The Collular basts or cantilace norphocenssis
in mebryonta chick imbes

A thesis subutmed por the dagre of
 DOCTOR OR PHILOSOPHY

By

DAUL C. ROONEY

departicnt of atamony aid biology AS APRIIED TO MDICINE

MIDDUESEX HOSPTAL MODCAL BCHOOL
LONDON

1984

Abstract

Cariilaginous long bone ruatments, of the chict embryo, were used as a model for the mamalian eptonyseal gromth plate. Both contain 3 zones of chondrocytes which, therefore allows the cartilage cubinent to be considered as an oxpanded growth plate. The involvement of each zone in the growth of the ruatment was detemmen. at the collular level. by counting cell numbers in histological sections of the vina. Studies on the cell kinetios of the rudiments, In vitro, Gemonsurated that cell division was confined, mainy to the Zome or rounded colis, with little or no division observed in the zonos of cell flattening ont hyoctrophy.

It is poposed that the morphogenosis of the oamy cartillage long bone maiment is infiuenced by the structure of tit's sumpouming perichomeriun, rather then by a property untrinsto to the constituent chon rocytes. The perichonarium is thought to exert it'e influonce through a process terned "directed dilaition", whereby circumforential expansion is resisted and longituanal growth is favoured. Ultrastructural examinations show that the perichondriun of a lons bone rulinent has a variable structure: distinct at the diamysia and loose at the eptphysis. By contrast, the perichonoxtum surrounding heckel's cartilage, which has only one type of chondrocyte. appears to have a unfrom structure.

Gvidenco for tho lack of an intrinsic poperty determining morphogenesis comes from the obsemvetion that chondrocytes, from varlous cartilage elements, behave identically, zn vitro, under appopriate conditions. In addition, contrany to reports that the expression of a cartilage phenotypo is dependant on high cell densithes and histogenic interactions, It is proposed that the maintenance of a rounded ofll configuration is sufficient to eliotit phenotypio expression.

Zoperinental evidence suggests that the 3 zones of cells are set up by a combination of intexactions with the perichondriun and by a signal specific to the cartilage matrix.
may
ABETAMOD
20世4.ts
yrar on Rabla
6
ramar Zmaduanos$?$
37


```e
```


wornogeastis.

Wa wola of the pentchonworm ha centhage morphogeneste.
4xam and
$-\infty$

Nazan
Call anotice of carcilage loms pone walimonts.
y.act mamuators

IIST OR TABIDS

```
maza
Nean -avgthe ow ceutwage Lons oone movimonts on the
qurgloping chick rimg.
maze 
"aze


```

Z2026 Tr
Then lengens of histologicel zomes of the una.

```

Sable I

the vins.
-a, 2
89

the \(\because \infty\)


Maser VI
TsM demstbies 2n matowogicen zones de the u'ma.
- 50 - \(-\cdots-1\)


Toble
 zatiue culturen ze veto.

Zabelizns indices of Mistologicel zones of a staye 30 Wha cultured \(\pm\) vituo.

Wene XI

momexus cultrmed. En vetro.
Table XII
Tabolkne Bubices of hictologioel rones of a stage 33 yoztus cuthured an ytuco.

Teble XIII
Lebaluing Endices of hatologioal zones of a stege 33
una sultured an beta.
Sa,Te XIV 98
Taboltang indioes of hastologioel pones of a stege 3


abye I
Ghages th the mean osll renstores, mean cell volumes and the mean polumes of ra/cell in the chick emomo ulna tumens La Une bevenoment.

TaSle IT
The cellulan parcmetere on stage 32 unabe oultures continuourly In the pesenoe of taretogento dmes.

Wage ITI
Whe cenlula paranetexs of stase 32 unade cultured fon
Aay in the presence of teratogenic taugs folloned yy 2
Gys ta control meksum.
Tavie 7
The cemulam contrgucation of stage 32 ulnea outturea continuously in the prosence of temotogenio tmas.

Table
The cefrulay oonfyruction of stage 32 mana ontured for I tay th the pesence of tematogenio tuge romored oy 2 eays in control mektum.

Table UI
Whe chatect on ollagenase on the spoth of ulnae cultures


Tav2e VIT
We aseet of 2.2 collaganese on the cellunan maremeters


Table VTUI
Whe roles hlayed by cell Luvshon, cell hypertoothy and matrax secretion in the growth of ulnae.

CHADER THRE
Table I
The effect of removal of the perichondrium from stage 32 vinae.

Teble II
The effect of mating a manl Inchaton mbto the oetringe of aeveloping ulnae.

Te5Ie TIT
The shect of cuttring aveloptaz ulnaz Ento 2, for 6 pacea.
CHADKA SIX


 thanghout my stay in the Deqertment. I would like to thent Dr. Chergh Thote and Dr. Chanles Archex Eor both readrag the memuscript and for thein excellent recomendations. Thanks are also due to Mr. Mank Tumazne for his expert advoe and asazatence on the Gleotron Licuoscope.

A sqecial thank you is ofaeced to hoire fow hem contmosh supyoth thmowghout and zon tymas the thesís.


Cartilage is an ubiquitous tissue which occurs in a wide range of forms - rods, nodules, sheets or hollow capsules. The morphogenesis of this tissue is of fundamental importance in that the whole of the vertebrate endoskeleton has a cartilaginous origin though much of it is later replaced by bone. Only the dermal skeleton does not have a cartilaginous phase. Even once a cartilage element, such as a long bone, has ossified, subsequent growth in length is based on cartilage growth within the epiphyseal growth plate.

Growth and morphogenesis of cartilage are intimately related and can be viewed in three phases: pattern formation, morphogenesis - the generation of form, and growth via the growth plate (wolpert, I982).

\section*{Pattern Formation}

Before cartilage is observed in the limb, the limb itself has to undergo considerable growth and development and it is during limb outgrowth that pattern formation occurs. Limb outgrowth, therefore, has to be considered first.
I) Limb outgrowth

The chick embryo wing bud first appears as a slight swelling on the flank, opposite somites I5-20, at stage I7 (stages are taken from Hamburger and Hamilton, 1951), which is equivalent to 52 hours of development as reported by Fell (I925). The early development of the wing bud is characterised by rapid outgrowth and expansion which transforms the initial, simple beehive shape into an elongated structure slightly flattened dorso-ventrally (Zwilling, I96I). At stage I8, both the wing and the leg bud consist of a mass of undifferentiated mesenchyme surrounded by an ectodermal covering (Fell, I925); the ectoderm is thickened along the distal rim and is
known as the Apical Ectodermal Ridge (AER). The AER is necessary for development since removal results in truncated limbs (Saunders, I948; Janners and Searls, I97I; Summerbell, I974; I977).

Elongation of the limb bud is due to proliferation of the mesenchyme cells; at stage \(I 8\) the mitotic index throughout is high, about \(10 \%\) but this decreases steadily to \(2 \%\) by stage 30 (Hornbruch and Wolpert, I970). Mitotic cells are uniformly distributed until stage 24 when there is a significant decrease in mitotic index of proximal cells when compared with distal cells. The ectoderm has a more or less constant mitotic index of approximately \(4 \%\) throughout stages I8-30. Ede and Law (I969) have suggested that growth occurs in a proximo-distal direction and this is consistent with the proximodistal gradient of mitotic activity observed. Several authors have proposed that mesenchyme proliferates within boundaries imposed by the ectoderm and that limb elongation occurs via distal mesenchyme cells dividing and moving into free space provided by ectodermal growth (Amprino, I965; Hornbruch and Wolpert, I970; Summerbell and Wolpert, I972; Summerbell, I977).

During development, the skeletal and muscular elements of the limb differentiate within the mesenchyme in a proximo-distal sequence. How the spatial organisation of these elements is specified is the process of pattern formation.

\section*{2) Specification of pattern}

Pattern formation governs the process of spatial differentiation in which individual cells within a population are specified to undergo a particular molecular differentiation (Wolpert, 1969). The spatial organisation of tissues, such as muscle and cartilage, can account for the structural differences observed between the chick embryo wing and leg bud. Molecular differentiation of cartilage is similar in
these limbs and it is their spatial organisation which is different. Pattern may be already present in the fertilised egg (see prepattern model of Turing, I952), which implies that, in a limb field, each cell is different, or it may come about at a later stage when differences between identical cells may be specified resulting in the pattern observed (Wolpert, I969). Both of these models could specify some kind of skeletal pattern but only the latter is able to explain how reduplicated limbs can come about (see later), and therefore only this type of model will be considered in detail.

Wolpert (I969) introduced the concept of Positional Information by which individual cells within a population each received a Positional Value, the way in which each cell interpreted this positional value resulted in appropriate cyto-differentiation. Two classes of models based on positional information have been put forward; short-range specification where local neighbour-neighbour interactions take place (French, Bryant and Bryant, I976; Maden, I977), and Iong-range specification where at least one special signalling region is present in the system studied (Wolpert, I97I; Gierer and Meinhardt, I972). The Polar-coordinate model of French et al (I976) was proposed from the results of studies on regeneration in insect and amphibian legs and insect imaginal discs (Bryant, Bryant and French, I977). and required that cells had already undergone some process to specify positional values. The model is based on intercalation, i.e. when cells with different positional values come into contact, under experimental circumstances, generation of new structures with the missing values ensues. The model looks at the limb circumferentially and the results are interpreted as the limb maintaining a "complete circle \({ }^{01}\) of positional values. Recently this model has been proposed to apply to the chick limb (Iten and Murphy, I980; Iten, I982), however, this proposal is controversial, and has been criticised by
the experimental results of Wolpert and Hornbruch (I98I) and Honig (I98I). Since it cannot account for the initial specification of positional values, it is a model more suited to regeneration than to pattern formation.

Positional values could be set up by long-range signalling systems. Two models of such long-range specification have been put forward; Tickle, Summerbell and Wolpert (I975) suggest that the specifying signal may be a diffusible morphogen whilst Gierer and Meinhardt (I972) have suggested that the signal arises from a reaction-diffusion mechanism. The major differences between these models are when and how a signalling region can appear, Wolpert (I97I) proposes that the signalling region is specified early in development and subsequently affects later cells making the population of cells in the limb field heterogenous, on the other hand Gierer and Meinhardt (I972) suggest that the limb field is almost honogen and that the specifying region forms by autocatalysis. Both of these models could explain the spatial organisation observed in limbs but only the Wolpert model has dealt extensively with the chick wing and only this will be considered in detail below.

The way in which positional values are established along two of the axes of the chick wing have been investigated and it turns out that each axis is specified by a different mechanism. In addition to a long-range signal, a clock mechanism has also been proposed.
i) The proximo-distal axis

The AER has been found to specify and maintain a region about 30Qum thick at the distal tip of the limb, known as the Progress Zone (Summerbell, Lewis and Wolpert, I973), - if the AER is removed the progress zone is no longer maintained, resulting in truncated limbs as mentioned above. The cells in the progress zone are constantly leaving due to cell proliferation, and it is proposed that specification
occurs just as the cells leave the zone. Gyto-differentiation can only occur once cells have left the progress zone. The final position of a cell in the limb depends on the time spent in the progress zone; the longer it stays, the more distal the structure it will participate in forming (Summerbell et al, I973) (Fig. I).

\section*{ii) The Antero-posterior axis}

Positional value along this axis is thought to be specified by a graded signal (Wolpert, I969), originating from a small group of mesenchymal cells found at the posterior edge of the progress zone, Known as the Zone of Polarising Activity, or Polarising Region (Saunders and Gasseling, I968; Balcuns, Gasseling and Saunders, I970).

Evidence that a signal from the polarising region specifies digits comes from experiments where polarising regions were grarted to a more anterior level of a host limb, in contact with the AER (Saunders, Gasseling and Gfeller, I958: Tickle, Summerbell and Wolpert, I975: Summerbell and Tickle, I977). These grafts resulted in reduplication of cartilage elements in the antero-posterior axis (Fig. 2). Only cells in the progress zone are susceptible to the influence of the polarising region (Summerbell, I974) and, considering the results obtained from successive grafts to different positions along the antero-posterior axis, it seems likely that elements are specified by their distance from the polarising region when they leave the progress zone (Tickle et al, I975). The signal from the polarising region has been found to be universal since grafts of this region from mice (Tickle et al, I976), hamsters (MacCabe and Parker, I976), and snapping turtles (Fallon and Crosby, I977) were all able to induce chick limb reduplication.

The specifying agent is thought to be a diffusible morphogen (as proposed by Tickle et al, I975) originating at the polarising region and decreasing in concentration postero-anteriorally, a high
concentration would specify digit 4 whilst a low concentration would specify digit 2 (Tickle et al, I975; reviewed by Summerbell and Honig, 1982). The chemical nature of the signal is unknown but recent work (Tickle, Alberts, Wolpert and Lee, I982) has shown that the vitamin A derivative, retinoic acid, mimics the action of the polarising region. Vitamin \(A\) appears to be a morphogenetically active chemical since it can also alter the pattern of structures regenerated in amphibian limbs (Maden, I982).
iii) The Dorso-ventral axis

The mechanism of pattern formation along the dorso-ventral axis is thought to be under the control of the ectodermal cell sheath, but is little understood (MacCabe, Errick and Saunders, I974).

Although several models exist to explain pattern formation the positional information model proposed by Wolpert (I969) provides the most useful way of considering limb development. Interpretation of positional values will result in molecular differentiation which, for cartilage, is identified as secretion of cartilage matrix.

\section*{3) Molecular differentiation of cartilage}

Cartilage matrix is composed of water, collagen, proteoglycans and other proteins. In the type of cartilage found in long bone rudiments (hyaline cartilage) the only collagen present is Type II which is made up of three identical a II chains ( \(\left.(a \operatorname{II})_{3}\right)\) and is specific to cartilage (Miller and Matukas, I974; Prockop et al. I979; von der Mask and Conrad, 1979). Proteoglycans consist of a small amount of protein convalently linked to glycosaminoglycans (GAGs), the GAGs found in cartilage are chondroitin sulphate, keratin sulphate and hyaluronic acid. Each of the GAGs bind together via the link protein to form one proteoglycan molecule (see Stockwell, I979 for review). Chondroitin sulphate is the most abundant GAG in cartilage and is scarce
elswhere in the embryo, as opposed to hyaluronic acid which is less abundant in cartilage and is found in many other tissues. Chondroitin sulphate is characterised by the position of the sulphate group on it's repeating disaccharide units. The disaccharide unit consists of Glucuronic acid bound to \(N\)-acetylgalactosamine (Stockwell, I974); chondroitin sulphate \(A\) has a sulphate at the 64 position and chondroitin sulphate \(G\) has a sulphate at the \(C 6\) position on the galactosamine moiety (Mathews, I958). Any incorporation of sulphate into cartilage is thought to reflect increased synthesis of chondroitin sulphate; incorporation of radioactively labelled \(35 \mathrm{SO}_{4}\) has been recorded as early as stage 22 but metachromatic matrix is not visible until stage 25 (Searls, I965). Differentiation of cartilage can be identified by the incorporation of \(3^{35} \mathrm{SO}_{4}\) into chondroitin sulphate (Searls, I965; Abbot and Holtzer, I966). by the presence of large amounts of chondroitin sulphate proteoglycan (Crawford, I980), or by the presence of Type II collagen (von der Mark et al, I98I).

After pattern formation has specified that a particular group of cells will become cartilage these cells interact with each other in some way to produce a cartilage element. How this element takes shape is the process of morphogenesis and this shall be considered below.

\section*{Morphogenesis}

Cartilage occurs in a wide range of shapes, and cartilage morphogenesis has to account for all of these. One thing every cartilage element has in common is that each element arises from a mesenchymal condensation, and it would appear that the shape of the initial condensation may reflect the shape of the final element formed, e.g. the condensation of a long bone is an elongated structure whereas that of a wrist element is more rounded. Since the shape of a condensation may be an important first step in the morphogenesis of that tissue, the
formation of the condensation, in the chick limb, shall be considered.

\section*{I) Pre-cartilage mesenchymal condensations}

The first study of chondrogenesis in the chick limb was by Fell in I925, who stated that a mesenchymal condensation was observed in the proximal part of the limb at 4 days, with the first signs of a cartilaginous matrix appearing in the centre of the future diaphysis of the femur at 5 days. Within 30 hours of chondrogenic initiation, three zones of cells were observed in the developing rudiment (Fell and Canti, 1934), these were a zone of small, rounded, actively dividing cells, a zone of cells flattened at right axis to the long axis of the limb and a zone of large hypertrophic cells. (Fig. 3).

This initial condensation process is thought to be very important for normal chondrogenesis to proceed, but as yet the actual mechanism involved has not been fully elucidated. Two views of the mechanism involved in the condensing process together with two views of the ultrastructure of the condensation are hotly debated. A third possibility, that the condensation is due to a localised increase in mitosis, as has been proposed by Wessells (I965) to account for dermal papillae condensations in feather development, has been shown to be unlikely in the Iimb by Janners and Searls, (I970) and by Hornbmuch and Wolpert (I970).

It is generally agreed that a condensation results in a area of high cell density appearing in the region of presumptive cartilage (Ede and Agerbak, I968; Gould, Day and Wolpert, I972; Searls, Hilfer and Mirow, 1972; Thorogood and Hinchliffe, I975). It is the way in which this increase in cell density comes about that is controversial. The view of Ede and Agerbak(I968) is that increase in cell density comes about by active cell migration of pre-cartilage cells into the region of presumptive cartilage with a concomitant increase in intimate cell-cell
contacts. On the other hand, Gould et al (I972) suggest that the increase in cell density is due to lack of movement away of pre-cartilage cells after cell-division, with no increase in intimate cell-cell contacts. a) Centripetal movement mechanism

The increase in cell density in the central core is thought to come about through centripetal movement of peripheral mesenchyme cells and Ede and Agerbak (I968) liken this process to the aggregation phase of amoebae of the slime mould Dictyosteliun discoideum. No migration of mesenchyme cells can be observed in vivo, therefore the behaviour of dissociated limb mesenchyme cells has been studied in the hope that this may provide an analogous mechanism.

Ede, Wilby and Colquhoun (I977) have demonstrated that reaggregating limb mesenchyme cells growing in culture form chondrogenic foci with surrounding cells moving towards them. These foci are thought to be similar to the whorl-like arrangements observed in transverse sections of whole limbs (Ede and Flint, I972). The migration of mesenchyme cells in culture is once again likened to aggregation of slime mould amoebae. In normal limb development the centripetal movement proposed is considered to involve a change in adhesiveness of some mesenchyme cells. This would result in pre-cartilaginous mesenchyme cells migrating past non-cartilaginous cells until they came into contact with cells of a similar adhesiveness, stick together and form a condensation.

Evidence for increased adhesiveness playing a major role in the condensation process comes from ultrastructural studies of normal chondrogenesis and from in vitro studies of the chick mutant talpid.

Increased adhesion between cells in a condensation in vivo has been reported by Thorogood and Hinchliffe (I975) who studied the process of condensation in the chick hind-limb. These authors, recorded an increase in cell density of \(62 \%\) at the region of presumptive cartilage, -40 cells/unit area at stage 20 to 65 cells/unit area at stage 24 . (These
results have been calculated as an increase from I2-I9 cells/I000 \(\mu_{\mathrm{m}}{ }^{2}\) by Hall (I978)). Although cell density has been increased at stage 24 no increase in cell-cell contact was observed, but if an increase in adhesiveness, as proposed by Ede and his colleagues, was a transient step then looking at condensations from various stages may miss this step. To overcome this, Thorogood and Hinchliffe (I975) looked at different regions of a stage 26 tibia where the central region, which had already undergone matrix secretion, was considered to represent an advanced stage of chondrogenesis, and regions distal to this were considered to be less advanced. Cells at the distal end of a stage 26 tibia exhibited the highest cell density, 70 cells/unit area, were very close together and became intimately associated. They state that this region is similar to the classical condensation observed under the light microscope and propose that close apposition occurs by active migration of cells into the presumptive cartilage region. However, it is not clear if the stage 26 distal cells are exhibiting extensive cell-cell contacts. Some observations on the mutant talpid \({ }^{3}\) may also be related to the condensation process. Talpid \({ }^{3}\) is a mutant caused by an autosomal recessive gene which is lethal, between 7-I4 days of development, in homozygous embryos (Ede and Kelly, I964a;b), and is characterised by short, very wide limb buds (Cole, I942) with abnormal cartilage condensations. Kany of the condensations are found to remain fused when they should normally have separated (Ede, I97I). When normal and talpid \({ }^{3}\) limbs were dissociated and allowed to re-aggregate separately, normal mesenchyme cells formed a few large aggregates, whilst talpid \({ }^{3}\) cells formed numerous small clusters. This was interpreted to mean that talpid \({ }^{3}\) cells were more adhesive and therefore less motile, than normal cells so that when they came into contact with each other they stuck together and remained in that position. In the
limb the extra adhesiveness of talpid \({ }^{3}\) mesenchyme would hinder migration and therefore inhibit formation of condensations; any condensations which did form would contain mutually adhesive cells which would tend to remain together resulting in the fused elements observed.
b) Non-movement mechanism

The mechanism of centripetal migration can be contrasted with the model proposed by Gould et al (I972) in which it is suggested that the increase in cell density observed in a condensation arises, not through movement into the condensation, but through lack of movement away after cell division. This lack of movement could be related to the phenomenon of contact inhibition of locomotion as exhibited by cells in culture (Abercrombie and Heaysman, I954). The major point of this report is that, although there is an increase in cell density of central core cells from IIcells/I000 \(\mathrm{\mu m}^{2}\), at stage \(2 I\), to I5celis/ I000 \(\mathrm{um}^{2}\), at stage 24 (an increase of \(36 \%\) ), there is no concomitant increase in intimate cell-cell contacts. This result has been supported by ultrastructural studies of Searls et \(\underline{\text { al ( (I972) who observed a decrease }}\) in extensive cell-cell contacts between stages I8-24. Gould et al (I972) and Searls et al (I972) both record an increase in the total number of cell contacts during this period, but these are via filopodia and rarely extend more than 0.5 cm . They suggest that the increase in cell density observed under the light microscope is due mainly to the many filopodia and not solely to the close packing of cells. Gould et al (I972) state "that to talk of condensation of the pre-cartilage mesenchyme as if it involved a close packing of cells resulting in a considerable increase in cell contact is misleading"., "true" condensations only appear in pre-myogenic mesenchyme.

Very little cell movement has been demonstrated in the chick limb in vivo (Searls, I967), and when embryonic cells were implanted into
the chick wing they exhibited a lack of invasiveness (Tickle, Goodman and Wolpert, I978). There is also a precedent for lack of active migration causing condensation from studies of a different system, the amphibian neural crest (Epperiein and Lehmann, I975). After the initial contact between cultured neural folds and pharyngeal ectoderm, neural crest cells proliferate and form a cluster solely due to lack of movement away after cell division.

During the condensation process, pre-cartilaginous mesenchyme cells undoubtedly get closer and may come into contact therefore adhesiveness may be an important factor but a difference in adhesion, between cartilaginous and non-cartilaginous mesenchyme cells, as proposed by Ede and Agerbak (I968) is unlikely. Whatever role adhesiveness plays in the condensation process it is not sufficient to cause segregation of cells in vitro (Searls, I972; I973). Mixtures of stage 24,25 or 26 central core (or cartilage) cells with central core cells from stages 20-22 did not exhibit the "sorting-out" phenomenon described by Steinberg (I964).

It is not yet clear which mechanism is involved in the actual condensation process, but experimental evidence suggests that the lack of cell movement after cell division (Gould et al, I972) is the most likely.

A major controversy, however, is whether there is increased cell-cell contact in the condensations. The apparently contradictory ultrastructural observations can be explained if examined closely. One possibility is that the differences may simply be due to the fact that Gould et aI (I972) studied the wing bud whilst Thorogood and Hinchliffe (I975) studied the leg bud; wing development lags behind leg development by about I2 hours, and it could be that the close proximity observed in the leg had not yet occurred. A second possibility, that
the differences observed are due to different methods of fixation causing shrinkage of chondrogenic cells, therefore causing them to appear further apart, (as suggested by Thorogood and Hinchliffe (I975) to be the case in the electron micrographs of Gould et al (I972)), is unlikely since myogenic cells exhibit no shrinkage and show large areas of cell fusion.

A third possibility, and the most likely, is that the distal region of a stage 26 tibia does not represent an accurate model of an early condensation. The secretion of matrix has already began in the centre of a stage 26 tibia and therefore, cells distal to the centre will be under excess pressure due to the matrix secreted. It is probably this extra pressure which causes the very close apposition observed. Indeed, when Thorogood and Hinchliffe (I975) look at a stage 24 condensation they observe that "there is an increase in cell number but without the close apposition of cell surfaces" which is identical to the result of Gould et al (I972). It would seem likely, therefore, that at stage 24. when the condensation is most pronounced, pre-cartilage cells do not come into close contact with each other, and the mechanism proposed by Gould et al (I972) must be considered as being the most probable.

The signal which triggers off the condensation process is not known but some evidence has been produced to suggest that a change in glycosaminoglycan proportions is involved. Hyaluronic acid (HA) is at a maximum just prior to matrix secretion (stage 24) and it is at this point that synthesis of hyaluronidase dramatically increases (Toole, I972). Breakdown of HA into oligosaccharides has been found to stimulate chondroitin sulphate synthesis (Wiebiin and Muir, I973; 1975), therefore, removal of HA may be a controlling step in cartilage differentiation.

Hyaluronic acid may be involved in the condensation process itself
but the evidence for it's involvement can be interpreted to support both mechanisms of condensation and is therefore unclear. Toole and Trelstad (I97I) proposed that HA provided a substratum over which mesenchyme cells migrated during corneal development and Toole (I972) suggested that limb mesenchyme cells moved into the centre of the limb, at stage 22 utilising a similar mechanism. On the other hand, HA has been found to mask the protein fibronectin in the mouse (Silver, Foidart and Pratt, I98I) and it is possible that mesenchyme cells in a condensation are being held close together by fibronectin (which appears as HA) after cell division. This interpretation has been supported by observations in the chick where levels of fibronectin seem to increase as HA is broken down (Newman and Frisch, I979; Dessau et al. I980).

Hyaluronic acid has been known to be involved in cell proliferation and mobility since 1952 when Maurer and Haduck demonstrated it's presence in considerable quantities in the early stages of callus formation during repair of fractured long bones. Recently Solursh et al (I979) demonstrated the importance of HA in the morphogenesis of the sclerotome but suggested that HA acted by expanding and pushing mesenchyme cells "en masse" with no individual cell migration. In solution, HA expands greatly to occupy a volume 10,000 times that of the molecular chain (Preston, Davies and Ogston, I965; Laurent, I970), and this could account for the pushing phenomenon. Until further studies are carried out on the condensation process, the role of HA in it must remain unclear.

Since it is difficult to determine the conditions required for cartilage differentiation in the living embryo many studies have been performed in vitro.
2) In vitro chondrogenesis

Cell cultures of mouse or chick embryo pre-cartilage limb mesenchyme have been found to produce histologically identifiable cartilage only when grown at densities greater than confluence (Umansky, I966; Caplan, I970). A very useful technique for ensuring greater than confluent density has been developed by Ahrens, Solursh and Reiter (I977) and this involves plating out cells in a volume of IO ful containing \(2 \times 10^{5}\) cells, (i.e. \(2 \times 10^{7}\) cells/ml.) - a micro-mass culture. At this density limb mesenchyme cells from stage 24 embryos forms discrete aggregates during the first day of culture, by 72 hours these aggregates stain positively with alcian blue (pH I) indicating the presence of cartilage matrix. Positively staining aggregates are called "cartilage nodules" and nodules will not form without the preceding aggregation step.

The ability to form cartilage nodules is stage dependent: mesenchyme cells from limbs of stages 2 I- 24 will form a relatively constant number of nodules, irrespective of the stage, but cells from stage I7-I9 limbs will only form aggregates without subsequent nodules. Stage 20 cells may or may not produce nodules suggesting that this is a transitional stage during which the cells acquire the ability to form nodules. Thus it has been suggested that the ability to form aggregates and the ability to form nodules seem to be two distinct steps in vitro.

The ability to form nodules seems to be related to levels of cyclic AMP since the addition of dibutryl cyclic AMP (an analogue) or theophylline (an inhibitor of cyclic AMP phosphodiesterase, the enzyme responsible for cyclic AMP breakdown), both of which elevate levels of cyclic AMP, results in nodule formation in stage I9 cultures. The action of cyclic AMP in nodule formation is unclear, it would seem, from the above results, that elevation of cyclic AMP enhances differentiation but Kosher (I976) has found the opposite result when somitic
mesoderm is exposed to cyclic AMP - cartilage differentiation is suppressed. Whitfield et al (I979) have shown that many differentiating tissues, other than cartilage, also have increased levels of cyclic AMP, but the role of cyclic AMP here, as in nodule development, is unclear.

In addition to the stage dependency, the ability to form cartilage is also region dependent. Central core mesenchyme from stage 24 embryos produced virtually a carpet of cartilage whereas similarly staged peripheral cells formed only a few nodules in addition to fairly extensive areas of myogenic tissue. This implies that by stage 24 the chick limb consists of a heterogenous population of mesenchyme cells (Ahrens et a1, 1979).

Solursh, Ahrens and Reiter, (I978) have extrapolated their in vitro results to correspond with in vivo events and have produced a model outlining the steps involved during in vivo chondrogenesis. Their model states that cells develop the capacity to form cartilage before the condensation phase, but that aggregation must occur before cartilage matrix is produced and this has led Newman (I977), and Solursh and Reiter (I980) to conclude that histogenic, or cell-cell interactions are a pre-requisite for cartilage cell differentiation. Individual cells, able to secrete cartilage matrix without histogenic interactions, only appear after overt differentiation has begun (Solursh and Reiter, I975). We have recently suggested (Archer, Rooney and Wolpert, I982) that cellcell interactions are not required for cartilage differentiation and that isolated pre-cartilage mesenchyme cells are capable of producing a metachromatic matrix if they remain rounded during culture. Cells were maintained in a rounded configuration by culturing on a semiadhesive substratum (poly (HEMA)) and these cells synthesised more sulphur-containing extracellular matrix than cells allowed to flatten on normal tissue culture plastic. It is proposed (Archer et al, I982) that the high density involved in micro-mass cultures favours a rounded
cell configuration, and it is this, not histogenic interactions, which is the pre-requisite for cartilage matrix production.

Irrespective of the mechanism involved in the condensation process, pre-cartilage cells start to secrete matrix and the final cartilage element begins to take shape. The factors involved in transforming a long bone condensation into a long bone mudiment will be considered below.

\section*{3) Morphogenesis of the chick embryo long bone rudiment}

Fell (I925) observed that soon after the first sign of matrix secretion chondroblasts, in the centre of the presumptive rudiment, became orientated perpendicularly to the long axis of the limb. From this stage onwards growth of the rudiment is due mainly to cell division, cell hypertrophy and matrix secretion. Cell division, cell hypertrophy and matrix secretion would only be important in morphogenesis if differential rates of expression were observed for each factor in each zone of the rudiment.
a) Cell division

A cartilaginous, chick long bone rudiment, between stages 30-34, consists of three zones of cells, similar to those of the epiphyseal growth plate, and can be considered as being an elongated growth plate. Differential rates of cell division have been observed in the cartilaginous epiphyseal growth plate of rats by Kember (I972; 1973; 1978) , mitoses were abundant in the zone of flattened cells, few in the zone of resting cells and none in the zone of hypertrophy.

Cell division does not appear to be the most important factor in cartilage rudiment growth since a rudiment continues to grow to \(80 \%\) of controls after exposure to 4000 rads ( 40 Greys) of X-irradiation (Biggers and Gwatkin, I964; Archer, personal communication). (40 Greys is considered to be sufficient to knock out cell division, of mammalian cells in culture, without killing the cells). Cell division,
however, does seem to play some role in morphogenesis since the shape of the epiphysis was found to be abnormal, and \(20 \%\) of the growth was affected.
b) Cell hypertrophy

If cell hypertrophy is prevented by storage in glycerol saline at \(-79^{\circ} \mathrm{C}\) for \(\mathrm{I} \frac{1}{2}\) hours (Biggers, I957), the increase in length observed, once thawed, is dramatically reduced compared with controls. Freezing kills hypertrophic cells preferentially and stops flattened cells producing further hypertrophic cells. Blockage of hypertrophy was found to affect the diaphysis only since cell division and morphogenesis in the epiphysis returned to normal.

The ability of chondrocytes to hypertrophy may provide an explanation as to why some rudiments, such as the ulna, elongate extensively whilst others, such as the wrist elements, which do not hypertrophy, hardly elongate at all (Summerbell, I976; Wolpert, I98I). The difference in the increase in length observed between the ulna and the wrist is a clear example of non-equivalence as proposed by Lewis and Wolpert (I976). This theory states that, for cartilage, each element is different and each will grow according to the individual growth programme of that element. Each element is laid down at the same initial size, about \(300 \mathrm{\mu m}\), (Lewis, I975) and it is the growth programme which determines the final length.
c) Matrix secretion

Every cartilage cell is capable of secreting matrix and this may be the most important factor in cartilage growth and morphogenesis. Thorogood (I983 in press) has outlined three ways in which matrix secretion could affect cartilage morphogenesis;
i) Differential rates of secretion
ii) Differential rates of matrix accululation
iii) Polarised secretion of matrix.

Very little evidence is available for the first two points but some information is available for the third.

Orientated matrix deposition is thought to occur in cartilage rudiments (momosoc, I983 in press) but there is some controversy about how it comes about. Gould, Selwood, Day and Wolpert (I974) believe that matrix secretion causes cellular orientation whereas Holmes and Trelstad (I980) believe that cellular orientation is present before matrix secretion begins.

Transverse sections of early cartilaginous rudiments show a whorllike arrangement of cells (Ede and Flint, I972; Gould et al, I974), cells at the centre are rounded and separated by metachromatic matrix, whilst peripheral cells appear as elongated cresent shapes with very little extracellular matrix and many extensive cell contacts. The elongated peripheral cells eventually form the perichondrium and secrete type I collagen, whilst rounded cells secrete cartilage type II collagen (von der Mark and von der Mark, I977; von der Mark et al, 1980). In longitudinal sections the central cells appear flattened, as observed by Fell (I925), suggesting that they are in fact disc-shaped. Gould et al (I974) suggested that the pressure exerted by the matrix, associated with growth in the rudiment, caused chondroblasts to become disc-shaped and peripheral cells to form the perichondrium and proposed a model to explain the orientation observed. (Fig. 4). Further growth in length is now enhanced by the constraining effect of the perichondrium as suggested by Carey (I922) and Fell and Canti (I934).

If cell orientation precedes matrix secretion, as proposed by Holmes and Trelstad (I977; I980), then some factor demonstrating cell polarity might be expected to be present. This factor has been identified by Holmes and Trelstad (I977; I980) to be the nucleus golgi body axis. In the 9 day old mouse embryo hind-limb bud noncartilaginous mesenchyme cells were orientated with their golgi body
towards the basement membrane, but as development proceeded this orientation was reversed so that, by the onset of matrix secretion (I3 days), the golgi body was orientated away from the basement membrane (Holmes and Trelstad, I977). Pre-cartilage mesenchyme cells at I2 days were orientated with their golgi body towards the longitudinal axis of the condensation i.e. away from the basement membrane (Holmes and Trelstad, I980). However, this orientation was only clear in pre-cartilage condensations of the hind limb and even here was only significant in proximal (upper leg) or distal (foot) regions of the limb, cells in the central (tibia/fibula) region condensations exhibited virtually random orientation prior to matrix secretion. The orientation decreased in the proximal and distal regions at I2.5 days which is not consistent with orientation being present before matrix secretion. However, orientation returned after matrix secretion which is consistent with the proposal of Gould et al (1974). Interestingly, Trelstad (I977) states that somitic mesoderm is orientated in very early (stage I2) chick embryos and after matrix secretion has begun (stage 27) but orientation cannot be found in an intermediate stage (stage I6). This could suggest that waves of orientation exist, with no orientation just prior to matrix secretion.

If cellular orientation is present before matrix secretion, the pressure effect proposed by Gould et al (I974) would still take place as described. Which factor is the cause and which factor is the effect is unknown, but both models result in cellular orientation and this would allow polarised secretion of matrix to play a major role in cartilage morphogenesis.

The importance of matrix secretion has been demonstrated in the mandible of embryonic rats by interrupting the processes of matrix secretion and matrix organisation. The synthesis of glycosaminoglycans was inhibited by the addition of Diazo-nor-leucine (DON) (Diewert and

Pratt, I979), the utilisation of sulphate was prevented by 6Aminonicotinamide (6-AN) (Diewert, I979) and collagen cross-linkage was inhibited by B-Aminopropnonitrile (BAPN) (Diewert, I980 a; b), all treatments resulted in the production of a cleft palate due to lack of increase in length of Meckel's cartilage. Meckel's cartilage from each side of the jaw has to come close together for normal palate development. DON and 6-AN both exerted their effects on the growth of the cartilage whilst BAPN allowed growth to occur, but caused bending of the cartilage, therefore they could not come close together. This implies that collagen secreted by chondroblasts may play a greater role in morphogenesis than it does in growth, possibly by altering the organisation and therefore the rigidity of the matrix.
d) Other factors

Some attention has been paid to other factors which may play a role in morphogenesis, these factors have been considered by Thorogood (I982 in press) and include appositional growth, recruitment of cells from the surrounding mesenchyme and physical constraints.

Appositional growth is thought of as differentiation of the inner layer of the perichondrium into chondroblasts which merge into the cartilage, but such an incorporation of perichondral cells has yet to be clearly demonstrated. Increase in transverse diameter of epiphyseal growth plate cartilage occurs by interstitial growth of proliferative chondroblasts (Rigel, I962; Hert, I972). Meikle (I975) demonstrated that the third metacarpel of a 7 day rat, when transplanted into an intracerebral site, exhibited a marked lack of increase in transverse diameter when compared with controls. He stated that "perichondrial chondrogenesis" was unaffected, but does not make clear how this phenomenon was assessed. The lack of increase in transverse diameter was due to inhibition of cell division of proliferative chondroblasts. He concluded that "perichondrial chondrogenesis" played a very minor
role in the growth of cartilage.
Cell recruitment is a similar phenomenon to that of appositional growth except that the cells are thought to come from the sumrounding mesenchyme and the recruitment occurs before the cartilage element has formed. Two examples have been put forward.

Ede and Agerbak's (I968) centripetal movement mechanism for the process of condensation is essentially a recruitment of cells. As discussed above, there is no direct evidence to verify any recruitment. The other example has been put forward by Wolff (I958) and Hampé (I959; I960) to explain why the tibia grows much larger than the fibula. Wolff (I958) proposed a "principle of competition" which stated that the larger the anlagen the greater its "field of influence" i.e. its ability to recruit cells. According to Hampe (I959, I960), the tibia is more able to recruit mesenchyme cells, leaving a smaller pool for the fibula to draw cells from, therefore the tibia gets longer whilst the fibula does not. Recent work, however, suggests that the fibula gets smaller relative to the tibia because the distal epiphysis of the fibula fuses to the distal epiphysis of the tibia and breaks away (Archer, Hornbruch and Wolpert, personal communication). The rate of increase in length of the fibula decreases, because it lacks an epiphyseal end, and it gets left behind as the tibia continues to grow.

Very few studies have been carried out on the effect of physical constraints on cartilage morphogenesis. An increase in pressure exerted on whole tibiae (Rodan, Mensi and Harvey, I975), on slices of tibiae (Rodan, Bourret, Harvey and Mensi, I975) or on dissociated cells from each zone of the tibia (Bourret and Rodan, I976), all resulted in a change in the intracellular levels of cyclic AMP and affected the uptake of radioactively labelled \(3_{\mathrm{H}}\)-thymidine. How this pressure could be exerted in vivo is unknown but it is probable that the perichondrium plays a vital role.

Iittle is known about the role of the perichondrium in cartilage growth and morphogenesis which is surprising since every cartilage element is surrounded by a perichondrium. Carey (I922) and Fell and Canti (I934) suggested that the perichondrium might act as a constraining sheath preventing circumferential expansion and thereby favouring longitudinal growth. The idea of the perichondrium acting as a constraining sheath has been modified and has been termed Directed Dilation (Wolpert, I982; Archer Rooney and Wolpert, I982), on the basis of experimental evidence which will be considered in detail in later chapters. Relevant to this, some work has been performed on the constraining effect of the periosteum. The periosteum arises from the perichondrium and consists of an inner layer of osteogenic cells and an outer layer of fibroblastic cells. Crilly (I972) demonstrated that if a circumferential incision was made in the periosteum of the radius of an immature chicken, the radius overgrew in length compared with controls. Similar results have been presented for the immature rat (Houghton and Dekel, I979). Both groups conclude that a growing long bone is held under considerable pressure by the periosteum, and that release of this pressure, by circumferential incision of the periosteum, allows excess growth in length to occur.

It appears likely that physical constraints exerted by the perichondrium play an important role in transforming the main factors of cartilage growth and morphogenesis, cell division, cell hypertrophy and matrix secretion, into the appropriate morphogenesis observed during development. The role of the perichondrium in cartilage morphogenesis may turn out to be of fundamental importance.

This thesis will only deal with chondrogenic tissue after it has been committed and when it's morphogenesis appears to be autonomous. The autonomy of cartilage morphogenesis will be considered below.

\section*{4) Autonomy of cartilage morphogenesis}

Once chondrogenic tissue has become committed it will continue to differentiate and exhibit an almost normal morphogenesis even if it is transplanted to non-chondrogenic regions or cultured in vitro. This autonomy is expressed whether the tissue is complex, as in a whole limb, or simple, as in an isolated long bone rudiment (Murray and Huxley, I925; Murray, I926; Strangeways and Fell, I926; Fell and Canti, I934; Biggers, I964; Holder, I977a; b; c). Autonomy of morphogenesis is not restricted to limb cartilage and has been shown for scleral cartilage (Weiss and Amprino, Ig40), Meckel's cartilage (Jacobson and Fell, I94I), the sternum (Chen, I952; I953) and ribs (Kieny, Mauger and Sengel, I972). Although cultured elements retain their gross morphology, long bone rudiments do not form a mamow cavity, hypertrophic cells do not get re-absorbed and joints may fuse together (Fell and Robinson, I929; Holder, I978), which implies that some balance must exist between intrinsic and extrinsic factors in the normal development of detailed features of the mature element.

Weiss and Moscona (I958), however, suggest that the autonomy of cartilage morphogenesis is due to properties intrinsic to the cartilage cells themselves. Their experiment showed that committed periocular mesenchyme, when dissociated, always formed a flat sheet of chondroblasts but, in contrast, dissociated \(3 \frac{1}{2}\) day committed limb core mesenchyme always formed rods of cartilage similar to that produced in the limb. Wolpert (I982) would suggest that, although every cell is different by virtue of its positional information, the morphogenesis of cartilage depends, not on the nature of the positional values of the constituent cartilage cells, but on the instructions recieved from the pexichonarium surrounding each element. Possible differences in perichondrial structure would account for the various cartilage shapes produced, and, their autonomy could therefore be controlled simply by the
perichondrium. In normal development the perichondrium would interact with local extrinsic properties to produce the final element observed.

Once a long bone has ossified, continued growth is still due to growth of cartilage; in mammals each long bone forms a cartilaginous epiphyseal growth plate and growth of the bone is due mainly to growth within this growth plate.

Growth and the Growth Plate
The growth plate consists of three zones of cells with proliferation occurring only in the zone of flattened cells (Kember, I972, I973. I978). The rate of proliferation is similar for each growth plate of different long bones and it is the size of the proliferating population which determines the rate of increase in length of the bone (Kember, I978). The mechanism by which the three zones of cells are set up is therefore very important in determining the rate of growth.

The growth plate is very easily damaged (e.g. any interference with the vascular supply causes severe damage), and for this reason it has not proved possible to study the growth plate in vitro. However, as mentioned above, the chick embryo cartilaginous long bone rudiment is essentially an enlarged growth plate, and since these rudiments are accessible to direct manipulation both in vivo and in vitro they produce an excellent model for the study of the cellular basis of cartilage growth within the growth plate.

The aim of this thesis will be to discuss the factors involved in cartilage morphogenesis with reference to the role played by physical constraints. Particular attention shall be paid to the role of the perichondrium in eliciting these constraints. An attempt will be made to describe how three zones of cells are set up in the long bone rudiment, thus providing a model to describe the setting up and functioning of the epiphyseal growth plate.


Fig. I. The Apical Ectodermal Ridge (AER) maintains the cells in the Progress Zone in a labile state. As the cells leave this zone they have positional values assigned to them. Position in the proximo-distal axis is determined by the amount of time spent in the progress zone. In the case of the antero-posterior axis, position is determined by the distance of the cell from the Zone of Polarising Activity (ZPA) when it leaves the progress zone.

Fig. 2a. Whole mount of a IO day wing stained with alcian green to show the cartilage elements. H - Humerus, R - Radius, U - Una, II - Digit II, III - Digit III, IV - Digit IV。

Fig. 2b. Grafting an excess polacising region to an anterior position on a wing bud results in the formation of supernumerary digits. The digits formed are mirror-image symmetrical to the natural digits of the host.

Fig. 3. Three zones of cells can be clearly recognised in a developing long bone rudiment - in this case half of the central phalange of digit 3 at stage 32. Note the zones of rounded ( \(R\) ) s flattened ( \(F\) ) , and hypertrophic (H) cells. Rach cellular zone is contained within a multilayered perichondrium (P). Toluidine blue stain. lag. x 200 .



Fig. 4. Diagramatic Representation of Cellular Orientation in Long Bones.
(a) A pre-cartilage condensation, in cross-section, is considered to be a cylinder with randomly spaced cells.
(b) If only central cells begin to secrete cartilage matrix then pexipheral cells with be forced to flatten. The flattened cells will eventually form the perichondrium.
(c) A longitudinal section view of the central cells at a stage similar to that above.
(d) If every central cell secretes matrix and the cylinder remains the same dianeter then the cells will become evenly spaced.
(e) If the walls of the cylinder expand, in a radial direction, at the same time as central cells secrete matrix then flattening of the cartilage cells would occur.

In a developing rudiment the width is narrowest at the diaphysis but increases towards the epiphyseal region. this increase in width begins at the position of flattened cells and could account for the flattening observed. (see fig. 3).

BDIDRAI HATRPRAIS AND MITEODS

\section*{General Materials and Methods}

\section*{I) Eggs}

Fertilised White leghorn chicken eggs were obtained from a local source (Needle Farm, Enfield), and stored in a cooled incubator, at I2 \(2^{\circ} \mathrm{C}\), for \(u p\) to 7 days. To restart embryonic development, eggs were transferred to a humidified incubator at \(37-39^{\circ} \mathrm{C}\). On the third day of incubation the eggs were removed from the incubator and the blunt end was pierced to puncture the air sac. The eggs were then windowed by cutting a square into the shell using a diamond-edged cutting disc on a dentists drill, the shell was wiped with \(70 \%\) alcohol and the square was removed. The shell membrane was carefully torn, causing the 40 to collapse into the air sac, and the embryo was exposed. The embryos were staged according to Hamburger and Hamilton (I95I), the window was sealed with sellotape and eggs containing normal embryos were returned to the incubator until the desired stage was reached. Approximately \(90 \%\) of the eggs were found to be fertile and normal.
2) Media
i) BGJb - Fitton Jackson modified medium

BGJb - Fitton Jackson modified medium is a chemically defined medium used specifically for growth of cartilage explants (Biggers, Gwatkins and Heyner, I96I)。

IOOmI of BGJb - Fitton Jackson modified medium (Gibco) was supplemented with IOml of Foetal Calf Serum (Gibco), I.ImI of 200 mM I-GIutamine (Gibco), to a final concentration of \(292 \mathrm{Mg} / \mathrm{ml}\), I.Iml of a IOO x Antibiotic-Antimycotic solution (Gibco), to a final concentration of IOO units Penicillin, IOO Mg Streptomycin and 0.25 Ng Fungizone/m, and 30 mg of Ascorbic acid (AnalaR).
ii) Nutrient mixture \(\mathrm{F}-\mathrm{I} 2\) (Ham).

Hans F-I2 is a chemically defined medium used specifically for cell culture, particularly clonal cell culture (Ham, I965).

Hans F-I2 (Gibco) was supplemented with the same constituents as BGJb except, in some cases, Foetal Calf Serum was replaced by Chicken Serum (Gibco).

All media were sterilised by filtration through a sterile Millipore filter with a pore size of 0.22 num.
3) Enzymes
i) \(\operatorname{Trypsin}\)

30ng of trypsin (I:250 Difco, U.S.A.) was dissolved in IOml of phosphate buffered saline (PBS) to make a \(0.3 \%\) solution ( \(W / \mathrm{V}\) ). The pH was adjusted to 7.4, the solution was centrifuged at I250 r.p.m. for 5 minutes and the supernatant was filtered through a sterile Millipore filter. The solution was made into aliquots which were kept frozen until required.
ii) Collagenase

20mg of Type IA collagenase (Sigma) was dissolved in IOnI of PBS to make a \(0.2 \%\) solution (W/V). The solution was filtered through a Millipore filter and kept frozen until required.
4) Organ culture

Wings were removed from suitably staged embryos and placed in sterile PBS. The ectoderm and surrounding muscles were removed from skeletal elements with watchmakers forceps, isolated long bone rudiments were cleared of any remaining connective tissue either by needles made from 500 um diameter tungsten wire (Goodfellow Metals) or by carefully rolling the rudiment on a piece of dry Millipore filter. Dissections were carried out under a Zeiss Stereo IV microscope with illumination from a Schott Mainz KL I50B fibreoptic lamp. Dissections for both
organ and cell culture were carried out under sterile conditions in a Microflow hood (Flow Laboratories).

The organ culture technique used was a modification of that described by Jensen, Gwatkin and Biggers (I964). The rudiment was cultured on a piece of sterile Millipore filter which was placed on top of a stainless steel gauze grid. The grid was placed into a pool of I. 5 ml of BGJb medium in a sterilin 35 mm tissue culture petri dish and incubated in a humidified incubator with a \(5 \% \mathrm{CO} 2: 95 \%\) air mixture at \(38^{\circ} \mathrm{C}\left( \pm 0.5^{\circ} \mathrm{C}\right)\) (Forma Scientific) medium was changed every second day when the rudiment was revolved \(I 80^{\circ}\) to prevent tissue adhering to the filter.
5) Cell culture
i) Limb bud mesenchyme

Wing buds were removed from embryos between stages \(22-24\) and placed in a sterile PBS. The ectoderm and peripheral mesenchyme was cut away so that only an oblong, central core of presumptive cartilage and local comnective tissue remained. This central core was treated with \(0.1 \%\) trypsin (IOmin.) at \(37^{\circ} \mathrm{C}\) (diluted from \(0.3 \%\) trypsin with PBS). The tissue was not agitated and was therefore loose but still whole, it was then centrifuged at I000 r.p.rn. (IOmin.) and the supernatant which contained very few cells, was discarded. The pellet was resuspended in \(0.2 \%\) collagenase (IOMin.) at \(37^{\circ}\), vigourously agitated on a whirlymixer every \(2-3\) minutes, centrifuged at 3000 r.p.m. (IOmin.). resuspended, and washed twice in Hams F-I2 medium. This procedure resulted in the production of a population of single cells. Cells were counted in a haemoaydometer and plated out on glass coverslips, or on Sterilin 35 mm tissue culture dishes, at various concentrations ranging from IXIO \({ }^{6}\) cells \(/ \mathrm{ml}\) - \(2 \times I 0^{7}\) cells \(/ \mathrm{ml}\). Cells, at the initial concentration of IxIO \({ }^{6}\) cells/mI, were diluted with Hams F-I2 such that the final
concentration ranged from IxIO \({ }^{4}\) - IxIO \(0^{6}\) cells/dish. Micro-mass cultures (Ahrens et al. I979) were set up by plating out a IO ml drop containing \(2 \times 10^{5}\) cells (i.e. \(2 \times 10^{7}\) cells/mI), into the centre of a tissue culture dish. The cells were allowed to settle for 2 hours after which the dish was gently flooded with Iml of Hams F-I2 medium. All dishes were then incubated in a \(5 \% \mathrm{CO}_{2}\) incubator at \(37^{\circ} \mathrm{C}\), and the mediur was replaced every day.

\section*{ii) Long bone cartilage}

Wing rudiments were removed from 7,8 and I6 day old embryos and rolled on Millipore filters as described for organ culture. The cartilage areas of each rudiment were cut into fragments approximating the size and position of each of the 3 zones of cells. (The size and position of each zone can be estimated by studying histological sections - see results section of Chapter I). Fragments from each region were pooled and, for rounded and flattened cell regions, peripheral areas were cut away leaving a rectangular shaped piece of cartilage with very little connective tissue.

\section*{a) 7 and 8 day rudiments}

Trimmed fragnents from the rounded and flattened cell regions were immediately treated with \(0.3 \%\) trypsin (IOmin.) at \(37^{\circ} \mathrm{C}\), vigourously agitated every 2-3 minutes and centrifuged at 3000 r.p.m. (IOmin.) to settle clumpis of tissue. This treatment loosened any connective tissue from the fragments but had virtually no effect on the structure of the cartilage. The supernatant, containing the connective tissue, was discarded, the pellet was resuspended in \(0.2 \%\) collagenase ( 30 min .) at \(37^{\circ} \mathrm{C}\), and vigourously agitated every 5 minutes. After 30 minutes the clumps had almost totally dissociated into single cells and these were centrifuged, washed and plated out as above.

Cells were obtained from the hypertrophic cell fragments by utilising one of two methods. The first method was to trim the
fragments and dissociate them in the same way as described above. The second method was to gently squash the hypertrophic cell fragments under a glass coverslip prior to any enzymatic treatment. This resulted in a piece of hypertrophic cartilage, free from any connective tissue, being expelled from each end of the fragment (see Chapter 3). The expelled pieces of cartilage were pooled and dissociated in the same way as the rounded and flattened cell fragments.

Both methods gave equal numbers of hypertrophic cells which appeared identical in culture, but, since squashing the cartilage gave a completely homogenous population of chondrocytes, this method was most often used for the isolation of hypertrophic cells. This method was not used for rounded or flattened cell fragments since the connective tissue seemed to stretch and the cartilage was never found to be free of connective tissue.
b) I6 day rudiments

The cartilaginous areas were cut away from the bony centre with a scalpel blade before they were cut into fragments. Every fragment was trimmed into rectangular shaped pieces because hypertrophic cartilage at this stage could not be squashed under a coverslip. The pieces of cartilage were dissociated in the same manner as for younger rudiments but the treatment times differed; treatment with \(0.3 \%\) trypsin was for I5 minutes, and treatment with \(0.2 \%\) collagenase varied from I-2 hours depending on the region being treated. (Hypertrophic cells took longer to dissociate then rounded cells). This dissociation procedure always left some clumps of cartilage which were removed by centrifugation at IOO r.p.m. for 3 minutes. The supernatant contained a population of more or less single cells which were then centrifuged and plated out as above.
6) Eixation and Histology
i) Long bone rudiments
a) Wax sections

Rudinents were fixed immediately, or after various days in culture, for 2 hours in Bouins general fixative, dehydrated through a graded series of alcohols ( 2 changes in \(50 \%, 70 \%\) and \(90 \%\) - I 5 minutes each, 2 changes in \(100 \%\) - 30 minutes each), cleared in xylene ( 2 changes of 30 minutes each) and embedded in paraffin wax ( 2 changes of 30 minutes each, followed by final embedding) (Solmedia Ltd.). Serial sections, 7 rum thick, were cut on a rotary microtome (Reichart Instruments, Austria), hydrated and stained either with Harris's hematoxylin and eosin or \(0.2 \%\) toluidine blue (Humason, I979).
b) Araldite sections
I) Light microscope

Rudiments were fixed for 2 hours in ice cold, half strength
Karnovsky, cacodylate buffered, formalin/gluteraldehyde mixture (Karnovsky, I965), rinsed in 0.IM cacodylate buffer and dehydrated through the alcohols as above (Rudiments could be stained, en bloc, with \(0.1 \%\) alcian green 2CX, (made in I\% acid alcohol), for I hour between changes in \(70 \%\) alcohol, to faciliate orientation during sectioning). After dehydration, rudiments were cleared in propylene oxide ( 2 changes of 15 minutes each), placed in a I:I mixture of propylene oxide : Araldite resin (30min.) and embedded in Araldite (Agar aids). Serial sections, I fum thick, were cut on a Cambridge Huxley MkII ultramicrotome and stained with 0.I\% toluidine blue. 2) Dlectron microscope

Rudiments were fixed and washed as for light microscope sections, they were then post-fixed in cacodylate buffered I\% osmium tetroxide for I hour at \(4^{\circ} \mathrm{C}\). The dehydration and embedding procedure was identical to that described above except that the rudiments did not require staining with alcian green. I fum thick sections were stained with \(0 . I \%\)
toluidine blue for the light microscope whilst ultrathin sections, O.I Am thick, were picked up on chodium - coated copper grids (Graticules ita. - 200 mesh), stained with \(4 \%\) aquous uranyl acetate (5min.) (AnalaR) and/or lead citrate (3min.) (Reynolds, I963), and examined using a Phillips m 300 electron microscope.

\section*{ii) Cell cultures}

Micro-mass cultures were rinsed in serum-free Hams F-I2, gently Ioosened and freed from the tissue culture dish and processed as above for sectioning in araldite. To visualise non-micromass cultures, in situ, the cell cultures were rinsed in serum-free Hams F-I2, and fixed by adding Iml of an ice cold 3:I alcohol : glacial acetic acid mixture to the culture dishes for IO minutes. The dishes, or coverslips, were rinsed twice in ice cold trichloro-acetic acid, rinsed twice in ice cold double distilled water and allowed to dry in air. Cells were stained with alcian blue (pH 2.8) and nuclear fast red or with \(0.2 \%\) toluidine blue (Humason, I979).
7) Autoradiography
i) 3 H-thymidine
a) Labelling

Excised 7 day old (stage 32) cartilage rudiments were grown in organ culture for at least I hour before the medium was removed and replaced by I. 5 ml of BGJb medium containing \(15 \mathrm{ala} \mathrm{Ci} / \mathrm{ml}\) of \(6 \mathrm{~m}^{3}\) H-thymidine (Amersham International, specific activity \(23 \mathrm{Gi} / \mathrm{m} \cdot \mathrm{mol}\) ). \(3_{\text {H-thymidine }}\) is incorporated into DNA during the \(S\) phase of the cell cycle and is therefore a marker for those cells which passed through the \(s\) phase during the period of incubation with the label. The incubation period varied from I- 24 hours after which the rudiments were fixed and sectioned (wax and araldite) as described above. Sections from the centre of each rudiment were floated on subbed slides (Rogers, I967),
ailowed to dry and dipped in nuclear emulsion gel. (I5m Ci of \({ }_{\mathrm{H}}\). thymidine was sufficient to label chondrocytes in vivo (Lewis, I977) and this was chosen arbitrarily to ensure a high degree of incorporation over a short period of time).

Cell cultures, growing on glass coverslips, were labelled by replacing the medium with Hans F-Iz containing \(2 \mathrm{M} \mathrm{Ci} / \mathrm{ml}\) of \({ }^{3}\) H-thymidine. The period of labelling varied from I-I6 hours, after which the cells were fixed and dried as described above. After drying, the coverslips were mounted onto subbed slides and dipped. ( \(2 \mathrm{NaCi} / \mathrm{ml}\) of \(\mathrm{B}_{\mathrm{H} \text {-thymidine }}\) has been shown by many workers to be sufficient to label cells in vitro, including chondrocytes from the vertebrae of 10 day old chick embryos (Murison, I972).
b) Dipping

All procedures were carried out in the darkroom under safe light F-904 (Ilford). Nuclear emulsion gel, type I4 (Ilford), was melted at \(43^{\circ} \mathrm{C}\) in a water bath and diluted I:I with a solution of \(2 \%\) glycerol (AnalaR) in distilled water. The mixture was gently stimred, allowed to settle for 2 minutes and excess bubbles were removed by dipping test slides into the mixture. When no bubbles were present, the slides were dipped vertically into the mixture, removed and drained of excess emulsion. The back of the slide was wiped clean and the slides were placed, sections up, onto a cooled metal tray to dry and solidify. When dry, the slides were placed in light-tight boxes, sealed in black plastic bags and stored at \(4^{\circ} \mathrm{C}\).

The path distance of \({ }^{3}\) H-thymidine (Beta particles) is approxinately 3 um (Rogers, I967), therefore, wax sections ( 7 m thick) and labelled cells (at least 5 mm thick) contained, effectively at least twice as much radioactivity as Araldite sections (I Nm thick). Therefore, the exposure time varied depending on the type of section dipped; wax sections and cell cultures only required 2 weers exposure whilst

Araldite sections required 4 weeks.
c) Developing

Slides were allowed to reach room temperature, still sealed in light-tight boxes, before being developed for 7 minutes in Kodak DI9 developer, at \(20^{\circ} \mathrm{C}\). in the darkroom. Developed slides were washed in running water (IOmin.) and fixed in a I: 4 dilution of Amfix (IOmin.) (Nay and Baker Ltd.). Slides were then re-washed in running water (IOmin.), rinsed twice in double distilled water (IOmin. each), stained as above and examined under the light microscope.
ii) \(3_{\text {H-thymidine }}\) - scintillation counter

After 2 days of culture, \(3_{\mathrm{H} \text {-thymidine }}(2 \mathrm{MCi} / \mathrm{ml})\) was added to stage 23-24 limb bud mesenchyme for I6 hours. The labelled medium was then removed and the cells were washed 3 times in P.B.S. before being fixed in absolute methanol ( 5 minutes at \(0^{\circ} \mathrm{C}\) ). After fixation the attached cells were washed in TCA and dissolved in 0.5 ml of 0.3 M NaOH which in turn was dissolved in 5 ml of "Aquasol 2 " liquid scintillation cocktail (NEN) and the activity measured in a Packard Tri-Carb liquid scintillation counter.
iii) \(\xrightarrow{\mathrm{Na}_{2}{ }^{35} \mathrm{SO}_{4}}\)

The synthesis of sulphated glycosaminoglycans by stage 23 limb bud mesenchyme cells, and stage 32 chondrocytes, in vitro was determined by incubating the cells in the presence of \(\mathrm{Na}_{2}{ }^{35} \mathrm{SO}_{4}\) (Amersham International). Cells were grown at a concentration of \(2 \times 10^{5}\) cells \(/ 35 \mathrm{~mm}\) sterilin petri dish for 2 days, before the medium was replaced with medium containing \(\mathrm{Na}_{2}{ }^{35} \mathrm{SO}_{4}\) at a concentration of \(2 \mathrm{aCi} / \mathrm{ml}\) and incubated for a further I6 hours.

Sulphated glycosaminoglycans may be deposited into the extracellular matrix or may be released into the medium in soluble form, thus the synthesis must be measured in different ways.

\section*{a) Matrix deposition}

After the I6 hour labelling period, the cultures were washed 4 times in P.B.S. and digested, at \(37^{\circ} \mathrm{C}\), for 2 hours in Iml of hyaluronidase ( \(0.5 \mathrm{mg} / \mathrm{ml}\) ) (Sigma) made up in Sorensens buffer (pH 5.6). The digests were dissolved in 5ml of "Aquasol 2" liquid scintillation cocktail (NEN) and the activity measured in a Packard Tri-Carb liquid scintillation counter. This is essentially the method of Meier and Solursh (I972).
b) Soluble glycosaminoglycans

Medium, pooled from 3 identical cultures, was centrifuged at 3000 r.p.m. ( 5 min.) to remove any floating cells. Iml of the supernatant was removed and into this was added 0.2 ml of 2 M Tris buffer, 0.7 ml of double distilled water, 0.1 Iml of chondroitin sulphate ( \(10 \mathrm{mg} / \mathrm{ml}\) ) and Iml of I\% cetylpyridinium chloride consecutively. The mixture was allowed to stand for 5 minutes and was then centrifuged at I2000g for 15 minutes, on an ultra-centrifuge, at room temperature. The precipitate was resuspended in ice-cold distilled water, centrifuged at I2000g for 15 minutes at \(0^{\circ} \mathrm{C}\) (to prevent the precipitate dissolving), resuspended and centrifuged again. The final precipitate was dissolved in Iml of absolute methanol and counted in 5 ml of "Aquasol 2 " as described above. This method is similar to that of De la Haba and Holtzer (I965).
```

GHADTDABOM\&

```


\section*{Introduction}

Growth of cartilage long bone rudiments occurs by a combination of cell division, cell hypertrophy and secretion of extracellular matrix. Hall (I978) defined growth as "a permanent increase in the size of any perameter that is measurable," in the case of cartilage, growth is manifested as an overall increase in length and/or an increase in rudiment diameter. The earliest growth of a cartilase rudiment can be represented as the proliferation of precursor cells and the accumulation of progenitor cells into pre-cartilage condensations. The mitotic index of cells during and after the formation of condensations in the chick wing bud has been investigated extensively (Janners and Searls, I970; Hombruch and Molpert, I970 and Iewis, I975), and the results indicate that a proximo-distal increase in cell division ocurs. Cell Kinetic studies have also been performed on the epiphyseal growth plate of juvenile rats (Kember. I972: 1973: I978) and these have demonstrated that, within one animal, rates of proliferation in every growth plate are similar although the labelling indices are different. Kember found that incorporation of tritiated thymidine was confined almost entirely to the proliferation zone, and suggested that the size of the proliferating cell population may be an important factor controlling long bone growth. Very little work, however, has been performed on the intermediate stage of the cartilaginous long bone mudiment. Each long bone rudiment has a different rate of increase in length and can be ranked, in ascending rates of growth, as follows: radius, ulna, humerus, tibia and femur (Fell and Mellanby, I955: Summerbell, I976). The growth of cartilage rudiments in vitro has also been comprehensively studied (Pell and Robinson, I929; Fell and Mellanby, T955 and Holder, I978) and once again, ascending rates of
growth are found. However, in both cases the cellular changes which bring about the increase in length have been Iittle studied. Stocum et al (I979) Eramined the distal half of the chick tibiotarsis by measuring the length of each histogenic zone of cells, but paid no attention to any changes in cell number or distribution within the zones as the tibia developed.

This chapter aims to study the growth of long bone rudiments of the chick wing, particulary the ulna, in terms of increases in length, changes in number and distribution of cells within the rounded, flattened and hypertrophic zones and the pattern of cell labelling in these zones aiter incubation with tritiated thymidine both in vivo and in vitro. The ulna has been chosen because it appears at the same time as the humerus but does not have a kink in the centre of the diaphysis (Sumerbell, 1976), also, the radius has already been examined for cell number changes (Holder, I978).

\section*{Materials and Methods}

Rudiments were removed asceptically from the wings of embryos between stage 30 - stage 36 ( 6 -IO days), measured immediately using a calibrated eyepiece graticule, and then cultured for up to 4 days, as described previously, Cultured rudiments were measured daily and samoles were fixed, in \(\frac{1}{3}\) strength Kamovsky fixative, for histological examination.

Cell counts were only camied out on longitudinal sections of ulnae: sections were selected from the centre of each rudiment and cells were counted using a x40 objective and an eyepiece grid divided into IOO squares. Total numbers of cells in each histological zone wexe counted together with the number of cells along the longitudinal awis, the number of cells across the transverse axis and the density of cells present in each zone. The total length of each zone was also measured,
however, these measurement are slightly arbitary since the boundaries between zones are not clear. Zonal boundaries were defined as the regions where the cell type of the adjacent zone began to predominate.

Labelling indices were calculated from stage 30 and stage 33 ulnae which had been incubated with \(15 \mathrm{NOI} / \mathrm{ml}\) of 3 H-thymidine in vitro for times ranging from \(2-6\) hours. Again, only labelled cells in central sections were examined. Grain counts were not necessary since the cell was either heavily labelled or not labelled at all. Cell counts for labelling indices could only be carried out on cultured mudiments because of the impracticability of labelling in vivo - see Discussion.

\section*{Results}
I) Increase in Iength
i) In vivo

The mean lengths and the rates of increase for each long bone mudiment of the wing are shown in Table \(I\). Dach rudiment increased in length by approximately \(275 \%\) from stage 30 - stage 36. The mean lengths and mean growth rates appear similar for each rudiment (Table I) but this is due to slight differences in times of development between specimens; when an individual wing was measured, the humerus was always longer then the ulna which in turn was always longer than the radius.

Each rudiment exhibited a similarly shaped growth curve (Fig. I), with the growth rate being unirom until stage 32 when a large increase was observed. This higher rate was naintained until stage 34 when another increase in rate was observed (Fig. I).
ii) In Vitro

Table II shows an increase in length of approximately I30f for stage 30 rudiments over a 4 day period in culture. (Stage 30 rudiments
would be expected to increase by approximately \(190 \%\) over the same period in vivo). The pattem of growth seems autonomous since the radius retained the lowest growth rate and the humerus retained the highest. In vitro growth curves (Fig. 2) are very different from those for in vivo rudiments (Fig. I). Initially, the in vitro growth rate approaches the in vivo growth rate for the first day of culture but there is a constant decrease in growth rate thereafter, if rudiments are cultured for IO days or more linear increments cease and a plateau is observed. (not shown). The general shape of an in vitro growth curve, for any given rudiment, was similar irrespective of the age of the mudiment prior to culture.
2) Histology
i) In vivo

At stage 28 the ulna appears to have only two distinct types of cartilage cell, a central zone of flattened cells with a much smaller zone of rounded cells at each end (Fig. 3). Some flattened cells in the centre of the rudirent are beginning to enlarge but no recognisable hypertrophic cells are yet present. At this stage a loose perichondrium can be observed around the central region, but at the "epiphyseal" ends the chondrogenic cells merge imperceptibly into the sumrounding mesenchyme. By stage 30, however, several distinct hypertrophic cells are present and the ulna resembles a typical cartilage long bone rudiment with 3 histological cell types - rounded, flattened and hypertrophic (see Fig. 4). The perichondrium around the hypertrophic cell region is more distinct than at stage 28 , the perichondrium around the flattened cell regions appears loose and at the epiphyseal ends the cartilage continues to merge into the mesenchyme (Fig. 4).

The periosteum first appears around the centre of the region of hypertrophic cells at stage 32 and is closely followed by sub-periosteal
osteoid formation (Fig, 5). The perichondrium is fairly distinct around the flattened cell regions and oy now a loose perichondrium is observed covering the epiphyseal ends. At the proximal end of the ulna, the beginnings of a protrusion, the olecranon, is observed. In vivo the olecranon forms a groove for the ulna to fit into at the elbow (Fig. 5). At stage 34 (Fig. 6), 3 zones of cells are still present and the bilayered periosteum surrounds the whole of the hypertrophic cell region. At the junctions of the hypertrophic cell zone with the flattened cell zones the periosteum is replaced with a perichondrium (Fig. 6). The olecranon is more pronounced and appears as an asymmetric extension of the epiphysis.

The invasion of blood vessels into the cartilage and the formation of a marrow cavity begins, in the ulna, at stage 35 (Fig. 7) when central hypertrophic cells are resorbed. (The region where the blood vessels will enter can be recognised at stage 34 (Fig. 6).) From this stage onwards the gross histology changes little except that the bony area becomes progressively larger at the expense of cartilaginous regions.

Although the gross internal configuration of the chondrocytes changes littile between stage 30-stage 34, a transitory change in the orientation of cells within zones occurs in some rudiments between stage 30 - stage 3I. At this stage, flattened cells in the centre of the rudiments (which are aligned with their long axis perpendicular to the long axis of the rudiment) appear to remorientate whilst they are in the process of hypertrophying (they now have their long axis parallel to the long axis of the rudiment). This re-orientation is particularly evident in the humerus (Fig. 8) and is not apparent by stage 32. A similar orientation has been observed in the tibia (Archer, unpublished observation).

If intact, non-sectioned rudiments are looked at, between stage 32 - stage 34 it is possible to identify the position of each cellular zone by examination using incident illumunation (Fig. 9). The junctions of the zone of hypertrophic cells with the zones of flattened cells occurs at the point where the diameter of the diaphysis begins to increase, also, because of the periosteur there is a difference in contrast between the two zones. The periosteum surcounding the hypertrophic cell zone appears opaque whereas the perichondrium surrounding the flattened cell zones appears clearer and lighter in colour. The boundary between the zones appears almost as a suraight Iine (Fig. 9). The function between the zone of flattened cells and the zone of rounded cells is not so readily identified but it can still be seen and can be accurately estimated. This means of identifying each zone can be used to set up cell cultures of individual chondrocyte cell types. The efficiency of this gross method of zone separation is shown in Figure 10.

\section*{ii) In vitro}

When a stage 30 ulna is grown in vitro for four days it increases in length such that it approaches the length of a stage 35 ulna in vivo (Tables I and II) (stage \(30-\) stage 35 takes \(2 \frac{1}{3}-3\) days in vivo). The "dumb-bell" shape of the rudiment has been retained and the cultured rudiment develops a gross morphology similaz to that of the non-cultured stage 35 ulna (Fig. IIa). The histological structure, however, is quite different (Fig. IIb, compare with Fig. 7).

Sub-periosteal bone formation and the spread of hypertrophy have begun as in vivo but no invasion of blood vessels or resorption of cartilage is observed (Fig. IIb). Also, the olecranon, vistible in non-cultured rudiments (Figs. 6 and 7), fails to appear so that both epiphyseal ends now appear rounded (Fig. IIa).

The increase in length observed in culture (up to \(70 \%\) of the in vivo increase), together with the continuing spread of hypertrophy suggests that a large proportion of the increase in length in vivo is due to properties of the cartilage rudiment itself. It would appear, however, that enviromental factors are necessary for the process of osteogenesis to proceed further than the first collar of sub-periosteal bone.

\section*{3) Cellular changes during cartilage growth}

Along the proximo-distal axis of a cartilage rudiment, 5 zones of cells can be observed - rounded, flattened, hypertrophic, flattened and rounded (see Fig. 6). Tables III - VII present data for the uIna, between stage 30 - stage 34 , detailing the lengths of each individual zone, the number of cells, end to end, along the length of each zone, the number of cells across the width of each zone the total number of cells in each zone, and the density of cells in each zone. Wach table also includes the same data for a stage 30 ulna which has been cultured for 3 days. Unae were cultured for 3 days so that they would be approximately equal in length to a stage 34 non-cultured ulna (compare Table I with Table II). For ease of understanding non-cultured and cultured data will be considered separately.

\section*{i) In vivo}

Although each table presents differing data there are several similarities in the general trends observed. These are outlined. below.
a) Proximal zones are generally larger than their corresponding distal zones: they are longer (table III), contain more cells end to end (Table IV), contain more cells across their width (Table V) and have a greater cell number (Table VI) for every stage studied. However, there is no difference in cell density between proximal and
distal zones (Table VII).
b) Each zone increases in length during the period studied (Table III) but only the hypertrophic zone increased in length proportional to the whole rudiment. by defintion if one zone increases in proportion, others must decrease, in the case of cartilage long bone rudiments the hypertrophic zone increases in poportional length at the expense of flattened zones (particularly the proximal zone) and to a lesser extent rounded zones (Table III). The hypertrophic zone is also the only zone to show a proportional increase in cell number end to end (Table IV), once again at the expense of flattened and rounded zones.
c) Each zone, shows an increase in total cell number (Table VI). Both the hypertrophic cell zone and the proximal rounded cell zone show a proportionai increase in total cell number at the expense of both flattened cell zones and the distal rounded cell zone.
d) Each zone shows an increase in the number of cells across the width of the rudiment and this increase is always greater in rounded zones than in flattened zones (table V). The hypertrophic zone only increases in cell number across it's width until stage 32 when it remains fairly constant until the cells are resorbed (Table V).
e) The hypertrophic zone starts out as one of the smallest zones but from stage 32 - stage 34 it is clearly the longest individual zone (Table III). This spread of hypertrophy can be best observed as the increase in the number of cells end to end along the longitudinal axis of the zone. For the ulna, this spread proceeds at a rate of approximately \(50 \%\) of the existing number of cells per developmental stage (Table IV).
1) Rounded cell zones have a higher cell density than flattened cell zones which in turn have a higher cell density than hypertrophic
zones (Table VII). Cell densities tend to decrease from stage \(30-\) stage 34 in every zone except for an increase in cell density of rounded cells between stage 32 - stage 33 (Table VII).

\section*{ii) In vistro}

Tables III - VII show that when a stage 30 ulna is cultured for 3 days the overall picture is similar to that of a stage 34 non-cultured ulna. However there are several small differences which can be grouped together as follows:
a) The cultured rudiment is very similar in length to the stage 34 non-cultured ulna but it has longer zone lengths (Table III), has more cells end to end (Table IV) and has an increased total cell number (Table VI). Proximal zones are now similar in length to distal zones making the rudiment more symmetrical (Table III, Fis. I2).
b) When individual zones are looked at, it is observed that every zone, except the proximal rounded zone, increases in length (Table III), contains a higher number of cells end to end (Table IV) and has a higher total cell number (Table VI) when compared with non-cultured ulnae. The proximal rounded zone, however, is smaller (Table III), has fewer cells end to end (Table IV) and has a lower total cell number (Table VI) when compared with a stage 34 non-cultured ulna. The lack of rounded cells is compensated for by an increase in the total number of proximal flattened cells present (Table VI).
c) Puch of the increased cell number in distal zones (Table VI) can be accounted for by an increase in the number of cells across the width of these zones (Table V). Proximal zones do not increase in width when compared with stage 34 non-cultured rudiments (Table V).
d) The hypertrophic zone does not increase in the number of cells across it's width (Table V) but it does increase dramatically in the number of cells end to end (Table IV). This results in the hypertrophic
zone becoming the longest zone (Table ITI) with the greatest number of cells (Table VI).
e) The cell density in each zone is lower than that found in comesponding zones of stage 34 non-cultured ulnae (Table VII).

\section*{4) Labelling Indices}

Calculations of labelling indices were carried out on the radius, ulna and humemis at stage 30 and stage 33 ( 6 and 8 days) after incubating the rudiments in tritiated thymidine for 2, 4 or 6 hours. Table VITI shows the overall labelling index for each whole rudiment. The percentage of cells labelled at any given time was remarkably similar for each moiment studied. The labelling index increased When labelling time was increased from 2 to 4 hours but remained static between 4 and 6 hours for both ages studied. There would appear to be a decrease in the overall labelling index between stage 30 and stage 33 for each rudiment at each time interval. Since 4 hours of labelling produces the highest percentage of labelled cells, figures 13-I8 show the pattern of labelling in each rudiment at this time.

When the labelling index of each individual zone is looked at (Tables IX - XIV), it is observed that there is always a higher percentage of rounded cells labelled than flattened, and always more Plattened labelled than hypertrophic. Hypertrophic cells hardy label at aIl in the radius and ulna (Figs. I3, I4, I6 and I7). Hypertrophic cells which do label are near the border with the flattened zones and perhaps should be considered as hypertrophying flattened cells. The only mdiment to show any significant labelling of hypertrophic cells is the stage 30 humerus (Table XI, Fig. I5): and it is important to note that this is the time when re-orientation of flattened cells is taring place as mentioned in section 2 above.

For any labelling time in both the stage 30 and stage 33 radius
and ulna, the labelling index of cells in the distal rounded cell zone is almost always higher than in the proximal rounded cell zone (Tables IX, X, XII and XIII). The humerus, on the other hand has a slightly higher index in the proximal rounded cell zone (Tables XI and XIV). However, if the rudiment is considered as two separate halves and the overall labelling index of the rounded plus flattened cell zone in each half is calculated, very little differences are observed between proximal and distal halves (Tables IX - XIV)。

\section*{Discussion}

The results presented in this chapter provide a detailed account of the growth of cartilaginous long bone rudiments of the chick wing. Growth is dealt with in terms of increases in length, increases in cell number and the labelling index of cells at any given tirne.

The hierarchy of growth rates shown in Table I is in general agreement with that observed by Fell and Mellanby (I955) and Summerbell (I976), however, the values presented here are from living, unfixed material and therefore require no consideration of shrinkage factors. The increase in length observed per stage is not unifom (Fig. I) with spurts in growth occurring between stage 32 - stage 33 and between stage 34-stage 35. This observation may be corroborated by a careful study of Figure 4 in Sumnerbell's I976 paper which shows growth curves for various chick wing mudiments. If tangents are drawn on these curves at the points where the slope of the curve changes, then at least 2 points are found - one between \(7-8\) days and one between 8-9 days of develoment, which correspond to the stages mentioned above. It also seems likely that a spurt in growth occurs between stage 29 stage 30 , but because of the difficulty in obtaining accurate linear measurements of stage 27 and stage 28 rudiments this additionai
acceleration in growth camot be verified precisely.
The growth spurts shown in Figure I may be correlated with histological observations. The perichondrium is replaced by a periosteum around the middle of the diaphysis at stage 32 coinciding with the first appearance of osteoid and osteogenic tissue. Fron this stage onwards, the central cartilase core of the diaphysis ceases to expand in width (Table V) and this would cause any furcher increase in volume to be represented as an increase in length. Therefore, a sudden increase in length, as shown in Fig. I, might be expected.

Osteogenesis, associated with the onset of vascular invasion, occurs between stage 34 - stage 35 in the ulna, (Fig. 7), and it is possible that factors, present in the blood, accelerate growth at this time. This may be similar to the action of growth hormone on the growth plate of hypophysectomised rats (Isaksson, Jansson and Gause, 1982). The possible spurt in growth which may occur between stage 29 - stage 30 , could be explained simply by the onset of cell hypertrophy (Figs. 3 and 4) causing a rapid increase in cell volume which is again manifested largely as an increase in length.

When grown in organ culture, cartilage rudinents exhibit a high degree of autonomous growth in that the gross morphology is very similar to an equivalently sized in vivo sample (Fig. IIa). The overall growth rate observed was higher than that obsexved by Fell and Mellanby (I955) Which implies that the culture system used here is more efficient (Table II). No growth spurts were observed in cultured rudiments after the first day of culture the rate of elongation constantly decreases so that by IO - I4 days in culture a plateau is reached and the rudiment ceases to increase in length (data not shown). A cultured stage 30 ulna foms a periosteun during the first day and this may play some role in keeping the rate of increase similar to that found in wivo.

Histological studies show that at an early stage (stage 28) the in vivo uina consists of only two cell types, rounded and flattened (Fig. 3), with the third ceil type, the hypertrophic cell, appearing at stage 30 (Fig. 4). It is generally accepted that at any given stage the ulna is more advanced than the radius but less advanced than the tibia. However, Holder (I978) states that 3 types of cell are present in the radius by stage 28 and stocum et al (I979) do not mention the existence of the 3 cell types in the tibia until day 8 (stage 34).

The histological appearance of embxyonic chick limb rudiments has been well documented (e.g. see Fell, I925 and Holder, I978) and therefore will not be considered in detail here. For the purpose of this chapter the main points are that between stage 30 - stage 34 an embryonic rudiment consists typically of 3 types of chondrocytes, the hypertrophic zone begins as the smailest zone, in the centre of the diaphysis, at stage 30 and spreads along the diaphysis towards the epiphysis so that by stage 32 it is the largest individual wone. (Fiss. 4 and 5, Table III).

The problem as to why a rudiment increases in length much more than in width may be explained in part by an understanding of the process of hypertrophy. Hypertrophic cells arise from flattened cells and examination of any rudiment shows, that the long axes of flattened. cells are arranged perpendicularly to the adjacent perichondrium and therefore roughly perpendicular to the long axis of the rodiment (Fig. 6). The process of hypertrophy involves a massive increase in volume of a flattened cell which can be most simply envisaged as an increase in the size of the small axis of the cell. i.e. the width, (Fis. 19). Skalaslek (personal commacation) has pointed out that such an increase in volume would be transferred, almost totally, into
longitudinal growth. Also, once a pexichondrium/periosteum has formed. this may form a constraining barrier resisting transverse expansion and, therefore, favour growth in a longitudinal direction (Iutfi, I974). The role of the perichondrium/periosteum as a constraining barrier will be considered in a later chapter.

It is obvious from histological examination that during the process of growth and development changes take place in the configuration of the cellular zones. These changes have been studied in vivo and in vitro. Analysis of the lengths of each zone of a non-cultured ulna is in general agreement with the results of Stocum et al (I979) on the tibia in that the length of each zone increases as the embryo develops (Table III). However, in the cese of the ulna only the hypertrophic zone increases by such a degree that it increases in length in proportion to the original size of the rudiment (Table III). This suggests that the spread of hypertrophy throughout the rudiment may be one of the most important factors in the overall increase in length observed.

The spread of hypertrophy can be observed clearly when the number of cells end to end along the longitudinal axis are counted for each developmental stage. This spreaz occurs at a uniform rate such that, at any given stage, the number of hypertrophic cells end to end will be \(50 \%\) greater than the number of cells end to end at the previous stage (Table IV). The inportance of cell hypertrophy has been shown by Biggecs and Gwatkin (I964), who prevented cell division by X-irradiation and observed that a rudiment continued to increase in length by up to \(30 \%\) of the controls. However, this reduction of \(20 \%\) in length and the lack of a uniform growth curve (Fig. I) suggests that the other zones must also play a role in the growth process.

Wuch of the growth effect of the rounded cell zones is to produce a large increase in the number of cells across the width of the zones
(Table V). In the case of the distal rounded cell zone it would appear that almost all of it's increase in cell number (Table VI) is used to widen the zone since this zone shows the smallest increase in length (Table III) or number of cells along the longitudinal axis (Table IV). This is consistant with the findings of Hert (I972) who stated that interstitial growth within an epiphysis contributed to a rudiment"s increase in width. The proximal rounded zone undoubtedly plays a role in the increase in length by producing the olecranon beginning at stage 32 (Fig. 5). This coincides with a large increase in rounded cell number between stage 32 - stage 33 (Table VI) and a large increase in the number of cells end to end (Table IV).

Both of the flattened zones produce a similar pattern in their amount of growth per stage except that the proximal zone is always larger (Tables III and IV) and contains more cells (Table VI) then the distal zone. In these flaitened zones the cells appear to be arranged in overlapping rows across the width of the zone (Fig. 5) and since the width of these zones does not increase by as much as the rounded zones (Table V), polarised secretion of matrix (Trelstad, I977; Holmes and Trelstad, I980), if it exists, would allow these zones to play a greater role in an increase in length rather than in wicth.

As every zone increases in size during development, the cell density in each zone decreases (Table VII). The decrease in cell density in rounded and flattened cell zones between stage 30 - stage 34 suggests that the increase in total cell number which occurs (Table VI) is insufficient to keep up with the general increase in size of the zones (Tables III, IV and V). The area of rounded or flattened cells change little during this period (see next chapter), therefore the lower cell density must be due to an increased accumulation of extracellunar matrix around each cell. Although the hypertrophic cell zone increases in size
between stage 30 - stage 3 , so too does the hypertrophio ceII. This increase in cell area can account for the decrease in cell density. The transient increase in cell density observed in the rounded cell zones between stage 32 - stage 33 (Table VII) coincides with a large increase in the number of cells which are present at that time (particularly in the proximal rounded cell zone) (Table VI). This increase in cell number and cell density may account, in part, for the growth spurt observed at this time (Fig. I).

When a stage 30 ulna which has been cultured for 3 days is studied the first impression is that it is only slightly larger than a stage 34 non-cultured rudiment. However, the lengths of most zones are increased (Table III) and there is a greater number of cells overall (Table VI). It must be noted that the proximal counded cell zone is shorter (Table III), has fewer cells end to end (Table IV) and has a lower cell number (Table VI) than the correspondins zone in a stage 34 rudiment. This discrepancy can be accounted for by the fact that the cultured mudiment does not develop an olecranon (Pig. I2) and the zone appears more uniformly round. The width of this zone does not decrease (Table V) winch suggests that the zone is growing efficiently in the culture system and that the olecranon may form in vivo due to some factor extrinsic to the uina. The olecranon fits around the elbow joint in Vivo and it may be that mechanical pressure from the humerus is required. for the development of this protrusion. The lack of a protmasion in cultured ulnae is similar to the lack of a groove across the femoral head, housing the acetabular ligament found when femora were cultured. (Wurray and Selby, I930).

If a stage 30 ulna were to continue developing for 3 days in vivo it would become a stage \(35 / 36\) ulna which, would have many more cells than a stage 34 ulna. When a stage 30 una is grown in vitro for 3 days it does have more cells than a stage 34 non-cultured ulna (Table VI)
which suggests that the cultured rudiment may be continuing to grow at a cellular rate similer to that in vivo.

If each zone, from a cultured rudiment, is considered individually it is found that both flattened zones, the hypertrophic zone and the distal rounded zone all increase in size and cell number (Tables IV and VI). The large increase in proximal flattened cells observed when compared with proximal rounded cells (Table VI) may simply be due to the lack of the olecranon extending from the rounded zone, however, several different rudiments exhibit a large increase in flattened cells When cultured. (Archer, personal communication) and this may be a property of the culture system. The hypertrophic zone continues to spread at a rate which is similar to that observed in vivo (Table IV).

The density of cells in each zone of a stage 30 cultured rudiment is lower than that found in the corresponding zones of a stage 34 noncultured rudinent (Table VII). Non- cultured rudiments show a decrease in cell density with increasing developmental stage (Table VII) and it is possible that the lower cell densities observed in cultured rudiments are just a continuation of this process.

These results indicate that the culture syster used is efficient and allows the cartilaginous zones to develop at a rate similar to that of in vivo rudiments. It proved technically difficult to incorporate \(3_{\text {H-thymidine into cartilage rudiments in vivo (injection of labelled }}\) medium into the blood system resulted in labelled mesenchyme, sometimes labelled perichondrium but never labelled cartilage - probably because of the avascular nature of early cartilase) but if the culture system allows development to continue as in vivo then incorporation of \({ }^{3} \mathrm{H}-\) thymidine in vitro for short periods of time should provide useful information as to labelling inaices in vivo. Tables IX - XIV present values for the labeling indices of the radius, ulna and humerus at stage

30 and stage 33. The general conclusions from these tables are:
I) Rounded cell zones have a higher labelling index than flattened. cell zones which in turn have a higher labelling index than hypertrophic cell zones.
2) Distal halves of the radius and ulna tend to have a higher labelling index than proximal halves.
3) In the case of the humerus, proximal halves tend to have a higher labelling index than the distal halves.
4) Stage 30 rudiments have a higher labelling index for each individual zone (and for the whole rudiment) then a stage 33 rudiment. (To achieve the overall labelling index for each maiment the total mumber of cells were counted, it was found that the total cell number of a stage 33 radius cultured for 2 hours -3836 was remarkably similar to that found by Holder (I977) in a stage 33 non-cultured radius 3627. The excess cells found here are probably due to growth in yitro). Rember's work on the kinetios of growth plates in bones of juvenile rats (I972: I973: I978) also included data on the labelling indices of the individual growth plates. It is difficult to directly compare Kember's results with those listed above since cartilage long bone cudiments do not have epiphrseal growth plates. However, if a long bone rudiment is considered as two separate halves and each hale (rounded plus flattened cell zones) is thought of as being equivalent to an individual growin plate, general comparisons can then be made. When this is done, important similarities are found:
i) the labelling index for any giver half, or individual zone (or growth plate) of a particular mudiment shows little variation from embryo to embryo i.e. the labeling index observed is typical of that rudiment, not just of that embryo
ii) at a given age, and time of incubation with \(3_{\text {H-thymidine, the }}\)
labelling index in any half rudiment (rounded plus flattened zone values) is similar no matter which rudiment is looked at (the actual labelling indices found are very similar to that found by Kember e.g. stage 30 radius, proximal hale, 4 hours incubation, labelling index \(=17 \%\); 6 week old rat, proximal tioia labelling index = I6\%). This is consistant with the findings that the labelling indices of growth plates in the rat pelvis are similar to those of long bones (Kember I972, I973). The results from the chick embryo go fucther in that the overall labelling index for a whole rudiment is also similar for any rudiment at any particular age and time of incubation with \(3_{\text {H-thymidine. These results }}\) suggest that cartilaginous mudiments of the chick wing provide an excellent model for the mamalian epiphyseal growth plate.

The conclusions fron Kember's work were that the cell cycle time and the percentage of cells entering 5 phase prior to entering the cell cycle varied little from growth plate to growth plate (Kember and walker, I97I; Kember, I978). Therefore variations in the growth rate between individual bones axe due to variations in the size of the proliferating cell population. Gimilar conclusions can be made from chick embryo results (see later chapter for cell cycle times). The decrease in the overall labeling index in older (stage 33) rudiments, when compared with younger (stage 30) rudiments, can be explained by the fact that a laxge proportion of cells have become hypertrophic and have withdrawn from the cell cycle, therefore they do not incorporate \(3_{\text {H-thymidine. }}\)

It is important to know what determines the size of the proliferating population. It is unlikely that the change from rounded cell to flattened cell is due to some dirfusible signal originating from the epiphyseal region for two reasons:
I) If a concentration gradient existed, no labelled flattened or hypertrophic cell should be found.
H-thymidine just prior to hypertrophy suggests that DNA synthesis may that flattened cells closest to the zone of hypertrophy incorporate


 Plattened cells. It may also be that different cell types commence

cell zones. It may be that many rounded cells exhibit synchronous








findings of several workers on the relative growth rates of each


 in a later chapter)
control the change from rounded to flattened cell will be dealt with constant but this does not haopen (TabIe IV). (Factors which may
 2) If a diffusible signal did exist, one would expect the size of index in proximal halves.
labelling indices than their larger proximal halves which inglies that


> be a prerequisite to cell hypertrophy.
 -
enbryo ulna does not increase in length at a uniform rate but comes about via a series of spurts in growth. These spurts in growth do not necessarily involve cell division since the process of hypertrophy combined with periosteal bone formation at stage 32 would produce a rapid increase in length. Cell labelling data indicates that the overall labelling index is similar in each rudiment of the wing and that it is variations in the size of the proliferating population Which produce differences in the xate of growth. This impies that the size of the initial condensation, on initial rounded zone, may be of paramount importance in detemining the final size of the rudiment. During the time pexiod studied in this chapter the rudiment maintains its characteristic "dumb-bell" shape. How this shape is formed in the first place and how it is subsequently maintained throughout development will be the subject of the following chaptex.

Fig. I. In vivo growth curves of the long bone mudiments of the chick embryo wing.
\(x--x \operatorname{Radins}\)
-----O Ulna
\(+-\infty+\) Hunerus

Fig. 2. In vitro growth curves of the long bone mudiments from a stage 30 wing.
x---x Radius
0---O Una
+- - Humerus
length
( mm )

length


Pig. 3. Stage 28 ulna. Only 2 cell types are present, rounded and flattened. The flattened cell zone is surrounded by a very weak perichondrium whilst the rounded cell zones merge into the mesenchyme.
Tol. blue stain. Mag. \(x\) I25.

Fig. \(4 . \quad\) Stage 30 ulna. 3 cell types are now present, rounded, ilattened and hypertrophic. Note that the perichondrium appears more distinct around the hypertrophic cell zone. Tol. blue stain. Mas. \(x 50\).

Fig. 5. Stage 32 ulna, proximal half. Cells in the centre of the mudiment are now surrounded by an early periosteum. Flattened
and rounded cell zones continue to be sumrounded by a perichondrium. The proximal rounded cell zone shows the beginings of a protrusion the olecranon.
Tol. blue stain. Mag. \(\times 40\).


Fig. 6. Stage 34 ulna, proxinal hale. The periosteum now extends as far as the zone of hypertrophy. The lighter stained area near the centre of the hypertrophic cell zone ( \(x\) ) marks the position where the invasion of blood vessels begins. The olecranon process is more distinct in the proximal rounded cell zone. Tol. blue stain. Nag. x 32.

Fig. 7. Stage 35 ulna. Central hypertrophic cells are resorbed by blood vessels which gradually spread throughout the hypertrophic region.
Tol. blue stain. Wax section of whole wing. Mag. \(x 32\).

Fig. 8. Stage 30/3I humerus. Reorientation of central flattened cells just prior to cell hypertrophy. This orientation is not apparent by stage 32.
Tol. blue stain. Mag. x 125.












```

Gom -a,ma

```

```

bone hes continuet to coven the entwe zone on hypertrophy but no
Invasion on blood veseels has ocumed. Wote thet the clacmanon hes

```

```

chape.
701.blue stata. 1as. x40.

```

Yg. T2. Stege 30 una nua 3 days in vituo growth. Wote that
the olecranon is much reduced but that chere are moce moxtmel
Lattame delle than nommal. No Imyesion of blood ressels hes
occursee.
Tol. Olue statn. Las. x 0 .



Fig. I3. Stage 30 radius labelled for 4 hours. The distribution of labelled nuclei can be seen to be maintained almost exclusively to the rounded cell zones, very few flattened cells are labelled and no hypertrophic cells have incorporated label. Tol. blue stain. Mag. \(\times 50\).

\footnotetext{
Fig. I4. Stage 30 ulna labelled for 4 hours. The pattern of labelling is very similar to that for a stage 30 radius. Tol. blue stain. Mag. x 50 .
}

Fig. I5. Stage 30 humerus labelled for 4 hours. The pattern of labelling is similar to that for the radius and ulna but in this case a few hypertrophic cells have incorporated label. Tol. blue stain. Nag. x 320.


Fig. I6. Stage 33 radius labelled for 4 hours. The overall pattern is similar to that for a stage 30 maiment. Note that the distinct perichondrium is heavily labelled compared to the cartilage cell zones. Tol. blue stain. Mag. \(x 40\).

Fig. I7. Stage 33 ulna labelled for 4 hours. Similar to the stage 33 radius. Note that small clusters of labelled cells are present in the proximal rounded cell zone - these may aid the production of the olecranon.
Tol. blue stain. Mag. \(x 40\).

Fiz. I8. Stage 33 humerus labelled for 4 hours. No hypertrophic cells have labelled.
Tol. blue stain. Mas. x 40 .





 In Fith this axpencion woule almot antinely be trancyomed Ento 2. Encmeses En 70netr.
 would be apmotmatety a foly inomeace 3 a wolume which coule gha a consthaceble wole in the longiturenal alongetton of the lons bone wotnont. (TE a Tattoned cell is conciberct as a deo with a beth equal bo the long aris then the wolume can be olomated as
 Zepth, I. Iewis, gersonal commaication). If the hypetrophio \(6,17 \operatorname{lo}_{3}\) consluereh as a sphere then the volune on be calculated as \(4 \pi x^{3}\)

Teble I
Hean lengths of cartilage long bone rudiments of the developing chick wing.

Length of ruatiment (mm)
\begin{tabular}{|c|c|c|c|}
\hline Stage & Radius & Ulna & Humerus \\
\hline 29 & I. \(44 \pm 0.07^{*}\) & \(I .50 \pm 0.08\) & \(1.65 \pm 0.04\) \\
\hline 30 & I. \(80 \pm 0.10\) & \(2.01 \pm 0.13\) & \(2.19 \pm 0.18\) \\
\hline \(3 I\) & \(2.18 \pm 0.14\) & \(2.53 \pm 0.13\) & \(2.61 \pm 0.18\) \\
\hline 32 & \(2.60 \pm 0.13\) & \(2.97 \pm 0.14\) & \(3.08 \pm 0.16\) \\
\hline 33 & \(3.24 \pm 0.18\) & \(3.59 \pm 0.1 I\) & \(3.77 \pm 0.14\) \\
\hline 34 & \(3.82 \pm 0.15\) & \(4.13 \pm 0.19\) & \(4.26 \pm 0.26\) \\
\hline 35 & \(4.63 \pm 0.21\) & \(5.04 \pm 0.20\) & \(5.28 \pm 0.19\) \\
\hline 36 & \(5.26 \pm 0.18\) & \(5.80 \pm 0.21\) & \(6.15 \pm 0.19\) \\
\hline Growth mate (mm/stage) & 0.546 & 0.615 & 0.643 \\
\hline \((\mathrm{mm} / \mathrm{day})^{t}\) & 0.955 & I.053 & I.I25 \\
\hline \[
\begin{aligned}
& \text { \% increase } \\
& \text { in length }
\end{aligned}
\] & 265 & 287 & 273 \\
\hline
\end{tabular}

Unfixed mudiments were excised and measured immediately using a calibrated eyepiece gratioule. Values are presented for measurements made on at least 30 specimens for each mudiment at each developmental stage.

F Standard deviation of the mean.
+ Stage 29 - stage \(36=6-10\) days (Hamburger and Hamilton, I95I).

Table II lean lengths of stage 30 cartilage long bone rudimente oultured in vitro.

Iensth of rudiment (mm)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Dey of cuiture} & \multicolumn{3}{|l|}{Iensth of rudiment (mm)} \\
\hline & Radius & Unma & Humerus \\
\hline 0 & \(1.80 \pm 0.10\) * & \(2.01 \pm 0.13\) & \(2.19 \pm 0.18\) \\
\hline I & \(2.58 \pm 0.08\) & \(2.93 \pm 0.16\) & \(3.15 \pm 0.16\) \\
\hline 2 & \(3.32 \pm 0.18\) & \(3.74 \pm 0.08\) & \(4.05 \pm 0.05\) \\
\hline 3 & \(3.69 \pm 0.18\) & \(4.24 \pm 0.06\) & \(4.7 \pm \pm 0.09\) \\
\hline 4 & \(4.02 \pm 0.20\) & \(4.64 \pm 0.12\) & \(5.28 \pm 0.13\) \\
\hline Growth rate (mm/day) & 0.555 & 0.657 & 0.773 \\
\hline \% increase in Iength & 123 & I3I & IUI \\
\hline
\end{tabular}

Unfixed rudinents were measured daily, using a calibrated eyepiece gratioule, whilst being cultured on top of Millipore filter rafts. Values ace presented for measurements made on at least 30 specimens for each rudinent.
*standard deviation of the mean.

Table III Mean lengths of histological zones of the ulna.

\section*{Length of zone (mm)}

\section*{Stase}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Zone & 30 & 3 I & 32 & 33 & 34 & \(30+3\) days \({ }^{\text {\% }}\) \\
\hline Rounded (Prox.) & \[
(0.13
\] & \[
\begin{array}{r}
0.16 \\
(16.0)
\end{array}
\] & \[
\begin{gathered}
0.17 \\
(10.5)
\end{gathered}
\] & \[
\begin{array}{r}
0.20 \\
(10.3)
\end{array}
\] & \[
\begin{array}{r}
0.37 \\
(I 2.7)
\end{array}
\] & \[
\begin{array}{r}
0.25 \\
(6.5)
\end{array}
\] \\
\hline Plationed & \[
\begin{array}{r}
0.33 \\
(35.1)
\end{array}
\] & \[
\begin{gathered}
0.37 \\
(3 I .0)
\end{gathered}
\] & \[
\begin{array}{r}
0.47 \\
(29.0)
\end{array}
\] & \[
(26.5 I)
\] & \[
\begin{gathered}
0.64 \\
(2 I .9)
\end{gathered}
\] & \[
\begin{array}{r}
0.78 \\
(20.3)
\end{array}
\] \\
\hline Hypertrophic & \[
\begin{gathered}
0.17 \\
(18.1)
\end{gathered}
\] & \[
\begin{array}{r}
0.20 \\
(20.0)
\end{array}
\] & \[
\begin{array}{r}
0.52 \\
(32.1)
\end{array}
\] & \[
\begin{array}{r}
0.69 \\
(33.4)
\end{array}
\] & \[
\left(\begin{array}{l}
I .22 \\
(1.8)
\end{array}\right.
\] & \[
\begin{aligned}
& 1.85 \\
& (48.2)
\end{aligned}
\] \\
\hline Pattened & \[
\begin{gathered}
0.22 \\
(23.4)
\end{gathered}
\] & \[
\begin{array}{r}
0.20 \\
(20.0)
\end{array}
\] & \[
(19.3 I)
\] & \[
\begin{array}{r}
0.39 \\
(20.0)
\end{array}
\] & \[
\begin{array}{r}
0.57 \\
(17.5)
\end{array}
\] & \[
\begin{gathered}
0.74 \\
(19.3)
\end{gathered}
\] \\
\hline Rounded (Dist.) & \[
\begin{aligned}
& 0.09 \\
& (9.6)
\end{aligned}
\] & \[
\begin{array}{r}
0.13 \\
(13.0)
\end{array}
\] & \[
(9.25)
\] & \[
(8.16
\] & \[
\left(\begin{array}{l}
0.18 \\
(6.1)
\end{array}\right.
\] & \[
\begin{aligned}
& 0.22 \\
& (5.7)
\end{aligned}
\] \\
\hline
\end{tabular}

Zone lengthe were measured from I om thick analdite sections using a calibrated eyepiece graticule. Values were calculated from 3 central sections, IO Mm apart. from 6 different mudiments for each stage. Wo attempt is made to give total lengths for each stage since younger rudiments were found to shrink much more than older rudiments.
*A stage 30 ulna cultured for 3 days is comparable in size to a stage 34 non-cultured ulna. Values are presented so that histological progression can be conpared in vivo and in vitro.

Higures in parentheses give the percentage of the total fixed length ocoupied by each zone.

Standard deviations are left out for clarity, they ranged forn I-7\% of the length.
Table Ty Gell mubers along the longiturinal axis of each zone
of the ulne.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Zone} & \multicolumn{6}{|l|}{Number op cells end to end} \\
\hline & \multicolumn{6}{|l|}{Stase} \\
\hline & 30 & \(3 I\) & 32 & 33 & 34 & \(30 \div 3\) days \\
\hline Romaded
(Prox.) & \[
\frac{3 I}{(I 8.4)^{+}}
\] & \[
\frac{37}{(17.4)}
\] & \[
\frac{42}{(I 5.8)}
\] & \[
\frac{53}{(15.7)}
\] & \[
\begin{aligned}
& 72 \\
& (16.9)
\end{aligned}
\] & \[
\frac{55}{(T, 4)}
\] \\
\hline Plattener & \[
\frac{50}{(29.8)}
\] & \[
\begin{aligned}
& 63 \\
& (29.7)
\end{aligned}
\] & \[
\begin{aligned}
& 78 \\
& (29.3)
\end{aligned}
\] & \[
\frac{93}{(27.6)}
\] & \[
\begin{aligned}
& 105 \\
& (24.6)
\end{aligned}
\] & \[
\begin{aligned}
& I T 5 \\
& (23.8)
\end{aligned}
\] \\
\hline Hypertrophic & \[
(I 5.5)
\] & \[
\frac{38}{(17.9)}
\] & \[
\begin{aligned}
& 56 \\
& (21.0)
\end{aligned}
\] & \[
\begin{aligned}
& 86 \\
& (25.6)
\end{aligned}
\] & \[
\begin{aligned}
& 127 \\
& (29.8)
\end{aligned}
\] & \[
(35.7)
\] \\
\hline Plattened & \[
\begin{aligned}
& 36 \\
& (2 I .4)
\end{aligned}
\] & \[
\frac{43}{(20.3)}
\] & \[
\frac{55}{20.7)}
\] & \[
(20.5)
\] & \[
\begin{aligned}
& 86 \\
& (20.2)
\end{aligned}
\] & \[
\begin{aligned}
& \text { IOI } \\
& (20.9)
\end{aligned}
\] \\
\hline Rounded (Dist.) & \[
\begin{aligned}
& 25 \\
& (14.0)
\end{aligned}
\] & \[
\frac{3 I}{(I 4,6)}
\] & \[
\frac{35}{(I 3.2)}
\] & \[
(10.4)
\] & \[
\begin{aligned}
& 36 \\
& (8.5)
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& (8.3)
\end{aligned}
\] \\
\hline Total & 168 & 212 & 266 & 336 & 426 & 484 \\
\hline
\end{tabular}

\footnotetext{
Values were calculated from the same specimens as in Table III. Cells in the proximal rounded zone were counted from the tip of the olecmenon to the first flattenod cell. Higures in parentheses give the number of cells end to end along each
zone as a pencentage of the total number of cells along the mudment.
} Stanciard deviations ranged from 2-9\%.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Zone} & \multicolumn{6}{|l|}{Number of cells across each zone*} \\
\hline & \multicolumn{6}{|l|}{Stage} \\
\hline & 30 & 3 I & 32 & 33 & 34 & \(30+3\) days \\
\hline \[
\begin{aligned}
& \text { Rounded } \\
& \text { (moox.) }
\end{aligned}
\] & 29 & 38 & 49 & 66 & 83 & 83 \\
\hline Plattened & 28 & 31 & 38 & 46 & 58 & 59 \\
\hline Hypertrophio & 18 & 20 & 22 & 23 & 23 & 22 \\
\hline Wattened. & 23 & 28 & 32 & 35 & 39 & 44 \\
\hline Rounded. (Dist.) & 27 & 35 & 36 & 49 & 54 & 73 \\
\hline
\end{tabular}

\footnotetext{
*Values were caloulated from the same specimens as in Table III.
rounded and flattened cells were counted at the widest part of the whertrophic cells were counted in the centre of the zone.
Standard deviations ranged. from 4-9\%.
}

Table VI Total cell numbers of histological zones of the ulna.

```

Table VII Cell densities in histological zones of the ulna.

```

\section*{Number of cells/unit anea*}

Stage
\begin{tabular}{lcccccc} 
Zone & \(30^{+}\) & \(3 I\) & 32 & 33 & 34 & \(30+3\) days \\
Rounded & \(I 99\) & \(I 82\) & \(I 40\) & \(I 55\) & \(I 45\) & \(I 23\) \\
HIattened & \(I 7 I\) & \(I 49\) & \(I I 0\) & \(I I 4\) & 87 & \(7 I\) \\
Hypertrophic & \(I 54\) & \(I 27\) & 84 & 79 & 79 & \(6 I\)
\end{tabular}
*Values are calculated from the same specinens as in Table III. The area looked at was I7956m² (I34 Nin X I34 nin) and two readings were taken from each zone. No difference was found in cell density between proximal and distal zones, therefore, the values are grouped together.

The zones in stage 30 mudiments were too mall for two readings of \(17956 \mathrm{~cm}^{2}\), therefore an area of \(7182 \mathrm{~mm}^{2}(53.6 \mathrm{~mm} \times I 34 \mathrm{~mm})\) was looked at and the values were extrapolated to fit the larger area.
standard deviations ranged from \(2-7 \%\).
Table VIII Overall labelling indices of cartilaginous lone bone
rudiments of the chick wing cultured in vitro
Table VIII Overall labelling indices of certilaginous Ione bone
cudiments of the chick wing cultured in vitro.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Labelling inder} \\
\hline \multicolumn{4}{|l|}{Hours labelled} \\
\hline Stage 30 & 2 & 4 & 6 \\
\hline Radius & II. \(55 \pm 0.30^{*}\) & \(15.28 \pm 0.70\) & \(55.33 \pm 0.65\) \\
\hline U1na & IT. \(5 \pm \pm 0.83\) & 15.96 \(\pm 0.75\) & \(15.74 \pm 0.85\) \\
\hline Humerus & \(12.24 \pm 0.69\) & \(15.43 \pm 0.82\) & \(55.00 \pm 0.58\) \\
\hline Stase 33 & 2 & 4 & 6 \\
\hline Radius & \(9.07 \pm 0.85\) & \(12.54 \pm 0.78\) & \(12.54 \pm 0.63\) \\
\hline Unea & \(9.00 \pm 0.48\) & \(12.59 \pm 0.93\) & \(13.22 \pm 0.68\) \\
\hline Humerus & \(9.96 \pm 0.62\) & I3.09 \(\pm 0.58\) & \(13.78 \pm 0.83\) \\
\hline \multicolumn{4}{|l|}{\multirow[t]{4}{*}{Values represent the number of cells which incorponate 3-thymidine (I5 uci/ml) as a percentage of the total cell number. Values were calculated from 3 central sections (I wn thick) Io um apart, from 4 different mujnents for each labelling period.}} \\
\hline & & & \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}

\footnotetext{
Table IK Labelling indices of histological zones of a stage 30
xI erqeit
}
radius cultured in vitro.

Table \(x\) Labelling indices of histological zones of a stage 30 uina cultured in vitro.


\section*{Hours labelled}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Zone & 2 & 4 & 6 & 2 & 4 & 6 \\
\hline Rounded (Prox.) & \[
\begin{aligned}
& I 3.54 \\
& (443)
\end{aligned}
\] & \[
\begin{aligned}
& 22.49 \\
& (498)
\end{aligned}
\] & \[
\begin{aligned}
& 20.52 \\
& (536)
\end{aligned}
\] & 30 & 33 & 33 \\
\hline Flat. & \[
10.23 \text { II. } 88
\] & \[
\frac{16.4 I}{(518)}
\] & \[
\begin{aligned}
& 13.36 \\
& (554)
\end{aligned}
\] & \(5 I\) & 50 & 53 \\
\hline Hyp. & \[
\frac{2.42}{(330)}
\] & \[
(373)
\] & \[
\begin{aligned}
& \text { I. } 28 \\
& (39 I)
\end{aligned}
\] & 27 & 29 & 26 \\
\hline Plat. & \[
\frac{13.12}{(343)}
\] & \[
\begin{aligned}
& I 3.36 \\
& (358)
\end{aligned}
\] & \[
\begin{aligned}
& 19.24 \\
& (395)
\end{aligned}
\] & 36 & 34 & 38 \\
\hline \begin{tabular}{l}
Rounded \\
(Dist.)
\end{tabular} & \[
\begin{aligned}
& I 7.8 I \\
& (348)
\end{aligned}
\] & \[
\frac{25.07}{(408)}
\] & \[
\begin{aligned}
& 22.17 \\
& (4.69)
\end{aligned} \quad \frac{20.70}{}
\] & 26 & 25 & 29 \\
\hline Iotal & \[
\begin{aligned}
& I I .5 I \\
& (I 972)
\end{aligned}
\] & \[
\frac{I 5.96}{(2155)}
\] & \[
\begin{aligned}
& I 5.74 \\
& (2345)
\end{aligned}
\] & I7I & 171 & 179 \\
\hline
\end{tabular}
*Values were calculated from the same sections as in Table VIII.
Standard deviations ranged from \(4-80 \%\).
*** When compared with Table IV \({ }_{3}\) these values appear very similar which suggest that the addition of 3 -thymidine for short periods of time does not affect cell numbers.

Numbers in parentheses are the total cell number in each zone.

Pable XI Labelling indices of histological zones of a stage 30 humerus cultured in vitro.

*Values were calculated from the same sections as in Table VII.
Stendard deviations ranged from 3-9\%.
Wumbers in parentheses are the total cell number in each zone.
```

Table vTl Zabolling intious of histologicul moms of a cbage 3
calius oultured in vitro.

```

*Valuos were calchator fron the same sections as in Taule VIT.
Stantard deviationc ranged from \(2-T 0 \%\).
Numbers in parentheses are the total cell number in es,ch zones.

Table MII Labelling indices of histological zones of a stage 33 ulna cultured in vitro.
Labelling index \(\quad \frac{\text { Lunber of cells }}{\frac{\text { end to end }}{\text { alons each zone }}}\)

Hours Iabellea
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Zone & 2 & & 4 & & 6 & & 2 & 4 & 6 \\
\hline Founced (Prox.) & \[
\frac{I 5 . I I}{(I I I 2)}
\] & & \[
\begin{aligned}
& 21.96 \\
& (I 93)
\end{aligned}
\] & & \[
\begin{aligned}
& I 9.98 \\
& (I 35 I)
\end{aligned}
\] & & 5 & 50 & 54 \\
\hline Flat. & \[
\begin{array}{r}
8.59 \\
(896)
\end{array}
\] & II. 85 & \[
\begin{aligned}
& 12.26 \\
& (938)
\end{aligned}
\] & 17.II & \[
\begin{aligned}
& I 2.84 \\
& (989)
\end{aligned}
\] & I6.4I & 88 & 90 & 93 \\
\hline HYP. & \[
\begin{aligned}
& 0 \\
& (1223)
\end{aligned}
\] & & \[
\begin{aligned}
& 0 \\
& (I 27 I)
\end{aligned}
\] & & \[
\begin{aligned}
& 0 \\
& (I 334)
\end{aligned}
\] & & 86 & 91 & 95 \\
\hline Flat. & \[
\begin{array}{r}
6.79 \\
(898)
\end{array}
\] & & \[
\frac{10 . I I}{(Q I O)}
\] & & \[
\begin{aligned}
& 13.20 \\
& (932)
\end{aligned}
\] & & 66 & 66 & 70 \\
\hline Rounded (Dist.) & \[
\begin{gathered}
16.89 \\
(817)
\end{gathered}
\] & & \[
\begin{aligned}
& 20.86 \\
& (858)
\end{aligned}
\] & & \[
\begin{aligned}
& 21.98 \\
& (992)
\end{aligned}
\] & & 35 & 35 & 36 \\
\hline Total & \[
(9.00)
\] & & \[
\begin{aligned}
& 12.59 \\
& (5170)
\end{aligned}
\] & & \[
\begin{aligned}
& 13.22 \\
& (5598)
\end{aligned}
\] & & 326 & 332 & 348 \\
\hline
\end{tabular}
*Values were calculated from the same sections as in Table VIII.
Standard deviations ranged from \(2-10 \%\).
Numbers in parentheses are the total cell number in each zone.




\footnotetext{
TValues were calculated from the same sections as in Table vTI.
Standard deviations ranged from 3-9\%.
Wumbers in parentheses are the total cell number in each zone.
}
```

CHAPTBRTGO

```

THE ROLD OF THE PXTRACRIJULAR MATRIX
IN CARTILACE MORPHOGETSSIS

\section*{Introduction}

Cartilage morphogenesis, unlive morphogenesis in early embryos, is always associated with growth. In the case of cartilage long bone rudiments, growth involves a massive increase in volume with little increase in width except at the ends of the rudiment, therefore, morphogenesis results in the formation of a long narrow diaphysis with epiphyseal swellings - the typical "dog-bone" shape.

As mentioned in the General Introduction, cartilage morphogenesis could be controlled by various factors; cell division, cell hypertrophy, matrix secretion and organisstion, cell configuaction, appositional growth and physical constraints (Thorogocd, I983). Several of these factors have already been studied in detail, e.g. cell division (Biggers and Gwatkin, I964), Ce11 hypertrophy (Biggers, I957), cell orientation and configuration (Holmes and Trelstad, I980), whilst other factors, such as appositional growth, have been difficult to determine and probebly play a minor role (Miekle, I975). Surprisingly, little attention has been paid to the roles played by mairix secretion, matrix organisation and physical constraints in the early morphogenesis of long bone rudiments.

The importance of matrix secretion and organisation in maintaining the shape of a cartilage element has been shown by Diewert, in the developing rat mandible, when she added the teratogens 6 -Aminonicotinamide (6-AN) (Diewert, I979), Diazo-oxo-norieucine (DoN) (Diewert and Patt, I979), and B-aminoproprionitrile fumerate (BAPV) (Diewert, I980a) to pregnant mothers. The general conclusion was that all three teratogens produced a cleft palate, but that 6-AN and DON both affected the growth rate, and therefore the size, of Meckel's cantilage, whereas BAPN affected the shape of Meckel's cartilage causing it to bend (Diewert, I980b).

The organisation of cartilage matrix has also been shown to play an important role in maintaining shape in long bone mudiments. Pitton-Jackson (I970) treated I2 day old chick emoryo tibiae with collagenase for 2 days, in vitro, and then returned the rudiments to enzyme-free medium. By 5 days of oulture, the cartilaginous regions had completely lost their characteristic anatomical features although the size was simjlar to that of controls. This result Was interpceted as indicating that the stmuctural organisation of the collagenous componant of the extracellular matrix is a vital factor in maintaining the definite shape of a madment.

The object of this chapter is to study the early formation of a cartilaginous long bone rudiment (the chick embryo ulna) and to evaluate the relative roles played by cell division, cell hypertrophy and matrix secretion in relation to the overall increase in volume observed during growth. Particular attention will be paid to the role of the collagenous component of the extracellular matrix (BCN) in the formation and maintainance of the characteristic histological distribution of cells and the anatomical shape of the ulna.

\section*{Materials and Methods}

The early fommation of the ulna (between stages 24-27) was studied histologically using I mm sections (see General Methods). Paricular attention was paid to the shape, orientation and distribution of the prechondrogenic and chondrogenic cells. In addition, the roles of cell division, cell hypertrophy and ed secretion were evaluated in vivo fron sightly alder mudiments (stage 3I-34) when 3 distinot cell types - rounded, flattened and hypertrophic chondrocytes - were present. The relative role of each parameter was evaluated by calculating the cell volume, the number of cells/unit volune the volume of each cellular
zone and the volume of eor/cell at each stage. These calculations were performed as follows:-
a) cell volune - rounded and hypertrophic cells were considered as spheres and therefore had a volume of \(4 / 3 \pi r^{3}\). Flattened cells were considered as aiscs which appeared spherical in transverse section, similar to a coin, and therefore the volume was calculated. as \(4 / 3 \pi\) a \(b c\), where \(a=\frac{1}{2} \times\) Iongitudinal axis, \(b=\frac{1}{2} \times\) transm verse axis and \(c=\frac{1}{2} x\) depth - since the cell is spherical in transverse section, \(b=c\) (J. Lewis, personal communication).
b) number of cells/unit volune - calculated from the equation \(n=x / 2 r+s\), where \(x=\) number of cells/unit area, \(r=\) radius of nuclei (or cells in the case of hypertrophic cells) and \(s=\) the thickness of the section studied (I \(\mu m\) ) (J. Lewis, personal communication). c) volume of cellular zones - calculated directly from camera Iucida drawings of fixed and sectioned ulnae. If the rudinent is considered as a cylinder with a partial sphere at either end then the volume of the hypertrophic cell zone can be calculated as \(\pi r^{2} h\), where \(h\) = the length of the zone and \(x=\frac{1}{2} x\) the mean width of the zone, obtained. by taking at least 4 measurements of the width at different regions of the zone for each rudiment. The volume of the flattened cell zone was also calculated as \(\pi r^{2} n\) but in this case the mean width was determined by taking at least 8 measurements at different regions since the width tapered in towards the hypertrophic zone. The volume of the rounded cell zone was calculated by estimating what proportion of a sphere the zone occupied and then performing the equation vol. \(=a \times 4 / 3\) \(\pi r^{3}\), where \(a=\) the proportion of the sphere and \(r=\frac{1}{2} \times\) maximum dianeter of the zone. a was estimated by measuring the distance from the mid-point of the maximum diameter to at least I2 points on the perionery of the zone and expressing the mean distance as a proportion of the maxinum diameter.
d) volume of \(\operatorname{dOH} / c e l l\) - calculated from the equation

ECN/cell \(=\frac{\text { total volume of zone - total volume of cells }}{\text { total number of cells }}\)
where the total volume of the zone = volume of proximal zone plus volume of distal zone, total volume of cells = mean volume of the cell \(x\) total number of cells in the two zones, total number of cells \(=\) volume of the zones (prox. + distal) \(x\) number of cells/unit volume. In the case of the hypertrophic zone only one set of values was required.

In each case mean values for the parameters were obtained from 3 central I arm sections, Io \(\mu m\) apart, from each of 4 different rudiments for each stage.

The role of the collagenous component of the ECH was evaluated in two ways:
i) by culturing stage 32 ulnae in the presence of teratogenic drugs (all of which affect collagen synthesis and assembly) for 3 days continuously or for I day followed by removal to complete control medium.
ii) by treating stage 30 and stage 32 ulnae with the enzyme collagenase ( \(0.2 \% \mathrm{w} / \mathrm{v}\). Sigma) for time intervals ranging from \(15-60\) minutes followed by culture in control medium for 2 days.

The teratogenic drugs used were chosen because they were known to induce cartilage malformations when added to chick embryos in ovo (G. Shellswell, personal communication). They were \(L\) - azetidine 2 - carboxylic acid (IACA) - an analogue of I - proline which results in the synthesis of abnormal collagen which camot be secreted from the cell, B-aminoproprionitrile funerate (BAPN) - an inhibitor of the enzyme lysyl oxidase which prevents cross-Inkage between collagen fibres after secretion, and \(\alpha \alpha^{\prime}\) dipyridyl ( \(\alpha \alpha^{\prime}\) ) - an iron chelating agent which inhibits prolyl and lysyl hydroxylase (all from Sigma).

Bach drug was used in concentrations of I, 5 and \(I 0 \mathrm{mg} / \mathrm{ml}\), and each dmog was dissolved in complete BGJb medium.

Results from collagen dismuption experiments suggested that collagen might be present in an organised maner within non-treated miments, therefore, this was looked for using the Dlectron Microscope. 0.I um araldite sections were cut and stained as described in the General Methods.

Results
I) Formation of the early caxtilasinous ulna

Figures I-4 show histological sections, cut longitudinally, of the position of the ulna in embryos aged between stages \(24-27\) respectively. Figure I shows an increased cell density in the central region of the foremimb, the so-called condensation, with no apparent cellular orientation. At stage 25 these cells appear more densly packed but still no overt orientation is observed (Fig. 2). Metachromasia cannot be identified in the ulna at this stage but it can be observed in the humerus of the same wing (Fig. 2a). However, by stage 26, distinct metachromatic matrix can be observed between the now oriented cells of the ulna. (For the remainder of this thesis, a condensation Will be considered to have become a rudiment upon secretion of metachromatic matrix. In longitudinal section this orientation appears to be at right angles to the long axis of the rudiment, hence the cells appear flattened (Pig. 3). This orientation is more pronounced in a stage 27 ulna (Eig. 4) and the rudiment at this stage consists virtually of one zone of fiattened cells with a few rounded cells merging into the mesenchyme at what will be the "epiphyseal" ends (Fin. 4). It is also at stage 27 that the finst clear presence of a barnier is observed between hattened cells in the "diaphysis"
and the surrounding mesenchyme. This eaxly perichondrium is very loose and appears to be composed of round or polygonal cells in Longituainal section (pis. 4). However, in transverse section the perichondrial cells appear cresent shaped and are arranged around the circumference of the mudiment (Fig. 5). It should be noted that flattened cells in transverse section appear polygonal and therefore are really disc-shaped (Fin. 5).

The very early rudiment at stage 26 is a cigar-shaped tissue comprising of approximately \(25+2\) cells across it's diameter and 904 cells along it's length (Fig. 3). It should be noted that the number of cells across the width at this stage is greater than the number of flattened chondrocytes across the width of a stage 27 rudiment - ITII cels (Fig. 4). (It is also greater than the number of hypertrophic cells across the width of ruainents aged between stage 30-34 - see Table \(V\) in chapter I). Interestingly, the number of cells making up the early perichondrium is approximately 4 deep on each side of the diaphysis (Fig. 4). Thus it appears that the outer cells of the condensation may fomm the perichondrium.

Once the perichondrium has formed the rudiment increases in length with little increase in width until flattened cells in the centre begin to hypertrophy at stage 30 with the result that perichondrial cells become stretched in a longitudinal direction (Fig. 6) 。
2) Further growth of the ulna

By the time cell hypertrophy begins the ulna has already assumed it"s "dog-bone" shape and any future growth is predominately in a longitudinal direction (Fig, 7). This growth produces a large increase in volume which must be due to a combination of the 3 main parametexs involved in cartilage growth - cell division, cell
hypertrophy and matrix secretion. Table I presents values for the cell density, the cell volume and the volune of ECh associated with each cell type in fixed ulnae fron stage 3 - stage 34 (a 2 day growth period when the rudiment consists solely of rounded, flattened and hypertrophic chondrocytes). Also shown are values for the total volume of cellular zones plus an estimate of the number of cells present in each zone.

The findings of this table can be summarised as follows:
i) There is a general tendency for each cell type to exhibit a decrease in the number of cells/mit volume with increasing age. Gonconitantly, each cell type undergoes an increase in cell volume and an increase in the volume of ECM associated with each cell. (No difference was found in any parameter between proximal and distal zones).
ii) Assuming that every hypertrophic cell originates from a rounded cell, then the process of cell hypertrophy from stage \(3 I\) - stage 34 involves a 27 - fold increase in cell volume.
iii) If the volume occupied by a rounded cell plus its associated Whi, at stage 3I, is compared with the volume occupied by a hypertrophic cell plus its associated Bur, at stage 34 , then there is approximately a 9 -fold dilation during growth.
iv) During development the ratio of EOM volume : cell volume changes little for rounded and flattened cells but the roles for hypertrophic cells reverses. This implies that although the hypertrophic ECM increases in volume, the hypertrophic cell volume increases by a greater amount so that, unlike rounded and flattened cells, hypertrophio cell volume at stage 34 is greater than the volume of BCM associated with it. However, it should be noted that the ECM volume of hypertrophic cells almost doubles during this period whilst the increase in

BCi volume/cell for rounded and rlattened cells is not so marked.
v) The total volume of the rudiment increases by approximately 6 fold \(\left(67 \times 10^{-3} \mathrm{~mm}^{3}-393 \times 10^{-3} \mathrm{~mm}^{3}\right.\) ) but the total cell number only increases 3-fold (107058-319030).
3) Growth of the ulna in vitro

Stage 32 ulnae increase in length by an average of Io 5 when grown in vitro for 3 days (Table II). Histologically it can be seen that cell hypertrophy and sub-periosteal bone formation has continued to spread along the diaphysis but no invasion of blood vessels on resorption of cartilage is observed (In this way the rudiment is similar to that of a stage 30 miment cultured for the same time period - see chapter I). The stage 32 cultured ulna has one major difference from the stage 30 cultured ulna in that the olecranon at the proximal epiphysis has continued to develop (fig. 8).

When cellular parameters are compared with those of a stage 32 non-cultured ulna (Table I) it is found that for each cell type there is a decrease in cell density concomitant with an increase in cell volume, and an increase in the volume of TCM associated with each cell (Table II). The largest increase in cell volume is found in hypertrophic cells which double in size to a volume which is greater than that found in stage 34 hypertrophic cells in vivo. The ratio of col volume : cell volume of rounded and flattened cells is virtually unchanged from stage 32 non-cultured ulnae but the ratio for hypertrophic cells has been reversed, that is the ratio has changed from 52:48 to 47:53. (Tables I and II). If the cellular distmibutions of cultured ulnae are studied (Table V) it is found that the cultured mudiment has more cells end to end, more cells across the width of the rounded zones and a greater total cell number than non-cultured mudiments (Table I this chapter and Tablea IV-VI in chapter I).
4) The effect of teratogenic drugs on stage 32 ulnae cultured in vitro

Tables II-TV present data for the cell density, the cell volure, the volume of ECM associated with each cell and the overall increase in length observed when stage 32 unae were cultured in the presence of the teratogenic drugs LACA, BAPN or \(\alpha \alpha\) either continuously or for I day followed by removal to control medium. The results of these tables can be summarised as follows
i) LACA - (a) Img/mi - Ulnae grown in IACA for 3 days increased in length by a mean of \(47 \%\) (i.e. by approximately \(50 \%\) of control ulnae) (Table II). The rudiments appear normal in histological section and clear distinctions can be observed between cellular zones. Several mitotic figures can be seen in the rounded cell zones. Closer examination under higher power shows that many flattened cells appear to be enclosed in large rounded lacunae rather than lacunae outlining the shape of the cell (Fig. 9).

When cellular parameters are compared with those of cultured controls it is found that each cell type exhibits a decrease in the number of cells/unit volume (Table II). To compensate for this, rounded cells show an increase in cell volume (this increase in volurne is statistically significant, \(P<0.05\) ) but no change in the volume of TCl association with each cell: fiattened cells retain the same cell volume but the volune of ECr/cell increases ( \(P<0.05\) ): and hypertrophic cells show an increase in both cell volume and volume of ECM/cell ( \(E<0.05\) ). The ratio of \(\operatorname{ECM}\) volume : cell volume decreased for rounded and hypectrophic cells but remained fairly constant for flattened cells (Table II). (For the remainder of the results, if increases on decreases in parameters are mentioned, statistical significance is implied and can be checked by refercing to Tables II-VII).
(b) \(5 \mathrm{mg} / \mathrm{ml}\) - Unae grom in LACA at \(5 \mathrm{mg} / \mathrm{ml}\) for 3 days increase in Iength by a mean of 25 (Table II). Histologically the rudiment appears fan from normal and differs from cultured controls in several ways, the most obvious being the lack of Ilattened cells. Mattened Lacunee axe observed but the cells within these are rounded and are indistinguishable from cells in the rounded cell zone (Fig. IO).

When cellular paraneters are compared with those of cultured controls it is found that the number of cells/unit volume decreases for cach cell type whilst the volume of PCM associated with each cell increases. However, rounded and hypertrophic cells also increase In cell volume but flattened cell volume decreases. The ratio of BCM volume : cell volume decreases for rounded cells (i.e. cells are becoming proportionally larger) but increases for both flattened and hypertrophic cells (Table II).
(c) IOmg/ml - Ulnae cultured in LACA at Iomg/ml for 3 days increase In length by a mean of \(9 \%\) (Data not shown). Histologically the rudiment appears dead with many cells containing pyonotic nuclei and many lacunae containing no cells at all (Fig. II). Cellular parameters were not measured in these rudiments.
(d) Img/mi plus 2 aays control - Unae treated with IACA at Img/mi for I day and then cultured in control medium for 2 days increased In length by a mean of \(96 \%\) (Table III). Histologically the mudiment is very similar to cultured controls (Fig. I2).

When cellular parameters are studied it is found that rounded and hypertrophic cells both show a decrease in the number of cells/unit volume concomitant with an increase in cell volume and an increase in the volume of gol associated with each cell. Flattened cells, on the other hand, show an increase in the number of cells/unit volume

With a decrease in cell volume, however, they do show an increase in the volume of ECM/cell. The ratio of ECM volume : cell volume decreases for rounded cells but increases for flattened and hypertrophic cells (TabIe III).
ii) BAPN - (a) Img/ml - Ulnae grown in BAPN at Img/ml for 3 days increase in length by a mean of \(46 \%\) (Table II). Histologically, mainents appear quite different from cultured controls in that several cells appear dead, empty lacunae are present, the perichondrium is thickened and contains vacuolated cells and the diaphysis is very namon with hypertrophic cells aligned Iongitudinally (Fig. I3).

When cellular parameters are compared with those of stage 32 cultured controls it is found that there is a general tendency for cell volume and the volume of ECM associated with each cell to increase whilst the cell density in each zone decreases. The ratio of ECM volume : cell volume decreases for rounded cells, increases for hypertrophic cells and renains constant for flattened cells (Table II). (b) \(5 \mathrm{mg} / \mathrm{ml}\) - Ulnae grom in BAPN at \(5 \mathrm{mg} / \mathrm{ml}\) for 3 days increase in length by a mean of IO\% (Tata not shom). Histologically these rudiments appeared dead with almost every cell in the rounded and flattened zones containing a pyonotic nuclei (Fis. It).
(c) IOmg/ml - Unae grom in BAPN at IOng/ml for 3 days increase in length by a mean of \(4 \%\) (Data not show). Histologically the muiments appear dead and are very similar to that of the \(5 \mathrm{mg} / \mathrm{ml}\) treated rudiment except that the matrix stains very faintly with toluidine blue (see Eig. It)。
(d) Img/ml plus 2 days control - Ulnas grom in BAPN at Img/ml for I day and then cultured in control medium for 2 days incoease in length by a mean of \(97 \%\) (Table III). Histologically, rudiments appear very different from cultured controls in that they become a z shape,
they have very few hattened cells (which are always preceeded and Pollowed by round shaped cells) and they have extremely narrow diauhyses full of longitudinally aligned hypewtrophic cells (Fis. I5).

When cellular parameters are compared with cultured controls, It is found that rounded cells have values very similar to controls. Flattened cells also have the same cell density as controls but the cell volume has decreased and the volume of sav/cell has increased. Hypertrophic cells show a decrease in cell density but show a large increase in both cell volume and volume of mal : cell. The ratio of ECl volume : cell volume has remained constant for rounded cells has increased for flattened cells but has decreased for hypertrophic cells (TabIe III).
(iiii) ox, - (a) Img/ml - Ulnae grown in ao'at Img/ml for 3 days increase in length by a mean of \(29 \%\) (Table II). Histologically the rudiments look different from controls in that no mitotic figures are observed, cells stain very darkly (with toluidine blue), some cells in the flattened zones are rounded, and there is virtually no perichondrium (Rig. 16).

When cellular parameters are compared with cultured controls it is found that rounded cells show a decrease in cell density, retain a similar cell volume but show an increase in the volume of ecu/cell. Mattened and hypertrophic cells both show an increase in cell density. and a decrease in cell volume of ECH/cell to that of controls. The ratio of gal volume : cell volume changes little for rounded cells. but increases for both flattened and hypertrophic cells (Table II). (b) and (c) - 5 and Ioms/mi - Unae grom in ad'at 5 or Iomg/mi for 3 days did not increase in length. Histologically the mudiments appear dead, every cell has a pyonotic nucleus, hypertrophic cells are very small, and no distinct perichondrium is observed (Tig. I?).
(d) Img/ml plus 2 days control - Ulnae grown in \(\alpha \infty\) 'at Img/ml for
(Table TV) and, since the cell density almost always decreased with a stouquoo pernt io ut ph paxeduoo uoum 'stre teutpnateuot auq suote pue of
pue steo fo xequmu suq ut esearoep e poonpord puougreat \(k\) genb
ulnae which were cultured in LACA at Img/m increased in volume and
 In chapter \(I\) ). Ulnae cultured continuously in the presence or tera-
 transverse axis of each zone when companea with stage 32 non-culture along the longttudinat axis and the number of cells acioss the length observed during culture. The effects of these drugs on the distribution of cells within each mudiment are shomn in Tables IV and v.
 In total volume, total cell mumber, the number of cells end to end
 teratogenic duugs axibit changes in the celluzar parameters of UT قsebrout trenono ouq ut wothonpex e sntd eqdoompuouo jo adin upea

 appear very similar to those cultured continuously in ox at Img/mi
(pigs. Í and T8).

- ommpon teo ut oseovono E TTe pue kqtsuev thoo ut oseedout secha milst the volume of Eut/cell menains similar for rounded cells but I ray and then cuttured in control medum for 2 days increase in length by a mean of \(3 T \%\) (Table ITT). Histologically the rudiments

comcomitant increase in cell volume (Table II), this implies that the increase in total volume and total cell number obsecved when unae were cultured in IACA at Img/mi must come about due to an increase in width. Ulnae treated with LACA at Img/ml increased in width at their epiphyseal ends by at least \(50 \%\) more than controls (data not shown) and this is represented by an increase in the number of cells across the width of rounded and flattened zones (Table IV).

Treatnent of ulnae with BAOM at Img/mi most closely approached the effects of LACA at Img/mi in that the total volume of rounded and flattened zones and the number of cells across the width of these zones increased with respect to cultured controls (Table IV). However, the volumes of the cells within these zones also increased considerably during the culture period, as did the volume of zom associated with each cell, (rable II), and this resulted in the actual number of cells present within each zone being reduced when compared with cultured controls (Table IV). The nypertrophic cell zone also contained fewer cells than controls but in this case much of the decrease is due to a reduction in the overall volume of the zone (Table IV).

Treatment of vinae with LACA at \(5 \mathrm{mg} / \mathrm{ml}\) and \(\alpha \alpha^{\prime}\) at \(\mathrm{Img} / \mathrm{ml}\) severly restricted growth. The number of cells end to end along the longitudinal axis and the number of cells across the width of each zone hardiy increased with respect to stage 32 non-oultured controls and therefore, contained far fewer cells than oultured controls (Table IV).

A similax series of results was found when unae were cultured in the presence of teratogenic drugs for I day only and then allowed to recover for 2 days in control medium. In these cases, however, the increase in volume observed in the rounded zones of ulnae treated

With LACA at Img/m was insurficient to match the increase in cell volume (Table II), therefore these zones contain fewer cells than controls (Table V). In adaition the volumes of rounded and rlattened cells in ulnae treated with BAPH at Ing/ml did not increase with respect to cultured controls and, since the total volumes of these zones did increase, these zones were found to contain more cells than controls (Table V).

\section*{5) The effects of collagenase on ulnae grown in vituo}

Table VI presents data for the increase in length and increase in epiphyseal wioth observed when stage 30 and stage 32 unae were treated with \(0.2 \%(w / v)\) collagenase, at \(37^{\circ} \mathrm{C}\). for time periods ranging from I5-60 minutes and then allowed to recovec in control mediun for I on 2 days.

The general trend observed was that treated ulnae increased less in length and more in epiphyseal width than controls. Diaphyseal Width did not increase significantly for either stage studied data not shom, Also, there would appean to be a time and age related response in that the longer the time of exposure to collagenase, or the younger the mament, the greater the increase in epiphyseal width (Table VI).

Table VI shows that the maximum effect of collagenase was observed in stage 30 unae treated for 45 minutes and in stage 32 ulnae treated for 60 minutes - only these rudiments mere studied in detail. In both cases the rudiment appeared to be recovering after 2 days in control medoum, themefore celluax parameters were only measured after I day of recovery.
(i) Stage 30-45 minutes treatment. By I day of recovery, the proximel epiphysis has increased in width by \(72 \%\) compared with \(26 \%\) in controls (Table VI). Histologicaily the proximal rounded cell zone consists of a layer of closely packed cells in the centre whion
is sendwiched between two regions of rounded cells at a slighty
lower density (Fis. Iq). A siminan but smallen region is obsenved
In the aistal rounded cell zone. Gells in the llattened resions appear less elongated and are no lonser arranged in disonete rows
across the muiment - several of the cells have thetr lons axis parallel to the long axis of the mumment. Hypentrophic celis appear small and very olosely packed and no perichondrium oan be around this zone whereas the perichondrium appears fainly nommat
around the flattened and rounded zones. All 3 zones stain fainty
with toluidine blue (fig. IO).
squoumpht peqeath ut wotqng tupstp wetntteo ouq jo votqeuturexte
Teutphateuot euq Buope pue of pue staoo jo requmu euf qeut smous
axis is similar to controls. However, the number of cells across
 Similar increases were observed in mattened and hypemtrophic cell
zones but the increases rere not so great (Table VTI).


> STEO pepunou fo ounton Treo pue hatsuep Troo ouq qeuq punog sen qt
both increased whilst the volume of pam associated with each cell
 cells decneased whilst the volume of walcenl inoreased.

 similar to controls (Table VII).
(ii) Stage 32 - 60 minutes treatment. By I day of cecovery the proximal eptphysis has increased by bug compared with \(20 \%\) in oontrols (Table VI) (Histolozioaly these unas also have a layer of closely Dacked cells in both rounded celt zones whilst thattened cells tend
to be thicker and nore round (pas. 20). Flatened cells ane no

Ionger arranged in discrete rows across the rudment and, in the distal half, several Iacunae heve broken open and some flattened cells appear almost to be in contact with each other. The junctions between the rounded and Ilattened cell zones is indistinct, very Emegular and can no longer be considexed as being a smooth are. Both flattened and rounded cell zones are sumrounded by a thick perichondrium in which the cells do not appear to be very elongated. By contrast, no perichondrium (on periosteum) can be seen sumounding the hypertrophic cell zone, but the thin layer of sub-periosteal bone, Which was present prior to treatment, is still intact (ing. 20). Studies on the cellular distribution of treated moinents show that the number of cells end to end along the longitudinal axis have decreased when compared with controls. The number of cells across the transverse axis of the proximal rounded zone has increased but all other zones either have values similar to or less then controls (Table VII).

When cellular parameters were compared with cultured controls It was found that treatment of stage 32 ulnae with collagenase gave results very similar to those shown by stage 30 treated rudiments. Rounded cells behaved identically in that cell density and cell volume both increased whilst the volume of Bov/cell decreased. Wattened cells decreased in cell density (as in stage 30) but the cell volume increased such that the volume of Rom/cell remained similer to controls. Hypertrophic cells decreased in cell density and increased in cell volume (as in stage 30) but in this case the volune of Dar/cell also increased (Table VII). 6) Collagen fibre alignment within the ulna An Wiectron Micrograph (EM) of cells in the centre of the rounded cell region shows the chondrocytes to be small. rounded cells

 (the mranules are mosmaby gyonaminomyoan attachoe to than apmoneste wolvins) and hember mamification shone that collagen tibes was operge and and which are arecent oner to bo wendomy armanya (एis. 2Ta).

An 3.h. of cells in the flattoned cell recion shons the colls to be large and oloneted with on elongated maclass (ev. 22). Ta cartilare matrix between flattone cells appeass fibrillar in nature, and at a higher magnification these fibres can wontified as collagen which are aligred in the same direction as the long axis of the celle when viewed in longitudinal bection (fig. 23). These fionos aro never seon orsentated in the direction of the short was We tho coll. In transurse suction the collagen furs are inter.


Then wextronic celle axe Lootes at under the . the oula


 to be arrangen around the circumfecence of the cell (ag. 2).

Discussion
Tvory curtiage long bone matiment axisos fron a conkenstios of menenchat cells wich on on hata in histologions anction at


 stat that, in tho mouse, conlenstion onlls are in Rect ocimatater

reported in the chick (see Zde, 1983 for reviuw) but the significance of this to long bone formation has not yet been fully ascertained. The first overt orientation of condensation cells in the chick wing is observed in the humerus at stage 25 (Fig. 2a) when central cells in the future diaphysis become aligned at right angles to the long axis of the rudiment. Cell orientation is finst observed in the ulna at stage 26 ( \(\mathrm{F}_{\mathrm{I}} \mathrm{g}\). 3) . In both the humerus and the wina, extracellular spaces are found which stain metachromatically with toluibine blue suggesting the presence of cartilage matrix. This inplies that cartilage cell oxientation is associated with matrix secretion (as suggested by Gould et al. I974). Also, the short time period between stage 25 and stage 26 (about 6 hours) susgests that there is no stage when the cartilage rudinent is composed solely of rounded cells secreting cartilage matrix, nox is there a stage when pre-chondroblasts are already orientated. The nucleusgolgi body inignment observed by Trelstad (I977) and Holmes and Trelstad (Ig80) before matrix secretion is therefore unifrely to play a role in the initial orientation of cartilage cells.

A long-bone condensation consists of a "cigar-shaped" mass of cells which exist at a higher density than the surcounding mesenchyme but which do not cone into extensive contact with each other (Gould et al. I972; Thorogood and Finchiffe, I975). The ulnal condensation at stage \(25 / 26\) consists of approximately 25 cells across the width of the transverse axis (Figs. 2 and 3) but the number of flattened cells across the diaphysis of a stage 27 uina is only I7 (Fig. 4). The number of cells which constitute the perichondrium at stage 27 is 8 ( 4 on either side), thus the total number of cells across the width of a stage 27 ulna is also 25. It would seem Iikely, therefore, that the cells at the periphery of the stage 25 condensation may give
rise to the eamly perichondrium. This obsemvation reinforces the suzgestion of Gould et aI (I974) that the perichoncrium forms as a result of peripheral cells being passively forced out and flattened. circumferentially due to the accumalation of matrix secreted by central cells.

The early perichondrium is avery weak structure which allows expansion in both the longitudinal and transverse axes (as proposed by Carey, I922) and it is not until stage 30/3I, when cell hypertrophy begins, that the perichondrium becomes consolidated and increases in rudiment length exceed increases in width (Figs. 6 and 7). From this time onvards the mudinent consists of 3 types of chondrooytes and growth occurs by a combinaition of cell division, cell hypectrophy and matrix secretion. By assuming that the ulna is essentially a cylinder with a partial sphere at either end it is possible to estimate the voluna of each individual zone of cells, from camera lucida drawings of fixed rudinents (see Fig. 7) and, using cell density values from Table \(I\), a calculation can be made of the number of cells present in each zone. Therefore it is possible to estimate how much of the overall growth of a rudiment (measured as increase in total volume) is due to cell division, cell hypectrophy on mairix secretion. Figure 25 shows these calculations in detail for in vivo growth and Table VIII presents similar data for in vitico growth and for growth in the mesence of teratogenic drugs.

In all cases the percentage of the total increase in volume (i.e. growth) due to matrix secretion exceedet the sum or the increases in volume due to cell division glus cell hypertrophy. dell division was always the smallest factor involved in the increase in volune (Table VIII). These results are consistant with the suggestion by Thorogood (I983) that matrix secretion may be the most inportant
factor in cartilase growth, and whth the results of Bigeers and Gwatkin (Tg64) when tibiotarsi were found to fnorease in length by approximately \(90 \%\) of controls even after cell division was mocked out by x-imadiation。

Although aimect comparison camot be made between the relative coles of cell division, cell hypertroony and matrix secretion in yivo and in vitro, due to the stages and time periods used, it would seem that the process of cell hypertrophy does not proceed as well in vitro as in vivo (Table VIII). Hupectrophio cell volume increeses with age in vivo such that, by stage 3t, the volume of the cell is greater than the volume of the mol associated with it (ratio of mat volune : cell volume \(=4 I: 59\) ) (Table I). If this trend continued throughout development then if a stage 32 una was companed with a mudiment 3 days older - stage 36 . it would be expected that the hypertrophic cell volume would increase until the ratio of DCP volume : cell volune was high on the cell volune side. When a stage 32 ulna is grom in vitro for 3 days, the hypertrophic cell volune does increase but the ratio of EOM volume: cell volume is only \(47: 53\) (Table II), thecefore, hypertrophy has not proceeded as En vivo. This observation may account for the fact that any increase in length, When rudiments are grown in vitro, is always smaller than the increase in length observed, over the same time period in vivo (see chaptex I), and Ls supocrted by the Findings of Bigeecs that when cell hypertrophy is experimentally prevented, very little increase in length ocours (Bjg8ers, 1957).

Although growth and development may not proceed as well in vitro as in Vivo, it is important to note that the pattern of changes in cellulac parancters is similar and, therefore, in vitro culture acts as a good model fon In vivo growth at the cellular level.

The general effect of teratogenic drug and collagenase treatnent, at the gross morphological level was to reduce longiturinal expansion but increase the epiphyseal width when compared with non-treated controls (Table II-WII).

Teratogenic drugs always produced their greatest effect on the region of hattened cells - cells tended to round up but remained within flattened lacunae in discrete rows across the muinent (fig. Io). This would be expected since these drugs only affect new collagen synthesis and assembly, therefore, the existing cartilage matrix should be unaffected. It is important to note that interference With the nomal collagen biosynthetic pathway is sufficient to change the shape of the flattened cells and in some cases (e.8. qo'dipymidyl) actually will all the cells. (The collagen biosynthetic pathwey Will not be discussed here - for recent reviews see Prockop et al (I979) and Kleinman et 31 (I981).

Although collagenase treatnent also resulted in a degree of rounding up of flattened cells, the greatest effects were obsenved to be the loss of discrete rows of llattened cells and an increase in cell density in the rounded cell zones (Fig. Iq and 20, Table VII). Collagenase results in collagen fibre breakrown therefore it is probable that the loss of discrete rows of flattened cells is due to dismuption of collagen fibres within the cartilage matrix. It is not known whether the increase in cell density in rounded cell zones Is due to an increase in the rate of cell division or whether it is Wue to requirement for non-disrupted collagen fibres for the separation of cells.

Pitton-Jackson (I97I) demonstrated that prolonged treatment with weak collagenase ( 2 aays at a concentration I/To0 of that used hexe) resulted in a loss of the charecteristic shape of the epiphyseal
ends of I2 day ole tibiae with no decrease in Iength when compared with controls. A large proportion of a mutiment at this age is bone therefore no difeerence in size between treated and control Would be expected. However. in a mainent composed solely of cartilage, dismution of the natrix would result in a failume to increase in Iength by as much as controls. Treatnent of I2 day old ulnae with \(0.2 \%\) collagenase for I hour had no effect on the shape of the mudiment (data not shown) therefore, prolonged treatment Would be necessary and, although Fitton-Jackson aid not perform histological examination, it is possible that the loss in shape of the epiphyseal cnds may occur in a similar way to that descoibed in this chapter.

It seems surprising that when the relative contributions of cell division, cell hypertrophy and matrix secretion are sxamined, matrix seccetion appears to play a langer role when agents which dismut collagen synthesis and assembly are added to rudiments (Table VIII). This result, however, may be misleaĩing and may be ceused by matrix dismption allowing matrix, at a Iower density than nommal to spread throughout the mudment and, therefore appear to be present at a higher quantity when there is in fact less matrix present.

Collagen fibres in cartilage matrix are intimately associated With proteoglycan aggregates, therefore disruption of the collagen may result in total dismption of the cartilaginous matrix. From the results obtained using teratogenic arugs and collagenase it would appear that collagen fitres, either on their own or in confunction With proteoglycens, are responsible ror maintaining both the shape and spatial distribution of flattenel cells. This would suggest that collagen is present in some sort of orgenised maner and this has
been found to be the case between cells in the flattened cell zone (F3g, 23)。

Cartilage matrix in the rounced cell zone hes no orgenised collagen fibres (Tig. 2I) and It is proposed that as the process of cell hypertrophy progresses a wave of cell flattening moves out towards the epiphyseal ends; rounded cells cone into contact with the orgenised collagen fibres and become flattened parallel to them (172g. 26). This cell flattening may result in oriented matrix secretion which produces new, organised collagen fibres on which more rounded cells can flatten. In this way the process of cell flattening is self propogating and can be consideced as being sinilar to the process of crystellisation. Such a process has been outlined in general terms by Alberts et al (I983) as a hypothetical model for changes in cell shape being controlled by the extracellulac matrix.

In conclusion, the results presented above show that moh of the increase in total rudiment volume observed ducing growth is due to the secretion of cartilage matrix. This matrix not only favours growth in a longitudinal direction (ave to polarised matrix secretion from Ilattened cells) but also detemines the shape of the chonrooytea and controls the change fron rounded to flattened cell. Thecefoce. the cartilage matrix must be considered as one of the most important factors controlling cartilage morphogenesis.

Ieck of an organised collagenous matrix in the rounded cell zone may explain why these cells are rounded and why the zone enlarges by radial expansion but it does not oxplain why radial expansion does not spread throughout the whole limb. This would imply that something is acting as a barrier preventing radial expansion. The most likely candidete for this barmier would be the perichondrium and the role
of the penachondrium as a monphogenetic pactom whl be consiouned
In the following chaptex.

```

to be et e higher leneitu than pertynerel cells but no apparent
cellulaw orisntation can be obscmven.
Tol. blue stata. Nas. X I25.

```

By. 2. Stase 25 Inal comeonsation. The shape of the condensation cen be cleacly ajstinguibhed from the bumrounding mesenchyme ant the cells appear to be at a vecy high density. 10 netachmonesia can be detected betreen the celle and no overt cellular orientation can be oosezved.
Tol. blue satin. Mag. x I25

Pis. 22. Stage 25 humcrus. Setachronatio extacollular matrix can be observed between cells. The cartilage cells appear to be orientated perpendioularly to the long axis of the whe. Tol. Olue stan. Mas. 225.


\author{
Weg. 3. Stage 26 ulna. The ulna et this stage is very bimpar to the stage 25 humemes in thet cells ace seperated by a metachromatic matrity and have bocome orkentated pempendiculamy to the lons aris of the wing. \\ Tol. blue stain. las. x 125.
}
```

His. 4. Stage 27 ulna. The mudiment consists primarily of one
large zone of typtcally flattened chondrocytes with fewer rounded
chondrocytes merging into the mesenchyme at efther end. The finst
appearance of an early perichondrium can be obsemved at thts stege
but it fs very loose anm appeans to be composed of polygonal
shaped cells.
Tol. DTue stain. Nag. x IOO.

```

TE. 5. Stage 27 uma, transverse section of the same wurment
as in 12 B . 4 . Centrally Zoceted chontrocybes apoean polysonat
In shape (suggesting that hattened cells are in fect Jiscmanaped)
Whint perichoncrial cells ace orescent-shaped and are glongatet
around the central core of carthlage.
ToI. blue stein. Mag. x 200.
\(z=-\operatorname{coshom}=2\)

```

\#g. 6. Stege 32 una, hyportrophic cen megion. The fhattened
chonaroovtes Srel1 up to fomm large sphemioally shaped hypertrophic
cells mhich are still separated by extracellular matrix. As thes
ocours the weak pexiohondrium is exposed to consiaerable pressure
which results in it beconing consolidated with the cells aligned
Iongitudinally.
Tol.blue stamn. vas. x 320.

```

The. 7. Gambre luchaz araminge of histoloztcal sectione of the developing uthe. Once 3 trpes of chondrocytes are present, the wotment Increcses much mome in lensth then in with 6.8 betreen stage 3 I-stase 34 the incmease in length observed is 202 whinst the increase In wicth of the Laphysis is ony 2ho Evaminetton of eectioned material allows comparison of the celluler zones at
each stage.
\(R=\) rounded ce11, \(T=\) mettened ce11, \(H=\) hypemtrophec cell.


33



```

cell" gone Dut no investon of blood veseels has occucued. "The
eptuysis appears asummetwical thich tndicates that the obeomanon
has mactialiy developed.
T01. Wluc stain. Mas. x lo.

```

 longer sumpounded by \(e\) Mattenod-shaped lacuna. many have appeared to round up.
ToZ. blue stain. lag. 300.

Tig. To. Stage 32 una plus Sngim TACA. Cells mithin the Mettened cell zone have wounded up but heve metained some hettened Iacumee. Wattened zone cells are no Iongex aistinguishable fyom rounded zone cells. Tol. blue stain. Mes. \(x\) I25.



```

Toz. bTue tain, vas. x T2S,

```

meoovor. The distribution of the celturen gones and the shepes
of the cells gre binmat to that found tr contaobe.
Tot. blue stain. Wag. xup.

```

meny deer cetts some with empty leomee. Mote the Lomgitutanat
on+cntation of hypertrophic ce\7.
Tol. DTue stain. Hag. x40.

```



```

cesd Em here प, onotio mucted.
Tol. पue stain. ,0,8. w T25.

```

Wotuce that the hattonet cen zome te extremely mata hyoentronta

\(\operatorname{trangrt}\).
Tole bTbe steñ "as. x


    monotie moles, some fatetenel zone ostas apect romode and
vaturlty no penhohondwiun ts uresent.
ToS. Gue ebEn. UEE. XES.







```

TOL: blua stain Meg. NTS5.

```









```

Astal hat: Mhe romnged cell zone eqgeare simtagm to thet fa

```

```

Gue atmoet Fa tonch with each othet: The mentohondmatum

```

```

clomgated.
Tol. blue sue"n. Seg. x 525.

```

Sig. 2t. Deotron mionograph of stage 32 zounded cetze. Mes
cells apacer to be small and round in shape separeted by a gramlam
E0.
Urany acetate/Lead oftrate stain. Hae. a 30,000.
Zis. 2he. Whgher power of पu betmeen counded celle to show
spacteg of coIZagen fiboes mat Zack of orgenüsation.





```

by a tibumLLac acm

```


Gig. 23. Higher power of ga between latbence cene to show the REtrallac metemtal armenged parallel to the long aris of the
 magnificetion to be colkagen fibres.
UManyl acetate/Lead citrate stain. Mag. x 35,000 .


Tis. 23a. Thansvense section of the anea sean th Fiz. 23. The oollagen itibres apoear to be armenged moto a meshmomb.

```

Tzs. 2t. Wectmon macosuaph of etege 32 bypertmoyhac oenjs.

```


```

apmar to be emansen carcumementia\etaly enound the ceTL.
UMenyt wetete, Iese ontarte etrin weg. y 30,000.

```


Table 1 Changes in the mean cell densities, mean cell volumes and the mean volumes of Dow/cell in the chick embryo ulna during in vivo development.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Stage & Cell density
\[
\left(10^{6} / \mathrm{mm}^{3}\right)
\] & Cell volume
\[
\left(10^{-9} \mathrm{~mm}^{3}\right)
\] & Total vol. of zones
\[
\left(10^{-3} \operatorname{man}^{3}\right)
\] & \[
\begin{aligned}
& \text { Ho. of } \\
& \text { cells/zone }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Wol. of } \\
& \text { Ba/cell } \\
& \left(10^{-9} \mathrm{~mm}^{3}\right)
\end{aligned}
\] & \begin{tabular}{l}
\% watio \\
BCL:cel1
\end{tabular} \\
\hline 31 & & & & & & \\
\hline Round. & 1. 84 & 97 & 28 & 51520 & 446 & 81:19 \\
\hline Dat. & I. 53 & 309 & 34 & 52360 & 344 & 52:48 \\
\hline Hyp. & 0.54 & 539 & 5 & \(3 \pm 78\) & I007 & \(66: 34\) \\
\hline 32 & & & & & & \\
\hline Round. & I. 39 & III & 35 & 48615 & 609 & 85:15 \\
\hline Fat. & I. 13 & 359 & 83 & 93928 & 525 & 60:40 \\
\hline Hyp. & 0.30 & I570 & 27 & 8172 & I738 & \(52: 48\) \\
\hline 33 & & & & & & \\
\hline Round. & I. 59 & II5 & 47 & 74871 & 514 & 82:18 \\
\hline Flat. & I.I6 & \(40 ?\) & 84 & 97789 & 452 & 52:48 \\
\hline Hyp. & 0.28 & 1739 & 34 & 9373 & I888 & 52:48 \\
\hline 34 & & & & & & \\
\hline Round. & I. 44 & IT8 & II7 & 168313 & 577 & 83:17 \\
\hline Pat. & 0.84 & 561 & 149 & 122915 & 635 & 53.47 \\
\hline Hyp. & 0.22 & 27 II & 129 & 27802 & I928 & 4.I:59 \\
\hline
\end{tabular}

Unas were removed from the embryo and fixed immediately. Yalues were calculated from 3 central sections. Ionm apart, from each of 4 atrearent mudiments for each stage.

In each case the value is rounded up to the nearest whole number.
Standand deviations are omitted for clarity - for cell densities they ranged from 3-10\%.




Values are rounded up to the nearest whole number, and standard deviations are omitted for clamity.
\(I=I\)-azetidine \(-2-\) carboxylic acid.
\(B=\) Bamoproprionitrile fumerate.
Concentrations of L greater than \(5 \mathrm{mg} / \mathrm{mi}\). B greater then Img/mi and - popnrout qou our squemqeouq


Vol. of TGy cell \(=\frac{\text { Unit volume - (cell density x cell volume) }}{\text { cell density. }}\)
Thamente were measured immediately and at the end of the 3 day oulture
perion using a calibrated eyepiece gratioule.
Statistical analysis was perfomed using student's t-test. Zones in
Tudimente mene measumed mmediately wh at the end of the 3 day oulture
period using a calbrated eyepiece gratioule.
Statistical analysis was perfonmed using student's t-test. Zones in
Statistical analysis was perfomed using student's t-test. Zones in Greated mudiments were companed wh equmanent zones in cumen condrans
Signifance was taken at the \(5 \%\) level.


Table TII The cellular parametere of stage 32 ulnae cultured for I day in the presence of teratogeníc druge followed by a days in control medium.


Unae were cultured in the pesence of a teratogenio dmus for I day. Washed twice in control medium, and then oultured in control nedium for a further 2 days.

Values were caloulated and presented as in Teble II.
Statistical analysis was pexfomed using Student's t-test.
\(1=\frac{\operatorname{signtincent}}{\left(\begin{array}{l}\text { incocese }\end{array}\right)}, \quad<0.05\).
\(2=\frac{\sin \sin \operatorname{con} t}{(\operatorname{dec} \operatorname{cose})}\)


\footnotetext{

}
Table \begin{tabular}{l} 
The cellulan configuration of stage 32 unae oultured \\
fow I day in the presence of texatogenio drugs followed \\
by 2 days in control menium.
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Treatment & Total volume of zones & Number of cells/zone \({ }^{\text {t }}\) & ```
Number of celis
mlong the long
2unsor each
zone
``` & ```
Tumber of cells
across the
transverse axis
of each zonet
``` \\
\hline Control & & & (478) & \\
\hline Round. That. Hyp. & \[
\begin{aligned}
& 199 \\
& 481 \\
& 256
\end{aligned}
\] & \[
\begin{aligned}
& 250448 \\
& 331724 \\
& 40979
\end{aligned}
\] & \[
\begin{aligned}
& 64 / 45 \\
& 86 / 67 \\
& 106
\end{aligned}
\] & \[
\begin{aligned}
& 83 / 57 \\
& 427 \\
& 22
\end{aligned}
\] \\
\hline \(\underline{\operatorname{Im}} \operatorname{Imz}]^{1}\) & & & (455) & \\
\hline Found. Plat。 Byp. & \[
\begin{aligned}
& 270 \\
& 62 I \\
& 425
\end{aligned}
\] & \[
\begin{array}{r}
207 \pm 96 \\
447502 \\
52673
\end{array}
\] & \[
\begin{aligned}
& 4 I / 4 I \\
& 85 / 82 \\
& 206
\end{aligned}
\] & \[
\begin{aligned}
& 9 I / 6 I \\
& 62 / 53 \\
& 17
\end{aligned}
\] \\
\hline B-Incin & & & (34) & \\
\hline \begin{tabular}{l}
Round. \\
Plat./Round. \\
Hyp.
\end{tabular} & \[
\begin{aligned}
& 297 \\
& 543 \\
& 107
\end{aligned}
\] & \[
\begin{array}{r}
372 T 45 \\
379872 \\
9027
\end{array}
\] & \[
\begin{aligned}
& 5 I / 48 \\
& 28+59 / 14+66^{2} \\
& 18
\end{aligned}
\] &  \\
\hline \(\underbrace{-I m g / m L}{ }^{2}\) & & & (259) & \\
\hline \begin{tabular}{l}
Round. \\
Mat。 \\
Hyp.
\end{tabular} & \[
\begin{array}{r}
7 I \\
15 I \\
70
\end{array}
\] & \[
\begin{array}{r}
96961 \\
237027 \\
16609
\end{array}
\] & \[
\begin{aligned}
& 5 I / 4 I \\
& 6 I / 5 I \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& 47 / 39 \\
& 33 / 25 \\
& 22
\end{aligned}
\] \\
\hline
\end{tabular}

Values were calculated fron the same sections as used in Table ITI. Fralues were caloulated and presented as in Reble IV.
arreatment with BAOM at Img/mI for I day resulted in a flattened region which contained both flattened and founded cells. The number of Fattened cells end to enc ace presented first.

Statistical analysis was perfomed using Student's t-test.
\[
1=\frac{\operatorname{signapicant},}{(\text { increase })} \mathrm{E}<0.05 \cdot \quad 2=\frac{\sin +i \operatorname{can} t}{(\text { aecocase })}
\]
```

Table VI The effect of collagenase on the growth of ulnae
cultured in vitro.

```
\% incmease in eqiphyseal width
\begin{tabular}{|c|c|c|c|c|}
\hline Treatment & Dey I & Day 2 & Total & \% increase in length \\
\hline St. 30 control & 26/17 & 7/10 & \(35 / 28\) & 88 \\
\hline 15 min . & 50/29 & I9/5 & 78:36 & 84 \\
\hline 30 min. & 55/3? & 15/16 & 78/59 & 79 \\
\hline 45 min . & \(72 / 46\) & 13/5 & \(94 / 53\) & 69 \\
\hline 60 min . & \(65 / 35\) & 8/I4 & 78/54 & 63 \\
\hline St. 32 control & 20/I7 & \(8 / 5\) & 30/23 & 82 \\
\hline 15 min. & \(40 / 22\) & \(5 / 7\) & \(47 / 30\) & 78 \\
\hline 30 min . & 46/27 & II/8 & \(62 / 37\) & 74 \\
\hline 45 min . & 45/22 & T4/T2 & 66/37 & 68 \\
\hline 60 man . & \(64 / 48\) & II/4 & 82/54 & 65 \\
\hline
\end{tabular}

Fudiments were measured daily using a calibrated eyopiece graticuie. Values were calculated from at least Io mudiments for each treatment time.

Standard deviations are omitted for clarity but ranged from 4-I4\%. ** proximal values are presented first.

Table VI The effect of \(0.2 \%\) callagenase on the cellular paranetens and cellutar configuration of stage 30 and stage 32 ulnas.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Treatment & \[
\begin{array}{ll}
\text { Cens } \\
\text { censty }
\end{array}
\] & cell & \[
\begin{array}{ll}
\text { Von of } \\
\text { scelt }
\end{array}
\] & \begin{tabular}{l}
Number of cells \\
alons the long \\
axhs of cech \\
zone
\end{tabular} & \begin{tabular}{l}
Tumber of cells \\
across the \\
transterse axis \\
of each zone
\end{tabular} \\
\hline Stage 30 control & & & & (256) & \\
\hline Round. Met. Hye. & \[
\begin{aligned}
& \frac{T}{1.621} \\
& 1.223 \\
& 0.518
\end{aligned}
\] & \[
\begin{array}{r}
95 \\
345 \\
120 I
\end{array}
\] & \[
\begin{array}{r}
532 \\
643 \\
640
\end{array}
\] & \[
\begin{aligned}
& 42 / 33 \\
& 72 / 55 \\
& 4
\end{aligned}
\] & \[
\begin{aligned}
& 42 / 37 \\
& 3528 \\
& 21
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { gtage } 30 \\
& 45 \text { min. } \\
& \hline
\end{aligned}
\] & & & & (252) & \\
\hline \[
\begin{aligned}
& \text { Round. } \\
& \text { Guat. } \\
& \text { Hyp. }
\end{aligned}
\] & \[
\begin{aligned}
& 1.975 \\
& 0.932 \\
& 0.409
\end{aligned}
\] & \[
\begin{array}{r}
97 \\
1792
\end{array}
\] & \[
\begin{aligned}
& 45 \\
& 756 \\
& 653
\end{aligned}
\] & \[
\begin{aligned}
& 4 \% 66 \\
& 66 / 59 \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& 66 / 49 \\
& 23 \\
& 23
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Btage } 32 \\
& \text { control }
\end{aligned}
\] & & & & (377) & \\
\hline \begin{tabular}{l}
Round. \\
Flat. \\
Pyp.
\end{tabular} & \[
\begin{aligned}
& 1.554 \\
& 0.92 I \\
& 0.243
\end{aligned}
\] & \[
\begin{array}{r}
116 \\
239 \\
2309
\end{array}
\] & \[
\begin{array}{r}
528 \\
577 \\
1726
\end{array}
\] & \[
\begin{aligned}
& 65 / 35 \\
& 9 / 75 \\
& 108
\end{aligned}
\] & \[
\begin{aligned}
& 80 / 55 \\
& 54 / 37 \\
& 23
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 6 \text { tage } 32 \\
& 60 \mathrm{~min} .
\end{aligned}
\] & & & & \[
(315)^{2}
\] & \\
\hline Round. Blat. HyP. & \(I .667\)
0.747
0.201 & \[
\begin{array}{r}
552 \\
802 \\
2920
\end{array}
\] & \[
\begin{array}{r}
448 \\
236 \\
2055
\end{array}
\] & \[
\begin{aligned}
& 5 / 34 \\
& 55 / 64
\end{aligned}
\] & \[
\begin{aligned}
& 93 / 521 \\
& 25 / 37 \\
& 23
\end{aligned}
\] \\
\hline
\end{tabular}

\footnotetext{
Whae nowe treated with \(0.2 \%\) collagenase for the time periode shown they wece then washed twice in control medium and cultured on top of Minpore filtea rafts for I day, fixed and sectioned.

Yalues were caloulated from 4 central sections, To wh apert, from 6 dftement mudinents for each treatment.

Falues were calculated from the equations used - Teble I
tTalues are presented as in Table Tr.
Statisticel anelysis was perfomed using gtuoent"s t-test.

}

Table VIII The roles played by cell durision, cell hypertrophy and matrix secretton th the growth of ulnee.
af totel inctesse in volume t.
\begin{tabular}{|c|c|c|c|c|}
\hline Treatment & \[
\begin{aligned}
& \text { Cell } \\
& \text { aivision }
\end{aligned}
\] & \begin{tabular}{l}
Cell \\
hypertroony
\end{tabular} & 1atrex secretion & \[
\begin{aligned}
& \text { F increase } \\
& \text { in volume }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
stage 3T-3 \\
in vivo
\end{tabular} & 5.50 & 37.75 & 56.75 & - - -m. \\
\hline \begin{tabular}{l}
Stage 22 \\
+ 3 days
\end{tabular} & 7.91 & 30.22 & \(6 \pm .88\) & IOO \\
\hline \[
\begin{aligned}
& \text { I-Img/m } \\
& +3 \text { days }
\end{aligned}
\] & 6.68 & 36.06 & 57.05 & ISt \\
\hline \[
\begin{aligned}
& \mathrm{D}-\mathrm{Img} / \mathrm{ml} \\
& +3 \mathrm{days}
\end{aligned}
\] & 6.64 & 29.22 & 64.13 & 94 \\
\hline \[
\frac{\operatorname{Ing} \operatorname{In}}{1 \mathrm{day}+2 \text { atas }}
\] & 6.78 & 27.84 & 65.41 & I40 \\
\hline \[
\frac{3-\operatorname{mg} \mathrm{m}}{\mathrm{day}+2 \text { days }}
\] & 10.39 & I4.70 & 74.97 & IOI \\
\hline
\end{tabular}

Falues are means of caloulations camied out on 2 central sections, IO un apart. from 4 Gifferent rukiments for each treatment. Values Were calculated as shom in pigure 25. All measurements wexe taken Trom camera lucida dramings of inced specinens.

The increase in volume observed in stage 32 ulnae cultured in control medtum for 3 days was taken as IOO\%, - all the other increases in volume were comrelated with this.

\section*{Introduction}

Two questions amise from the data presented in the previous chapter:
i) if a long bone rudiment is designed mainly for an increase in length, what controls the increase observed?

포) although the flattened and hypectrophic cell zones primarily enhance longitudinal growth, what limits the small increase in width observed in these zones?

The most obvious answer must be that some extemal factor ie constraining the expansion in both axes, "- the best candidate for this extemal factor has been suzgested by Holpect (Ig82) and by Thorogood (1983) to be the perichondrium.

Surprisingly Iittie is knom about the role of the perichondrium In cartilage development even though it was ininst impincated by Garey in Ig22. Whilst studying the development of the embryonio pis femur, Gemey observed that until a recognisable periohondrium Pomed the femur increased more in wicth then in length, however. after formation, the increase in length for exceeded any increase in wiath.

Since Carey's stuay, the perichondarium has been considered more as a means of allowing appositionel growth to ocour mather than a morphogenetic entity, however, as mentioned in the General Introm duction, very ifttle experimental evidence has been presented to support this proposed Sunction.

During development, the perichondrium in the diaphyseal region gradually changes into a bilayered periosteum and this structure has been show to be important in the control of Iength in the growing bone (Gnily, I972: Haughton and Dekel. I979).

The object of this chapter is to detemmine if the perichondmum
plays a similar role on the developing cartilaganous mudment and also to see if the periohondrium detemines the shape of the rudment in any way.

Materials and Methods
Ulnae were dissected free from the wings of embryos aged betreen stage \(30-3\) and ejther fixed immediately for \(\mathrm{a} . \mathrm{H}\). examinetion. as desoribed in the General Methods, or oultured under various conditions:
i) Cultured intact for I day whth part, or all, of theix perichondrium removed. Pamtial removal was performed by carefully strüping away the perichondrium fron around the flattened cell region at one epiphyseal end; total removal was accomplished by repeatedy rolling the rudiment on a piece of sterile. ory villipore filter. 24 maiments were used for each experiment.
ii) Cultured as whole or hale mudments, up to 3 days, after one small nick had been made through the periohondrium, at various levels, by means of imedectomy scissors. In all, a total of 80 ulnae were nicked in this experiment.

Ain' Gultured for up to 3 days after being out into 2,4 or 6 equal pieces by inredectomy knives. A total of 210 ulnae were used in this experament - IO for each cut at each stage between stage 30 stage 34 and Io for each out at stages 36 and 37. i.e. 30 unae from each stage were looked at.
iv) Stage \(34 / 35\) ulnae were oultured intact but with a cube of cells Within the flattened cell zone rotated through \(90^{\circ}\). In all. I6 muminents were used.
Results
T UI

\section*{Utrastructure of the perichondrium}
stage 27 in the ulna when the cells appeared polygonal in longiturinal
section but crescent shaped when viewed in transverse section (see chapter 2). There was no appacent cell contact between these cells
and the oxtracellular matrix (BCH) separating them stained meta-
chromatically with toluidine blue. Ho evidence of a porichondrium
could be seen at the epiphyseal ends.
pmote steoo Terdpuouofuad aut sod/bz acens 'asens deqet e fy

perallel to the long axis of the maiment, just as the process of



 imperceptively with the mesenchyme (Pig. 2).



Were very elongater and some small cell-cell contacts could be
observed (TiE. 3). (The nature of these functions has not yet been

 Mongetion of perichondrial cells appears to be a progressive
phenonenon in that some cells surrounding the plattened cell zone

\section*{have aiso elongated by stage 3I, however, these cells merely overlap}
and do not exhibit cell contacts (Pis. 4). At the epiphyseal ends
of a stage II ulna, chondroblasts could be distinguished from
mesenchyme colls by theix more uniform shave, but still no distinct bamien could be observed ( Wis. 5).

By stage 32 the periohondrium at the level of hypertrophio cells Was a very distinct, tight structure with many areas of extensive cell-cell contacts (these contacts are believed to be tight junctions) (\#is. 6). Ho wal could be obsexved betwoen these cells at this stage. At the flattened call region, the perichondwium was oegiming to show some cell contacts producing a loosely bound structuxe 5-10 colls thick (19.g. 7). As cen be seen, cartilage cells nearest the perichondrium appear either spherical on elongated parallel with the perichondrium, which might imply appositional growth. There wes still litile evidence fox a perichondrial structure sumpounting rounded cells at stage 32 (Fig. 8).

The perichondrium began to change into a periosteur in the centre of the diaphysis at stage 32 but no morphologioal change was immediately apoacent until stage 33 when pertchonarial cells closest to the cartilage appeared to round up (fig. 9). The cells retained extensive cell-cell contacts and osteoid was deposited between these cells and the cartilage (隹s. 9). At this stage no Dan was observed between the periostal celle but at higher magnification coated pits were seen which mere preaumably present for the secretion of TOM (Fig. 9a). The structure of the perichondritur surrounding the flattened cell region was now very tight with many extenstye cell-cell contacts (fig. IO). (This structure was very similar to the perichondrium surrounding the centre of the diaphysis at the earlier atage 32). In addition, the perichondrium surrounding the rounded cell region was also becoming more consclidated with cells fust beginaing to overiap each other but without obvious cell-cell contacts (Fig. II).

The central region of a stage 34 ulna was very difficult to out
and photographs of this megion shon amge deposits on osteond
between the cartilage and the periosteum ( F -g. T2). There would appear to be some aligment of the collagen fiboes, at the periphery
of the cartilage, so that they lie parallet to the long axis of the rudiment. This inrectionality on the colnasen pibres can be seen

more clearly di hagher magnification (Fig. TZa). At a level a small distance away mom the oentre of a stage 3 t una, the beginnings of a bitayered periosteum could now be seen ad jecent to the hypertrophio Mnis periosteum consisted of an inner layer of rounded, hore
tightly packed (possibly osteosenic) cells and an outer layer of
very elongated fibroblast-like cells (Fig. I3).

The fibroblast-like cells were amanged in layers separated
 magnification the fibroblast-like cells appeared to be in contact not onty by cell-cell contacts but also by what appeared to be glycosaminoglycan strands which extended from the strips of electrondense materian to a glycocatyx: on the opposite cell sumface (pig. Tha). In contrast, no extracellular matorial was observed between the cells of the inner layer of the periosteur ( m ( B . I5) . The nature of the
electron dense material is unknom but it is possible that these strips comespond to the white ribrous material described in pell tight microscopical study of chontrogenesis (Tent, T925). It is possible that this material is composed of densely packed mows of Pibres intemingled whth elastin fibres although this has vet to be
histochemically confirmed.




\[
\text { of the incision within } 24 \text { hours in } 55^{\prime} \text { of the cases (Table II) }
\]

This swelling was found to contain normal staining cartilage (rig. 18). At higher magnification (Fig. Ig), the swelling contained rounded and flattened cells with flattened cells orientated in the airection of the swelling. The entive swelling appeared to be enclosed Within a very thin perichondrial sheath (Tig.I9), and no evidence of an increased mitotic index conld be found. If two incisions were made in this region, a swelling was only ramely observed (Table II).

If the incision was made into the hypertronic cell region no swelling vas observed even if the rudiment was out in two (Table II). 4) The effect of cutting ulnae into pieces

When stage 3I, or younger, ulnae were cut into 2 , 4 or 6 equai sized pieces and the increase in lengh of each piece was measured over a 3 day culture period, then the sum of the increase in length or the pieces was always less than that observed in an intact rudiment. in fact very little growth occurced at all (Table III).

However, if ulnac aged between stage 32-34 were cut into 2 or 4 pieces the overall increase in length of these pieces always exceeded that for the intact rudinent. The excess ranged from \(5-12 \%\) Cepending on how many pieces were cut (Table III). It was noticed that portions containing the epiphyses increased. In Iength more than diaphyseal portions. If stage 32-34 ulnae were cut into 6 pieces the increase in length was less than that of intact rudiments (Table IIT).

If pieces were out from stage 36, or older, ulnae diaphyseal portions which contained bone at this stage, hardiy increased in length at all, thexefore, the overall increase in length was alwaye less than for intact mudiments (Table III).

Two further ooservations arose from these experiments, the first was that the process of cell hypertrophy was tissue autononous. Then portions out from the diaphyseal region, which might be expected




 (48. 20).

The socon guremation was that il the out weoco vore hat



 of class coversi: over the mec of mament ant semty aply
 Forceps). It was found bhat only the myormoyate delt agion

 कn this moctomers we used in Iator oxpowisents to isolates hyortroptic cells. Then rountor on tattomel cell zons mere chuasma,
 5) 2otation of anattence cel2s
hon a cube of fattener ohls was rotatud throus\% o力 and
 that the enoe bocane oblone bhemed ank astorted the waye on the

 logioal sectioning of the rotabed tissue proved afficult and oten resulted in the cube being tom from the ruliment, howeven, examirabion of sone sections implier that the flattone cells had not re-orientator

\section*{Discussion}

The resuits presented in this chapter describing the ultrastructure of the perichondrium are in total agreement with the light microscopical observations of Rell (Iq25). Prion to cell hypertrophy there is no definite perichondrium. At stage 27 . there is a berrier of polygonal cells between flattened chondrocytes, in the centre of the mudiment, and the sucrounding mesenchyme but these polysonal cells closely resemble chondrocytes and in fact have a siminarly staining IGM (see chapter II). As cell hypertrophy begine, at stage 30, cells in the barrier become elongated in a direction parailel to the long axis of the rudiment, and the structure can now be regarded as en early perichondrium (Fig. I). However, it should be noted that the elongated cells remain similar in chacacter, and in thein SCM, to the chondrocytes. No distinct perichondrium can be obsemved at the rounded cell regions where chondroblasts and mesenchyme cells axe vintually indistinguishable (pig. 2).

As cell hypertrophy becomes more pronounced, perichondrizil cells become nore elongated and begin to exhibit cell-cell contacts so that by stage 32 , a very distinct, tight structure has formed around the hypertrophic cell zone (Fiss. 3 and 6). This consolitation of the perichondrium may be a mechanical property and may be a function of the dilation caused by the process of cell hypertrophy and the continued accumulation or ICM. Once the pewiohondrium has become consolidated, very little increase in measurable width, as proposed by Carey ( 1922 ), or in the mumber of cells across the with of the hypertrophic zone is observed (see Table V, chapter I).

The consolidation of the periohondrium is a prognessive process In that it spreads outwards from the hypertrophic zone to the fattened celi zones. However, the perichondriun sumeounding the flattened
ce 12 zones nevel exhuits a high degree of cell-cell contacts until the mattened cells begin to hypertrophy (Fig. IO): The Mattenes cell perichonorium is usualy composed of Layexs of overlappins cells (Figs. 4 and 7) which would allow Inmited radial expanston of this zone. This expansion is necessany since the Pattened cell zone is contimuily advencing into aneas which had previousiy been composed of rounded cells.

The rounded cell zone is contimously expending in a radial manner due to non-polarised Ton secretion and cell division. This expansion ocours freely and may be aided by the lack of a perichondrium between the cartilige and the surrounding mesenchyme (Figs. 2, 5 and 8). The expanston is ony constrained then rounded cells, closest to the lattened cell zone, begin to flatten and, therefore, become sumounded by a Ioose pexichondrium (as in Tig. 4) The first appearance of a perichondrial structure around rounded cells, at the tip of the una, is observed at stage 33 when cells betreen the cartilage and the mesenchyme begin to overlap (Fig. II) and this structure also consolidates with age (Pig. I6).

The transfomation from a pexichondrum into a periosteum. at stage \(32 / 33\), is not the main point of study here but it seems to involve both the rounding up of cells in the innex layer of the perichondrium (Fis. 9), and a build up of aligned collagen fibres on the inner surface of the pertchoncrium (Pig. I2). These inner Tayer cells are believed to be osteogenic (Fell. I925) but how they round up and how they becone osteogenic is unknow. There is virtually no wat between cells in the innex layez of the periosteum (12z. I5) but by stage 34, Long, electron-dense strips appear between cells in the outer fibroblastic layer (Fis. 13 and I4). These electron-dense strips appear at the sane time and in the same place as the "delicate white fibres" aescribed by Pell (I925). Although
no biocherical assay has as jet been perfomed, this ECA is thought to be composed of collagen fibres. ghycosaminoglycens and elastin fibres, which may explain why the periosteum seems to spring back Whenever it is cut (e.e. see Grilly, Io72). It is impontent to note that the periosteum only extends as fer as the hypextrophic cell zone and only enlagges at the seme rate as the process of bypertrophy.

Pxperimental mesults presented in this chapter zndicate that the main funotion of the perichondrium is to aid in the production of a typical long bone morphology by means of constraining expansion both longitudinally and radially.

The overgrowth observed when part of the perichondnium was removed (Table I) is very similar to thet oberved when a circumferential incision was made into the periosteum of a 20 day old chicken rajuus (ompIy, IG72), or when part of the pexiosteum was stripped fron the femur of a Juvenile rat (Haughton and Dekel, Iope). The production of an \(S\) shaped ruaiment when the whole of the pertohondriun was removed (phs. I7) not onv imples that the perichondroum is important in morphogenesis but also that the cartinge itself 2n the daphysis is relatively mum whilst that in the cpiphysis is soft.

Further evicence for a diffexence in consistancy between oartilage from different regions comes from the obsenvation that When a mior wes mare, through the perichondriun, at the epiphyseal megion on a stage 32 ulna a swelling was observed (rig. I8), but if the afok was made in the diaphyseal regton, no swelling appeared (Table II). As shom in chapter II: rounded cell cartilage ECl (epiphyseal) is granular rather than fibrillar and veny Inttle collagen is present, whereas the 30. in the Hattened or hypextrophio
cell region (diaphyseal) is very fibuillar with proteoglycan asceegates atteched to the collagen. It would be expected. therefore, that epiphyseal cartilage rould have a sreater swelling pressure of proteoglyoans when exposed to culture medium and the cartilage would swell out through the hole. older equhyseal oartilase contains more collasen fibues with aggregates attached and this may explain why no awelling was ever found when stage 36, on aldex, muments were nioked (ata not shome).

It is not known why a mudiment had to be out in two before any swelling was observed but two possibilites exist ; the pimst is that cutting the mudiment allows water to enter and it is the build-up of hydrostatic pressure, in the soft. malleable eviphyseal cartilage which forces the cartilage out through the nick: the second possibility is that outting the mudinent in two and/or cutting through the perichondrium induces excess matrix secretion, therefore, matrix builds up and gets forced out through the nick. (Cartilage is held under pressure within a rudiment and the release of this pressure is Known to have effects on both cell division and EGH secretion - Roden et al (1975), it is possible that outting the mudiment causes release of this tension).

The obsexvation that hyertrophic cartilage does not P1ow out through a nick may simply be a reflection of the solidity of the matrix. but it could also be due to the fact that the perichondium at the hypertrophic region is a very distmot, very celuulan structure which may rapidly heal preventing fomation of a swelling.

It has lons been mown that if one epiphyseal growth plate of a bone is damased the other growth plate may compensete for it (Retdy et al. I947: Rall-Gags and Lawrence, I969). therefore.

\footnotetext{
cudiment may show compensatory growth which would not allow
}
pressure to build up and no swelling would be produced.
that overgrowth may be a stage dependant phenomenon, but this is
not necessarily the case and it is possible that the tramma of
cutting stage 30 uInae into pieces may be sufficient to tinl the pieces, therefore, no growth at all is observed (Table TII). similan explaination is probably the case wen stage 32 ulnae are

\[
\text { on } 4 \text { pieces each portion does increase in length and the total }
\]
Increase in length observed is always greater than thet for of
queqexodury zsoul eur
observation from this set of results was that when the pattened
cell zone vas isolated, the hattened cells progressed to hypertrophy,

somewhet different from that in vivo in that it involved both

call nyperveopny -1
primarily in a longitudinal direction and it could be the case that
this directionaitu is forced upon the cells. The distinct, tight
perichondrial structure found arouna the hypertrophic cell zone
is probably ideal for this function.
STLeo peueqnetr jo aqno e verk peuteqoo squnseu freuturtord out




the epiphysis would not change.
ouh geun sp sqtasex anoae eun wovg wotsntouoo trexeno oun
structure of the perichonherum lende ttsent to the hunction of
 expension. tt is proposec thet at an eary stage. when no

there is no need for a distinct perichonorium and inoreases in
winth can ocour as wett as increases in tensth. As choncrocytes
undergo hymertrophy a more distinot stmoture as mequines which
 is regutmed at the rounded oett zone whin continues to inomease
in width. pomation of the peniosteun at stage \(32 / 33\) produces
Even more constraint in the itaphysis end it is interesting to

A1so, it collasen and elastin pithes are present in the periosteal
EC this would moduce tension in the periosteum an since it is Thom thet periosteal tension restriets growth (uniny yop2),
Increases in length may be controlled in this way.
 has been outlined briefly by voppert ( 1082 ) when he introduced the
hypothests of "directed dination". Dimected ritatron sugessts
that embryonic cantilaze is a visco-slastic fuid whoh exents
pressure on the perichondrium during growth. Thas pressure is

greater than the resistance, as at the rounded/pattened megion,

is migh" in the diaphysis and "Tow" at the eniphysis. therefore,
a namon rod with a butge at eqthen end is produced.
Dinected aination is not thought to be restricted to long

of every cartilaginous eloment. Support fon this comes from 2 other sources:
a) in Heckel"s cartilage, which is a long namow rod consisting almost enticely of one type of chondrocyte, a unifom perichonorial structure of very elongeted cells with many cell-well contacts is observed. Mhis stmuture is singlew to that sumpounding a long bone diaphysis and, thenefore, would favour growth primarily In a longitudinal direction so that a Ions namon rod is produced.
b) the thickness of the perichondrium sumounding the soleral cartilage of the eye cen be sxperimentally thickened ox thinned depending on how much radial pressume is expended upon it (Coulombre and Coulombre; 1957). When the eye is expanded. I.e. high radial pressume, the pexichondmim is a very thin structume of elongated cells similar to the perichondmum sumrounding the rounded/lattened cell zone. Then the eye is made to collapse. 1.e. low radial pressure, the perichondraum is a moh thicken structure.

The data presented An this chapter suppoxts, but also extends, the hypothesis of directed dilation in that the perichondrium can be thought to play a role in the morohogenesis of a Ions bone madiment in 4 ways.
i) it pooduces directionality in the process of cell hypectrophy (by Mish" resistance) theneby Pavouring longitudinal gromth: ii) it allows fon a bulge at eithex end of the maiment (by Mow" resistance) thereby oroducing the primitive epinhysis:

Ii土) it plays a role in controlling the extent of the increase in Iensth observed during growth and.
iv) it controls the final width of the moinent by graiually consoliceting and preventing fuxther increase.

In conclusion, the results presented here sugeest that the perichonfrium does in fact play a fundamental role in the final morwhogenesis of a long bone rudiment. However, the structure of the perichondrium appears to be dictated by the internel distribution of the chondrocytes and should, therefore, be considered as an essential but secondary morphogenetic factor.



```

Fx to the nome roundem chondrocytes.

```


```

Bg. Z. Stege 30. Junctyon क momaco cenis anc mesencm,me. Vo

```


```

gu2shed fupm sech othm%

```




```

cen zone. A ALstinct bempicm has fonmed betresm bhe chondrocutes

```




Hz. Stage 2I, pexfohondrium sumounting the whetened cells zone. The perichondrial cells are elongated but merely oveclap ank present little reststence to radeal expansion. Mote that Whattened chontrocytes nearest the perichondrium appears polyconet. these cells are in fact elongated ciroumferentially around the rudiment.
Uxanyl acetate/lead citrate stain. Nag. \(x\) 4,000.



```

mesenchyme but bt\二1 aO Qenatte asmoior te rregent.

```


Fs. 5. Stage 32, perichonmtum auroumbins the hypertophio oet zone. Peqiohondrial cells are elongeted and show areas of extenchve cell-cell contacts (thght Junctions). Mo ua can be obsemven between the cells at this stage.
Urant acetate/Lead cutcate stain. Mas. 3 . \(5,000\).


```

zone. The perbchonatum conststs of sevocal Tapons of prachapping
cells wth some cell-cell contact. Gellis Un the Fmer layer
waper olosec togethea.
Uamal acetate/head chtrate statm. Ias. w6,500.

```
Fs. S. Stage 32. Junction of rounded cells and mesenchyme.

mesenchme. However, sone cells sre tattentis in a regton thich
may become the future pextchondrinum.
Wrony acetatehean cotrate stain. Ueg. x 5,000.

```

TY: Q. Fege 33. samy fommathon ow the pemiosteum emound

```



```

colucgen fibres wth devosits of osteota intermtnsled between
Them. प0 For omm be sem Detwean the ce\Za.

```




BS, on soon wily be ocoumang.
Uneny boetete/tedt citrete atain. as. 63,000.

```

\#3. T0. Stage 33. gembhonmmum summountrg the Glattoned oell
zone. The perkchondrimm te now thght and consists oz elongeted
cols oxhtotumg extensive collmcel\ contacts. Mo Dom can be seen
between the cells.
Uranyl acetate/Lead citcate stain. Mas. x 5.000.

```

Fig. II. Stage 33, pexichonarium sumpounting the rounded cell zono. Although there is no obthous cellmeell contect, a atsumet
layma ce over apping cells aeparates the certitage fon the
mesenchume.
Umangl acotatshoad citrate stain. Has. x 5.000.




 ysmes.





```

f"troblestio oclls.

```


```

QLongmten celle show some ducas of ce\lmedZ comtact but atso bhow

```

```

"anae matemfal.
Umamy scetate, Teak cutmete btamu. Ma, N TO,OOO.

```


```

between outen Gefen cells. Smal stmands of mhet are thought

```

```

to bycocelyr on the oppostbe celh cuntace. Note thet many
ribosomes are preseat eugessting that the cells are blolog%oalyy
mot+re.

```



cal oontacts mith veny Itthle ra betheen them bote that

wthen the cantinage.
Yrany acetatefaed extreta stan. Tas. x To.00.




```

mat mesomctyme.
Ucकu\ acetavehach oitrate statn. "ez. x 3,000.

```



the pathyseat cure have bent roums forming ar B shooe.
Tol. 0lue stain. Tag. x \(\quad\).




```

schegons क, the zu\&"ment was cultumed ovemight. mb resultant

```

```

To\. STue stan. bag. \50.

```



Tol. Gue stain tay. Y25.




ta the cut ma nagnest the womaded cent pone heve ao constrantu





```

cozs=% "% zamasmaz

```



```

R\ T-4% ctato. Tag. x 40.

```



Fis. 23. Diarramatic rermosontation of the offect of rotatine a cube of flattoned colls throurh \(0^{\prime \prime}\). Dy 2 lays of culture the cubn hat bocome a rectanste, the colls har retainel their orientation and the epiphysis became distorted.

Table I The effect of removal of the pexichondrium from stage 32 ulnae.

Lensth (mm)
\begin{tabular}{|c|c|c|c|}
\hline Treatment & Day 0 & Day I & \% increase \\
\hline Control. & \(2.93 \pm 0.10\) & \(4.20 \pm 0 . I I\) & \(43 \pm 3\) \\
\hline \begin{tabular}{l}
Total \\
removal
\end{tabular} & \(2.91 \pm 0.09\) & \(4.63 \pm 0.13\) & \(59 \pm 4\) \\
\hline Partial removal & \(2.94 \pm 0.10\) & \(4.53 \pm 0.12\) & \(5 \pm 3\) \\
\hline
\end{tabular}

Hinae were cultured ovemaight on mhlypore wilter raste.
Measurements wexe made on living speoimens using a calibreted eyepiece graticule.
Statistical analysis was performed using Student's t-test. Treated muaiments were compered with controls.
\(I=s i \sin +a n t, P<0.05\).

Table II The effect of making a small incision into the cartilage of developing ulnae.
\begin{tabular}{lllll} 
Treatment & Number & Position of nick & No. of swellings & \(\%\) \\
\hline Intact & 20 & Epiphyseal region & 0 & 0 \\
Cut in two & 40 & Epiphyseal region & 22 & 55 \\
Cut in two & IO & Diaphyseal region & 0 & 0 \\
Cut in two & IO & 2 in epiphyseal region & I & IO \\
& & & & \\
\hline
\end{tabular}

Rudiments were removed from embryos aged between stage 32 - stage 34 and a small incision was made, with irredectomy scissors in the epiphyseal region at a point close to the junction between rounded and flattened cells. The incision was judged deep enough to cut through the perichondrium and just pierce the cartilage itself.

Rudiments were cultured for up to 3 days, but if a swelling did appear, it did so within 24 hours of the incision.

Stage 30 ulnae proved too small to make an accurate incision into without damaging the cartilage too much.

Stage 36, or older, ulnae produced no swelling no matter what position the incision was made in.
```

Table III The effect of outting developing ulnae into
2. 4 on 6 pieces.

```
\(\underline{\operatorname{Treatment}}\)
Stage 30
\begin{tabular}{lr} 
Control & \(109 \pm 4\) \\
Cut into 2 & \(32 \pm 8^{2}\) \\
Cut into 4 & \(2 I \pm 4^{2}\) \\
Cut into 6 & 0
\end{tabular}

Stese 32
\begin{tabular}{ll} 
Control & \(103 \pm 6\) \\
Cut into 2 & \(108 \pm 51\) \\
Cut into 4 & \(T 5 \pm 51\) \\
Cut into 6 & \(65 \pm 62\)
\end{tabular}

Stase 36
\begin{tabular}{ll} 
Control & \(8 \pm \pm 92\) \\
cutinto & \(60 \pm \frac{72}{2}\) \\
cut into 4 & \(53 \pm 6{ }^{2}\) \\
Cut into 6 & \(26 \pm 8^{2}\)
\end{tabular}

TMnae were cultured on top of Mnlipore finter wafts for 3 days and were measured using a calibreted eyepiece grationle. Statistical analysis was camien out using Student's t-test. Treated ulnae were compared with their appopmiate control only tif an Encrease in length ocourced.


\section*{CHAPTDR POUR}

THE RELATIONSHTP BETWEMN CUI SEAP AMD
CARTTLACS DIBSRCMTATION

\section*{Introduction}

The expression of a cartilage phenotype by determined limb bud mesenchyme in vitro has been shown by several authors to be a density dependant phenomenon (Umansky, I966; Caplan, I970; Ahrens et al. I977). If cells are plated out below confluence they become fibroblastic and fail to secrete a cartilaginous matrix, whereas cells plated at high densities remain rounded or polygonal, and secrete a metachromatic extracellular matrix ( ECMi) which stains positively with alcian blue at pH I.O (Lev and Spicer, I964). One interpretation has been that a high cell density facilitates cell-cell contacts and it is these "histogenic interactions" which are responsible for chondrogenesis (Solursh, Ahrens and Reiter, I978). It is also thought that the requirement of a high cell density in vitro may be similar to the increase in cell density (the prechondrogenic condensation) observed at the region of the presumptive cartilage rudiment in vivo (Gould et al, I972; Thorogood and Hinchliffe, I975).

An important observation has been that during the process of chondrogenesis, both in vivo and in vitro, presumptive chondroblasts are always present in a rounded cell shape (Gould et al, I972; Thorogood and Hinchliffe, I975; Solursh et al, I978). In addition, cell shape has also been shown to play a fundemental role in the control of proliferation in vitro of a number of cell types (Folkman and Moscona, I978), and a rounded cell shape has recently been shown to maintain phenotypic expression in already differentiated human chondrocytes (Glowacki, Trepman and Folkman, personal communication, now in print, I983). The shape of cells in culture can be changed by altering the adhesivity of the substratum. Cells will readily attach, spread and flatten on an adhesive substratum whereas, on a less adhesive surface, cells attach less, spread little and take
up a rounded configuration. Folkman and his colleagues have used the plastic poly(2-hydroxyethyl methacrylate) - poly(HEMA) which, when coated onto petri-dishes at various concentrations, alters cell shape in a seqential manner (Folkman and Moscona, I978). At high concentrations it is non-adhesive to cells but on dilution with ethanol and subsequent polymerisation it gradually becomes more adhesive allowing cells to attach and exhibit various degrees of cell spreading. The mechanism of attachment in this system is unclear. However, the results obtained imply that cells with different morphologies in culture behave differently and that the in vitro shape of a cell may determine the phenotype expressed. This chapter has two main aims -
i) to investigate the role of cell shape in the differentiation of early limb mesenchyme into cartilage in vitro, and
ii) to determine whether cells which have similar phenotypes but different morphologies in vivo, e.g. rounded, flattened and hypertrophic chondrocytes of long bone rudiments, also behave differently in vitro.

\section*{Materials and Methods}
i) Cell cultures
a) Limb mesenchyme

Chick limb mesenchyme was obtained from wings of \(3 \frac{1}{2}-4\) day old embryos (stage 23/24), dissociated. as in General Methods and plated out at \(2 \times 10^{5}\) cells \(/ 35 \mathrm{~mm}\) tissue culture dish. The cultures were maintained in Hams FI2 containing IO\% foetal calf serum plus \(5 \%\) chick serum.
b) Chondrocytes

Ulnae were removed from embryos aged 7/8 days and I6 days
(stage 32-34 and stage 42). Individual cell zones, rounded, flattened and hypertrophic, were isolated and dissociated as described in the General Methods. Cells were plated out in tissue culture dishes at high ( \(2 \times 10^{5}\) cells/IO NI drop) , medium ( \(5 \times 10^{4}\) cells/IONi drop) and low ( \(2 \times 10^{5}\) cells \(/ 35 \mathrm{~mm}\) dish) cell densities.

Chondrocytes from stage 32 Meckel's cartilage and wrist elements were also plated out, at the same densities, for comparison. Meckel's cartilage is composed almost totally of flattened chondrocytes whereas wrist elements contain mainly rounded chondrocytes.

All cultures were maintained in complete Hams FI2 medium with either foetal calf or chick serum for 7-IO days when they were fixed as described in the General Methods.
ii) Treatment of culture dishes

Stock solutions of poly (HEMA) were made up by dissolving \(6 g\) of poly (HEMA) powder (Hydron Labs. Inc., New Jersey) in 50 ml of \(95 \%\) ethanol and gently rotating the mixture overnight at \(37^{\circ} \mathrm{C}\). The solution was clarified by centrifugation at 2500 r.p.m. for 30 min . and the supernatent was harvested. This I \(\%\) stock solution was diluted with \(95 \%\) ethanol until dilutions of \(6 \times 10^{-3}\) and \(8 \times 10^{-3}\) were obtained. 35 mm tissue culture dishes were then coated with 0.2 ml of either of these dilutions and allowed to dry at \(37^{\circ} \mathrm{C}\) for at least 2 days. Once dry, stage 23 limb mesenchyme or stage 32 rounded chondrocytes were plated onto the dishes.
iii) Incorporation of radioisotopes

Medium was removed from limb mesenchyme cultures after 2 days and replaced by fresh medium containing either \({ }^{3}\) H-thymidine ( 2 pai/ ml) or \(\mathrm{Na}_{2} 3 \mathrm{SO}_{4}(2 \mathrm{uCi} / \mathrm{ml})\) for I 6 hours. After the labelling period cultures were processed for incorporation of isotope as described in the General Methods. Radioisotope incorporation was
determined for both normal tissue culture plastic and poly (HBMA) coated dishes.

Results
I Cell shape and cartilage differentiation.
i) Gell shape

When stage 23 limb mesenchyme cells were plated out (at \(2 \times 10^{5}\) cells/dish) onto normal tissue culture dishes, many cells became flattened and fibroblastic by I day of culture (Fig. I). Cells plated onto dishes coated with a \(6 x I 0^{-3}\) dilution of poly(HETA). attached but only partially spread (Fig. 2). At the slightly higher concentration of \(8 \times I 0^{-3}\) poIy(HEMA). the cells attached but remained rounded (Fig. 3). It must be noted that in all cases. on normal tissue culture plastic and on poly(HEMA). many cells failed to attach at all.
ii) 3 H-thymiaine incorporation

When the degree of cell division was assessed, by 3 H-thymidine incorporation, it was found that rounded cells incorporated much less label than flattened cells. Cells grown on \(6 \times 10^{-3}\) poly(HEMA) and \(8 \times I 0^{-3}\) poly (HEMA) exhibited a \(46 \%\) and \(57 \%\) reduction respectively in the amount of \({ }^{3}\) H-thymidine incorporated when compared with cells grown on normal tissue culture plastic (Fig. 4).
iii) Production of sulphated glycosaminoglycans.

The amount of sulphated GAG's produced by the cells, under the various conditions, had to be evaluated in 2 ways,
a) those deposited as an extracellular matrix and
b) those released into the culture medium in a soluble form.
a) Cells grown on poly (HEMA) were found to produce more sulphurcontaining ECM than cells grown on tissue culture plastic - the
greater the concentration of poly (HEMA), i.e. the rounder the cell. the more sulphated matrix produced (Fig. 5).
b) Cells grown on poly (HEMA) were also found to secrete more cetylpyridinium chloride-precipitable \({ }^{35} 5_{4}\) into the medium than cells grown on tissue culture plastic (Fig. 6).

Occasionally, rounded chondrocytes from stage 32 epiphyses were also grown on poly (HEMA). Preliminary findings were that growing chondrocytes on poly(HEMA) resulted in a larger and more deeply stained halo around the cells when stained with alcian blue (pH I.O) and toluidine blue. This suggested that maintaining the already differentiated chondrocytes in a rounded configuration also increased the amount of sulphated ECM produced, but since this result was very similar to that obtained by Glowacki et al (I983) the experiment was not taken further.

2 Chondrocyte cell culture
i) Stage \(32-34\) cel1s
a) Rounded (epiphyseal) celis

After 24 hours high density cell cultures of rounded chondrocytes produced a central sheet of cartilage surrounded by layers of fibroblasts at the periphery (Figs. 7 and 8). The central sheet consisted. of tightly packed, rounded cells separated by a refractile ECM which in histological section stained metachromatically with toluidine blue (Fig. 9). During a 7 day culture period the size of the central cartilage mass did not increase much but the layers of peripheral fibroblasts did expand greatly in a radial fashion. Clusters, or nodules, of chondrocytes were occasionally found amongst the fibroblastic outgrowths closest to the central mass (Fig. IO).

When plated at medium density the cells formed aceas of cartilage (cartilage nodules) interspaced by fibroblast-like cells (Fig. II)
by 3 days of culture. The appearance of these cultures hardly changed during the culture period.

Low density cultures contained rounded cells during the first day of culture (Fig. I2) but these rapidly became fibroblastic by \(3-4\) days so that by 7 days the entire culture was fibroblastic (Fig. I3). Occasionally, giant cells were found amongst the fibroblasts (Fig. I4), especially in areas of low cell density, but the nature of these cells is unknown.

Foetal calf serum was always used in subsequent experiments because cells, particularly at low density, were found to contain large vacuoles in grown in IO\% chick serum (data not shown). The nature of these vacuoles is unknown but they may be full of Iipid droplets as observed in other systems - see Discussion.

\section*{b) Elattened cells}

By I-2 days in vitro, high density cultures of flattened cells produced a sheet of rounded/polygonal cells interspaced by a refractile equ (Fig. I5). The peripheral cells of these cultures were also polygonal (Fig. I6) and no fibroblast-like cells were observed until 4-5 days when a few began to appear (Fig. I7).

The behaviour of cells in medium and low density cultures was similar to those in high density culture in that the cells remained polygonal, even if totally isolated (Fig. I8). Once again fibroblastlike cells did not appear until at least 4 days. Giant cells, similar to those in low density rounded cell cultures, also appeared at this time.
c) Hypertrophic cells

Very few viable hypertrophic cells were obtained from young ulnae, therefore, only medium and low cell density cultures were set up. In both cases the cells remained large and polygonal
throughout the culture period (Fig. I9). Individual hypertrophic cells were different in that some were surrounded by a refractile RCM whilst others were not, also, some cells contained small vacuoles (Fig. 20). No fibroblasts were present after 7 days. Occasionally giant cells were found, but the most remarkable observation was that small groups of hypertrophic cells grew into large groups of hypertrophic cells during the culture period (Fig. 2I), i.e. hypertrophic cells were dividing and giving rise to more hypertrophic cells.
d) Meckel's chondrocytes

Cells from Meckel's cartilage behaved in a similar manner to flattened cells no matter what density the cells were plated out at (Fig. 22).
e) Wrist chondrocytes

Cells from wrist elements behaved in a similar manner to rounded epiphyseal cells no matter what density the cells were plated out at (Fig. 23), however, no giant cells were observed even after Io days of culture.
ii) Stage 42 cells

On the whole, all 3 types of long bone chondrocytes behaved similarly to the equivalent cell type from stage 32 ulnae (Fig. 24) but some differences were observed. Fibroblast-like cells were not observed in rounded cell cultures until 2-3 days, nor in flattened cell cultures until 6-7 days. Also, very few giant cells were observed.

\section*{Discussion}

The general conclusion from the results presented in this chapter is that the expression of a cartilage phenotype in vitro
is largely dependant on the morphology of the cell in culture. If a differentiated chondrocyte, or a determined mesenchyme cell, is maintained in a rounded configuration, whether by plating at a high cell density or by plating onto poly(HEMA), it will secrete what appears to be a cartilage \(\mathbb{E}\) dif. (Since an assay for cartilage specific type II collagen has not been performed it is not possible to state that the matrix produced is definitely cartilage). However, in the cell is allowed to spread and become fibroblastic it will or not attain, the cartilage phenotype. These results are consistent with the findings of several authors, e.g. Umansky (I966), Caplan (I970), Huller et aI (I977), Solursh et aI (I982), Glowacki et al (I983) and have already been published in part - Archer, Rooney and WoIpert (I982).

Studies on differentiated chondrocytes suggest that each type of chondrocytes within a long bone rudiment essentially behaves in a similar manner (Levenson, I969). As has already been mentioned, the shape of a chondrocyte in vitro is determined by the initial plating density, therefore, what role, if any, does chondrocyte morphology play in vivo? Chondrocyte morphology in vivo can be regarded simply as a reflection of the stage of maturation attained by the cell. The results presented here show that the stage of maturation attained by a chondrocyte in vivo determines the timing of dedifferentiation in vitro. Therefore, the morphology of a chondrocyte in vivo determines at what time, iff at all, that cell will dedifferentiate in vitro. It should be noted that, under the inverted microscope, dedifferentiation can only be observed at the periphery of a high density culture (Fig. 7 and 8) which suggest that dedifferentiation will only occur if a chondrocyte is allowed to flatten and assume a fibroblast-like morphology. If this is so
then dedifferentiation should occur anywhere throughout low cell density cultures (Fig. I3).

When plated at low density, the least mature chondrocyte, the rounded cell, dedifferentiates during the first I-2 days (Fig. I3) whereas chondrocytes from the flattened cell population take at least 4 days (Fig. I8) and the most mature chondrocytes, the hypertrophic cells, do not dedifferentiate at all (Fig. I9). These times are similar to the time-course of dedifferentiation, of chondrocytes derived from embryonic mouse long bone rudiments, presented by Grundmann et al (1980), however, these authors state that mouse hypertrophic cells die off by 4 days of culture and this is clearly not the case in chick hypertrophic cells (Fig. I9). In fact, chick embryo hypertrophic cells were found to survive and divide for atleast 7 days (Fig. 2I) - as has also been reported by Levenson (I969).

It is interesting to note that chondrocytes from Meckel's cartilage, which are primarily flattened in vivo, behaved identically to flattened cells from long bone mudiments when grow in vitro (Figs. I8 and 22). The growth characteristics of Meckel's chondrocytes outlined here are similar to those reported by Levenson (I969).

Similarly, wrist cells, which closely resemble long bone rudiment rounded cells, were found to behave almost identically to epiphyseal cells in vitro (e.g. Figs. 7 and 23). The only difference noted between these cultures was that wrist cells failed to produce giant cells. It is tempting to associate the production of giant cells by rounded and flattened cells in vitro (Fig. It) with the process of maturation in vivo, whereby large, i.e. hypertrophic, cells are produced. Hypertrophic cells in vitro also form giant
cells but whether this is due to the lack of an in vivo growth constraint allowing cells to continue increasing in size or is due to some property of the culture system is not known. Cultures were not maintained for longer than IO days in these experiments simply because the important morphogenetic events observed in long bone rudiments in vivo occur within a short time period.

The observation that chick cells grow abnormally in medium containing certain types of sera appears to be widespread, e.g. chick cells cannot be grown in medium containing mouse serum (they produce many lipid vacuoles), therefore, horse or foetal calf serum is nomally used instean (Parker et al, I980).

Two major points concerning chondrogenesis, in vitro and in vivo, arise from the results using poly (HMM) coated dishes :i) "Histogenic interactions" as proposed by Solursh et al (I978), may not be a prerequisite for chondrogenesis in vitro. Individual mesenchyme cells, when maintained in a rounded configuration, secrete sulphated ECM Without coming into contact with any other cell (Figs. 3, 5 and 6). This result has already been published (Archer et 르, I982) and a similar conclusion has recently been reached independantiy by Solursh et al (I982), who also found that the initiation of cartilage specific type II collagen is also dependant on cell shape.
ii) The observation that when pre-chonarogenic mesenchyme cells ilatten they become fibroblastic and secrete less sulphated BCM then rounded cells (Figs. 5 and 6) may help to explain why perichondrial cells, which initially were part of the condensation (see chapter 3), do not secrete cartilage matrix. Gould et al (I974) have shown that, during the initial stages of matrix secretion, centrifugal forces flatten the outer cells of the condensation
to form, eventually, the perichondrium. Thus the flattening and elongation of the cell may switch off the expression of the cartilage phenotype and instead induce the secretion of type I and type III collagens. This phenomenon has also been show to occur in mature chondrocyte cultures where peripheral cells are fibroblastIike and secrete collagen type I (Muller et al. I977), and this presumably is what is occuring during the chondrocyte dedifferentiation process mentioned above. Also, cells which spread on tissue culture plastic show a higher degree of \({ }^{3}\) H-thymidine inconporation (Fig. 4 , also see Folkman and Moscona, I978) and this is reflected in the fact that perichondrial cells have a higher labelling index than chondrocytes (see chapter 6).

If the hypothesis that rounded cells promote high matrix secretion but low cell division, and flattened cells show the reverse situation is extended to cover differentiation in vivo then problems arise. An apparent anomaly arises in that chondrocytes in the flattened cell region secrete much matrix (and may be important in longitudinal growth - chapter 2) and have a lower mitotic index than rounded cells (chapter I). However, if flattened chondrocytes are looked at in both longitudinal and transverse sections, it is found that they are in fact disc-shaped and are not similar to fibroblast-like cells. Also, chondrocytes in vivo are held under pressure and this may play some role in the proliferation of these cells (Rodan et al. I975). It must be noted, therefore, that flattened chondrocytes in vivo are totally different from flattened cells in vitro and that chondrogenesis and differentiation in vitro may differ considerably from chondrogenesis and differentation in vivo. (This topic will be covered in more detail in the following chapter).

The finding that the maintenance of a rounded cell shape in vitro
is conducive to matrix secretion but diminishes cell division has been shown by several authors, but the conclusion has not always been the same, e.g. Bjornsson and Heinegard (I98I) and Rifas et aI (I982) both showed that chondrocytes grown in the absence of serum secreted sulphated ECH but did not divide. Bjornsson and Heinegard concluded that glycosaminoglycan synthesis did not require serum but DNA synthesis did, whilst Riras et al concluded that they had specially selected a population of pure chondrocytes. However, both these observations can be explained by the fact that cells grown in the absence of serum attach but do not spread (just as on poly(HEMA)) and it may be that the shape of the cell was the controlling factor in the results obtained.

In conclusion, in vitro culture of chondrocytes with different morphologies in vivo has shown that each type of cell behaves quite similarly to each other in culture and that the in vivo morphology only controls the timing of dedifferentiation. Also, if a differentiated chondrocyte, or an undifferentiated mesenchyme cell. is maintained in a rounded cell configuration, the production of sulphated ray, and thus presumably .cartilage matrix, is increased. This increase is observed even when cells are cultured at low densities so that cell-cell contacts do not occur, therefore, histogenic interactions may not be a prerequisite for cartilage differentiation.


```

IAr'mg outume - hase combest. weg. w 20,.

```
```

Hy. 2. Stage 23 14no mesenchyme cenls on a 6xT0-3 am1ution on
poly(mMt). The cells appean sltgntly elongatea and bipolar.
WHvas oulture - phase contrest. Jag. * 200.

```
12.3. 3. Stage 23 1imb mesenchyme cel1s on a boto-3 atrution of
poly(GTA). The celle have attached but have rembined rome and
have not somocd.


```

He.G. Whe Encorpowation oz Suthymatine Anto Itmb mesenchyme
cells sroma on plastic anc poly(HmA) apter b; houre tn oulcure.
t-Test anelybus whows slgnificant difgerences between thymigine
Encorporation into cells mrom, on plastio, poly(UmM, 6xT0-3
(P<0.05) and poly(Hm,A) buto-3 (2<0.02).

```

Why. 5. The mocmporetion of 350, 2- into hyelumonicasemsenstitue matewhal beposter by limb mesenchyme cells after Gt hours in yotro.
 mateatel eqpostres oren cells smom on lestio, but only those
 \(t\) metest amaysis \((x<0.02)\).


 oulturo mocium fon Imb nesenchyme cells arter 64 hours In vitue. In the enalysis, medium fron thee petrit aishes in each emerimenten cyoup was pooled and a Thl semple som eech eoup anelyeen.
 materiel (ISO wa 48, over mesoblests cultures on plestio.
```

T5. 7. Stage }22\mathrm{ moundes chonmroottes. centre of I day olo high
Zensity oulture. The oells appear rounded, tightiy peckat wh
cepacetow by a wermactine DGi.
Ifwims cultwoe - bhase contmast. Has. x I2S.

```



He. S. Stege 32 momben chon'roottee, perthezy of a I day of hich aenctty culture. Bowned oclla amoen to be sumanomed by
 Bivins onture -. Dhase contrest. Vas. X T25.


```

by a Tetrehmonatu% DC.
Tot. STre gíta. Mag.NTES.

```
```

Az.To. staye S2 mommes chondrocytes, puruhetry of 7 day old

```


```

Iits cells. Mote that the Robuoblestio cells are slignel
omroumborentially acom, the nowule.
-*ving dulture - whase contmast. vas. x 250.

```






outher The celts appew sepandted and cound in shape but no
remuectile SO. can be obsemred.

```

Mis. I3. Stage 32 nommea chongmooyee, 7 day old lon denstty
culture. Almost every coly hes bocone wlongated and gaboblastbo
Yeving culture - phase contuast. Mas. x 250.

```

```

Hys.I*. Stage S2 rommod chondwoctes, f day old Iow dengzty
cultume. Cocasionally giant celle can be seen Intemmingled wth
the fibroblasts. These cells do not appear for at least 4-5
days of oulture.
INvang oulture -- phase contrast. Mag. x 250.

```

Fig. I5. Stage 32, Rattened chondrocytes, centre of 2 day old hagh density culture. The celle appea ronnded. tighty pactod and separated by a remactila mo.
Bivane oulture - Whase contrast. Vas. X25.
```

HE. Tb. Stage 32 flattaned chonvooytes. pemiphemy of 2 day
old high denstty culture. The cells wre no Longer thghtyy pecked

```

```

cen De opsezver.
INvig oulture -.. These contrest. as. NT25.

```


```

Hgh uanctby untume. "ang ol the celis heve metamed thema

```

```

Zaving Cumtume -- base ombuast 能 x I2S.

```


 cente metahaths the roundex obly chape.


```

culture, The ce-2s have retained theiz yolygoncl shape even when
not in contact Nith othew cells.
INving oulture -- mase concmast. \2g. x IQ5.

```



```

7a0uol.es.

```






```

MA. 22. tage 22, recten

```





```

Lg. 23. Stege 32 mist chonmzoctres. qembinery of 3 1at olf

```



```

to thet Gouns. En mounded chomorocyte oulturee w eee TH8. Io.
Yuthe onttrue -- Doses contrest. laz. x T25.

```

```

Zow densitw untwre. Gone celle bove become fibmoblastic but the
majority heve remained polyeonet mat zoe mumoounded by a mefreotiza
To.The simflamly sgez stage g2 oultume most of the celle

```

```

Fncreese in time cequares bu olaer aells to devimequentiebs.
FAving culture -- minge contmast. Mag. x T25.

```


OHAPTコRTIVZ

HON-SPECTITC MORPHOGENESIS OR CAPRTLAEE IN VITRO

\section*{Introduction}

Camtilage alements in an embry are present in several fome Whoh range from sheets in the sclexa through the nod-like form of Wectel's cartinage to the rutiments of the future long bones of the IImb and the complex 3-dimensional structures of the vertebrae prion to ossinicetion.

Several investigators have found that, under aomoprate conditions, comitted chontrogenio tissue can be removed fron an embryo and grom in nonm-honarogenic sites, or in culture to produce an elenent similar in shape to that which would have fomed in vive (Wumey and Huxley: T925: Fel1. I956: Wéss and Hoscona, I958 and Iten anc mony, IQ 0 ). These results have given wise to the phenomenon of missue-spechfic" morphogenesis. The shapes which form ane not absolutely identical to those in vivo and most authors aspee that a balance must oxist betmeen fntunasic (senetic) and extrinsio (Locel envinomental) Sactone within the embeyo, however. heies and Moscona (I958) suggest that morphogenesis is due solely to intminsio properties.

These authons took dissociated chick embryo mesenchyme from two separate sounces which, in vivo, give wise to cartilase of vecy Cifferent morphologies, and oultured then at hagh density in vitro. Periocular mesenchyme gave rise to hat sheets of carthage simhlaz to the sheet of scleral cartilage wich aumounds the wetine in vivo. In contarast, limb mesenchyme gave mise to whonls of cartilage in uttro Whoh they considered analogous to the initial cactilage fomation in long bone Iudiments.

The erpertments of veiss and Toscona have been repected and
 homever, the results here have not been interpretated as "tiscue-spechfo"
morchogenesis but mather in terms of densttymependent monphogeneeis at the tine of plating. In edtition, the centilage fomm mas found to be highly dependant on the meesence of non-chondrogenic cells.

Materials and yethods \(001+40\)

İmb mesenchyme was obtained from the wing and las bubs of stage 23 or 24 Embyos. Whole limo buds were dissoczated by trypsin afgestion ( \(0.1 \%\) in \(P B S\) for IO minutes at \(37^{\circ} \mathrm{C}\) ) with frequent agtiation. Ary cell clump whoh remaines were broken up by gentle aspiration pith a papette。

Periocular mescnchyme vas obtatned fron the developing eyes of 7 day old chick, or quain, embryos as described by Teise and Moscona. Beienly, the eyes were removed to sternle pBe, punctured and Ieft for apporimetely IS minutes. This latter proceeture facilitated the separetion of the pertocular mesenchyme which was then dyssected Iree With Fonceps and dissocieted as descmaed bbove but fon 20 minutes.

Chick heart Fibmoblasts wete also harvested. Mearts newe
shoeded into small pieces ond tavpsinised for I5 minutes with frequent agitation.

Hature equphseal and soleral chondrooytes were obteined from G and 9 day old embryos and dissociated in trypsin and collagenese ss In the General methods.

Gach type of cell was inoculated at medium and high density in a manner sjmilar to the Micromase technique descmibed by theas et al (I977) - see General methods (medfum density oultures were plated out at \(5 \times 10^{4}\) cell/TONu arog. i.e. \(5 x 0^{6}\) celis/mi. high density cultures
 each case cells were plated at 4 drops/dish).

A13 cells were glated out in omplete Hams \(X-I 2\) medium in the Eollowns combinctions (A2 celle wace chick unlese othempee steted) Wegh denstey soleral mesenchyme

Wo hium Lenstby scieral mesenchyme
High Geneitu Iimb mesenchyme
nezkum densitu Iemb mescnchyme
High denstur sclewal mesenohymefonck heart anbroblaste (3.1)
Kigh censity limb mesenchym, ohick heart fincoblasts (3:I)
WHeh density linb mesenohyme/quail scienal mesenchyme (I: )
Whgh density gothyseal choncrocytes
Sedium heqsity equhpocal chonarooytes
Wen bensity soleral chonzooytee
Dofium density soleral choncrocytes
In all cases a minimun of IS cuttmes wece anazyed for each combination after 4 on 5 days of culturo.

\section*{Wiccoscouy and Hzs 010 y}

Gutbure were cxamines defly ant photographed us-ng an Inverted microscope. Samples wece Inced and stained whe aloian blue as Zescribed in Gencan methods. Thick (2nm) amalaite sections wece out ane statnee wth toluidine blue.

Immunothaorescence
Camthase specific tupe II collagen was localised in cell cultures by Infineot immunohuorescence (von dew mart et al. I976). Feboty antasemum to chick type II collasen was Eandy donates by Tr. G. Shellemell, ARC weat 7eseanch Inctitute, Lons 4shton, Butatot.

Wor extrecelrulaw matrix (ach), cultumes were wesed z times in PBS prior to the appacation of eqtioody sotutione Intrecellulan

\begin{abstract}
localieathon of type II collasen symthestising cellas was porformed by prion fivation of cutcures in buffered 2 formal Ealine. Cultures Wero Inoubeted with metrasman (Ammunabsonbed maboit anti-chioken II) at room tempamature ( 30 minutes), washed 3 times in obe and overiad
 Globulin (Felloome Zabs, magland) (30 minutes) at a IoIS dilution. After 2 fucthex washes in 8 , the cultures were mountod in gycerol and wiered uith a zoiss photomicroscope II oquipped with a U.V. Light source for fluorescence microscony.
\end{abstract}

\section*{Results}
I) Scleas mesenchyme

At a high denstry (2010 colle/drop) scleral mesenchyme formed a homozenous sheet of polygonally-shaped cells many of which showed evizence of a refractive Dun after 2 days in cultume (ing. I). Histologically it was observed that most of the cells wexe polymorphio and sumcounded by a faintly staining son with outgwowths of frboblastIise cells at the pariphexy of the cultures (Fig. 2). Apart from the outgrowths, both the cells and the EOY in these cultures btainod paci-ke with the antibody to type II collagen (Fis. 3).

Medium density cultures (5xio \({ }^{4}\) cells/arop) behaved, initoally, In a similan mamer to high density cultures. However, discrete Islands, on nodules, of cartilage separated by fibrobiastio cells were apparant after 4 days (Tis. 4). Unitre the cardilage nodules, the fibroblastic regions showed no evidence of Intra or extracelinlat Pluorescence then staincd with collagen type II antibody (not shom).

\section*{2) Inmo mesenchyme}

The behariour of high donsity limb mesenohyme cultures has beon
extensively covered by Solursh and his colleagues (see review by Solursh, I980). Initially (I-2 days) the cells formed concentric aggregates with the centre of most aggregates acting as a focus for cartilage formation which was detectable, by alcian blue and toluidine blue staining, at 3 days (Fig. 5). The foci of cartilage enlarged to form whorled nodules which by day 5 had begun to coalesce (Fig. 6). Immunofluorescent labelling to type II collagen was found predominately within the nodular regions (Fig. 7) and is consistent with the findings of Solursh (I982).

In contrast, medium density limb mesenchyme cultures rarely became chondrogenic. Numerous fibroblasts were present by 2 days and these rapidly overgrew the entire culture (Fig. 8). Some small areas remained polymorphic but these did not exhibit a refractile ECl and, invariably the whole culture was fibroblastic after 5 days in vitro. No marked fluorescence of type II collagen was observed (not shown). In addition, these cultures showed a complete absence of metachromasia upon staining with toluidine blue and reacted negatively with alcian blue at pH \(T\).

\section*{3) Chondrocytes}

High density scleral and high density epiphyseal chondrocytes both gave rise to flat sheets of cartilage which were very similar in appearance (Figs. 9 and IO). When plated at medium densities, both types of chondrocytes produced discrete nodules of cartilage separated by non-chondrogenic fibroblast-like cells (Figs. II and I2). The histological appearance of these cultures are reminiscent of the morphology observed in cultures of limb bud mesenchyme (cy. Fig. 6) and to a lesser degree of medium density scleral mesenchyme (Fig. 4).

\section*{4) Mixed cell cultures}

Chondrogenesis was dramatically reduced in both high density






 we dbtezned with Inh nesenchyme and Tan mesenchyo)

Benel maxtures of chick Ifmo mesenchyme with quál solemal mesenchyme resulted in substantial chondmogenesis and nodule mocuotion (TAB. IS). Hzetologiont exentmetion for the quata mucheotan mariten, was Tentgens stath, suggested thet the
 moteotan staining ras poos and theretone. the resutt was
 occurar th the byesnoe oz ma oethutam sgregatyon.



 (T8, IS 2n T. \()\)

\section*{}






chondrogenesis observed seem to reflect the behaviour patterns of the mesenchyme prior to matrix secretion, i.e. limb bud mesenchyme formed numerous concentric aggregates in which the foci normally becomes chondrogenic Ahrens et 르. (I977) whereas scleral mesenchyme remained as a sheet of rounded/polygonal cells from plating to the onset of overt chondrogenesis.

A central question is whether these cellular arrangements represent a morphogenetic response to an intrinsic property of the cell or whether the cellular arrangement produced - can be influenced by environmental factors. For instance, can scleral mesenchyme, under appropriate conditions, ever form whorled aggregates or limb mesenchyme form a flat sheet of cartilage? The answer is yes since Ahrens et al (I979) have shown that central core Iinb mesenchyme cultured at high density forms a flat sheet of cartilage and the above results show that scleral mesenchyme is capable of forming whorls. The two systems, however, are not directly comparable for the following reasons.

Scleral mesenchyme, from 7 day old embryos is comprised of a homogenous population of cells all of which are determined to become chondrogenic in yivo and give rise to a cup of cartilage surrounding the eye. (Scleral cartilage appears between 8 m 9 days in vivo). These cells are in close association with the basement membrane of the retinal pigmented epithelium whose presence is required for their determination (Newsome, I976). Therefore, once determined, plating at high density onto a flat surface such as tissue culture plastic merely mimics the surface of the PRE , so that, when the chondrogenic phenotype is expressed, a flat cartilage sheet will result (Fig. I).

In contrast, stage \(23-24\) limb bud mesenchyme comprises of a number of cell types which include presumptive chondroblasts, myoblasts, vascular elements and undetermined mesoblasts. In fact Lewis (I977)
has calculated that as few as \(5 \%\) of the cells in the chick wing bud will give rise to cartilage. Therefore, unlike scleral mesenchyme cultures, cartilage differentiation from limb mesenchyme in vitro must occur in close association with a large majority of non-chondrogenic cell types. (However, if the central core regions of stage 24 wing buds, which presumably have a high proportion of pre-chondrogenic cells, are cultured under Micromass conditions, virtually a flat sheet of cartilage is produced (Ahrens et al. I979)).

The whole issue of tissue specific morphogenesis as proposed by Weiss and Moscona (I958) revolves around the similarity between the concentric cell aggregates and subsequent cartilage nodules observed in limb mesenchyme cultures and the concentric cellular orientation seen in early long bone rudiments when viewed in transverse section (Gould et al, I974). The crucial question is are these two events homologous or is the similarity coincidental?

Ahrens et al (I977) demonstrated that Iimb bud mesenchyme from stages 20-24 will form aggregates and subsequent cartilage nodules when cultured under licromass conditions. An important point is that the electron microscope evidence of these authors shows convincingly that aggregation occurs in the absence of matrix secretion (Ahrens et al. I979; see also Ede, I980; Solursh et al. I982). Aggregation in vitro is believed to come about by active cell migration of peripheral cells towards a central, "founder" cell (Fde and Agerbak, 1968; Ede et al, 1977: Ede I983) in a manner similar to the aggregation phase of the slime mould (Ede, 1983). However, as discussed in the General Introduction, there is no direct evidence for such centripetal movement in the limb and other evidence points against it (Gould et al, I972).

What does seem clear is that the concentric amangement of core cells in the limb is only observed after matrix secretion has


 these tro superficiany stmilan oul ammanemente are fundanontany Qurferent and bhourd be considered bepacately:
1) In Wetco morphogenests ... The differentiation of mesenchyme into actively secreting chondroblasts has been shom to be a density dependant phenomenon (Umanely, I966; Caplan, I970; Ahzens et at Iop7) and only oultures platen at above confluence progeess to choncrify substantially. Solursh at 2I (I970) have proposed a develommental sequence of evente in Ifnb mesenchyme chondrogeneais in witco th which the ageregation yrocess brough about necessamy "histogenio interations" Which in turn increesed Levels of dule and reented in opert chondrom genesis. The net wesult of this was thet, in a given oultuae,
 Wes recently we have sugested thet maintainance of a woundea. concigumation is sumataken to Enduce honduogenesis in Iimb mesenchyme
 wesults presented in this chapter will thorefore be consiabred as changes in cell shape.

The Somation of cantilayinous sheote oy Howomase cultumes of
 Oy considomine each ounturs as a population of homogenous colle which, Wue to the tigh density involved, memain in saoumed, or polygonal, configuration. Howover, whon the cely kensity at inoculation is renuoad by such an extent thet celle can Rlaten enough to beorne Fibuobiastio, then the cambinage shoet moryhology is lost. Instear, groupe of colls cluster themby remainine rounded and therefore som cautilasa nodules thich zue intarepensed by non-chondrogemic fibroblest-

Itre celle. Cells which flatten and beome fiomoblastio vill not become chondrogenic.

A simular cesult is obtaned ie soleral mesenohyo is diluted With chick heart fibcoblaste of ie Imb mesenchyme, wich already contains several non-chondrogenic cells. are plated out Even at Hocromass densities. However, if limo mesenchyme is dinuted fucthect With chick heart fibroblasts then no aggesgation on cartilage Gragucatiation auqus. This result implies that the presence of a very high concentration of nonwonorugenic cells can prevent aggregation and therefore prevent chondrogenesis. Thus it would seem that the agsregation process is an important dinfecentiative step rather then a nowhogenetio step.
in) In yivo morphogenesis - Thece are a muber of contraeting duefexences Which must be consinered when comparing in vitue and in yovo morphosenesis.
a) The 3-Amensional nature of morghogenesie in situ This is pertioulanly relevent to structures such as long bone muinents. Mectel's carthlage and vertebrae.
b) The aivecsity in the biochemion and physiozi nature of cantilase. Dany camtilage can be viored ossenthaly as a yiscomelastio muid which becomes more soly as 2 thatures e. s. wom the promacective to the bypertrophic zones in Zons bone ruatments (MoIpert, Ig82). c) The presence of a muthlayexed pexichondrium which has been shom to play a role in the early morphogenestis of cartilaginous mudnents (see earliew chapter, G1so see Gemey. I922. Molpert, I992s troher et al. -983.
A) Gell orientations. Unike in qitco mompogenesis, chondrogenio cella Ia yno ascume bistinct omentatione mhich may be zelated to the overell shape of the cartilaginous element. Therefowe ofimarical
olenents possessing longhturknal groth proguames have cells ackentated at moght angles to the lons axis of the element as are found th the dawhyes of the Ions bone modmente (Te11. 1925: Holpent, I978), and \(21 s 0\) in Weckel"s carthase (Jacobson and Pell. 1934.

As sugsested in an enuliex chaptex onsented maturn secretzon may ocour along the Ions axis of these Inattened cells and this Wond Sacilitete longiturinal growth. It shouke be notel that Whattentng of chondrocytes wthin lone bone zudimente beacs no melation to cell gattontos hato occurs in thssue cultume.

In contrast, both romm-ehaped centlage sturuotures suon as eptphyses and shoet-lite cantilages such as tho solera posbess counded chondrooytes which might eecrete matrix in a non-polarised mamer.

Wiewee En these toms, cell shape plays crucial yet quite
 In the Iatter case, the Inoculation density of the cells at Dating. Which ulttmately controle cell shape, together wh the mumber of ct1: "comntted" to the choncrogenio phenotyoe whl be the major
 deteminod on a thssue-specific besta.







```

cmanct2c"a.

```




```

G-uonecoence nowobobyy. sag. z T2%.

```







ToJ. blue stata. \(\quad\) Baz. \(\because 25\).


```

cno begin to comlesce.
\#ged outture - कhase contrast. %ag. % I25.

```




```

HMumesocroe m+orobcopy. :EB. N I25.

```
```

Gg.G. Gafum sengfty Limb mesemomyme. by j deys, the culture

```

```

Ytvong outhtre - hase oontrest. 42g. x 900.

```
```

Hg. Q. High denstty sclewal choncrooytes. By 3 Eays, the
cultuac conezsts of a 2lat sheet of polyeonal oflla gomamated
Oy a motbchmonetio matrux.
To, blue stemn. "ag" xI25.

```



```

85|aCb, by a motechmomatio +0..
\a, buve stata. \ag. x -25.

```

```

cutuure cometsts of cemu\lage momales jotemsmaced by wamoblesteo
cetas.

```




```

Abmo\ectic cells mu Ls similao to Tog. T.

```








```

O-4,0m05725+5.

```



Se orobuoct Gatritese nodutas are Pound jntcuspeced uth

neserchume.
Tivins culture … hase contrewt ISE. XT23.










CHAPTER CIX

GUI KTMETTCS OF CARRTAACE
LONG BOME RUDTUENTS

\section*{Introduction}

Data already presented have shown that cell shape plays an important role in the degree of cell division exhibited by cells in vitro (chapter 4), and preliminary studies suggest that the location and degree of cell division within an intact long bone rudiment may also be detemined by cell shape (chapter I). Cell division has been studiet in many systems and the duration of the cell cycle has been calculated for various cell types but very few studies have concentrated. on embryonic chondrocytes. Murison (I972) cultured chondrocytes Irom the vertebral trunks of \(I 0\) day old chick embryos and calculated a cell cycle time of approximately 18 hours. An important finding was that the cell cycle time was similar whether it was calculated from cells exposed to a short pulse of tritiated thymidine (producing a Frequency of Labelled Mitosis curve - MLM or from cells cuItured continuously in the presence of the label.

Very little has been published concerning the cell cycle of cells withinalong bone mudiment either in vivo or in organ culture. The most closely related work has been performed by Kember (I972, I973, I978) when he studied the cell kinetics of chondrocytes within the epiphyseal growth plates of young rats. The rates of proliferation of the entire growth plates have been calculated but the cell cycle times of the individual chondrocytes within the growth plates have not been clearly stated.

The objects of this chaptex are as follows:
i) to determine the cell cycle times of chondrocytes within an intact long bone mudiment in organ culture,
ii) to examine the relationship between cell shape and division rate or cell cycle time within an intact rudiment and iii) to determine the cell cycle time of chondrocytes freed from the
the rounded cell zone and grown in cell culture to give an indication of how closely cell culture studies can be related to organ culture studies.

\section*{Materials and Methods}

Ulnac were removed from stage 33 embryos and maintained in culture as described in the General Methods. After I hour, the "cold" medium was replaced with medium containing \(3^{\text {H-thymidine }}\) at \(a\) concentration of \(15 \mathrm{ruci} / \mathrm{ml}\). Rudiments were incubated continuously in medium containing 3 H-thymidine for up to 28 hours. Samples were removed every 4 hours, fixed, sectioned and processed for autoradiography as described in the General Methods. A mean labelling index (I.I.) was obtained for each time period by counting the total number of cells/cellular zone and the number of cells within each zone which had incorporated \({ }^{3}\) H-thymidine. Cell counts were performed on 3 centrai I fun sections, each IO num apart, from 3 different rudiments for each lebelling period.

Cell cultures were obtained by isolating the rounded cell zones from stage 33 ulnae and dissociating them as described in the General Methods. Cells were plated onto 35 mm tissue culture dishes at a concentration of \(2 \times I 0^{5}\) cell/dish and cultured in Hams F-I2 medium for I day. After I day the "cold" medium was replaced with fresh medium containing \(3_{\text {H-thymidine }}\) at a concentration of I MCi/mI. Cells were cultured continuously in the presence of \(3_{\text {H-thymidine for }}\) up to 28 hours. Samples were removed at 2 hour intervals, fixed, exposed to nuclear emulsion and processed for autoradiography as described in the General lethods. The labelling index was obtained. by counting the number of lebelled nuclei in at least 500 cells in each of 3 dishes for each time period.

\section*{Results}
I) Organ culture
i) Rounded cells

The labelling indices of proximal and distal rounded cells within an intact rudiment over a 28 hour period are shown in Figure I. Distal rounded cells tend to have a higher I.I. than proximal cells with a maximum of approximately \(40 \%\) after 28 hours. In both zones, the accumulation or labelled cells increased almost linearly for about I2-I4 hours when it began to plateau. According to Murison (I972) the cell cycle time can be taken as the breakpoint of the ascending curve and the plateau - in both zones this occurs between I2-I6 hours and can be centred on I5+I hours (Fig. I). The I.I. and the number of cells in each zone are shown in rable \(I\).

\section*{ii) Wlattened cells}

The I.I.'s of proximal and distal flattened cells within an intact rudiment over a 28 hour period are show in Figure 2. Proximal flattened cells tend to have a higher L.I. than distal cells with a maximum of approximately \(20 \%\) after 28 hours. In both zones, the accumulation of labelled cells increased linearly for about 16I8 hours when it began to plateau. If the breakpoint of the curve is taken as an estimate of the cell cycle time then a figure of approximately IB+I hours is obtained (Fig. 2). Again, the actual number of cells counted is shown in Table I.

\section*{iii) Hypertrophic cells}

No labelled hypertrophic cells were observed in stage 33 ulnae until at least I2 hours of culture. The cells are at the boundary between the flattened and hypertrophic cell zones (Fig. 3) and are probably more accurately described as hypertrophying flattened cells. Over a 28 hour time period only about \(3 \%\) of hypertrophic cells showed
any label, therefore, no cell cycle time could be obtained. The L.I. and the number of cells counted are shown in Table I. iv) The intact mudiment

An estimate of the \(\mathbb{I} . I\). of the intact rudiment can be obtained by expressing the total number of labelled cells as a percentage of the total number of cells found in each section (Table I). (The number of labelled cells in each cellular zone can be calculated by multiplying the L.I. of that zone by the number of cells within it). The curve produced (Fig. 4) is of a similar pattern to that found in rounded and flattened cell zones and shows a breakpoint at approximately I6+I hours.
II) Cell culture

The L.I. of cells freed from the rounded cell zone and grown In cell culture is shown in Figure 5. As in the above cases there is an almost linear accumulation of labelled cells for about I6-I8 hours when the increase slows down. If the brearpoint of the curve is looked at, a cell cycle time of I6tI hours is obtained. It is noticable that the maximum percentage of labelled nuclei is only 83\% after 28 hours; a IOO\% I.I. was never observed.

\section*{Discussion}

The cell cycle times presented in this chapter are all calculated from graphs of labelling indices of continuously labelled cells. Cell cycle times in most other systems have been evaluated using FLM curves (for example see Quastler and Sherman, I959; Steel and Haines: I97I and Gilbert, I972) which involve exposing cells, or tissues, to a short pulse of label followed by culture in unlabelled medium. However, WM studies were not utilised in this system for several reasons:
i) In the case of a long bone maiment, rounded cells divide but
they also mature into flattened cells. This implies that the anount of label incorporated into the rounded cell zone during the pulse would not only be diluted by cell division but a proportion would continuously be lost from the zone entirely making accurate studies of cell division within the zone impossible.
ii) Recent studies have stated that in certain cases FLM curves give inaccurate values of the cell cycle (Hudson and Hahn, I977: Hamilton and Dobbin, I983).
iii) Purison (I972) showed that continuous labelling curves gave a similar value of cell cycle time in chondrocytes as FWh curves and therefore, if only the total cell cycle time, and not the times of the individual cell cycle phases, is required the simpler continuous labelling curve is sufficient.

The results presented in this chapter show that a higher proportion of rounded cells are capable of incorporating \(3_{\text {H-thymidine }}\) than flattened cells. It seems surprising that a maximum i. I. of only \(40 \%\) is obtained within the rounded cell zones whilst a L.I. of \(20 \%\) is observed within the flattened cell zones (Fig. I and. 2) but it must be remembered that rounded cells are continuously maturing into flattened cells and therefore, the I.I. of the rounded cells (Fig. I) is artificially low whilst the I.I. of the flattened cells (Fig. 2) is made artificially high. If a stage 33 ulna is labelled for a short period of time, e.g. 2 hours, the I.I. of the flattened cells is found to be less than IO\% (see Table XIII, chapter I) which implies that very soon after removal from the embryo, only about \(10 \%\) of the initial flattened cell population is dividing. Over a 24 hour culture period the number of cells in the proximal flattened cell zone of a I rum section increases from 938-I6I3 cells (Table I), an increase of approximately 650 cells.

However, if only \(10 \%\) of the existing flattened cell population is dividing (assuning there is only one complete cell cycle of I8 hours during the 24 hour study period) this implies that only about 100 of these cells are derived from existing flattened cells, the remaining 550 cells must arise from maturing rounded cells.

The data in Table I shows an increase in proximal rounded cell number, in a 1 um section, from II93-I892, approximately 700 cells, during the culture period. If a further 550 flattened cells have also been produced from rounded cells this implies that the total number of new cells produced by the proximal rounded cell zone is closer to 1250 during the culture period. If this is the case, then the initial rounded cell population, of approximately I200 cells, has doubled during the 24 hour study period. Assuming that there is only one cell cycle of 15 hours during the culture period, this implies that every rounded cell has divided. Therefore, the actual I.I. of the proximal rounded cell zone should be closer to I00\%, and the I.I. of the flattened cell zone should be closer to Io\% over the 24 hour period. Similar calculations can be obtained for distal rounded and flattened cell zones.

This is the finst report of differences in the cell cycle times of chondrocytes within different zones of the same long bone rudiment. Rounded cells have a mean cell cycle time of I5土I hours whilst flattened cells have a cell cycle time of I8tI hours (Figs. I and 2). Although significant in that it does occur, it would perhaps be expected since flattened cells are more mature (and therefore older) than rounded cells and evidence suggests that the proliferative ability of chondrocytes decreases with age e.g. Walker and Kember, (I972) have shown that, during. maturation of the proximal tibial growth plate, the rate of chondrocyte proliferation and the I.I. of the chondrocytes
is reduced by at least \(50 \%\). Also, chondrocytes from vertebrae of neonatal rats have a mean cell cycle time of 22 hours (Dixon, I97I) whilst chondrocytes from 6 week old rat tibial epiphyses have a cell cycle time of 55 hours (Walker and Kember, 1972) however, it is not known how much of this difference is due to location rather than age.

No cell cycle time could be obtained for hypertrophic cells since only about \(3 \%\) of the cells incorporated label by 28 hours (Table I). It is unlikely that these labelled hypertrophic cells were originally labelled flattened cells since histological examination shows that the distribution of labelled flattened cells is not uniform. There is a higher percentage of labelled flattened cells close to the junction with the rounded cell zone than there is close to the hypertrophic cell zone - even after I6 hours of incubation (Fis. 3). There is a distinct gap of at least IO cell diameters with absolutely no label between the last labelled flattened cell and the first labelled hypertrophic cell. This would not be expected if the labelled hypertrophic cells were originally labelled flattened cells (Fig. 3). This observation implies that the onset of cell hypertrophy may be associated with a phase of DNA synthesis.

The non-uniform distribution of label within the flattened cell zones suggest that as a flattened cell matures it withdraws from the cell cycle. Since it is only the most mature flattened cell which becomes hypertrophic and since the first labelled hypertrophic cell does not appear for at least I2 hours (Table I) this implies that the time taken for a mature, non-dividing Plattened cell to become hypertrophic is at least I2 hours. How long a flattened cell is capable of dividing before it fully matures
and what causes it to stop dividing once mature are not known.
When the entire rudiment, as a whole, is considered a mean cell cycle time of approximately I6 hours is obtained (Fig. 4). This figure fits remankably well with the data obtained by counting
 VI, chapter I). The time period between stage 30 -- stage 32 (6/6娄 days - 7 days) is approximately I6 hours (Hamburger and. Hamilton, I95I) and during this time the number of cells within the sectioned ulna increases from 1896-3733, an increase of approximately 100\%. Similarly, the time period between stage 3I stage 33 ( \(6 \frac{1}{2} / 7\) days \(-7 \frac{1}{2}\) days) is also about I6 hours and during this time the total number of cells increases from \(2472-5 I 96\), once asain, an increase of approximately \(100 \%\).

The L.I. of the perichondrium was not determined but it was observed that a uniform intense label was found throughout the perichondrium. Figure 3 shows that the perichondrium was heavily labelled even at areas where no cartilage was labelled.

When rounded cells were freed from their extracellular matrix and grown in cell culture a mean cell cycle time of \(16 \pm I\) hours was obtained (Fig. 5). This value is similar to the cell cycle time of I5+I hours obtained for rounded cells within an intact rudiment and is close to the cell cycle time of 18 hours recorded by Murison (I972) using chick embryo vertebral cartilage. Also, the maximun I.I. of \(83 \%\) is similar to that of \(82 \%\) recorded for vertebral cartilage. A I.I. of IOO\% was never obtained, but this is not unusual and may be explained by damage to cells during the dissociation process or by some of the cells maturing into "flattened" chondrocytes (not flattened, fibroblastic cells) and withdrawing from the cell cycle.

Murison (I972) cultured his cells for 3 days prior to labelling and found two cell types produced - polygonal cells, surrounded by a metachromatic extracellular matrix, and fibroblastic cells. However, he noticed that the cell cycle time was identical whether the cell was polygonal or fibroblastic and this would imply that the dedifferentiation event occurring in rounded cell cultures during the first \(1-2\) days (see chapter 4) can be ignored for the purpose of this study.

The general conclusions from this chapter are as follows:
i) every rounded cell is capable of dividing whilst only about IOF of the flattened cell population can, or does, divide.
ii) rounded cells have a shorter cell cycle time than flattened cells,
iiij) the process of cell hypertrophy may require a phase of DNA synthesis.
iv) the mean cell doubling time within an intact rudiment is approximately I6 hours, and
v) the cell cycle time of rounded cells is similar whether the cell is grown in organ or cell culture.


\(\nabla-\cdots-\nabla^{2} \operatorname{stal}\)

■…… \(\quad\) Mrowima


LabeIling
incex (\%)


 Qom T6 hours. The only hypertrophic celle mich incomponete Labol are those llosest to the latetened cell zone. Fote the Eftance betmen labellod flattenes ane hrpertrophio cells. Also, note that the perichondriun is heavily lebelled throughout it's lensth.
Rol. blue stain. has. X 125.
```

Ag. H. Iebeliting Index of stage 33 ulnee.

```


```

axe srom in cell outture.

```
TEsentims
5ater (3)

zebelzez

Table I Mean labelling indices observed in the histological zones of a stage 33 ulnae.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{\[
\begin{aligned}
& \text { Zone } \\
& (P-D)
\end{aligned}
\]} & \multicolumn{7}{|l|}{Labelling index \({ }^{+}\)} \\
\hline & \multicolumn{7}{|l|}{(Total no. cells)} \\
\hline & \multicolumn{7}{|l|}{Hours labelled} \\
\hline & 4 & 8 & 12 & 16 & 20 & 24 & 28 \\
\hline Round. & \[
\begin{aligned}
& 2 I .96 \\
& (\text { II93) }
\end{aligned}
\] & \[
\begin{aligned}
& 25.42 \\
& (I 38 I)
\end{aligned}
\] & \[
\begin{aligned}
& 29.55 \\
& (14.62)
\end{aligned}
\] & \[
\begin{aligned}
& 32.02 \\
& (1593)
\end{aligned}
\] & \[
\begin{aligned}
& 33.59 \\
& (1676)
\end{aligned}
\] & \[
\begin{aligned}
& 34.04 \\
& (1757)
\end{aligned}
\] & \[
\begin{aligned}
& 34.4 I \\
& (I 892)
\end{aligned}
\] \\
\hline Plat. & \[
\begin{aligned}
& I 2.26 \\
& (938)
\end{aligned}
\] & \[
\begin{aligned}
& I 3.36 \\
& (1078)
\end{aligned}
\] & \[
\begin{aligned}
& I 5.83 \\
& (\text { II94) }
\end{aligned}
\] & \[
\begin{aligned}
& I 8.93 \\
& (I 305)
\end{aligned}
\] & \[
\begin{aligned}
& I 9.88 \\
& (1403)
\end{aligned}
\] & \[
\begin{aligned}
& 20.08 \\
& (I 524)
\end{aligned}
\] & \[
\begin{aligned}
& 20.15 \\
& (16 I 3)
\end{aligned}
\] \\
\hline Hyp. & \[
\begin{aligned}
& 0 \\
& (I 27 I)
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& (I 395)
\end{aligned}
\] & \[
\begin{aligned}
& 0.13 \\
& (I 482)
\end{aligned}
\] & \[
\begin{aligned}
& 0.57 \\
& (I 590)
\end{aligned}
\] & \[
\begin{aligned}
& 0.72 \\
& (1665)
\end{aligned}
\] & \[
\begin{aligned}
& 2.19 \\
& (1784)
\end{aligned}
\] & \[
\begin{aligned}
& 3.3 I \\
& (I, 02)
\end{aligned}
\] \\
\hline Flat. & \[
\frac{70.1 T}{(910)}
\] & \[
\begin{aligned}
& I 2.45 \\
& (040)
\end{aligned}
\] & \[
\begin{aligned}
& I 4.99 \\
& (I O I 4)
\end{aligned}
\] & \[
\begin{aligned}
& I 7.36 \\
& (1083)
\end{aligned}
\] & \[
\begin{aligned}
& 18.56 \\
& (I I 64)
\end{aligned}
\] & \[
\begin{aligned}
& I 9.64 \\
& (I 232)
\end{aligned}
\] & \[
\begin{aligned}
& 20.03 \\
& (1298)
\end{aligned}
\] \\
\hline Round. & \[
\begin{aligned}
& 20.86 \\
& (858) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 27.92 \\
& (985) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 34.05 \\
& (1063) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 37.30 \\
& (1166) \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
38.37 \\
(I I 99)
\end{gathered}
\] & \[
\begin{aligned}
& 39.43 \\
& (1253) \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 40.18 \\
& (1349) \\
& \hline
\end{aligned}
\] \\
\hline Total & \[
\begin{aligned}
& I 2.59 \\
& (5 I 70)
\end{aligned}
\] & \[
\begin{aligned}
& I 5.35 \\
& (5779)
\end{aligned}
\] & \[
\begin{aligned}
& 18.29 \\
& (6215)
\end{aligned}
\] & \[
\begin{aligned}
& 20.52 \\
& (6697)
\end{aligned}
\] & \[
\begin{aligned}
& 2 I .53 \\
& (7107)
\end{aligned}
\] & \[
\begin{aligned}
& 22.26 \\
& (7560)
\end{aligned}
\] & \[
\begin{aligned}
& 22.86 \\
& (8054)
\end{aligned}
\] \\
\hline
\end{tabular}

TValues are presented as a percentage of the total number of cells. Values were calculated from 3 central I un sections, To am apart, from 3 different rudiments for each labelling period.

Standard deviations are omitted for clarity but ranged from 3-I3\%.

A typicel cartileze 1 long bone maiment constete of 3 tumes of chondrooytes, rounced, Mattened and hypertrophio, arranged in 5 cellulan zones euch that along the proximowdistal axis the seguenoe Is rounded, Wattened, hypectuohto, Wattened and rounded. The main aums of this thesis were to aetemine how each cenular zone Was set up and majntained, and to investigete the role played by each cell type in the growth and morphogenesis of a long bone mudiment. The rudiment stuated here wes the chack ombryo una from it's appearance at 5 days of inoubation until just prior to cartilage erosion at 9 Gaye, i.e. it was studied between stage 25-stage 3t (Kambucger and Hemilton, I95I).

At stage 25 the unal condensation apoeared as a tightly packed nese of cells, at a cell density higher then that of the surfounding mesenchyme, but with no apparent cellular orientation. Several reports state that if the nucleus - golgimbody axis is looked at a definite cellular orientation is present at this stage. however, mouse and chick condensation cells appear to have theim nucleus - golgi-body axes pointing in dipferent directions (HoImes and Trelstad. I980: Ede et al. I977) and the actual mole played by such an orfentation is, as yet, unclear.

The first appearance of overt cellular orientation in the una was at stage 26. The condensation was oval-shaped and the cells within it were no Zonger olosely packed but rere separated by a metachronatic FC. and appeared to be aligned in a direction at right angles to the long axis of the wing, making then sppean somewhat flattened. This ortentathon was never observed without Bh secretion and supports the susgestion of Goutd et al (To74) that cartilage cell omentetion is always associated wth mon secretion.

Almost every cell in the stage 26 ulna was flattened and the short the interval, about 6 hours, between stage: \(25-\) stage 26 sugsests that the flattaned cell may be the fimst type of chondrocte produced. Although no direot expecinontal bridence is available to inlicate how these cells become flattened, it may be purely mechantoa1. Carey (I922) stated that prion to the Fomation of a periohontriva, the embryonio pis fomu inoressed more in wiath than in length. If the same is true for the ulna then the increase in width between stage \(25-26\) may stretch the cells causing them to flatten at right angles to the long axis of the wing. The increase in width may be due to the whe ascreted by the cells.

At stage 28 the ulna consisted of a cigem--shaped thesue containins two cell types, flattened chonduocytes in the centre and regions of fever, counded cells at etther and. These rounded cells mere pesumably cells at the ende of the oval-shaped condensation which did not get stretched when the condensation increasod in width However, the rounded cells merged into the masenchyme and the possioinity that some wece actualing denived from the mesenchyme cemot be wuled out.

Ho true perichondrium was obsecved at stage 28 , thorefore, the rudinent could continue to inorease in width and no epiohyseal sweluings were observed. However, there vas a bamier of polygonaz shaped celle between centrai hattened oells and the mesenchyme. These polygonal sheped cells were, in fact, elongated cells srranged circumferentially around the rudimont and mere the earliost indication of a perichondrial structure.

It was interesting to note that if the murber of cells which constitu tas the perichondrial structure, in lonstuatmal section,
was adoed to the muber of liattened cells acmoss the diameter of the matment, at stage 28 , the sum was exactly the sane number as that found across the diameter of a stage 26 comdensetion. This implied that the eamy periohomonum might fom from cells at the pexiphery of the concensetion and geve even more suport to the suggestion of Gould et al (T974) that the pemichoncrium Pomed as a result of periphecal celks becoming stretched due to pressure senerated by per secretion by central cells.

The third cell type, the hypertrophic cell. Gid not appear until stage 30 when 1 attened cells. In the centre of the mudnent, begen to enlarge and degenerate. Sxperimental evicence suggested that the process of cell hypertrophy dia not come about due to any envirommental factor but was, wether, an autonomous property of llattened cells. If the llattened cell zone was memoved to organ culture the cells wthin it proceeded to hypertrophy.

In brief, the hattened cell zone appeared at stage 26. probably as a result of cells beconing stretched due to an morease in whth brought about by Bon seoretion: rounded cells might also be present at stage 26 but aid not appeax in any number untis stage 28 , the regions these cells were found in did not increase much in width at stage 26, therefore, the cells did not become stretched, and; hypertrophic cells appeared at stage 30 as a result of an autonomous property of flattened cells.

Duming develoment. each oellular zone continually incoeased In size but no zone became depleted, therefore, how was ach qone maintained? The hypectuonho cell zone got langer simply because Glattened celis were continully undergoing hypertrophy. Atrom caniographic eviacnoe susgested that cell division was contined mainly to the rounded cell zones, thexefore, these zonee were
matntained by new oell production. The flattened onll zone continually increased. In size due to the maturation of nomoded cells, themefora, the problem which had to be answered was how dia a rounded cell become flatbenen? Ultmastuctural stukies have shown that the FIO between flattened cells contain oxinented collagen fibres. Thess collagen fibces were polarised in a Rirection parallel with the lons axis of the Rlattened cell. The rounded cell zone, on the other hand, contained Intele collagen and the Don was totally unorganised. It is proposed that, as a wave of cell rlattening moves out from the centre of the rualiment, rounded cells coms into contact whth the organised collagen meshow and Platton onto it, this cell flattening induces Gucher polajised collasen secretion which th twon causes more noumed celle to flatten. In this wey the rocess is self.mogagatins and can be consinemed as a fom of cuystallisetion, Such a process has wecently beon proposed, in generen tems, by Alberts et 21 (T993) and some experimental avidence is avairable to support it. When stage 32 unae wore grom in the presence of Imaratianemzoarborylic acia (IACA), a duy which causes abmomal collagen secuetion, the gross efrect was that the mudment was shomer and tatter than controis. At the hastological level it Was obsenved that the flattened cell zone was no longez present. Ensteal rounded cells were found fithin flattened lacunae. This result suggests that unlese collagen is present, and is being secreted, in an organised mamer, there is no further cell Slattoning and already flattened cells mevert back to being roundod cells. It is Interestins to note that the process of cell hrpertrophy also ceases in these ruaiments, therefore an organisen collagenous mow not only influences cell shave it also plays a role

In the nomel growth and develomment of the moliment.
Onoe the 5 cellular zones are set up, growth and morphogenesis result in the production of a rudiment which has a Iong, narmow Quphysis with epiohyseal swellings at either end. How does this shape come about?

The firms appearance of a ture perichondmiun was obsemved around the central region of the stage 30 diaphysis just as the procese of cell hypertrophy wes besinaing. Gell hypertrophy involved a large fncrease in volume which resulted in the cells, Which had previously been amranged ofrcurdecentiany around the Fudiment, becoming elongated in a direction which was pasallel to the Ions axis of the mudment. These elongeted cells overlapped and movided a Imited resistance to zedial expanston causing the diaphysis to inchease in wiath at a rate lower thon at the eptohyscal cnde where no such constrainhe barater was observed. Thus it was from this stage onvards that the typioal Zong bone morphology of a namow dienhysus th opiphyseal spellings, ras ponuced.

Wurther cell hypertrophy consolidated the pexichonontum suon that by stage 32 the perichondwon sumpounding the hypertronto onl zone was a very distinot, vezy tight stucture with many extensive cell-cell contects, belisved to be thght functions. The with of the hypactronho dell wone cased to Enomease fron stage 32 (as neasured in the number of oells across the dismeter) and It was at thas stage that a sualen, laree incuease in length was observed in the developing ulne. The consoltabtion of the yertohondrium appeared to be a progeessive phonomenon in that the flattened cell wone at stage 32 was sumrounced by a pexichontrtum of overlapuins cells. Just as at stage 30, these overapuing celle allonea Intited mathat oxpangzon which was necessamy stace the thattened coll zons
 occupies oy rounded cells. Ho pertohontrin structure mes obseaved around the rounded ceII zone and radial appasion mrocebed.

The una at stage 32 was essentiany a pergect minature of the sault bone but changee still took place at the cellumar Ievel Which had invluences upon It \(^{2}\) E growth and morphogeneszs. The perichontrium axound the contec of the diaphysis transpomed into a bilayered periosteum at stage 33. Mnis stmoture consisted on an innex layer of rouned, posstrle osteogenic, cells which exhbited extensive cell-cell contacts and hed little wor, and an outer lajen of very elongeted fibroblastio celle which showod both areas of cell-cell contact and areas thece the cells were separated by stratps of Electron-dense natemal. These electron-dense stans are thought to contan collagen fibnes, glastin fibres and glyoosaminozlyouns and appear similar in neture and location to the "delioate whte Fhbres \({ }^{\text {º }}\) describen by Rell (I925). The pertchonomium around the -lattened cell zone gradually became more Gistinot and an overlapping structure was found wround the cell zone where radial expansion slowed dom.

The perichondrium/periosteum is thought to Antuence the rate at hioh Longitwainal growth proceeds by exerting tension on the crowing cartilage in a manner similat to that of the pemiosteum of the chiciren ralius as shom by Coinly (T972). If part of the perichondrium was removed from an uhna aged between stage \(32-\) stage 34. an overecorth nas anoys roun wen compared with controls. It was cberrved that when the perichonorium/periosteum was out it appeared to spring back and it is possible thet the electronmanse strips between cells in the outer layer, which are thought to contain collasen and elastin ribres, are responsible fox this tension.

As a long bone mumment aeveloped, it not only changee shape. It also gren lemgor. Camtlage momhogeneais and growth ame olosely ascociatod and coms about by a combination of cell division. cell Appertrochy and the secretion of Gor. In any stuay of cartilage moryogenests it is essential themefore to detemine wet role each of these parameters play.

By assuming that a modment was essentially a long oylinder With a partial sphere at either end it was possible to obtain estimates for the volume of the madment at verious stages. Also. using camera Zucida drawings of histological sections, th was possible to obtain values for the volume of each cell type, the rolume of got aseociated with each cell type, the rolume of each Fntivodual cellular zone and an estimate of the total number of cells In each gone. A calculation of the relative percentage of growth (S.e. Encrease in volume) due to each parameter could then be estinated. When this was perfomed tt was foum that cell dvision acounted zor 5.5\%, cell hypertrophy accounted for 37.750 and matran secretion accounted for 36. 35 of the total increase in volume. It would apear therefore that gor semethon plays the larsost role In the growth of an ulna.

The small anount of growth proviced for by cell division mey be expeotec simoc coll drizion cen be Kocked out br Z-mmakiation en the ruatment continues to Increase in length by up to 906 of controle (asgers and Gratrin. To6t).

Athough coll bypartrophy wes not the Margest tactor Involved In cantilage mornhogenests, it seens Ineely that it mey be the main Sactor Involved in the increase in Icngth observed. 6,11 nvecutroghy In vivo Involved a large monease in volume which was nomally reflected as an Hncrease in the shout axis of the flattened cell.

Honever, When Esolated hattenca oell zones undewrent hyoertrophy th cocurcea in a radial atmection. Tha molies that, in wion, the process of cel1 hupertwophy wes haceted into a Longhtubinaz
 Degan a pectchondrim forued whoh constra, ined radian expanston and thanced longiturthal growth. The main Tunction of the pewichonctium at this region, therefore, wes to constrain raduel expension th the Quphysis an theredy aroect the athation caused oy cent hyoertrophy Ento longituainal growth. This constraining efect of the perichonctum is the basts for the hyothesis of "dicected athetion" as proposed by 7olpert (I082).

The finctins that wo secretion was the mein Sactor Involved
In cacthase scowth and morphogemesis was perhape not sumprising Fince evecy cartilage coll is capable of secreting acu. Athough ECH Secretion med influence morphogenesis tn every zone tis main point of action appeared to be at the Plattened oell zone where it determined both cell shape and the dimectionality of growth. The role of the fattened cell wo fn detemining cell shape has alneaidy been discussed and pppears to involve polactsed secretion of matrux. Seliminary obsexvations from experiments where a cube of mattened cela were roteted through \(90^{\circ}\) sugeset that the and contzmos to be secreted and organised perallel to the lons axis of the flattened cell whth the result that during the cultwe perao the cube taans... Pomed into a rectangle. This result suggests thet the secrethon of Gon in a polarised momer by hattened cells in yive is more conducive to an Increase in Iength cather than an increase in watho Although the ebove results answered the initial ains of thes thesüs, various othex momphogenctic probleme were Envestigeted. these included the role of cell shape ducins chondrogenesta and
a comparison of in ytvo and in vituc chomorogenesis.
During developnent, rounded chondroogtes grawualy matwe
Snto Ilattened and then hypertrophic chondrocytes, do these differences In chape reflect differences in any other cell property? This problen was investigated in both the intact mubiment and when the cells mere dissociated and grom in cell oulture. Autocatiographo studies of the intact matnent, using TH-thyminne, demonstrated that on division was confine mainty to the rounced cell zone. Over a 2 hour oulture perıod, alnost every zounded cell wea cepable of dividing whinst ony about Io\% of plattened celle took up the 1abel. Very fen hyotrtrophic cells were found to inocmorate label and the location of those which did suggested that the label was token up just miox to the cells undecgotng hypertrophy frulying thet Dra synthosis may be a premrequisite for cell hyoutrophy. Then cell Linethe sturiee, simusa to those of Sember (I972, I973. I978): were performer, it was fom that differences in cell shape also replected difforences in coll oycle times. Rounded cells hed a mean cell crole time of aporoximately I5 hours whinet fattened cells had a moen cell oyole time of aupowimately to hours. Thenefoce, it Woula appeax that the change in cell shepe from rounded to hlettened not only ceused approximately \(90 \%\) of the flattened cells to withorat Srom the cell cycle, It also cansed the cell cycle thme to increase.

Whatramal fron the cell orcle apocared to be a function
Entringic to the mutment since rowned, flattened and hypertronto cells all divaded then zom in cell culture. wht inomeesing time In oulture it was found that some cells dewiffenentiate zato fituom blastio cells mich ceased to secuete a cantilage-speciric 70 ch .
 zones ves En the time taken ror dewtarementiation to begin. Thus
mosult inplied that rounded cells woce the moat zmmature celas since, When grom at low cell densituy: ( \(2 \mathrm{~m}^{5}\) cens/tissue outure atsh) thoy Zempherentiate whin I-2 daye wheseas Hattened oells took at least 4 days. Mypertrophio celle did not de-difforentiate to any extent. When rombed or flatbened celle reve grom at a hish cell

 Central celle mhich rexe closely peoked and polysonal in shane contmued to secrete a metachmontwo mon. The obeemvation has Ben Intentretated as befns a densitumdependant phenononon in that chondrogenosis mill ony proceed in the cells are glated out sbove

 Lod to the suggestion that a high cell density In yituo anoms Mhistogenio interactions" to ocoum. Tre are-centilage condensebkon
 have suggected that histogemzo Interactions are necescauy for


 that no ce11-well contact on mequined. Therefore, the possionitit that the thtital stages In chontrogenesis could aleo proceca without histogenic interactions wes inveatigeted.

Then stage 23 nonmbondrogenio Itmb mesenchume celns were grown

 concor whth other colle. The rebulte aron thes stury have ameady
 that maintaming the ce7le tn a roumed cell configuration was
womuchue to the secrethon on a sulphatod au an. thus. presumaty camilage. Therefore, histogenio interactions are not nocessen \(17 y\) a premrequisite for chondrogenests.

Te stege 23 oel2s wame cultumed on noman tissue outture dishes bt a 10 cell dencity, they beceme famoblastio and seaneted lese Bulgheted Fon then control cells - this process may be similan to the de-mifementiation step obsenved in differentiated choncrooytes.
 Grop) the culture was foum to procuce areas of chondrogenic and aon-chondrogenio tissue. Then stained with aloian blue (ou I.0) the chonomogenic areas were found to consist of "cartilage nocules" containting polygonal choncrocytes sepacated by ant end sumponded by cells elongated in a momben Tashion. These nocules apearse very shmilar to the whorled appearance of early cartilege modments, when viswed in transporse sections in ytuo.

Geveral authors have steved that chonocoenesis in vitro is
 I978) and Teiss and Hoscona (T950) in partioular have suggceted that the pattem of chonirogenesks obsemved is due to intrinsuo propertioe of the constituent chonamytes. Yokss and Moscona Liseociatod and cultured commtted pre-chonarogenio mesenohyme from the 1 tho and hom the sclena of the eye. Thein mesults cemonstrated thet Inb mesenchrme always Bommed whomled carthage mily soleran mesenchyme always Rombd a pat gheet. These experiments were repeated in thes thesis, ustas the Hicromass technigue, and the mesults were contrmed, however, When the experiments wexe expanded. by mixing cell types ox plating zt 20 denstutes, the Idea of an intrinsic cell mroperty could no longer be substantiated. If soleral mesenchyme was plated out at a medium density ( \(5 x 0^{4}\) cens/To /ul drop) or mived with heart fibrobleste:
cartilage clumpe and nodules were produces. Tn contrest. in only the central cone resion of the IAmb mesenchyme wa plated out, at high abnetity (20to' coms/rom arop) a hat sheet of cartilase
 Implien that the pattemes of chomiogenesis obscuve? were dependart on the inttial plating denstty on the ooll type plated put and mas not an intuinsic moperty.

Turther evidence becane evailable from the above sturies to sugest thet chondrogenesis in wive and in vitro weme two difement nechanisms. The procuction of a centilage nodule in vituo requined an aggregation on oelle maon to axa secretion. (Ahcens et al, Iop7) therefore, the whorled pattem formed thacpendantly of mon secnetion. On tho other hen, whoming in wivo mes only obsexven after go. secretion had begm and is probably dependant upon it. It gema Iremy, thecefore, that chondrozenesis in witro bears ony superaictal


The zeeulte mescnted in thas conolusion have ansrenee the matn aims of the thesis, i.e. how is each cellulau zone set up and maintefned, how is the İnal long bone mormhology wronued am what

 some instshts into the dependance between cell shepe wat the wrucethou an a cemtilege phenotyo, whe the melethonship between choncrogenesis In yive and In vituo have also becn gainec. Mowerer. this thosis has dealt almost entinely with cantilege after the seonetion on adr hea begun, no attempt has been neje to discover why on hou the inthat condencation fomed, wa stace there ane confucting reporte on this fomation this spsten is now wag son =unhew investigation.

BIBIIOGEAPHY

Abbott, J. and Holtzer, H. (I966). The loss of phenotypic traits by differentiated cells. III. The reversible behaviour of chondrocytes in primary cell culture. J. Cell Biol., 28:473-487. Abercrombie, M. and Heaysman, J.E.M. (I954). Observations on the social behaviour of cells in tissue culture. II. Monolayering" of fibroblasts. Exp. Cell Res., 6:293-306.

Ahrens, P.B., Solursh, M. and Reiter, R.S. (I977). Stage-related capacity for limb chondrogenesis in cell culture. Dev. Biol., 60:69-82.

Ahrens, P.B., Solursh, M., Reiter, R.S. and Singley, C.T. (I979). Position-related capacity for differentiation of limb mesenchyme in cell culture. Dev. Biol., 69:436-450.

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., and Watson, D. (I983). In : Molecular biology of the cell. Garland Publishing Inc. New York and London : 7I2-7I3.

Amprino, R. (I965). In : Organogenesis. Eds. de Haan, R.I. and Ursprung, H. Academic Press New York : 255-28I.

Archer, C.W., Hornbruch, A. and Wolpert, I. (I983). Growth and morphogenesis of the fibula in the chick embryo. J. Embryol. exp. Morph., 75:IOI-II6.

Archer, C.W.. Rooney, P. and Wolpert, I. (I982). Cell shape and cartilage differentiation of early chick limb bud cells in culture. Cell Diff., II:245-25I.

Archer, C.W., Rooney, P. and Wolpert, L. (I983). The early growth and morphogenesis of limb cartilage. In : Iimb development and regeneration. Eds. Fallon, J.F. and Caplan, A.I. Alan R. Iiss Inc. New York : Progress in Clinical and Biological Research IIOA:267278.

Balcuns, A., Gasseling, M.T. and Saunders, J.W. (I970). Spatiotemporal
distribution of a zone that controls antero-posterior polarity in a limb bud of chick and other bird embryos. Amer. Zool., IO: 323.

Biggers, J.D. (I957). The growth of cartilaginous embryonic chick bones after freezing. Experientia. I \(3: 483-484\).

Biggers, J.D. (I965). Cartilage and Bone In : Cells and tissues in culture, Vol. 2. Eds. Wilmer. E.N. Academic Press. London and New York : I97-260.

Biggers, J.D. and Gwatkin, R.B.I. (I964). Effects of x-rays on the morphogenesis of the embryonic chick tibiotarsus. Nature 202: I52-I54.

Biggers, J.D., Gwatkin, R.B.I. and Heyner, S. (I96I). The growth of avain and mammalian tibiae on a relatively simple chemically defined medium. Exp. Cell Res., 25:4I-58.

Bjornsson, S. and Heinegard, D. (I98I). Isolation and culture techniques of foetal calf chondrocytes. Biochem. J., I98:I4II48.

Bourrett, I.A. and Rodan, G.A. (I976). The role of calcium in the inhibition of cAMP accumulation in epiphyseal cells exposed to physiological pressure. J. Cell Physiol., 88:353-362. Bryant, P.S., Bryant, S.V. and French, V. (I977). Biological regeneration and pattern formation. Sci. Am., 237:66-76.

Caplan, A.I. (I970). Effects of the nicotinamide-sensitive teratogen 3-acetyl-pyridine on chick limb cells in culture. Exp. Cell Res., \(62: 341-355\).

Carey, E.J. (I922). Direct observations on the transformation of the mesenchyme in the thigh of the pig embryo, with especial reference to the genesis of the thigh muscles of the knee and hip joints, and of the primary bone of the femur. J. Morph. Physiol.s 37:I-77.

Chen, J.M. (I952). Studies on the morphogenesis of the mouse sternum II. Experiments on the origin of the sternum and its capacity for self-differentiation in vitro. J. Anat., 86:307-40I. Chen, J.M. (I953). Studies on the morphogenesis of the mouse sternum III. Experiments on the closure and segmentation of the stemal bands. J. Anat., 87:I30-I49.

Cole, R.K. (I942). The "talpid lethal" in the domestic fowl. J. Hered. 33:82-86.

Coulombre, A.J. and Coulombre, J.I. (I957). The role of intraocular pressure in the development of the chick eye : III Ciliary body. Amer. J. Ophthalmol., 44:85-92.

Crawford. T. (I980). An antigen of chondroitin sulphate proteoglycan; A marker for cartilage differentiation. Devel. Growth and Differ., 22:II3-I24.

Grilly, R.G. (I972). Longitudinal overgrowth of chicken radius. J. Anat. 1 II2:II-I8.

De La Haba, G. and Holtzer, H. (I965). Chondroitin sulphate: Inhibition of synthesis by puromycin. Science, I49:I263-I265.

Dessan, W., Von der Mark, H., Von der Mark, K. and Fishers, S. (I980). Changes in the patterns of collagens and fibronectin during limb-bud chondrogenesis. J. Embryol. exp. Morph. 57:5I-60.

Diewert. V.M. (I979). Correlation between mandibular retrograthia and induction of cleft palate with G-Aminonicotinamide in the rat. Teratology, I9:2I3-228.

Diewert, V.M. (I980). The role of craniofacial growth in palatal shelf elevation. In : Current research trends in prenatal craniofacial development. Eds. Pratt, R.M. and Christiansen, R.I. Elsevier North Holland, Inc., I65-I86.

Diewert, V.M. (I98I). Correlation between alterations in Meckel's
cartilage and induction of cleft palate with B-aminoproprionitrite in the rat. Teratology, 24:43-52.

Diewert, V.M. and Pratt, R.M. (1979). Selective inhibition of mandibular growth and induction of cleft palate by Diazo-oxonorleucine (DON) in the rat. Teratology, 20:37-52.

Dixon, B. (I97I). Cartilage cell proliferation in the tail-vertebrae of newborn rats. Cell Tissue Kinets., 4:2I-30.

Ede, D.A. (IgII). Control of form and pattern in the vertebrate limb. In : Control mechanisms of growth and differentiation. Eds. Davies, D.D. and Balls, M. Cambridge University Press. Society for Experimental Biology Symposium XXV : 235-254.

Ede, D.A. (I983). Cellular condensations and chondrogenesis. In : Cartilage. Vol. II. Development, Differentiation and Growth. Ed. Hall, B.K. Academic Press, New York.

Ede, D.A. and Agerbak, G.S. (I968). Cell adhesion and movement in relation to the developing limb pattern in normal and talpid \({ }^{3}\) mutant chick embryos. J. Embryol. exp. Morph., 20:8I-I00. Ede, D.A. and Flint, O.P. (I972). Pattern of cell division, cell death and chondrogenesis in cultured aggregates of normal and talpid mutant chick limb mesenchyme cells. J. Embryol. exp. Korph., 27:245-260.

Ede, D.A. and Kelly, W.A. (I964a). Developmental abnormalities in the head region of the talpid \({ }^{3}\) mutant of the fowl. J. Embryol. exp. Morph., I2:I6I-I82.

Ede, D.A. and Kelly, W.A. (I964b). Developmental abnormalities in the trunk and limbs of the talpid \({ }^{3}\) mutant of the fowl. J. Embryol. exp. Morph., I2:339-356.

Ede, D.A. and Law, J.T. (I969). Computer simulation of vertebrate limb morphogenesis. Nature, Lond., 22I:244-248.

Ede, D.A., Wilby, O.K. and Colquhoun, P. (I977). The development of pre-cartilage condensations in limb bud mesenchyme in vivo and in vitro. In : Vertebrate limb and somite morphogenesis. Eds. Ede, D.A., Hinchliffe, J. . and Balls, M. Cambridge University Press. \(\mathrm{I} 6 \mathrm{I}-179\).

Epperlein, H.H. and Lehmann, R. (I975). Ectomesenchymal-endodermal interaction system Triturns alpestris in tissue culture 2. Observations on differentiation of visceral cartilage. Differentiation, 4:I59-I74.

Fallon, J.F. and Crosby, G.M. (I977). Polarising zone activity in limb buds of amiotes. In : Vertebrate limb and somite morphogenesis. Eds. Ede, D.A., Hinchliffe, J.R. and Balls, M. Cambridge University Press., 55-69.

Fell, H.B. (I925). The histogenesis of cartilage and bone in the Iong bones of the embryonic fowl. J. Morph. Physiol., 40:47-458. Fell, H.B. (I956). Skeletal development in tissue culture. In : The biochemistry and physiology of bone. Ed. Bourne, G.H. Academic Press, New York : 40I-44I.

Fell, H.B. and Canti, R.G. (I934). Experiments on the development in vitro of the avian knee joint. Proc. Roy. Soc., II6B:3I6-35I. Fell, H.B. and Mellanby, 巴. (I955). The biological action of thyroxine on embryonic bones in tissue culture. J. Physiol. I27:427-447.

Fell, H.B. and Robinson, R. (I929). The growth, development and phosphatase activity of embryonic avian femora and limb buds cultivated in vitro. Biochem. J., 23:767-784.

Fitton-Jackson, S. (I970). Morphogenetic influences of intercellular macromolecules in cartilage. In : Chemistry and Molecular biology of the intercellular matrix, 3: Ed. Balazs, B.A. Academic Press, New York : I772-I778.

Folkman, J. and Moscona, A. (I978). Role of cell shape in growth control. Nature, Lond. 273:345-349.

French, V., Bryant, P.J. and Bryant, S.V. (I976). Pattern regulation in epimorphic fields. Science, I93:969-98I.

Gierer, A. and Meinhardt, H. (I972). A theory of biological pattern formation. Kybernetik, I2:30-39.

Gilbert, C.W. (1972). The labelled mitoses curve and the estimation of the perameters of the cell cycle. Cell tissue. Kinet.. 5: 53-63.

Glowacki, J. Trepman, E. and Folkman, J. (I983). Cell shape and phenotypic expression in chonđrocytes. Proc. Soc. Exp Biol. Med. I72:93-98.

Gould, R.P., Day, A. and Wolpert. I. (I972). Mesenchymal condensations and cell contact in early morphogenesis of the chick limb. Exp. Cell Recs. \(72: 325-336\).

Gould, R.P., Selwood, L., Day, A. and Wolpert, L. (I974). The mechanism of cellular orientation during early cartilage formation in the chick limb and regenerating limb. Exp. Cell Res., 83:287-296.

Grundmann, K., Zimmermann, B., Barrach, H.J. and Merter, H.J. (I980). Behaviour of epiphyseal mouse chondrocyte populations in monolayer culture. Virchows Arch. A Path. Anat. and Histol., 389:167-I87.

Hall, B.K. (I978). Developmental and cellular skeletal biology. Academic Press : New York.

Hall-Craggs, E.C.B. and Laurence, C.A. (I969). The effect of epiphyseal stapling on growth in length of the rabbit tibia and femur. J. Bone Jt. Surg., 5IB:359-365.

Ham, R.G. (I965). Clonal growth of mammalian cells in a chemically defined synthetic medium. Proc. Natl. Acad. Sci. U.S. 53:288-293. Hamburger, V. and Hamilton, H.L. (I95I). A series of normal stages
in the development of the chick embryo. J. Morph., 88:49-92. Hamilton, E. and Dobbin, J. (I983): The percentage labelled mitoses technique shows the mean cell cycle time to be half its true value in carcinoma NT. I. Cell Tissue Kinet., I6:473-48I. Hampé. A. (I959). Contribution a l'etude du developpement et de la regulation des deficiences et des excedents dans la patte de I'embryon de Poulet. Arch. Anat. Microsc. Morph. Exp., 48: 345-478.

Hampé, A. (I960). La competition entre les elements osseux du zeugopode de Poulet. J. Embryol. exp. Morph. 8:24I-245.

Hert, J. (I972). Growth of the epiphyseal plate in curcumference. Acta. Anat., 82:420-436.

Holder, N. (I977a). An experimental investigation into the early development of the chick elbow joint. J. Embryol. exp. Morph., 39:II5-I27.

Holder, N. (I977b). The control of growth and cellular differentiation in the developing chick limb. Ph.D. thesis, University of London. Holder, N. (I978). The onset of osteogenesis in the developing chick limb. J. Embryol. exp. Morph. 44:I5-29.

Holmes, L.B. and Trelstad, R. (I977). Patterns of cell polarity in the developing mouse limb. Dev. Biol., 59:164-I73.

Holmes, L.B. and Trelstad, R. (I980). Cell polarity in precartilage mouse limb mesenchyme cells. Dev. Biol, 78:57I-520.

Honig, I.S. (I98I). Positional signal transmission in the developing chick limb. Nature, Lond. , 29I:72-73.

Hornbruch, A. and Wolpert, I. (I970). Cell division in the early growth and morphogenesis of the chick limb. Nature, Lond. 226: \(764-766\).

Houghton, G.R. and Dekel, S. (I979). The periosteal control of long bone growth. Acta. orthop. scand., 50:635-637.

Hudson, H.M. and Hahn, G.M. (I977). The labelled mitoses curve for a population consisting of fast and slowly cycling cells. J. Theoret. Biol., 66:63.

Humason, G.I. (I979). Animal tissue techniques. \(4^{\text {th }}\) edition, Freeman : San Francisco.

Isaksson, O.G.P., Jansson, J.O. and Gause, I.A.M. (I982). Growth hormone stimulates longitudinal bone growth directly. Science, 2I6:I237-I239.

Iten, L.E. (I982). Pattern specification and pattern regulation in the embryonic chick limb bud. Amer. Zool., 22:II7-I29.

Iten, L.E. and Murphy, D.J. (I980). Pattern regulation in the embryonic chick limb : Supernumerary Limb formation with anterior (non-2PA) Limb bud tissue. Dev. Biol, 75:373-385.

Jacobson, W. and Fell, H.B. (Ig4I). The developmental mechanics and potencies of the undifferentiated mesenchyme of the mandible. Quart. J. Microsc. Sci., 82:563-59I.

Janners, M.Y. and Searls, R.I. (I970). Changes in the rate of cellular proliferation during the differentiation of cartilage and muscle in the mesenchyme of the embryonic chick wing. Dev. Biol., 23:136-I65.

Janners, M.Y. and Searls, R.I. (I97I). Effect of removal of the apical ectodermal ridge on the rate of cell division in the subridge mesenchyme of the embryonic chick wing. Dev. Biol., \(24: 465-476\).

Jensen, F.G., Gwatkin, R.B.L. and Biggers, J.D. (I964). A simple organ culture method which allows simultaneous isolation of specific types of cells. Exp. Cell Res., 34:440-447.

Karnovsky, M.J. (I965). A formaldehyde-gluteraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol.,

Kember, N.F. (I972). Comparative patterns of cell division in epiphyseal cartilage plates in the rat. J. Anat., III:I37-I42.

Kember, N.F. (I973). Patterns of cell division in the growth plates of the rat pelvis. J. Anat., II6:445-452.

Kember, N.F. (I978). Cell kinetics and the control of growth in long bones. Cell Tissue kinet. \(11: 477-485\).

Kember, N.F. and Walker, K.V.R. (I97I). Control of bone growth in rats. Nature, Lond., 229:428-429.

Kieny, M., Manger, A. and Sengel, F. (I972). Parly regionalisation of the somite mesoderm as studied by the development of the axial skeleton of the chick embyro. Dev. Biol., 28:I42-I6I.

Kleinman, H.K., Klebe, R.J. and Martin. (I98I). Role of collagenous matrices in the adhesion and growth of cells. J. Cell. Biol., 88:473-485.

Kosher, R.A. (I976). Inhibition of "spontaneous" notochord-induced and collagen-induced in vitro somite chondrogenesis by cavip derivatives and theophylline. Dev. Biol., 53:265-276.

Laurent, T.C. (I970). Structure of hyaluronic acid. In : Chemistry molecular biology of the intercellular matrix, 2: Ed, Balazs, E.A. Academic Press : New York. 703-732.

Lev, R. and Spicer, S.S. (I964). Specific staining of sulphate groups with alcian blue at low pH. J. Histochem. Cytochem., I2:30a.

Levenson, G.E. (I969). The effect of ascorbic acid on monolayer cultures of three types of chondrocytes. Exp. Cell Res., 55: 225-228.

Lewis, J.H. (I975). Fake maps and the patterns of cell division : a calculation for the chick wing bud. J. Embryol. exp. Morph., 33:479-434.

Lewis, J.H. (I977). Growth and determination in the developing limb In : Vertebrate limb and somite morphogenesis. Eds. Ede, D.A., Hinchliffe, J.R. and Balls, M. Gambridge University Press., 2I5-228

Lewis, J.H. and Wolpert, I. (I976). The principle of non-equivalence in development. J. Theoret. Biol, 62:479-490.

Iutfi, A.M. (I974). The role of cartilage in long bone growth: areappraisal. J. Anat., II7:4I3-4I7.

MacCabe, J.A. and Parker, B.W. (I976). Polarising activity in the developing limb of the Syrian hamster. J. Exp. Zool., 195:3II-3I7.

MacCabe, J.A., Errick, J. and Saunders, J.W. (I974). Ectodermal control of the dorso-ventral axis of the leg bud of the chick embryo. Dev. Biol., 39:69-82.

Maden, M. (I977). The regeneration of positional information in the amphibian limb. J. Theoret. Biol., 69:735-753.

Maden, M. (I982). Supermumerary limbs in amphibians. Amer. Zool., 22:I3I-I42.

Mathews, M.B. (I958). Isomeric chondroitin sulphates. Nature, Iond., 181:421-422.

Maurer, Y.H. and Hudack, S.S. (I952). The isolation of hyaluconic acid from callus tissue of early healing. Arch. Biochem. Biophys., 38:49-53.

Meier, S. and Solursh, M. (I972). The comparative effects of several mammalian growth hormones on sulphate incorporation into acid mucopolysaccharides by cultured chick embryo chondrocytes. Endocrinology, 90:I447-145I.

Meikle, M.C. (I975). The influence of function on chondrogenesis at the epiphyseal cartilage of a growing long bone. Anat. Rec., I82:387-400.

Miller, E.J. and Matukas, V.J. (I974). Biosynthesis of collagen. The biochemist's view. Fedn. Proc. Fedn. An. Socs. exp. Biol., 33:II97-I204.

Muller, P.K., Lemmen, C., Gay, S., Gauss, V. and Kuhn, K. (I977). Immunochemical and biochemical study of collagen synthesis by chondrocytes in culture. Exp. Cell. Res., I08:47-55.

Murison, G.L. (I972). Cell cycle of chondrocytes in vitro. Exp. Cell. Res., 72:595-600.

Murray, P.D.F. (I926). An experimental study of the development of the limbs of the chick. Proc. Linnaen Soc. N.S. Wales. 5I:I87-263. Murray, P.D.F. and Huxley, J.S. (I925). Self-differentiation in the grafted limb bud of the chick. J. Anat., 59:379-384. Murray, P.D.F. and Selby, D. (I930). Intrinsic and extrinsic factors in the primary development of the skeleton. Wilhelm Roux Arch. I22:629-662.

Newman, S.A. (I977). Lineage and pattern in the developing wing bud. In : Vertebrate limb and somite morphogenesis. Eds. Ede. D.A. Hinchliffe, J.R. and Balls, M. Cambridge University Press. I87-I97.

Newman, S.A. and Frisch, H.L. (I979). Dynamics of skeletal pattern formation in the developing chick limb. Science, 205:662-668. Newsome, D.A. (I976). In vitro stimulation of cartilage in embryonic chick neural crest cells by products of retinal pigmented epithelium. Dev. Biol., 49:496-507.

Parker, C.I., Paulsen, D.F., Rosebrock, J.A. and Hooper, W.C. (I980). Inhibition of chondrogenesis by nomal mouse semum in cultured chick limb cells. Exp. Cell. Res. I30:2I-30.

Freston, B.N., Davies, M. and Ogston, A.G. (I965). The composition and physico-chemical properties of hyaluronic acids prepared from
ox synovial fluid and from a case of mesothelioma. Biochem. J., 96:449-474.

Prockop, D.J., Kivirikko, K.I., Tuderman, I. and Guzman, N.A. (I979). The biosynthesis of collagen and its disorders. N. Engl. J. Med., 301:13-23, 77-85.

Quastler, H. and Sherman, F.G. (1959). Cell population kinetics in the intestinal epithelium of the mouse. Exp. Cell Res., I7: 420-438.

Reidy, J.A., Lingley, J.R., Gall, E.A. and Barr, J.S. (Ig47). The effect of roentgen irradiation on epiphyseal growth. II. Experimental studies upon the dog. J. Bone. Jt. Surg., 29:853-873. Reynolds, E.S. (I963). The use of lead citrate at high pH. as an electron-opaque stain in electron microscopy. J. Cell Biol., I7:208-212.

Rifas, I., Vitto, J., Memoli, V.A., Kuethner, K.E., Henry, R.W. and Peack, W.A. (I982). Selective emergence of differentiated chondrocytes during serum-free culture of cells derived from foetal rat calvaria. J. Cell. Biol., 92:493-504.

Rigel, W.M. (I962). The use of tritiated thymidine in studies of chondrogenesis. In : Radioisotopes and bone. Eds. Mc Lean, F.C., Lacroix, P. and Budy, A.M. Blackwell Scientific Publications : Oxford.

Rodan, G.A., Mensi, T. and Harvey, A. (I975). A quantitative method for the application of compressive forces to bone in tissue culture. Calcif. Tissue Res., I8:I25-I3I.

Rodan, G.A., Bourret, L.A., Harvey, A. and Mensi, T. (I975). Gyclic AMP and cyclic GMP : mediators of the mechanical effects of bone remodelling. Science, 189:467-469.

Rogers, A.W. (I967). Techniques of autoradiography. Elsevier, Amsterdam and New York.

Saunders, J.W. (I948). The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J. exp. Zool., 108:363-403.

Saunders, J.W. and Gasseling, M.T. (I968). Ectodermal-mesenchymal interactions in the origin of limb symmetry. In : Epithelialmesenchymal interactions. Bds. Fleischmajer, \(R\). and Billingham, R.E. Williams and Watkins, Baltimore : 78-97.

Saunders, J.W., Gasseling, M.T. and Gfeller. (I958). Interactions of ectoderm and mesodem in the origin of axial relationships in the wing of the fowl. J. exp. Zool. I I37:39-74.

Searls, R.I. (I965). An autoradiographic study of the uptake of \(s^{35}\)-sulphate during the differentiation of limb bud cartilage. Dev. Biol.: II:I55-I68.

Searls, R.L. (I967). The role of cell migration in the development of the embryonic chick limb bud. J. exp. Zool.: I66:39-50.

Searls, R.L. (I972). Cellular segregation: A "late" differentiative characteristic of chick limb bud cartilage cells. Exp. Cell Res., 73:57-64.

Searls, R.I. (I973). Chondrogenesis. In : Developmental regulation: aspects of cell differentiation. Ed. S. J. Coward. Academic Press, New York and London : 2I9-25I.

Searls, R.I., Hilfer, S.R. and Mirow, S.M. (I972). An ultrastructrual study of early chondrogenesis in the chick wing bud. Dev. Biol.. 28:I23-I37.

Silver, M.H., Foidart, J.M. and Pratt, R.M. (I98I). Distribution of fibronectin and collagen during mouse limb and palate development. Differentiation, I8:I4I-I49.

Solursh, M., Arhens, P.B. and Reiter, R.S. (I978). A tissue culture analysis of the steps in limb chondrogenesis. In vitro. I4:5I-6I.

Solursh, M., Linsenmayer, T.F. and Jensen, K.I. (I982). Chondrogenesis from single limb mesenchyme cells. Dev. Biol. 94:259-264.

Solursh, M. and Reiter, R.S. (I975). Determination of limb bud chondrocytes during a transient block of the cell cycle. Cell Differ., 4:I3I-I37.

Solursh, M. and Reiter, R.S. (I980). Evidence for histogenic interactions during in vitro limb chondrogenesis. Dev. Biol.. 78: ILI-I50.

Solursh, M., and Reiter, R.S. Ahrens, P.B. and Pratt, R.M. (I979). Increase in levels of cyclic AMP during avian limb chondrogenesis in vitro. Differentiation, I5:I83-I86.

Steel, G.G. and Hanes, S. (I97I). The technique of labelled mitoses : Analysis by automatic curve fitting. Cell Tissue Kinet., 4:93-105. Steinberg, M.S. (I964). The problem of achesive selectivity in celluiar interactions. In : Cellular Membranes in Development. Eג. Locke, M. Academic Press, New York : 32I-366.

Stockwell, R.A. (I974). Fine structure and macromolecular organisation of connective tissue. Trans. ophthal. Soc., 94:648-60.

Stockwell, R.A. (I979). Biology of Cartilage Cells. Cambridge University Press.

Stocum, D.L., Davis, R.M., Leger, M. and Conrad, H.E. (I979). Development of the tibiotarsus in the chick embryo : biosynthetic activities of histologically distinct regions. J. Embryol. exp. Morph., 54:I55-I70.

Strangeways, T.S.P. and Fell, H.B. (I926). Experimental studies on the differentiation of embryonic tissues growing in vivo and in vitro. I. Proc. Roy. Soc., 99B:340-364.

Summerbell, D. (I974). A quantitative analysis of the effect of excision of the A®R from the chick limb bud. J. Embryol. exp. Morph., 32:65I-660.

Summerbell. D. (I976). A descriptive study of the role of elongation and differentiation of the skeleton of the developing chick wing. J. Embryol. exp. Morph., 35:24I-260.

Summerbell, D. (I977). Regulation of deficiences along the proximodistal axis of the chick wing bud. A quantitative analysis. J. Embryol. exp. Morph., 4I:I37-I59.

Summerbell, D. and Honig, I.S. (I982). The control of pattern across the antero-posterior axis of the chick limb bud by a unique signalling region. Amer. Zool., 22:I05-II6.

Summerbell, D. Lewis, J.H. and Wolpert, L. (I973). Positional information in chick limb morphogenesis. Nature, Lond. 244: \(492-495\).

Summerbell, D. and Tickle, L. (I977). Pattern formation along the antero-posterior axis of the chick limb bud. In ; Vertebrate limb and somite morphogenesis. Eds. Ede, D.A.s Hinchliffe, J.R. and Balls, M. Cambridge University Press : 4I-53.

Summerbell, D. and Wolpert. I. (I972). Cell density and cell division in the early morphogenesis of the chick wing. Nature New Biology, 238:24-26.

Thorogood. P.V. (I983). Morphogenesis of cartilage. In : Cartilage Vol. II. Development, Differentiation and Growth. Ed. Hall, B.K. Academic Press, New York.

Thorogood, P.V. and Hinchliffe, J.R. (I975). An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J. Embryol. exp. Morph. \(33: 58\) I-606.

Tickle, C., Alberts, B., Wolpert, I. and Lee, J. (I982). Local application of retinoic acid to the limb bud mimics the action of the polarising region. Nature, Lond. \(296: 564-566\).

Tickle, G., Goodman, M. and Molpert, L. (I978). Cell contacts and
sorting out in vivo: the behaviour of some embryonic tissues implanted into the developing chick wing. J. Embryol. exp. Morph., \(48: 225-237\).

Tickle, G., Shellswell, G., Crawley, A. and Wolpert, I. (I976). Positional signalling by mouse limb polarising region in the chick wing bud. Nature, Lond. , 259:396-397.

Tickle, C., Summerbell, D. and Wolpert, I. (I975). Positional signalling and specification of digits in chick limb morphogenesis. Nature, Iond., 254:I99-202.

Toole, B.P. (I972). Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton. Dev. Biol. 29:32I-329.

Toole, B.P. and Trelstad. R.I. (I97I). Hyaluronate production and removal during corneal development in the chick. Dev. Bio., 26:28-35.

Trelstad, R.L.(I977). Mesenchymal cell polarity and morphogenesis of chick cartilage. Dev. Biol. 59:I53-I63.

Turing, A. (I952). The chemical basis of morphogenesis. Phil. Trans. Roy. Soc., 237B:32-72.

Umansky, R. (I966). The effect of cell population density on the developmental fate of reaggregating mouse limb mesenchyme. Dev. Biol. \(13: 3 I-56\).

Von der Mark, K. (I980). Immunological studies on collagen type transition in chondrogenesis. Curr. Top. Dev. Biol. I4:I99-225. von der liark, K. and Conrad, G. (I979). Cartilage cell differentiation. Clin. Orthop. Rel. Res., I39:I85-2I3.
von der Mark, K . and von der Mark, H . (I977). Immunological and biochemical studies of collagen type transition during in vitro chondrogenesis of chick limb mesenchymal cell. J. Cell Biol. \(73: 736-747\).
von der Mark, H., von der Mark, K, and Gay, S. (I976). Study of differential collagen synthesis during development of the chick embryo by immunofluorescence. Dev. Biol., 48:237-249.
von der Mark, K., Gauss, V., Von der Mark, H. and Muller, P. (I977). Relationship between cell shape and type of collagen snythesised as chondrocytes lose their cartilage phenotypes in culture.

Nature, Lond., 267:53I-532.
von der Mark, K., Sasse, J., Dessau, W., Von der Mark, H., Kuhl, V. and Herrmann, H. (I98I). Collagen types as markers for differentiation of connective tissue cells. In : International Cell Biology. Ed. Schweiger, H.G. : 542-55I.

Walker, K.V.R. and Kember, N.F. (I972). Cell Kinetics of growth cartilage in the rat tibia. I and II. Cell Tissue Kinet., 5:40I-408 and 409-4I9.

Weiss, P. and Amprino, R. (IM 40 . The effect of mechanical stress on the differentiation of scleral cartilage in vitro and in the embryo. Growth, 4:245-258.

Weiss, P. and Moscana, A. (I958). Type-specific morphogenesis of cartilage developed from dissociated limb and scleral mesenchyme in vitro. J. Embryol. exp. Morph. , 6:238-246.

Wessells, N.K. (I965). Morphology and proliferation during early feather development. Dev. Biol. I2:I3I-I53.

Whitfield, J.F., Boynton, A.L., MacManus, J.P., Silcorsken, M. and Tsang, B.K. (I979). The regulation of cell proliferation by calcium and cyclic AMP. Mol. Cell Biochem., 27:I55-I79.

Wiebkin, O.W. and Muir, H. (I973). The inhibition of sulphate incorporation in isolated adult chondrocytes by hyaluronic acid. FEBS Lett. 37:42-46.

Wiebkin, O.W, and Muir, H. (I975). The effect of hyaluronic acid
on proteoglycan synthesis and secretion by chondrocytes of adult cartilage. Phil. Trans. Roy. Soc., 27IB:283-29I.

Wolff, E. (I958). Le principe de competition. Buil. Soc. Zool. Fr. 83:I3-25.

Wolpert, I. (I969). Positional information and the spatial pattem of cellular differentiation. J. Theoret. Biol., 25:I-47.

Wolpert, L. (I97I). Positional information and pattern fommation. Curr. Top. Dev. Biol., 6:183-224.

Wolpert, L. (I978). The development of the pattern of growth. In : Paediatrics and Growth. Report of the \(5^{\text {th }}\) Unigate Paediatric Workshop. Ed. Barltrop, D. Blackwell, Oxford. : I5-24.

Wolpert, L. (I982). Cartilage morphogenesis. In : Cell Behaviour. Bds. Bellairs, R., Curtis, A.S.G. and Dunn, G. Cambridge University Press : 359-372.

Wolpert, L. and Hornbruch, A. (I98I). Positional signalling along the autery posterior axis of the chick wing. The effect of multiple polarising region grafits. J. Embryol. exp. Morph., 63:I45-I59.

Zwilling, E. (I98I). Limb morphogenesis. Advances in Morphogenesis, I:30I-330.```

