
Applied Metamodelling to Collaborative Document
Authoring

Anna Kocurova and Samia Oussena
School of Computing and Technology

University of West London
London, UK

Email: Anna.Kocurova,Samia.Oussena@uwl.ac.uk

Tony Clark
School of Engineering and Information Sciences

Middlesex University
London, UK

Email: T.N.Clark@mdx.ac.uk

Abstract—This document describes a domain specific language
tailored for collaborative document authoring processes. The lan-
guage can support communication between content management
systems and user interfaces in web collaborative applications.
It allows dynamic rendering of user interfaces based on a
collaboration model specified by end users. The construction of
the language is supported by a metamodel. We demonstrate the
use of the proposed language by implementation of a simple
document authoring system.

Index Terms—collaborative authoring; multi-structured docu-
ment; metamodelling; domain specific language.

I. INTRODUCTION

Internet capabilities have been evolving at an amazing
rate and Web provides a truly collaborative environment.
Geographically distributed people can collaborate and work
together on authoring tasks. Their cooperative effort is estab-
lished by using web collaborative applications which manage
coordination, communication, file sharing and document au-
thoring. With increased user requirements and expectations,
the applications become more sophisticated, providing rich
functionalities and more powerful user interactions. Hence
the architecture of collaborative applications is more complex.
Often in web applications, the Model-View-Controller (MVC)
software design pattern is incorporated and a three-layer ar-
chitecture is used. The presentation, the functional processing
and the data management are separated concepts.

Typically, the functional processing layer drives communi-
cation between the presentation and data management tiers.
The presentation tier, as the topmost level of collaborative
applications, displays information to users. It communicates
with the functional processing level in which the business
logic and application’s functionality is controlled. Data and
content are stored and managed in the data management tier.
By using the MVC, the model containing domain objects is
used to interact with the data management layer. The logic of
the collaborative applications is included in the controller. The
controller handles requests made in the presentation layer. The
view generates output for the presentation layer.

Collaborative applications often allow its users to specify
own work patterns and authoring processes. The applications
need to have an ability to integrate customised workflow
process models. The way how the models are designed,

integrated and used depends on structuring of the particular
collaborative application. We assume that using models can
merge more functions of the functional processing layer. If the
workflow models are enriched, they can serve as the domain
models in the MVC pattern and also support dynamic building
of user interfaces for each collaborative case. Therefore, a
platform-independent and user-friendly approach that can help
to develop such domain models is needed.

The Model Driven Approach (MDA) is a way that is capable
to abstract away from implementation specific details. A Do-
main Specific Language (DSL) is the key enabling technology
for the MDA. DSLs specify what should be executed and not
how. In addition, they are more customisable to the particular
context and domain. DSLs are languages with usually intuitive
syntax and constructs, allowing solutions to be expressed in
the problem domain. Moreover, by the employment of the
DSL, all abstract constructs that are resistant to change can
be captured.

Our aim in this paper is to propose a DSL targeted to
collaborative processes and address the complexity of the
development of web collaborative applications. Our focus is
put on multi-structured document authoring, management and
workflow. A notation that facilitates the construction of models
in the language is proposed. The notation includes a number
of graphical icons which represent the domain concepts and
relationships between them. A metamodelling approach is used
to define all constructs, the relationships that exist between
constructs and well-formed rules that state how the constructs
can be combined to create models.

This paper reports on our experiences of designing the DSL
by applying the metamodelling approach and contributes to
the domain-specific functionality of collaborative applications.
The paper is structured as follows. Section 2 discusses related
works. In Section 3, we outline a case study in which a
collaborative authoring process is described. Based on the
case study, a model for the authoring process is proposed
and domain analysis conducted in Section 4. The model is
used to drive communication between the business logic layer
and user interface. Domain analysis is used to define the
common domain constructs. The domain-specific features are
visualised and expressed on a metamodel in section 5. The
metamodel defines the basic semantics of the DSL. DSL

engine is described in Section 6. Finally, implementation
details of a simple document authoring system are outlined
in Section 7. Final discussion of the approach is provided in
Section 8. Section 9 highlights our future work.

II. BACKGROUND AND RELATED WORK

A. Document Authoring

The collaborative document authoring domain has been
studied around for many years. The studies have focused
on particular problems; none of them has demonstrated the
metamodelling approach for capturing the domain concepts.
Focus on collaborative activities by using the MDA has
been applied in the work of [1]. The work presents generic
modelling approach only for collaborative ubiquitous software
architectures. Document composition and life-cycle have been
addressed in work of [2] where a theoretical framework
and practical guidelines for modelling composite document
behaviour are proposed. Although, in [3] the MDA to define
document management applications by using Eclipse Mod-
elling Framework is described, the work focuses only on
document management as a top layer on repository and does
not consider other collaborative functionalities.

A framework for collaborative document procedures has
been proposed in [4]. The work describes a run-time document
workflow engine based on XML technologies. Although we
have used some similar constructs and XML technologies in
our prototype implementation, our work offers a code generic
tool to build solutions at a higher level of abstraction.

B. Domain Specific Languages

The more the software products become robust and com-
plex, the more sophisticated tools are required in software
development. Domain-specific modelling (DSM) is a software
engineering methodology for designing and developing soft-
ware systems. DSM raises the level of abstraction beyond
programming and enables the solution to be specified in a
language that directly uses concepts and rules from a specific
problem domain [5]. DSLs are possible tools to cope with the
increasing user demands and the gap between IT and business
concepts [6]. Domain Specific Language (DSL) describes
the various abstract facets of a system. The need for new
languages for various growing domains is strongly increasing
[7]. The benefits of using DSLs to application development
have been highlighted in [8].

The MDA aims to generate a formal specification and
executable code from models. The models define the static
and dynamic components of the system. Convergence of the
MDA and DSL by using metamodel is described by [9], [10]
where metamodel is promoted as the abstract syntax for a DSL
that may be used in various situations. Metamodels capture the
essential features of the application domain and describe the
valid models permitted in the domain. Metamodels have been
used in a wide variety of application domains, although often
named differently such as ’data model’ or ’language schema’.
Using metamodels is required particularly in cases where a
language needs to be defined precisely. For example, the UML

specification contains one of the largest metamodels 1. Other
examples of metamodels can be found in process modelling 2

or in data warehousing 3.

III. CASE STUDY

The work described in this paper is derived from the
Rudiment project [http://samsa.tvu.ac.uk/rudiment]. Rudiment
has been developed as a single document authoring system
based on the following case study.

Academic researchers want to have their own environment
for collaborative work because they collaborate on a number
of multi-structured documents such as research proposals or
research papers. Typically, sections or subsections of the
documents are independently edited by certain participants
with specific roles. Collaborators need to regularly access,
retrieve and edit the working sections of the documents using
a prescribed set of rules. Their complex processes of docu-
ment production and management need to be customised by
their internal rules for collaboration. An agreed work pattern
(workflow) can enhance productivity of a team. They expect
to have a user-friendly tool that would enable them to design
own multi-structured document authoring processes and spec-
ify actions for particular roles. Their authoring environment
should provide an appropriate user interface for each process
based on user role.

IV. DOMAIN MODEL

In this section, a collaborative authoring model for case
study is illustrated. Domain analysis is used to define all
common domain-specific constructs.

A. Collaborative Authoring Model

A research proposal authoring process is used as test case.
The process is expressed as a model. This model has been
simplified for the purpose of the paper. The structure of a
research proposal funding bid and a lifecycle of the bidding
process are illustrated in Fig. 1.

The Project Bid as a main document contains data field
descriptions in form of properties such as title, author and
checked. Each property has assigned a property type. The
document is multi-structured, thus composed from a number
of sections. In this case, MainText and Budget are shown. The
Project Bid document and the Budget section have their own
lifecycles and conform to own work patterns of completion.
The states of elements are represented by the oval graphical
symbols and are associated with control boxes. A control box
contains a set of possible run-time actions. The actions can
be performed by specified roles. For example, if the Budget
section is in the Prepare state, the section can be further
processed only by people with the role of Manager or Anyone.
The role Anyone in this case means that this action does
not depend on a role and any user belonging to the team of
collaborators can perform it. While a person with the role

1UML 2.3, http://www.omg.org/spec/UML/2.3/
2SPEM 2.0, http://www.omg.org/spec/SPEM/2.0/
3CWM, http://www.cwmforum.org/

Fig. 1. Model for collaborative document authoring

of Manager can Sign off the budget, other collaborators are
allowed only Edit it. The actions might change values of
attributes of the corresponding element and trigger certain
transitions between states either of the element itself or its
parent element. For instance, when a user with a role of
Manager signs off the Budget, the Project Bid state is changed
from Prepare to Finalise.

B. Domain Features

The graphical representation of the authoring process il-
lustrated in Fig. 1 expresses the authoring process in an
understandable and intuitive form. It uses a mix of textual
and graphical icons to visualise the document hierarchy and
the collaborative workflow at run-time. The model can be
supplied to the collaborative applications which will drive the
collaboration at runtime according to this model. Based on
the case, we have defined the following set of features that
the DSL must support.

Fig. 2. Domain Features

Element Containership: One of the basic qualities of a
document is its structure. Document structure is always a
key to its management. Structure encompasses well-defined
manageable subelements of a document and their relationships

to each other. The Container and Element widgets in the
model scheme can be used to build a multi-level hierarchy of a
document. The Container widget can contain other containers
or atomic elements (Fig. 2a).

Properties: To make sure that elements are accessible, identi-
fiable and discoverable, elements need to be specified by data
called metadata or properties. The structural and descriptive
metadata describes properties relevant to an element and are
associated with the corresponding Container or Element wid-
get (Fig. 2b). The control metadata is used to guide transitions
between two states.

Workflow: Workflow defines a series of connected steps that
must be accomplished to produce a required output. Workflow
management is an important part of content management. In
order to put a document in the center of the workflow process,
content-oriented workflow is used. Each workflow step alters
the document or its element in a certain, predesigned way.
Transitions are driven by guards. Workflow can be designed
for any parent or child element as demonstrated in Fig. 2c. The
flow of the document is controlled by the values of control
metadata which values might be changed as results of certain
actions.

Document authoring: Collaboration allows a large number
of people to contribute and share documents. To facilitate a
smooth document authoring process and controlled access to
data, a set of roles needs to be defined. A role is associated
with a set of permissions and obligations. Roles are occupied
by actors. Each workflow state of a particular document
element is accompanied by a set of actions performable by
certain roles (Fig. 2d).

V. DSL FEATURES

In this section, the domain concepts and their relationships
are progressively defined. The information is visualised on a
metamodel (Fig. 3). The metamodel is the central asset that
defines semantics of the DSL.

A. Document Structure

A system manages a collection of documents. A document
is a sequence of sections, sub-sections etc. The structure of
elements is a tree where the leaves of the tree are blocks of
text, diagrams, etc. Specific types of elements (e.g. projects,
documents, sections, etc.) are specializations of Container.
There may be many different types of atomic element (only
Text is shown).

All elements must be specialized to fit individual col-
laborative document needs. For example, the structure of a
research proposal may be different from the structure of a final

project report. Specialization must support both, structure and
behaviour. Variability of structure is achieved by allowing el-
ements to be arbitrary sized trees marked up with any number
of properties. A property is just a name-value association. In
our example, the Project Bid is a document composed of two
sections: Main Text and Budget. The Project Bid has various
properties such as title, author and checked and each section
may have some additional own properties such as the Budget
section has assigned the signedOff property.

B. Roles and Actions

Interaction with all elements is via actions. An action can
create or delete a project element. An action may modify an
element by changing the text or modifying a property value.
We have identified the following basic action types: create;
delete; modify-text; modify-property. Actions are performed
by actors, i.e. project members who have specific roles. For

Fig. 3. Metamodel

example, a project member may create a new document or
delete a section of an existing document. A project must
define, a-priori, a collection of role types.

For instance, only Manager can Sign off the Budget section
but Anyone is allowed to Edit it.

C. States

At any given instant of time, an element is in a specific
state that is defined by its property values, the states of its
component elements (if any) and the text it contains. The life-
cycle of an element describes a sequence of states that it has
occupied and the actions that have occurred to cause changes
of the states. For example, the Budget section might be in its
Initial state or the Prepare state.

D. Transitions

A transition between two states of the same element cor-
responds to an action that has occurred. The result is an
important change in state. Each transition is associated with a
source and target state.

The transitions and states are operated by a state machine.
Guard for a transition can be indicated. It contains conditions
that must be true for the transition to be triggered. In Rudi-
ment, the Budget goes from the Initial state to the Final state
through the Prepare state. The condition, [signedOff], is a
guard for the latter transition.

E. Element Types

Each element in Rudiment has an own type. For instance, a
document would be an element of DocumentType. A structure
of elements is based on the structure of their types. A type is
a specialization of ContainerType, therefore it may represent a
collection of other types that can be sequenced or unordered.
The Star class, an arbitrary sized sequence of elements, points
out on the possible multiplicity of a particular type within
a container. Elements have properties, element types have
property types. This hierarchy of types at the metamodel level
enables to model various templates.

F. Workflow

A project has a plan that is described in terms of a collection
of (partially ordered) tasks that must be performed by actors
in designated roles. Each task is a specification of an element
state within the project and is therefore achieved by performing
a (possibly composite) activity. A plan may be associated
with each component element of a project or may just be
associated with the top-level element (the project container).
At any given time it is possible to check what the outstanding
tasks of an element are. There will be conditions expressed
in terms of the element properties and subcomponents that
must be satisfied before the element may change from one
state to another. Workflow in the collaborative bidding process
is essential in order to improve efficiency and reliability of
the process. The event is usually an action triggered by an
execution condition, for example by clicking a button. The
event is accompanied by pre- and post-conditions such as a

new section can added to document only if the document has
been created and allows further structuring. The workflow at
the metamodel level is depicted in Fig. 4. The semantics are
shown in Figure 1 where the consequence of states is modelled
and each state is accompanied by a set of available actions.
Explaining the conditions for each action in details is out of
scope of this paper.

Fig. 4. Workflow

VI. DSL ENGINE

The language proposed in this paper is a tool that can
support the design of collaborative processes and dynamic
building of user interfaces. The aim of this section is to
describe an overall architecture of a collaborative system and
applicability of the DSL. As shown in Figure 5, the system
is composed from three layers: content management system
(CMS), DSL specific engine and user interface (UI).

Fig. 5. Overall Architecture

The UI layer should be capable of displaying graphical
output and support user interaction. Support of role definition
and group management should be also handled in this layer.
The DSL specific engine is a layer placed on top of a content
management system and drives behaviour of collaborative
applications dynamically at runtime. This engine, based on

the MVC design pattern, processes concrete DSL models,
supports document structuring, workflow and authoring. The
content management layer has data and content management
functionalities and supports version controlling.

A. Overview

Our engine targets a layer between CMS and UI. Events are
actions created in the UI layer and originate from user actions.
The events form inputs for our system. Created events are
firstly processed by an event handler. Internal processing of
events that lead to outputs is handled by a controller as shown
in Listing 1. The outputs are responses returned to the UI layer.
The responses contain information about an element structure
and element workflow state and a set of actions performable
in next step.

L i s t i n g 1 :
r e s p o n s e := i n i t i a l a c t i o n s B l o c k ;
w h i l e t r u e {

command (a , e , ws , r , p) := r e d u c e (prog) ;
(eCont , ws ’)

:= pe r fo rm (command , s t a t e) ;
(a c t i o n s B l o c k) := o b t a i n A c t B l o c k (e , ws ’) ;
r e s p o n s e

:= p o p u l a t e (eCont , a c t i o n s B l o c k) ;
e v e n t := w a i t f o r e v e n t () ;
p rog := h a n d l e (e v e n t) ;

}

Firstly, the program prog is evaluated and reduced to pro-
duce a command with respect to the invoked action, a,
current element, e, its workflow state, ws, user role,
r and other parameters, p. Performing the command
with respect to a particular application state and cur-
rent context results in an updated workflow state, ws’,
and an updated element containership, eCont. The
eCont represent the containership of elements to which the
current element belongs to. Based on the element and its
workflow state, a new actionsBlock is obtained. The
actionsBlock represents a set of actions available in
next step. The actionsBlock and eCont form a new
response.

The first response is an initial actionsBlock which
contains a set of actions. This is returned when user logins
in the system. The application then is in an awaiting state
for a next event. A handler for the event is defined in the
actionsBlock which returns a new program according to
the given element, its workflow state and role of user.

Based on the cycle, the additional features are defined:
Command: Commands deal with accessing and updating of
element or its property in a content management system.
Each collaborative process has a local state associated with an
element that can be updated by performing commands. The
extent of the local state is the state of the element containership
to which the element belongs to and its workflow state.
Actions Block: An actions block consists of actions associated
with a workflow state of a particular element.

Response: A response can be seen as an intermediary that
communicates all updates back to the UI layer. The response is
populated by the corresponding updated element containership
and actions block which includes a list of all actions per-
formable in the next step by the current user. Actions returned
in an action block are used to dynamically render UI. In the
UI, a button is created for each action. However the details of
how the UI are created is outside the scope of the paper.
Events: An event occurs within a particular actions block
when for example the user presses a button. An event handler
is responsible for handling the event. The semantics of the
language is partially defined in terms of handling the externally
generated events.

Structural operational semantics for the engine has been
defined by using λ-calculus which is the highly expressive,
flexible and easily extended standard. However, due to its
volume, the semantics is not included in the paper and will be
described in our future work.

VII. IMPLEMENTATION DETAILS

The proposed DSL is validated through the implementation
of a prototype of a collaborative document authoring system.
This section describes the implementation details of the sys-
tem. The major focus has been put on the DSL engine so
two existing technologies acting as data management layer
and user interface layer have been used. There are a number
of open source systems supporting document management
with rich functionalities and different deliveries that can be
customised, extended and integrated. In the Rudiment project,
the engine has been implemented as an intermediary between
Alfresco and Drupal. Alfresco has acted as a data management
layer and Drupal has been used as a user interface layer.
The technology mix represents a powerful tool to create the
required environment. The engine can be populated by the
concrete DSL models. We have used the bidding process
model described in the case study as a test pivot.

A. Architecture

The DSL is defined for multi-structured documents. Thus
data management layer is significant for the successful imple-
mentation of the engine. Data management is often driven
by a content model. The content model needs to directly
support the multi-level document structure. The content model
of Rudiment has been designed as an extension of the content
model of Alfresco. By modelling own content types, content
aspects and content metadata (properties), we gained the abil-
ity to control lifecycle and manage element types as needed.
In Alfresco, if the content model is customised, actions must
be additionally specified too. A set of actions for each element
type, including creating, editing, modifying or removing the
element, has been predefined. In addition, actions to modify
values of metadata were enabled.

The engine is created by using the Alfresco’s REST-based
web script framework. A set of web scripts have beed defined.
Each webscript has been associated with a basic action such
as Create Document, Add Element, Add Metadata, Update

Fig. 6. System Overview

Metadata, etc. This flexible and lightweight framework uses
URL addressability of objects in the Alfresco repository and
the objects are accessed from a frontend application, in our
case Drupal, by using XMLHttpRequests.

B. XML response

Using an XML format in the response template allows
dynamic handling of interaction. The populated XML template
returns information about the element, its structure, workflow
states and all available actions performable in next step. An
illustrative example of the execution when the Create Bid
button is clicked is shown in Fig. 6. A user with a role of
manager decides to create a bid from the template. The Create
Bid button is clicked and it invokes a webscript associated with
the action. The bid is created and persisted in Alfresco. It is in
the Prepare state. Considering the role of user, the generated
XML template is returned and contains information about the
bid structure and a list of all available actions associated with
the Prepare state in the model: Edit, Set Author and Set Title.
In the following screen, the XML document is used to render
UI. A corresponding button is created for each action included
in the XML document: Edit, Set Author and Set Title. The
populated XML template is shown in Listing 2.

VIII. DISCUSSION

The proposed graphical DSL represents the model driven
approach to the development of collaborative applications.
Users of the DSL can model their own collaborative processes.
The models can be used to dynamically build interfaces at
runtime. By developing the abstract syntax of the DSL as
a metamodel, a vocabulary of domain concepts has been
represented. This vocabulary deals with form, structure and
relationships that exist between the concepts. Metamodelling
is the way how to design and integrate semantically rich
languages in a unified way [11]. The metamodel proposed
in this paper specifies multi-structured document structure,
lifecycle and behaviour. It can ensure consistency across tools
built from the models. The developed tools conform to policies
and regulations stated for this domain.

Our approach to the development of the DSL supports its
further evolution. The metamodel can be adapted, modified
or extended. Constructing the language is an iterative process
where the constructs can be continuously added if needed.
The pivot for the DSL definition has been a research bid,
however, the tool can be extended to serve any collaborative
task. The concept of document management can be extended
to content management, when the graphical icon for element
containership might be used to represent content such as
image, file or any other media. To specify a particular content

type, a number of additional properties can be associated with
the particular element. Content structuring can be supported
in the same way as in case of document structuring. Content-
centric workflow can be modelled with the graphical icons for
states, transitions and guards.

L i s t i n g 2 :
? xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<r e s p o n s e>
<eCont>
< t i t l e >${ elem . p r o p e r t i e s . name}</ t i t l e >
<u r l>${ u r l . c o n t e x t }${ elem . u r l }</ u r l>
. . . o t h e r m e t a d a t a . . .
<# l i s t c o r e s e c s as c h i l d>

<# i f c h i l d . isDocument>
<s e c t i o n mandatory =” c o r e ”>

. . . m e t a d a t a . . .
<w o r k f l o w S t a t e>${ c h i l d . s t a t e }
</ w o r k f l o w S t a t e>
</ s e c t i o n>

</# i f>
</# l i s t >

</ eCont>
<a c t i o n s B l o c k>
<a c t i o n name=” s e t T i t l e ”

s c r i p t N a m e = ” / s e t T i t l e . xml ? t i t l e ={ t i t l e }”>
<p a r a m e t e r s>

<p a r a m e t e r name=” t i t l e ” />
</ p a r a m e t e r s>
< r o l e name=” anyone ” />

</ a c t i o n>
<a c t i o n name=” s e t A u t h o r ”

s c r i p t N a m e = ” . . . >
. . .

<a c t i o n name=” e d i t ”
s c r i p t N a m e = ” . . . >

. . .
</ a c t i o n s B l o c k>
</ r e s p o n s e>

Although the proposed metamodel captures the most com-
mon domain constructs of the domain, it is still only a first step
towards developing a more generic and automated approach.
Moreover, this paper considers only a particular aspect of
the communication between layers. Describing communication
protocols between layers, content management system access
or authentication are out of the scope of the paper.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have presented the DSL features for
the collaborative document authoring domain and the way
how user interfaces can be built dynamically. Precise DSL
semantics will be described in our future work. Our further
work will focus on the extension of the DSL to other areas of
the collaborative applications domain.

REFERENCES

[1] I. B. Rodriguez, G. Sancho, T. Villemur, S. Tazi, and K. Drira, “A
model-driven adaptive approach for collaborative ubiquitous systems,” in
Proceedings of the 3rd workshop on Agent-oriented software engineering
challenges for ubiquitous and pervasive computing, (London, United
Kingdom), pp. 15–20, ACM, 2009.

[2] S. Battle and H. Balinsky, “Modelling composite document behaviour
with concurrent hierarchical state machines,” in Proceedings of the
9th ACM symposium on Document engineering, (Munich, Germany),
pp. 25–28, ACM, 2009.

[3] N. Boyette, V. Krishna, and S. Srinivasan, “Eclipse modeling framework
for document management,” in Proceedings of the 2005 ACM symposium
on Document engineering, (Bristol, United Kingdom), pp. 220–222,
ACM, 2005.

[4] A. Marchetti, M. Tesconi, and S. Minutoli, “XFlow: an XML-Based
Document-Centric workflow,” in Web Information Systems Engineering
– WISE 2005, pp. 290–303, 2005.

[5] S. Kelly and J. Tolvanen, Domain-specific modeling. Wiley-IEEE, 2008.
[6] A. Kleppe, Software Language Engineering. Addison-Wesley, Dec.

2008.
[7] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler,

and S. Volkel, “Design guidelines for domain specific languages.”
http://www.dsmforum.org/Events/DSM09/Papers/Karsai.pdf, 2009.

[8] J. Gray and G. Karsai, “An examination of dsls for concisely represent-
ing model traversals and transformations,” in System Sciences, 2003.
Proceedings of the 36th Annual Hawaii International Conference on,
pp. 10–pp, IEEE, 2003.

[9] T. Cleenewerck and I. Kurtev, “Separation of concerns in translational
semantics for DSLs in model engineering,” in Proceedings of the 2007
ACM symposium on Applied computing, (Seoul, Korea), pp. 985–992,
ACM, 2007.

[10] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez, “Model-based DSL
frameworks,” in Companion to the 21st ACM SIGPLAN symposium
on Object-oriented programming systems, languages, and applications,
(Portland, Oregon, USA), pp. 602–616, ACM, 2006.

[11] T. Clark, P. Sammut, and J. Williams, “Applied metamodelling: A
foundation for language driven development | lambda the ultimate.”
http://lambda-the-ultimate.org/node/2711, 2008.

