P -MNre) and ( P - M N 1 ) and 

all other types of accident, as well . A l l four plots of this type, corresponding 

to the four type of accidents and also for the other two models ( P - M N r e ) and 

( P - M N 1 ) are given in the Appendix D . 

The ranks and their credible intervals can be plotted ordering the sites 

firstly by the rank, secondly by the 2.5% percentile and thirdly by the 97.5% 

percentile. The pattern of the change in rank and associated credible interval 

can then be seen. For ranking based on ranks of A ^ , these ordered plots are 

given in Appendix E , for all three models by accident type. A l l plots have a 

leaf shape pattern suggesting that the models give more credible ranks in the 

extremes, that is for sites with very low and very high ranks. 

The advantage of using ranks of the residual terms after removing the 

covariates, is that exposure variables like traffic flow and link length is taken 

into account. It can be argued that a site A having double the length of a 

site B is "expected" to have a greater number of accidents if all the other 

conditions are the same. A similar argument can be followed for traffic how. 

The idea is therefore to rank the "residual" information left after accounting 

for the covariates. 
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There are only two Poisson-regression models investigated. The residual 

terms are iog([iki) + /3,*i as calculated from the multiplicative equations of the 

type given in equation (9.2). The sites are presented as ordered by the ranks 

and corresponding percentiles. For the Poisson-regression model with gamma 

random effects, the four plots in Figures (9.7-9.10) show how uncertain the 

ranks may be. The similar plots provided by the Poisson-regression model 

wi th multivariate normal random effects, provided at the end of this chapter 

in Figures 9.11-9.14, tell a similar story. It might be useful to compare to 

ranks given by different models. This is clone in the next section. 

9.5.3 Comparison of ranks by three models 

It is of course of interest to know how close the rankings are, as given by the 

three models investigated. A n easy way to do that is to plot the estimated 

ranks given by one model against the estimated, ranks given by another model. 

The comparison should be made for the same type of ranking. This means 

that either the models are compared for ranks of mean parameters A*,-, as 

shown in Appendix F, or for the Poisson-regression models, the models are 

compared for ranks of log(/^) -f ¡3^, as shown below. Overal l it can be noticed 

immediately, from Figures 9.15-9.18, that the two Poisson-regression models 

provide similar rankings for all types of accident. 
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9.6 Summary 

This chapter is a continuation of Chapter 8, applying the theoretical ideas 

emphasized there to some real data. A set of road accident data concerning 

road accidents i n Kent on 156 single-carriageway link sites has been analysed 

for predictive purposes, for ranking the sites according to two criteria and 

for understanding the relationship between four types of accident and covari-

ate information like l ink length, speed l imit and estimated traffic flow. The 

main models investigated were (P-ga), ( P - M N r e ) , ( P - M N 1 ) and (P- logN). The 

inference process was possible due to M C M C methods and the results were 

compared from several points of view. 

The first three models have been selected by D I C from a set of 11 models. 

Each models has its advantages and disadvantages and none should necessarily 

be rejected in favour of the others. There is some evidence that the accident 

numbers of different types are correlated and this could bias the analysis if 

multiple response accident frequencies were modelled separately at the uni

variate level. 

This chapter provides an important tool for identifying hazardous locations 

and for forecasting the reduction in accidents that would result if the traffic 

could be reduced by a known factor. It was shown that the reduction is not 

similar for all four types of accidents investigated and generally depends on 

rural-urban areas. 

The selection of hazardous sites followed some ideas reviewed in Chapter 2 

for univariate models. The sites were categorised as dangerous according to 
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either the probability of a site to be the worst or the posterior distribution of 

the rank of a parameter of interest of a site. The results were then compared 

wi th the Poisson-regression with gamma random effects model as a base model. 

Fatal or serious with 1 vehicle 

-ffi 0 25 ED ¡5 1CO 125 ISO ZD 

FUnk alijw ; (P-ga) model 

Figure 9.7: Ordered posterior médians and crédible intervais of ranks; model 
(P-ga) for first type of accidents 
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Fatal or serious with 2+ vehicles 
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Rank values; (P-ga) model 

Figure 9.8: Ordered posterior médians and crédible intervais of ranks; model 
(P-ga) for second type of accidents 

Slight with 1 vehicle 

•Œ 0 2S 33 S 1CO ES 1SD 175 33J 

Rank values; (P-ga) model 

Figure 9.9: Ordered posterior médians and crédible intervais of ranks; model 
(P-ga) for third type of accidents 
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Slight with 2+ vehtcles 
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Ranhiatues; (P-ga) model 

Figure 9.10: Ordered posterior médians and crédible intervais of ranks; model 
(P-ga) for fourth type of accidents 

Fatal or seriouswith 1 vehicle 
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R»nk\alues; (P-WNre) model 

Figure 9.11: Ordered posterior médians and crédible intervais of ranks; model 
(P-MNre) for the first type of accidents 
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Fatal or serious with 2+ vehicles 
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Rar* values; (P-M*e) model 

Figure 9.12: Ordered posterior médians and crédible intervais of ranks; model 
(P-MNre) for the second type of accidents 

Sligtitwith 1 vehicle 
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Rank value*: (P-M*re) model 

Figttre 9.13: Ordered posterior médians and crédible intervais of ranks; model 
(P-MNre) for the third type of accidents 
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Slight with 2+ vehîcles 
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Rank values; (P-NTJro) mode) 

Figure 9.14•' Ordered posterior médians and crédible intervais of ranks; model 
(P-MNre) for the fourth type of accidents 

Fatal or se nous with 1 vehicle 

• 0 

• 

• 

• O A 

° a • a D 

t P D 

• m 

a ° D 
• • 

„ 0 cP 

• m s ^ g D 

• 
• "^ D tno-P O 

a • • • 
m • 

o D • 

0 = ° ° o S 

• CD 

• 

0 2 0 * 3 3 K) 1C0 t» VC «3 

Ranks rfven by(P-ga) modd 

Figure 9.15: Comparison of posterior médians of ranks of residual informa
tion; fatal or serious accidents with 1 vehicle, (P-MNre) against (P-ga) 
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Figure 9.16: Comparison of posterior médians of ranks of means; fatal or 
serious accidents with 2+ vehicles, (P-MNre) against (P-ga) 

Slight with 1 vehicle 

Ranks gi\en by(P-ga) modd 

Figure 9.17: Comparison of posterior médians of ranks of means; slight acci
dents with 1 vehicle, (P-MNre) against (P-ga) 



CHAPTER 9. MULTIPLE RESPONSE MODELS FOR ROAD ACCIDENT DATA 285 

Slight wrth 2+ vehicles 
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Figure 9.18: Comparison of posterior médians of ranks of means; slight acci
dents with 2+ vehicles, (P-MNre) against (P-ga) 



Chapter 10 

Conclusion 

10.1 Summary of the thesis 

10.1.1 Multivariate modelling of road accident data 

The development of computer technology and computational techniques allows 

scientists to analyse more and more complex sets of data. Appl ied statisti

cal modelling offers solutions for extracting valuable information from data. 

Simpson's paradox indicates that the modelling must be done at a multivariate 

level. One area of research which has not yet extensively exploited multivari

ate statistical modelling is road accident analysis. This thesis aimed to make 

a step forward and to develop statistical procedures that can be used in this 

area of research and possibly in other similar areas of research. 

The thesis had two main directions of research given by the type of variables 

modelled, categorical variables representing characteristics of accidents in the 

first part, and multiple response variables representing accident numbers of 

286 
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different type i n the second part. The two parts were joined by using a similar 

tool of modelling, a graphical model represented by a graph. In the first part 

of the thesis this tool was mainly used for interpretation purposes at the end 

of the analysis, whereas in the second part of the thesis it was used to set up 

a hierarchical model before the actual fitting process. 

The difficulty of analysing road accident data has several facets. Firstly, 

data is collected as an observational study, no randomisation being possible. 

Secondly, the data is bound to be sparse, either when it is summarised in a 

contingency table or when it is modelled by regression-like techniques bringing 

covariate information. Therefore, inference based on classical asymptotic tests 

is most of the time unreliable and other methods are needed. This has been 

clearly demonstrated for graphical models with about 10 variables, during the 

course of a comparative model selection in Chapter 5. This is also true for 

modell ing multiple accident frequencies simultaneously, the task dealt with in 

the second part of this thesis. The disaggregation by accident type was not 

possible for a larger number of types because the data would have been so 

sparse that a statistical analysis could have not revealed reliable conclusions. 

10.1.2 Graphical models 

The complexity of road accident contingency tables requires multivariate sta

tistical models and exact conditional testing. Graphical modelling is a useful 

multivariate statistical technique for disentangling the potential factors which 

influence important accident characteristics such as accident severity or the 
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number of casualties. 

It was shown in Chapters 3, 4 and 5 that graphical modelling ofFers a very 

good solution for investigating road accident characteristics in an exploratory 

mariner, being useful for small and large contingency tables. It was shown 

that speed l imit , the number of vehicles involved and the number of casual

ties are directly associated with accident severity, one characteristic of major 

interest to road safety. Various other conditional independence relationships 

were established. 

W i t h a help of a small table it was shown that most of the log-linear models 

htt ing the data could be nested into a graphical model. Therefore, even when 

the objective is to find some spécifie type of log-linear model it would be 

useful to identify first a graphical model htting the data well and to refine the 

analysis starting from this model. The advantage of using a graphical model 

is that it is interprétable in terms of conditional independencies which can be 

visualised on a graph. 

The analysis of large contingency tables summarising road accident data 

was further improved when substantive external knowledge was made avail-

able. This type of analysis had a causal fiavour and the models, called graphi

cal chain models, are a direct généralisation of graphical models. The inference 

process for this class of models is a sequential one, but at each step, it is the 

sarne process as developed for graphical models. It was shown on an example 

in Chapter 5 how this process should be developed. Graphical chain models 

were developed for a set of data concerning the county of Bedfordshire, for a 
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set of data with accidents from Bedfordshire and Hampshire pooled together, 

and for two disaggregated sets of data for Bedfordshire. Reading conditional 

independencies on chain graphs can be sometimes difficult. It was shown using 

examples how to avoid traps by considering the moral graph of the smallest 

ancestral set of the subset of variables investigated. 

A class of precursor models to graphical chain models consists of the re

sponse variable models introduced by Goodman (1973). Generally speaking, 

neither this class nor the class of graphical chain models coincides wi th the 

class of log-linear models. A resuit indicating when this équivalence is true, 

proved in Asmussen and Edwards (1983) using collapsibility, was restated in 

Chapter 6. Some examples and counterexamples using models encountered in 

the thesis were also exemplified i n Chapter 6. 

Collapsibi l i ty also helped in showing how the analysis of a 6-dimensional 

table could be refined using a 3-dimensional marginal table without having 

Problems wi th Simpson's paradox. Furthermore, it was concluded that what 

seemed a natural graphical chain model for the collision-rollover table was not 

a log-linear model. 

It was also noticed that Simpson's paradox can appear in a négligent analy

sis of contingency tables summarising road accidents. In conjunction with the 

need for analysing large tables this was one of the main motivations for ap-

plying graphical modelling to road accident tables. It was also shown how the 

concept of collapsibility of maximum likelihood estimators could be used to 

reduce safely the dimension of the analysis. 
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10.1.3 Hierarchical joint-response models 

The hierarchical modelling approach with multiple responses and random ef

fects, developed in Chapters S and 9, give a solution to the problem of mod

elling multiple response variables in a joint manner, that is a multivariate 

approach on the left hand side of the equations of the models as well as on 

the right hand side. The inference process can be done by employing M C M C 

techniques. The model output contains all the ingredients to answer various 

questions of interest, like predicting future values or ranking the observational 

units according to different measures. 

A framework model was proposed and it was proved that, under its as

sumptions, this model offers a solution for modelling overdispersion and cor

relation of the observed counts. This general model can be followed by other 

researchers in developing other hierarchical models for other sets of road acci

dent data and for other areas where modelling counts is of interest. 

Using the models developed in this thesis, for the first t ime, practitioners 

can predict changes in accident type as well as the frequency. The predicted 

percentage reduction in accidents, if the traffic flow is reduced by a known fac

tor 6. was calculated. The results were different for different types of accident 

and this could provide valuable information to local authorities. 

In Chapter 7 some theoretical aspects regarding the compound Poisson 

distributions were re-examined, a new proof of when there is a maximum 

likelihood estimator for the two parameters of a negative binomial distribution 

was given, and a condition for this estimator to be unique was also identified. 
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A n approximation result was given that helps in studying the sensitivity of 

changing priors in compound Poisson modelling. 

M C M C techniques were successfully used for inferential purposes. One 

advantage of M C M C methods is that the same output can be used for an

swering many questions. The Gibbs sampler was also helpful in developing a 

new group of selection procedures of log-linear models for contingency tables, 

thus making a direct connection between the two parts of the thesis. It is 

likely that many other complex models proposed for road accident data wi l l 

have computational problems that could be easily solved by M C M C methods. 

Another problem investigated in the context of multiple accident frequen

cies was ranking the sites. The ability to rank the sites using multiple response 

models gives another dimension to practical efforts in this area, selecting the 

hazardous sites according to different criteria. The ranking process was done 

for the four types of accidents investigated by three models selected by the 

D I C criterion, that is (P-ga), (P -MNre) and ( P - M N 1 ) . One ranking measure 

used was the probability that a site is the worst one. Other ranking measures 

used were the posterior distribution of the rank of the mean parameter Ajt», 

for all three models, and the posterior distribution of the rank of the resid

ual terms after removing the covariates, that is log(/xjt,-) + for (P-ga) and 

( P - M N r e ) . The posterior distribution was described by its median and 2.5% 

and 97.5% percentiles. The rankings given by different models were compared 

using some scatterplots and found to be similar. 
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10.2 Conclusion 

The main conclusion emerging from this research is that it is better to start 

the analysis of accident data by a multivariate approach. For both types of 

accident data, either contingency tables or accident frequencies at sites, it is 

advisable and feasible to do this as shown in this thesis. 

Sometimes, the graphical models proposed can be collapsed onto a smaller 

subset of variables. Then the analysis can be continued with other statistical 

techniques. A n incorrect simplification of the analysis could lead to Simpson's 

paradox. 

Graphical representations are an useful instrument for communicating re

sults and models to a large audience. Graphs can help to extract conclusions 

from the statistical analyses by, for example, reading conditional independen

cies between subsets of variables on the conditional independence graph, or to 

specify models, like the fully Bayesian models analysed in W i n B U G S . 

It was revealed that speed l imit and the number of vehicles involved influ

ence directly accident characteristics responsible for road safety, like accident 

severity and the number of casualties. Other variables like road class, road 

surface conditions and the presence of a pedestrian crossing within 50m are 

not directly associated. The conditional independencies emphasized for the 

subset of S T A T S 19 data for Bedfordshire county, for Hampshire county and 

for those two sets of data pooled together, show that it is wrong to extend 

conclusions found at county level to a more aggregated level. The type of con

clusions revealed by graphical models and graphical chain models developed 
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in the first part of the thesis can help local authorities in designing better poli

cies and in planning research. The results may also be useful in fundamental 

research involving the conceptualisation of data structures of road accidents 

as described in Lupton, Wing and Wright (1998). 

Since M C M C methods help to overcome many computational problems, 

almost any fully Bayesian model can be fitted and any arbitrary function of 

the parameters of the model can be posteriori estimated. This suggests that 

fully Bayesian models deserve more attention and more complex questions can 

be answered in this context. 

A statistical approach that can be used for inference on any aspect of the 

data, modelling multiple accident frequencies of different type, was shown in 

the second part of the thesis. This is the first analysis of this type in this area 

of research. 

The predictive accident models developed here can be used for a wide 

range of applications. The novelty of these models is that, for the first t ime in 

this area, qualitative as well as quantitative conclusions can be drawn at the 

same time. It was proved that a parallel approach, fitting several univariate 

regression models, leads to unreliable inference and should be avoided. 

Practitioners use either the observed accident frequencies or the posterior 

mean of the expected number of accidents at a site, in an empirical Bayes 

approach, to rank hazardous sites. Both are wrong and a better approach is 

described and applied in this research. As emphasized in Chapter 9, rank

ing the sites ought to be done by the posterior distributions of ranks of the 
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expected accident rates, that is of the ranks rki of À^. The posterior distrib

ution is then used for a point estimation of the ranks and for calculating the 

associated crédible intervais. This seems to be an almost impossible task for 

traditional methods because it is not easy at ail to provide estimâtes of ranks 

of parameters. However, as it was shown in this thesis, under a fully Bayesian 

framework, it is possible to find a whole samplefrom the posterior distribution 

of any arbitrary functions of parameters, so for ranks as well . The ranks of 

observational units, such as sites in this thesis, are notoriously uncertain and 

a measure of uncertainty associated with rank estimâtes should be considered 

i n the final analysis. Crédible intervais are a perfect solution to this problem 

and there is no additional modelling effort for calculating them. Once we have 

the M C M C output for the model investigated, any empirical summaries can 

be calculated easily. 

Another way of identifying the hazardous sites, presented in this thesis, is 

to calculate the posterior probability that a site is worst. This second method 

can be used for long term projects. Applying bad statistical techniques may 

have extremely bad conséquences for the public. If some really hazardous sites 

are left out of the list of sites to be treated, then, not only wi l l large amounts 

of public money be wasted, but human lives could be lost as well. 

It was also shown that ail three explanatory variables used in the second 

part of the thesis, that is speed l imit , estimated traffic flow and link length, 

have a significant contribution in explaining accident frequencies. However, 

the interactions between speed l imit and the other two explanatory variables 
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are not significant for all types of accident investigated. The prédictive acci

dent models developed in the second part imply that reducing the traffic flow 

wil l reduce the number of accidents and it was calculated by how much. 

The hierarchical Bayesian models developed here for multiple response 

variables have been motivated by road accident data. However, they can be 

adapted to other areas of research where the modelling of counts is of interest. 

10.3 Limitations of the research 

The research carried out in the first part of this thesis focused on only two 

counties, Bedfordshire and Hampshire, due to time limitations and to the re

search for the second part of the thesis. However, a more gênerai investigation 

would be very much appreciated from the practical point of view by local 

autorities. 

The data used for developing graphical models in the first part of the thesis 

contained only accidents recorded in 1995. A larger set of data, containing road 

accidents from several years, may lead to other useful results. Unfortunately, 

this extension of the analysis to several sets of S T A T S 19 data was not possible 

given the period of time of this research. 

Another idea not exploitée! here is to consider ail counties in Great B r i t a i n 

with ail accidents in the same period of time. Then an additional variable 

can be defined for county and it would be interesting to see how this spatial 

variable affects the conclusions revealed by graphical models. This would 
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be a vast project in itself, involving a lot of data préparation and a lot of 

computation. 

Some categorical variables such as accident severity, the number of vehicles 

involved and the number of casualties involved are ordinal. It would have been 

ideal if it had been possible to take this information into account. There is 

l i t t le or no theory of graphical models for variables of this type, only marginal 

tests developed for log-linear models being implemented in M I M . 

Moreover, the Bayesian model sélection procédures proposed in this thesis 

may be improved and a software program able to handle large tables would 

be a big step forward. 

There is no single package that can be used, in a user friendly manner, to 

develop the type of modelling proposed in this thesis. However, graphical mod

els can be quite easily investigated with the package M I M (Edwards, 1995), 

and W i n B U G S 1.2 (Spiegelhalter, Thomas and Best, 1998) is one of the most 

aclvauced packages that can handle hierarchical Bayesian models. A list of 

other packages having implemented various M C M C techniques for various Sta

tistical, modelling méthodologies is given in Car l in and Louis (1996). 

A n improved model sélection procédure using Akaike information criterion 

is available on a new version of M I M . However, this version was not available 

when the research for the relevant part of this thesis was carried out. 

The problem whether the maximum likelihood estimators of the two para

meters of a negative binomial distribution are unique is very important. If the 

estimators are not unique then the results of the analysis should be carefully 
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interprétée). Although the condition given by équation (7.5) can be checked for 

any set of data, it would be useful to know a definitive answer. A simulation 

study can provide some hints. 

There are some limitations concerning the elicitation of prior distributions. 

For the hierarchical Bayesian models the priors used in this thesis fotlowed 

the gênerai trend i n the literature for modelling generalized linear models 

with random effects (Zeger and K a r i m , 1991; Spiegelhalter, Thomas and Best, 

1998; Gi lks et al . , 1996). Some researchers may prefer more informative 

priors. The Bayesian methodology can be improved from this point of view 

and this is an area of intensive research. For Poisson-regression models, Doss 

and Narasimhan (1994) provided a Computing environment within which one 

can immediately see the changes in the posterior distribution, corresponding 

to the changes in the prior distribution. Unfortunately, this program seems 

to be available only for Unix Workstations. Subject matter information may 

help in. developing better informative priors. 

The spécification of a covariance structure for the random effects /a in 

Chapter 8 is not straightforward. A possible model is described in the next 

section. The difficulty is due to the fact that the random effects account for 

information not included in the explanatory variables. Thus, it is difhcult to 

Interpret the covariance between two random effects. 
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10.4 Suggestions for further research 

Graphical models for ail counties 

It was remarked in Section 10.3 that one l imitation of this research was the 

focus on only two counties, Bedfordshire and Hampshire. As mentioned in 

Chapter 5, for the same set of variables, the data sets of différent counties may 

be htted by différent graphical models. Without relying on unique models for 

each county. a question of interest would be what conditional independencies 

are supported by the data across the counties. More specifically, is accident 

severity independent of road type, daylight conditions and road surface con

ditions given the speed l imit and the number of vehicles involved? 

Another interesting question is what happens when there are several sets 

of data corresponding to several years for the same county, with the same 

variables investigated. For example, if there are data for Bedfordshire for ail 

years between 1995 and 1998, relative to the six variables studied in Chapter 5, 

can a graphical model Ht ail thèse sets of data separately? Some theoretical 

developments on this direction are described in Lyngaard and Walther (1993). 

Error in flow e s t i m â t e s 

The traffîc flow count at a site is usually a rough estimate because measure-

ments are taken not over the entire period under study but over a l imited 

interval (or intervais) of time. The flows should be calculated as A A D T s over 

the entire time period for which the accident counts are taken. If Zk is the real 

unknown A A D T for site k in a multiplicative model, \ogZk would be one of 
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the explanatory variables. As Zk is usually not known, an estimate Qk is used, 

calculated over a period of time tk < A functional model in which just 

one of the explanatory variables is flow, has been briefly described in Mäher 

and Summersgill (1996). The flow with the true A A D T Zk is separated from 

the other variables 

and assuming that the estimated traffic flow Qk is Poisson distributed with 

mean Zktk-, the logTikelihood is partitioned into two parts, one modelling the 

accidents and the other the flows. A fully Bayesian spécification of this type 

of modelling is given by 

E(y*) = A J b = T f cexp[/3'X + 7 l o g Z J t ] 

Yk I Afc Pois(At) 

A f c = exp\ß'X + 7 log Zk] 

Qk | Zk, £fc ?o\s(Zk'tk) 

ßj N(0,0.0001) 

7 A'(0,0.0001) 

and it can easily be extended to multiple response models along the lines 

described in Chapter S. 
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A more complex hierarchical Bayesian model 

The Poisson-régression model with gamma random effects specified in (8.24) 

docs not impose a covariance structure on the random effects fi. The following 

model suggests a possible structure. For ail k = 1 , 2 , . . . , N and t = 1 , 2 , . . . , M 

Yki I hi ~ Pois(A f c (-) (10.1) 

(logAjtO = tfjti = log/ijti 4- X'kiPi 

Pki I et,-, ai = 6*,- -j-

ftj ~ N(0,0.001) 

bki *~ g a m m a ^ , £) 

a i = E{ -r Vi a2 = Fi-r V2 

a3 = F2-\- Vi a 4 = F2 + V2 

where Fi,F2, Vï} V2 are mutually independent and ail independent of bkl. The 

variables Fi,F2 model missing information concerning accident severity and 

the variables V\, V2 concerning number of vehicles. It is also assumed that 

F\ ~ gamma(/1,<5), F2 ~ gamma(/ 2,6) 

Vi ~ gammajui , S). V2 ^ gammafuj, 5) 

which implies that 

ai ~ gamma(/ 1 + ui,<5) 
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a2 ~ gamma(/i + v2. 6) 

a 3 ~* gamma(/ 2 + vx,6) 

a4 ~ gamma(/ 2 + v2. S). 

The condition that E(/*H) = 1 for 2 = 1, 2 , . . . , 4 is équivalent to the following 

System of linear équations, subject to the strict positivity restrictions for ail 

unknowns. 

= S (10-2) 

w2 + / i + v2 = 6 

U>3 + ¡2 + Ul = # 

^4 + /2 + V2 = 6-

It must be checked first that this System has proper solutions. This System 

of linear équations can be solvecl on computer, using for example M À P L E V . 

The idea behind this model was described in Maher (1991) and it was later 

followed in Loveday and Jarrett (1992). 

The covariance structure of ju can be easily calculated as 

+/l +fl 
S2 

II 
S2 

•">2+h+V2 
¿ 2 

21 
S2 

0 

22. S2 

¡2 
52 

S2 

\ 

(10.3) 
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and using the system of equations (10.2) this can be further simplified to 

5 ¿2 ¿2 

n 2̂-

I h. 
5 52 

1 

(10.4) 

It can be remarked that this model may be further refined by choosing the 

scale parameter of the gamma distribution of 6& to be different f rom 8. the 

calculations being adjusted accordingly. A n immediate consequence w i l l be 

that the system of equations (10.2) is nonlinear and the covariance structure 

becomes more complicated. 

Multiple response empirical Bayes models 

M a n y researchers are more interested i n empirical Bayes models rather than 

in a fully Bayesian approach. For univariate responses, these methods are 

thoroughly investigated in textbooks (Carl in and Louis, 1996; M a r i t z and 

L w i n , 1989) and applied on a large scale in modelling road accidents (Hauer, 

1997; Mountain et al . , 1996; Wright et ah, 1988; Jarrett et ah, 1982). 

However, for multiple responses, empirical Bayes methods are less developed. 

Taking either a nonparametric approach in Rob-bins' style (Robbins, 1955) or 

a parametric approach, the results of empirical Bayes models could usefully 

be compared to the fully Bayesian results developed i n this thesis. One of the 

advantages of empirical Bayes methods is that they are not sensitive to prior 
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elicitation. The models can be stil l specified hierarchically in several stages 

but the parameters of the distribution at the penultimate level of the hierarchy 

are estimated from data. The estimation process can be very difficult. 

10.5 A final comment 

Statistical modelling is recognized as an art. A U models are false, otherwise 

they wil l explain the data entirely, but some are useful. Road accident data is 

an example of large and complex data requiring advanced Statistical techniques 

for a good analysis. 

The graphical modelling methodology emphasized i n this thesis can be ap

plied in the future to a large range of studies in this area of research. Similar ly , 

multiple response models as those proposed here can be adapted by other re-

searchers to investigate other questions of interest related to trafhc and safety 

transport. A i l thèse contributions can make a différence to a better world. 



Appendix A 

Proof of a collapsibility resuit 

The following corollary of Theorem 6.1 shows how collapsibility helps i n cal-

culating the maximum likelihood estimâtes for large tables using known max

i m u m likehhood estimâtes for marginal tables, and it wi l l be used to prove a 

collapsibility resuit for response variable models i n this appendix. 

C o r o l l a r y A . l Let the log-linear model L be collapsible onto a. Then 

= fcHlI [Pc](6)(icl(6))/{n(ibd(b))/iV}] ( A . l ) 
6 

where the product is taken over all connected components b ofac. 

The next resuit, given in Asmussen and Edwards (1983), can be proved in a 

différent, more explicit way as it is shown below. 

T h e o r e m A . l If L G C, then L 6 Ja if and only if L is collapsible onto a. 

In lhat case M = in and C = [a] U Lb} where b = c l (a c ) . 
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Proof . If LE Ja tfien 

305 

pL(i)=P
M(ia)pc(i (A.2) 

so it follows easily that 

pLM = EP1(«') = £/'(OP 0 (»". 

If it can be shown that M Ç La then it wi l l follow that pc(in) G pLa{ia) 

and this is exactly the définition of collapsibility of L onto a. Note that 

pa is denoted hère by pLa. The inclusion can be shown using the log-linear 

expansions, and this is the main différence compared to the constructive proof 

given in Âsmussen and Edwards (1983). It is obvious that 

I°SPC(^K) = E <A'+ E u 
,ttUac 

Therefore from équation (A.2) it follows that 

logp L ( * ) l o g p M ( i a ) - r - l o g p c ( Î Q C | i a 

= E«}+ E «r+ E aUac 

'92U93 
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and so 

Now it is obvious that M — La. To show that C = [a] U it follows from 

équation A . 2 that 

= E «,r-E«£ 
31 CoUac .?2Ça 

and it is known that there are interaction terms corresponding to all subsets 

of a, that is a is a generator. Thus, 

i°gpc(-^ i <.) = E < + E «CC + E 
siÇa S2Çac A3 Ca 

The first s um gives [a]; the second sum contains all u-terms from L that are 

given by variables in ac and the third sum contains all u-terms from L that 

are given by variables in a connected with variables from Gc, that is those 

variables in bd(a c ) . Therefore, the last two sums give a log-linear expansion 

of La 

cubd(oc) which is Zrt, with 6 = cl(a c ) . 

Conversely, if L is collapsible onto a then let M = La. C = [a] U where 

b = cl(a e ) . Then pM(ia) = pLa{'ia) — PL{ia) by the définition of collapsibil ity 

in Section 6.2. and it h as to be proved that pL(i) = pJ(i), where J = ( M , C). 

Let ac = bi U . . . U bq be the connected components of ac. Using the global 
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Markov property 

V («a* | ta) = V [u* | « b d ( a
c ) ) 

and using the independence of the subsets of variables corresponding to the 

connected components 

the last equality following because &kUbd(a c ) = c\{bk) U b d ( a c ) . Since bd(a c ) n 

cl(6jt) = bd(6jt) C a and a is a generator for C the following Lemma, proved 

by Haberman (1974) the first part, and Lauritzen (1982) the second part, can 

be applied 

L e m a A . l (Haberman-Lauritzen) If a-\ andbi are two subsets of variables 

of the sei of variables of interest X such that 

1. a1Ubl = X 

2. ai and are separated by ax 0 b\ 

S. a i H &i C cl} where c\ is a generator of the log-linear model Li 

then 

k=l 

It is obvious that 

P (hk I *bd(a«) ) (A.3) 

" ( t f t lnfci) 

N 
}, and p(iai) = pai(iai)-
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Taking a\ = bd(a c ) and bx = cl(6¿), it follows from equation (A.3) and 

Haberman-Lauritzen lema that 

P {Íbk I ¿bd(a<)) = 
p(*bd(ac)) 

= Pbd(a') (¿bd(ac))Pcl(6fe) (¿cl(fafc) ) 
P{ibd{a<)){n{ibd(b„))/N} 

which shows, putting all together that 

fi7(i) = Pa{ia) u [£cl(b f c)(M(i>*))/{n(iM( b k))/N}\ 

k=l 

and using Corollary A..1 that pJ = pL. Hence L — J £ Ja as required .• 



Appendix B 

Tables for graphical chain 

modelling 

Table B.l: Accidents with pedestrian casualtics in Bcdfordshire, 1995; a = 
0.01 

Variables Model formula M e t h o d 
DJLJ \T]\DH) 

[T][DH] 
[T][DH] 

Dec. 
Unres. 
Exact . 

L,R,S\ 0 , H:T [R][LS][HL][DHT\ 
[RS] [HR] [LS] [HL] \D HT) [DS] 

[R][LS][HL)[DHT] 

Dec. 
Unres. 
Exact. 

P,N | L}R, S,D,H,T [ P RT] [NS] [DH LRST] 
[NS][PT][DHLRST\ 
[NS][PT][DHLRST] 

Dec. 
Unres. 
Exact 

A,C\P,N,L, R, S,D,H,T [AHRST] [C S) [DHL NPRST] 
[AS}[CS\[DHLNPRST] 
[A][CN}[DHLNPRST} 

Dec. 
Unres. 
Exact 
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Table B.2: Accidents wük pedestrian casualties in Bedfordskire and Hamp
shire, 1995; a = 0.05 

Variables Model formula Method 
D,H,T {HT][DH} 

[HT][DH] 
[HT][DH] 

Dec. 
Unres. 
Exact. 

LtR,S | DJI,T [HRT\ [EST] [HLT] [DHT] 
[H ST][H R][H LS][D HT] 
[H ST] [HR] [HLS] [DHT] 

Dec. 
Unres. 
Exact . 

P,N | L,R,S,D,H,T [DH LPRT][NS\[DHLRST] 
[NS] [LPT] [D H ERST] 

[NS] [DLPRT] [D HERST] 

Dec. 
Unres. 
Exact 

A,C | P,N,L,R,S,D,H,T [ACDH PRST][CDHNPRST][DHLNPRST] 
[AST] [C NPS] [DHLNPRST] 

[ACHST][CHNST)[DHLNPRST] 

Dec. 
Unres. 
Exact 

Table B.S: Accidents tuith pedestrian casualties in Bedfordshire and Hamp
shire, 1995; a = 0.01 

Variables Model formula Method 
D,H,T [T][DH] 

[T][DH] 
[T\[DH] 

Dec. 
Unres. 
Exact. 

L,R,S | D..H.T [HR] [LST] [HLT] [DHT] 
[ST][HR][HL]\LS]{DHT] 
[H ST][HR][HLS][DHT] 

Dec. 
Unres. 
Exact. 

P,N | L,R,S: 0 , H, T [DHLPRT][NS][DH LRST] 
[NPS][LPST][DHLRST] 
[NS] [DLPT][DHLRST] 

Dec. 
Unres. 
Exact 

A,C | P,N,L, ß , S,D,H.T [ACHP][ADHPRST][DH LNPRST] 
[AS][CNP][DHLNPRST] 

[ACHS][CHNS][DHLNPRST] 

Dec. 
Unres. 
Exact 
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Table B.4: Accidents without pedestrian casualties in Bedfordshire and Hamp
shire, 1995; a = 0.05 

Variables Model formula Method 
D, H, T [HT]{DH] 

[HT][DH] 
[HT][DH] 

Dec. 
Unres. 
Exact. 

L,R,S\ D, //", T [H LRST] [DHRST] 
[HLRST][DHRT] 
[HLRST][DHRT] 

Dec. 
Unres. 
Exact. 

N | L,R,S,D,H,T \DHLNRST) 
[DHNRST] [D H LRST] 

[DHLNRST] 

Dec. 
Unres. 
Exact 

A,C | N,L,R,S,D,H,T [ACDHLNRST] Dec. 
[A.LNS][CHNRS][DHLNRST] Unres. 

[ACDHNS] [CDHLNST] [DHLNRST] Exact 

Table B.5: Accidents without pedestrian casualties in Bedfordshire 
shire, 1995; a = 0.01 

and Hamp-

Variables Model formula Method 
D,H,T \HT][DH] 

[HT\[DH] 
[HT][DH] 

Dec. 
Unres. 
Exact. 

L,R,S | D , i / , T [HERST] \ DH RST] 
[HLRST][DHRT] 
[H LRST] [DHRT] 

Dec. 
Unres. 
Exact. 

N | L,R,S,D,H,T [DHLNRST] 
[DHNRST] [DHLRST] 
[DHNRST][DHLRST] 

Dec. 
Unres. 
Exact 

A,C\ N\.L.R,S,DJ-I/T [ACDHLNRST] 
[ALNS][CHNRS][DHLNRST] 

[AC H N S][C D H N ST]\D H LN RST] 

Dec. 
Unres. 
Exact 

file:///DHLNRST


Appendix C 

Comparison of the (P-ga) and 

(P-logN) models 

The plots on the left correspond to model (P-ga) (model 1 here) given i n 

Chapter 9 by équations (9.1) and those plots on the right correpond to model 

(P-logN) (model 2 here) given in Chapter 9 by équations (9.12). The fit is 

better for model (P-ga) for each type of accident. 

I 1° 

observai acadmlil 

Figure Cl: KSI with 1 vehicle for Figure C.2: KSI witk 1 vehicle for 
Model 1 Model 2 
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-10 0 10 20 30 « -10 0 10 20 30 

observod accident» 2 oteorvod acd (knls2 

Figure C.3: KSI with 2+ vehicles Figure C-4: KSI with 2+ vehicles 
for Model 1 for Model 2 

Figure C.5: S with 1 vehicle only Figure C.6: S with 1 vehicle only 
for Model 1 f0r Model 2 
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Figure ¿7,7: S with 2+ vehicles for Figure C.8: S with 2+ vehicles for 
Model 1 Model 2 
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Ranks with credible intervals 
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Ordered ranks with credible 

intervals 
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Comparison of ranks 

In the following scatterplots the posterior median of ranks, as given by (P-

M N r e ) and ( P - M N 1 ) , are compared to the posterior median of ranks as given 

by (P-ga). The model (P-MNre) gives closer matchings of ranks with the 

base model (P-ga) than the matchings of model ( P - M N 1 ) . This is not very 

surprising, (P-ga) and (P-MNre) having a similar model specification and using 

the same covariate information. O n the contrary, the model ( P - M N 1 ) is based 

on different "distributional" assumptions, more exactly on the multivariate 

Poisson-log normal distribution, and it does not use any covariate information. 

For fatal or serious accidents, the plots of ( P - M N 1 ) against (P-ga) are more 

volatile but st i l l close in the right extreme of the plot, where is the interest of 

the practitioner. For slight accidents, the plots of ( P - M N 1 ) against (P-ga) are 

improving; this suggests that the sparsity of the data may be the cause of the 

difference in ranking. From the plot comparing ranks given by ( P - M N l ) wi th 

those given by (P-ga), for fatal or serious accidents with 2+ vehicles, it can be 
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seen that there are more triangles above the diagonal line for the sites in the 

middle of the ranks. This means that the ( P - M N 1 ) model gives larger right 

ends of the crédible intervais of the ranks than those given by model (P-ga). 

KSI accidents with 1 vehicle 

156 fink sites in Kent 
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Posterior statistics for 

régression coefficients 
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Table G.l: Estimâtes for mixed Poisson-gamma régression model 

1 5T(log/) S S L SX 
Statistic A i A a A 3 A 4 A s Ä 6 

mean 0.55 1.20 0.60 -0.29 0.04 -0.38 

sd 0.09 0.11 0.09 0.10 0.08 0.14 
2.5 % 0.36 1.00 0.41 -0.49 -0.13 -0.66 
median 0.54 1.20 0.60 -0.29 0.04 -0.37 
97.5 % 0.72 1.43 0.79 -0.09 0.20 -0.10 
Statistic A i A z A 3 A 4 A s A s 

mean 0.85 1.49 0.72 -0.29 0.09 -0.01 

sd 0.08 0.09 0.08 0.08 0.07 0.11 
2.5 % 0.70 1.30 0.56 -0.47 -0.06 -0.25 
median 0.85 1.49 0.72 -0.29 0.09 -0.01 
97.5 % 1.00 1.70 0.87 -0.12 0.24 0.20 
Statistic A i A Î A 3 A 4 A s Ä 6 

mean 1.09 1.28 0.57 -0.16 -0.10 -0.26 

sd 0.07 0.10 0.09 0.08 0.08 0.13 
2.5 % 0.94 1.08 0.47 -0.34 -0.26 -0.52 
median 1.09 1.28 0.57 -0.15 -0.10 -0.26 
97.5 % 1.23 1.49 0.75 0.00 0.05 -0.02 
Statistic A i A 2 A s A 4 A s A e 

mean 2.00 1.29 0.69 -0.35 -0.00 -0.08 

sd 0.06 0.09 0.07 0.07 0.06 0.10 
2.5 % 1.S7 1.12 0.55 -0.48 -0.12 -0.28 
median 2.00 1.30 0.69 -0.35 -0.00 -0.08 
97.5 % 2.13 1.46 0.85 -0.21 0.13 0.12 



Bibliography 

Abbess, C , J arret t, D. and Wright, C. (1981), 'Accidents at blackspots: 

estimating the effectiveness of remedial treatment wi th special refer

ence to the regression-to-mean effect', Traffic Engineering and Control 

22(10), 535-542. 

Agresti , A . (1990), Categorical Data Analysis, Wiley, New York. 

Agresti , A . (1996), An Introduction to Categorical Data Analysis, Wiley, New 

York. 

Aitchison, J . and Ho, C. (1.989), 'The multivariate Poisson-log normal distri

bution', Biometrika 76(4), 643-653. 

A i t k i n , M . (1979), ' A simultaneous test procedure for contingency table mod

els', Applied Statistics 28, 233-242. 

Akaike, H . (1973), Information theory and an extension of the maximum like

lihood principle, in B . Petrov and F. Csaki . eds, 'Second Int. Symp. 

Information Theory' , Akademiai Kiado: Budapest, pp. 267-281. 

337 



BIBLIOGRAPHY 338 

A l t h a m , P. (1984), ' Improving the precision of estimation by fitting a model ' , 

J. Roy. Statist Soc. B(46), 118-119. 

A m i s , G . (1996), ' A n application of generalised linear modelling to the analysis 

of traffic accidents'. Traffic Eng. and Control. 

Anscombe, F . (1950), 'Sampling theory of the negative binomial and logarith

mic series distributions', Biometrika 37, 358-382. 

Aragon, J . ; Eberly, D . and Eberly, S. (1992), 'Existence and uniqueness of the 

maximum likelihood estimator for the two-parameter negative binomial 

distr ibution 1 , Statistics and Probability Letters 15, 375-379. 

Asmussen, S. and Edwards, D. (1983), 'Collapsibi l i ty and response variables 

in contingency tables', Biometrika 70(3), 566-578. 

Bartlett , M . (1935), 'Contingency table interactions', Journal of the Royal 

Statistical Society 2, 248-52. 

Baruya, A . , F inch, D. and Wells, P. (1999), ' A speed-accident relationship 

for european single-carriageway roads', Traffic Engineering and Control 

40(3), 135-139. 

Besag, J . (1.974), 'Spatial interaction and the statistical analysis of lattice 

systems (with discussion) 1, ./. Roy. Statist. Soc. Ser. B. 36, 192-236. 

Bishop, Y . , Fienberg, S. and Holland, P. (1975), Discrete Multivariate Analy

sis, M I T Press, Cambridge, Massachusetts. 



BIBLIOGRAPH*' 339 

Blalock, H . (1971), Causal modeîs in the social sciences, Aldine-Atheston, 

Chicago. 

Breslow, N . and Clayton, D. (1993), 'Approximate inference in generalized 

linear mixed models'. Journal of American Statistical Association 88. 9-

25. 

Brooks, S. and Gelman, A . (1998), 'Alternative methods for monitoring con

vergence of iterative simulations', Journal of Computational and Graph-

ical Statistics 7, 434-455. 

Brown, M . (1976), 'Screening effects in multi-dimensional contingency tables', 

Appt. Statist. 25(1), 37-46. 

Brude, U . and Larsson. J . (1988), 'The use of prédiction models for el iminating 

effects due to regression-to-the-mean in road accident data' , Accident 

Analysés and Prévention 20(4), 299-310. 

Cameron, A . and Trivedi, P. (1986), 'Econometric models based on count data: 

comparisons and and applications of some estimators and tests', Journal 

of Applied Econometrics (1), 29-53. 

Car l in , B . and Louis, T . (1.996). Bayes and Empirical Bayes Methods for Data 

Analysis, Chapman & H a l l , London. 

Carruthers, D . , Bulpi t t , M . , Cray, G . . Holmes, A . , MacKinven , D . , Moore, 

P. , Quinn , D . , Zealley, H . and Huxford, R. (1996), A vision for road 



BIBLIOGRAPHY 340 

safety beyond 2000, Technical report, The Institution of C i v i l Engineers, 

London. 

Christensen, R. (1.990), Log-Linear Models, Springer-Verlag, New York. 

Christiansen, C- , Morris , C . and Pendleton, 0 . (1992), A hierarchical Pois-

son model, with beta adjustments for traffic accident analyses, Technical 

Report 103, Center for Statistical Sciences, University of Texas, A u s t i n . 

Cox, D . (19S3), 'Some remarks on overdispersion', Biometrika 70(1), 269-274. 

Cox, D . (1993), 'Causality and graphical models', Bulletin of International 

Statistical Institute Proceedings of 4 9 t h session, 365-372. 

Cox, D . and Wermuth, N . (1993), 'Linear dependencies represented by chain 

graphs', Statist. Set. 8, 204-218. 

Darroch, J . , Lauritzen, S. and Speed. T . (1980), 'Markov fields and log-linear 

interaction models for contingency tables', Annals of Statistics 8, 522— 

539. 

Davies, J . (1990), ' A Bayesian analysis of some accident data' . Statistician 

39,11-17 . 

Davis, L . (1986), 'Whittemore's notion of collapsibility in multidimensional 

contingency tables', Communications in Statistics Theory 15, 2541-2554. 

Dawicl, A . (19S0), 'Conditional independence for statistical operations', An

nals of Statistics 8, 598-617. 



BIBLIOGRAPHY 341 

Dean. C . and Lawless, J . (1989), 'Tests for detecting overdispersion in pois-

son regression models', Journal of the American Statistical Association 

84(406), 467-472. 

Dempster, A . (1974), The direct use of likelihood for significance testing, in 

P. B. 0 . BarndorfT-Nielsen and G . Schou, eds, 'Proceedings of Confer

ence on Foundational Questions in Statistical Inference', Department of 

Theoretical Statistics: University of Aarhus, pp. 335-352. 

Department of Transport (1996), Road accidents Great Br i ta in : 1995 the 

casualty report, Technical report, Department of Transport, London. 

Doss. H . and Narasimhan, B . (1994), Bayesian Poisson regression using the 

Gibbs sampler: Sensitivity analysis through dynamic graphics, Technical 

report, Department of Statistics, The Ohio State University, Ohio. 

Durrett , R. (1991), Probability: Theory and Examples, The Wads worth and 

Brooks, California. 

Edwards, D. (1990), 'Hierarchical interaction models (with discussion)"', Jour

nal of the Royal Statistical Society, B (52), 3-20. 

Edwards, D . (1995), Introduction to Graphical Modelling, Springer-Verlag, 

New York. 

Edwards, D. and Havranek, T . (1985), ' A fast procedure for model search in 

multi-dimensional contingency tables', Biometrika 72(2), 339-351. 



BIBLIOGRAPHY 342 

Fienberg, S. (1980), The Analysis of Cross-Classified Categorical Data, M I T 

Press, Cambridge, Massachusetts. 

Frydenberg, M . (1990), 'The chain graph Markov property', Scandinavian 

Journal of Statistics 17, 333-353. 

Gabriel , K . (1969), 'Simultaneous test procedures: some theory of multiple 

comparisons', Ann. Math. Statist. 40(1), 224-250. 

Gelman, A . , Car l in , J . , Stern, H . and Rubin , D . (1995), Bayesian Data Analy

sis, Chapman and Hal l , London. 

Geman. S. and Geman, S. (1984), 'Stochastic relaxation, Gibbs distributions 

and the Bayesian restoration of images', IEEE Transactions on Pattern 

Analysis and-Machine Intelligence 6, 721-741. 

George, E . , Makov, U . and Smith, A . (1993), 'Conjugate likelihood distribu

tions', Scandinavian Journal of Statistics 20, 147-156. 

Gibbs, W . (1.902), Elementary principles of statistical mechanics, Yale U n i 

versity Press, NewHaven. 

Gi lks , W . (1992), Derivative-free adaptive rejection sampling for Gibbs sam

pling, in J . Bernardo, J . Berger. A . Dawid and A . Smith, eds, 'Bayesian 

Statistics 4', Oxford University Press, pp. 641-649. 

Gi lks , W . , Richardson, S. and Spiegelhalter, D . , eds (1996), Markov Chain 

Monte Carlo in Practice, Chapman and H a l l , London. 



BIBLIOGRAPHY 343 

Goldstein. H . (1979). The design and anaiysis of longitudinal studies, A c a d -

emic Press, London. 

Goodman, L. (1973), 'The anaiysis of multidimensional contingency tables 

vvhen some variables are posterior to others: a modified path anaiysis 

approach'. Biometrika 60. 179-192. 

Haberman, S. (1974), The Anaiysis of Frequency data, University of Chicago 

Press, Chicago. 

H a n d , D . , McConway, D. and Stanghellini, E . (1997), 'Graphical models of 

applicants for credit', IMA Journal of Mathematics Applied in Business 

and Industry (8), 143-155. 

Haner, E . (1980), 'Bias-by-selection: Overestimation of the effectiveness of 

safety countermeasures caused by the process of selection for treatment', 

Accid. Anal, and Frev. 12(2), 113-118. 

Hauer, E. (1986), ' O n the estimation of the expected number of accidents', 

Accid. Anal, and Frev. 18(1), 1-12. 

Hauer, E. (1997), Observational before-after studies in road safety: estimating 

the effect of highway and traffic engineering measures on road safety, 

Elsevier Science, Oxford. 

Hauer, E . , N g , J . and Lovell, J . (1989), 'Estimation of safety at signalized 

intersections', Trans. Res. Record 1185, 48-61. 



BIBLIOGRAPHY 344 

Henson, R. (1992), Pedal cycle accidents at T-junctions, in J . Griffiths, 

ed., 'Mathematics in Transport Planning and Control ' , Clarendon Press, 

pp. 355-366. 

Higle, J . and Witkowski , J . (1988), 'Bayesian identification of hazards loca

tions', Trans. Res. Ree. 1185, 24-36. 

Holland. P. (1986), 'Statistics and causal inference', Journal of the American 

Statistical Association 81 , 945-970. 

Jarrett, D . , Abbess, C . and Wright, C. (1982), Bayesian methods applied to 

road accident blackspot studies: some recent progress. S W O V Confer

ence, Amsterdam. 

Johnson, N . and K o t z , S. (1969), Discrete distributions, Houghton Mif f l in 

Company, Boston. 

Kass, R. , Tierney, L. and Kadane, J . (1989), 'Approximate methods for assess

ing influence and sensitivity in Bayesian analysis', Biometrika 76, 663-

674. 

Kihlberg , J . , Narragon, E . and Campbel l , B . (1964), Automobile crash injury 

i n relaion to car size, Technical Report V J - 1 8 2 3 - R U , Cornel l Aero. Lab. 

Kreiner, S. (1987), 'Analysis of multi-dimensional contingency tables by exact 

conditional tests: techniques and strategies'. Scand. J. Statist. 14, 97-

112. 



BIBLIOGRAPHY 345 

K u l m a l a , R. (1994), 'Measuring the safety effect of road measures at junctions' , 

Accid. Anal, and Prev. 26(6), 7S1-794. 

L a i r d , N . and Louis, T . (1989), 'Empir ica l Bayes ranking methods 1 , Journal 

of Bducational Statistics 14, 29-46. 

Lauritzen, S. (1982), Lectures on Contingency Tables, 2 edn, University of 

Âalborg Press, Denmark. 

Lauritzen, S. (1989), ' M i x e d graphical association models (with discussion)', 

Scand. J. Statist. 16, 273-306. 

Lauri tzen, S. (1996), Graphical Models, Oxford University Press, Oxford. 

Lauri tzen, S., Speed, T . and Vi jayan, K . (1984), 'Decomposable graphs and 

hypergraphs', ./. Austral. Math. Soc. A 36, 12-29. 

Lindley, D . (1969), Introduction to Probability and Statistics front a Bayesian 

vicivpoint, Cambridge University Press, London. 

Loveday, J . and Jarrett, D. (1992), Spatial modelling of road accident data, 

in J . Grifhths, éd., 'Mathematics i n Transport Planning and Control", 

Clarendon Press, pp. 433-446. 

Lupton , K . , VVing, M . and Wright, C . (1998), Conceptual data structures 

and the statistical modelling of road accidents, in J . Grifhths, éd., ' T h i r d 

I M A International Conférence on Mathematics in Transport Planning 

and Control ' , Elsevier, Oxford, pp. 267-277. 



BIBLIOGRAPHY 346 

Lyngaard, H . and Walther, K . (1993), Dynamic modelling with mixed graphi-

cal association models. Technical Report VJ-1S23-R11, Institute for Elec

tronic Systems, University of Aalborg. 

Madigan. D . and Mosurski , K . (1990), ' A n extension of the results of As-

mussen and Edwards on collapsibility in contingency tables', Biometrika 

77(2), 315-319. 

Maher, M . J . (1991), ' A new bivariate negative binomial model for accident 

frequencies', Traffic Engineering and Control 32(9), 422-423. 

Maher. M . and Mountain , L . (19S8), 'The identification of accident blackspots: 

A comparison of current methods', Accident Analysis and Prévention 

20(2), 143-151. 

Maher, M . and Summersgill , I. (1996), ' A comprehensive methodology for the 

fitting of prédictive accident models', Accid. Anal and Prev. 28(3), 281-

296. 

Mar i tz , J . and L w i n , T . (1989), Empirical Bayes Methods, second edn, Chap

man and H a l l , London. 

Maycock, G . (1985), 'Accident l iability and human Factors: researching the 

relationship', Traffic Engineering and Control 26(6), 330-335. 

Maycock. G . and H a l l , R. (1.984), Accidents at 4-arm roundabouts, Technical 

Report 1120, T R R L Laboratory Report Crowthorne, U . K . : Transport 

and Road Research Laboratory. 



BIBLIOGRAPHY 347 

M c C u l l a g h , P. and Nelder, J . (19S9), Generalized Linear Models, second edn, 

Chapman and H a l l , London. 

M i a o u , S. and hum, H . (1993), 'Modeling vehicle accidents and highway geo

metric design relationships', Accid. Anal, and Prev. 25(6), 689-709. 

Mohamed, W . , Diamond, I. and Smith, P. (1998), 'The determinants of in

fant mortality in malaysia: a graphical chain modelling approach', J.R. 

Statist. Soc. A 161, 349-366. 

Morr i s , C (1983), 'Parametric empirical Bayes inference: Theory and appli

cations', J. Amer. Statist. Assoc. 25(78), 47-65. 

Morr is , C . and Christiansen, C. (1996), Hierarchical models for ranking and 

for identifying extremes, with applications, in J . Bernardo, J . Berger. 

A . Dawid and A . Smith, eds, 'Bayesian Statistics 5', Oxford University 

Press, pp. 277-296. 

Morris , C , Christiansen, C. and Pendleton. 0 . (1991), Appl icat ion of new 

accident analysis methodologies, Technical report, U.S . Department of 

Transportation. 

Mounta in , L . , Fawaz, B. and Jarrett, D. (1996), 'Accident prediction models 

for roads with minor junctions'. Accid. Anal, and Prev. 28(6), 695-707. 

Mountain, L . , Jarrett, D. and Fawaz, B . (1995), The safety effects of high

way engineering schemes, in 'Proc . Instn C i v . Engrs Transp. ' , V o l . I l l , 

pp. 298-309. 



BIBLIOGRAPHY 34S 

Mountain, L . , Jarrett, D . and Wright, C . (1994), Road accident migration. 

E P S R C project, GR/G53415. 

Nicholson, A . (1985), 'The variability of accident counts', Accident Analysis 

and Prevention 17, 47-56. 

Pate-field, W . (1.981), ' A n efficient method of generating random R x C tables 

with given row and column totals 1 , Appl. Statist. 30, 91-97. 

Persaud, B . (1991), 'Est imating accident potential of Ontario road sections', 

Transportation Research Record (1327), 47-53. 

Read, T . and Cressie, N . (1988), Goodness-of-fit Statistics for Discrete Multi

variate Data, Springer-Verlag. New York. 

Robbing, H . (1955), A n empirical Bayes approach to statistics, in 'Proceedings 

of 3rd Berkeley Symp. on M a t h . Statist, and Prob. ' , V o l . 1, U n i v . of 

California Press, pp. 157-164. 

Roberts, G . and Smith , A . (1993), 'Simple conditions for the convergence of the 

Gibbs sampler and Metropolis-Hastings algorithms', Stochastic Processes 

and their Applications 49, 207-216. 

Roh, J . , Bessler, D . and Gilbert , R. (1999), 'Traffic fatalities, Peltz-

man's model, and directed graphs', Accident Analysis and Prevention 

31(1/2), 55-62. 

Ross, G . and Preece, D . (1985), '"The negative binomial distr ibution 1 , The 

Statistician 34, 323-336. 



BIBLIOGRAPHY 349 

Salminen, S. and Heiskanen, M . (1997), 'Correlations between traffic, occupa

tional, sports and home accidents', Accid. Anal, and Prev. 29(1), 33-36. 

Santner, T . J . and Duffy, D . (1989), The Statistical Analysis of Discrete Data, 

Springer-Verlag, New York. 

Schluter, P . , Deely, J . and Nicholson, A . (1997), 'Ranking and selecting mo

tor vehicle accident sites by using a hierarchical Bayesian model ' , The 

Statistician 46(3), 293-316. 

Shaban, S. (1988), Poisson-lognormal distributions, in E . Crow and 

K . Shimizu, eds, 'Lognormal distributions: theory and applications', Mar 

cel Dekker, New York, pp. 195-210. 

Simpson, C . (1951), 'The interpretation of interaction in contingency tables', 

J. Roy. Statist. Soc. (B) 13, 238-241. 

Smith . T . , Spiegelhalter, D. and Thomas, A . (1995), 'Bayesian graphical mod

elling applied to random effects meta-analysis', Statistics in Medicine 

14, 2685-2699. 

Spiegelhalter, D . , Best, N . and Car l in , B. (1998). 'Bayesian deviance, the 

effective number of parameters, and the comparison of arbitrarily complex 

models', unpublished paper. 

Spiegelhalter. D . , Thomas, A . and Best, N . (1996), Computat ion on bayesian 

graphical models, ¿71 J . Bernardo. J . Berger, A . Dawid and A . Smith , eds, 

'Bayesian statistics 5', Oxford University Press, Oxford, pp. 407-425. 



BIBLIOGRAPHY 350 

Spiegelhalter, D . , Thomas, A . and Best, N . (1998), WinBUGS: User Manual, 

version l.l.î, M R C Biostatistics U n i t , Cambridge. 

Stanghellini, B. (1997), 'Identification of a single-factor model using graphical 

gaussian rules'. Biometrika 84(1), 241-244. 

Stanghellini, E . , McConway, D. and Hand, D . (1999), ' A discrète variable 

chain graph for applicants for credit', Appt. Statist. 48, 239-251. 

Tarjan, R. and Yannakis, M . (1984), 'Simple linear time algorithms to test 

chordality of graphs, test acyclicity of hypegraphs, and selectively reduce 

acyclic hypergraphs', SI AM Journal on Computing 13, 566-579. 

Taylor, C. and Barker, K . (1994-1995), Injury accidents on rural single-

carriageway roads - an analysis of statsl9 data, Technical Report 304, 

T R L . 

Tunaru, R. (1999), 'Hierarchical bayesian models for road accident data' , Traf-

fic Engineering and Control 40(6), 318-324. 

Tunaru, R. and Jarrett, D. (199Sß), A n analysis of causality for road accident 

data using graphical models, in J . Griffiths, ed., ' T h i r d I M A International 

Conference on Mathematics in Transport Planning and Control ' , Elsevier, 

Oxford, pp. 279-290. 

Tunaru, R. and Jarrett, D. (19986), Graphical models for road accident data. 

Universities Transport Study Group 30th Annual Conference, D u b l i n . 



BIBLIOGRAPHY 351 

Wagner, C. (1982), 'Simpson's paradox in real life 1 , The American Statistician 

(36), 46-48. 

Wang, Y . (1996), 'Est imation problems for the two-parameter negative bino

mial distribution' , Statistics and Probability Letters 26, 113-114. 

Wedderburn, R. (1974), 'Quasi-likelihood functions, generalized linear models 

and the Gauss-Newton method', Biometrika 61, 439-447. 

Wermuth, N . (1976), 'Analogies between multiplicative models in contingency 

tables and covariance selection', Biometrics 32, 95-108. 

Wermuth, N . and Lauritzen, S. (1990), ' O n substantive research hypotheses, 

conditional independence graphs and graphical chain models' , J. Roy. 

Statist. Soc. # 52(1), 21-50. 

Whit taker , J . (1990), Graphical Models in Applied Multivariate Statistics, W i 

ley, Chichester. 

Whittemore, A . (1978), 'Collapsibil i ty of multidimensional contingency ta

bles', Journal of Royal Statistical Society B 40(3), 328-340. 

Wi l l son , L . J . , Folks, J . and Young, J . (1984), 'Multistage estimation compared 

with fixed-sample-size estimation of the negative binomial parameter k' , 

Biometrics 40, 109-117. 

Wil lson, L . J . , Folks, J . and Young, J . (19S6), 'Complete sufficiency and max

imum likelihood estimation for the two-parameter negative binomial dis

tr ibution' , Metrika 33, 349-362. 



BIBLIOGRAPHE' 352 

Wold, H . (1954). 'Causality and econometrics'. Econometrica 22, 162-177. 

Wold , H . (1960), ' A généralisation of causal chain models'. Econometrica 

28, 443-463. 

Wright, C , Abbess, C . and Jarrett, D . (1988), 'Est imat ing the régression-to-

mean effect associated with road accident black spot treatment: Towards 

a more realistic approach', Accid. Anal, and Prev. 20(3), 199-214. 

Wright, S. (1934), 'The method of path coefficients', Annals of Mathematical 

Statistics 5, 161-215. 

Zeger, S. and K a r i m , M . (1991), 'Generalized linear models with random ef-

fects; a Gibbs sampling approach', Journal of the American Statistical 

Association 86(413), 79-86. 


