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Z\.BSTRn..CT 

TBE LOCn..T!ON OF ROOTS OF EQUn..TIONS rq!TH PZ\.RTICULn..R 
REFERENCE TO TBE GENERn..LIZED EI3ENVn..LUE PROBLEM. 

G.F.Col1<in 

Z\. survey is presented of algorithms which are in 
current use for the solution of a single algebraic or 
transcendental equation in one unknown, together wit~ an 
appraisal of their practical perfor~ance. 

The first part of the thesis consists of an ~ccount 
of the theoretical basis of a number of iterative metl101s 

"and an examination of the problems to be overcome in order 
to achieve a successful computer implementation.' 

In the selection of specific programs for testing, 
the emphasis has been placed on metl10ds which are suitable 
for use, in conjunction with 1eter~inant evaluation, for 
the solution of standard eigenvalue problems and 
generalize1 problems of the for~ Z\.(A)~= Q, where the 
elements of n.. are linear or non-linear functions of A. 
The principal requirements for such purposes are that: 

1. the algorithm should not be restricted to polynomial 
equations 

2. derivative evaluation should not be required. 

Examples of eigenvalue proble~s" ~risinq from 
engineering applications illustrate the potential 
difficulties of determining "roots. Particular attention 
is given to the problem of calculating a number of roots 
in c~ses where a priori estimates for each root are not 
available. The discussion is extende1 to give a brief 
account of possible approaches to the problem of locating 
complex roots. 

Interpolation metl101s are found to be particularly 
versatile and can be recommended for their accuracy and 
efficiency. It is also suggested that such algorithms may 
often be employed as search strategies in the absence of 
go01 initial estimates of the roots. ~ention is also made 
of those features of practical im91ementation which were 
foun1 to be particularly useful, toget~er with a list of 
some outstanding 1ifficulties, associate1 principally with 
the automatic computation of several roots of an equation. 
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CSl\PTER 1 

INTR'JDUCTION 

Obtaining nu~eric31 solutions' of non-line3r 

3lgebr3ic or transcen~ent31 equ3tion in one unknown is 3 

fre~uently occurring proble~, for eX3mple in connection 

with differenti31 equ3tions 3rising in ~3the~3tic31 

?hysics, 3nd 3 nu~ber of iter3tive ~eth01s 3re discussed 

in st3n13r1 nu~eric3l aTHlysis text,books. Tl:le 3i'll of this 

investigation is to eX3~ine the oractic31 i~?lementation 

of such algorith~s 3n1 to report on the current "st3te of 

the 3rt" in the develo?~ent of softw3re in this 3rea. 

The problem of deter~ining nu~erical solutions to an 

equ3tion ~ay 'be considered in two stages:' 

1. Esti~ating the number and 3P?roximate 10c3tion of the 

required roots. This is often the 'llost formidable 

part of the task and the question arises 3S to whether 

the co~puter can be of assist3nce. 

- 7 -



2. Refine~ent of these first esti~atas by ~eans of one or 

more iterative t=chni~ues. The ai~ will be to achieve 

a degree of accuracy specified by the user or, failing 

that, the ~axi~u~ accuracy which can be attained by 

the machine for the particular 9roble~ 90sad. 

~ considerable amount of work has been done on the 

automatic solution of a polynomial equation, but aven in 

such casas it is not possible to guarantee a complete 

solution. Further~ore, ill-conditioning of the roots ~ay 

9revent the achievement of an acceptable degree of 

accuracy. The proble~s with a general equation are 

usually ~uch greatar since the nu~ber of roots is li~ely 

to be unknown and there may be discontinuities of the 

function and/or its darivatives. It will also be 

nacessary in such casas to consider the accuracy an1 

efficiency of the ~ethod chosen to evaluate the function. 

\s such evaluation will inv~lve approxi~ation of infinite 

processes, the relevant theory is much ~ora complicated 

than for a finite polyno~ial. 

~ short account will be jiven of the properties to be 

considered when choosing an algorithm and incorporating it 

into a computer routine. This will be ,followed by 

descriptions of so~e com~only-used ~ethods and an 

of their performance in 

imple~entations. ~any of the 

designed for the co~putation 

published progra~s 

of r=al roots but 

consideration will also ba given to 'the problem of 
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detection and esti~ation of complex roots. The 

two-dimensional n3ture of the co~plex variable ~akes it 

considerably more difficult to set up a systematic search 

procedure when good estimates of the roots 3re 

unavailable. 

calculations 

In addition, the increased number of 

to be performed makes the -question of 

efficiency even more i~portant than in the case of real 

roots. 

P3rticular reference will be made to the standard and 

generalized eigenvalue problemg of linear algebra which 

can give rise to algebraic or transcendental equations 

with real 3nd/or complex roots. ~articular features of 

such equations will be used to test aspects of various 

equation-solving routines. 
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CB~PTER 2 

FE~TURES OF ~LGORITq~S 

The topics con?idered here will be relevant t~ a wide 

variety of ~umerical ?roble~s but particular emphasis will 

be placed on the way in which general requirements 

influence the choice of 3n· iterative ~et~od for 

equation-solving and the way in which it is implemented. 

Some of the criteria establishe1 ~ave b~en adopted by most 

published computer routines: ~thers are only occasionally 

incorporated or are still in course of investigation: 

most will be applicable to both real 

root-finding procedures. 

2.1 FIRST ESTI~ATES 

If a continuous function is known to have a simole 

root isolated within a certain interval (or region in the 

case of a complex root), the evaluation of such a root 

should 9resent little difficulty. In such cases we might 

reas~nably expect guaranteed convergence to any desired 

accuracy within the capacity of the machine. If such, 
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priori information is not availabl~ might try 

instructing the comput~r to t~st a seri~s of values of t~e 

variable, perhaps pr0ceeding by fixed step l~ngths, until 

the functi0n value changes sign. This will not of ~ourse 

be a satisfactory procedur~ for complex roots or for real 

zeros of even multiplicity. Ther~ is also a danger that 

an interval thus found may contain sev~ral closely-sp~ced 

roots. 

~n alternative strategy is to apply an iterative 

method with an experimental starting value and to examin~ 

the first few it~rates for an indication of convergence. 

To facilitate such preliminary ttials provision is being 

made increasingly for "reverse com~unication", an approach. 

recommended by Gonnet [18]. Here control .is in the hands. 

of the user via his calling program; he exa~ines each 

successive iterate and decides whether to accept this 

value and use it as the starting point for the next 

iteration, accept it as a solution or discard it in favour 

of a different initial estimate. Ev~n with such provision 

it will still be the responsibility of the user to seek a 

reasonable starting value before using the computer at 

all. 

"For automatic computation the proble~ of the 
initial value looms large and forbidding. It is 
at once the chief characteristic of iterativ~ 
algorithms and their principal curse" ~cton [1] 
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3ui13nce ~3y be obtained from on~ or ~or~ of the 

following consi1~r3tions: 

1. Theoretic31 bounds on the magnitud~s of th~ roots and 

knowledge of their distribution. 

2. ~nticipation of likely roots from the n3ture of the 

pr3ctical problem which gave rise to th~ equation. 

3. Experi~nce of th~ behaviour of equations of 3 si~ilar 

form. 

'cton [1] points. out th3t equ3tions seldo~ arise as a 

"one-off" but are liable to be presented as 3 f3~ily of 

re13ted proble~s. Careful analysis of the n3ture of such 

e~uations can often allow exploit3tion of their co~~on 

features with valuable ~ay-off in increased efficiency. 

2.2 CONVERGENCE 

~ny ?rocedure b3sed u?on the use oe 3n iterative 

formula will nee1 to set criteria for termination of the 

program. When the ?rocess is conv~rgent, 3n 3ccuracy 

requirement (stopping criterion) will determine whether 3 

sufficient number of iterations has been ?erfor~e1. , 

condition to detect failure to converge will also be 

required. Published routines jiffer in the freedo~ they 

offer to the user in setting limits. 
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St099ing Criteri~ 

If the sequence of successive estim~t~s to ~ root ~ 

is 1enote1 {x.} (i'=1,2, .•• ) we h~v~ the theoretic~l limit 

1 im I x ~ - a I = 0 
i->oo 

In pr~cticej ~ttainable accuracy is limited by the 

capacity of the machine. ~n absolute error criterion of 

the form 

wher~ E is a fixed small qu~ntity, is clearly un~ccept~ble 

if the routine is to cope with roots of wi:lely :liffering 

magnitudes. It is usual to use the relative condition 

'le r - X (-I I < ~ I xr \. 

with the proviso that the root sought is not ~ctu~lly 

zero. In the c~se of ~ simple root ~t ~ero, for exa~ple, 

we may h~v~ that 

lim 

\ 

x,.. - x r _
1 

,-
r-> 00 x,r 

Wilkinson [47] ) , so that ~n origin shift wou11 be 

required before considering rel~tive error. 'iany 

procedures offer the ~lternative criterion 

< 

for users whose main priority is ~ sm~ll function v~lue 

r~ther th~n very accurate root location. r.qher e the 

tolerance levels e an1 1 are chosen by the user, it is 

possible to suppress either of the criteri~ by setting the 

appropriate tolerance to zero. This is a useful fe~ture 

when, for ex~mpl~, the user suspects th~t the function 
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value changes only slowly in the ~~gion of tne ~oot 

(Fig -2.1) so th3t there is 3. 1:mge~ tt'l3.t the function 

value c~ite~ion will indicate 3. root wl1il~ I x .. - a \ is 

unaccept3bly large. Such 3. situ3.tion will 3.rise, fo~ 

example, when 3. polynomial of high degree is eV3.lu3.ted 

with small x. 

-~o.. t.1~ .. I· -----.....---::: __ --r-I -

The inexperienced user ffi3Y find difficulty in fixing 

3.ppropriate toler3.nce levels, ?articul3~ly wl1en very 

3ccurate results 3.re required. It is desirable th3.t the 

program 1esigners give guid3.nce wl1en possibls although 

such advice will necessarily be influenced to a 13rge 

extent by the particular machine used for testing., ~ good 

eX3mple is provided by 8arrodale 3nd Wilson in the 

documentation of a Fortran program using ~uller's metl10d 
-~'¥lJo -0.+1 

[61. He~e they ~ecommend setting E = 10 and 1= 10 

for a si~ple ~oot, where d rep~esents t~e number of 

decimal digits of 3.ccuracy aV3.ilable. 
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~h~ ide2 of 2n 2utom~tic sto~ping criterion has been 

included in texts for some time (e.g. Dah11uist and 

Bjorck [13], Wilkinson [47]) but h~s not yet come into 

general use in published routines. (.o1i th stand ~rd 

conditions for termin2tion, if the user requests 2 high 

degree of ~ccur2cy the procedure ~ay reach ~ stage at 

- which rounding errors in the function evaluation outweigh 

the g2in in accuracy which would theoretically be obt2ined 

by gerfor~ing further iterations. Thus although 

I 'I: r - x/"_ \ I > ~ I le r I 
we h2ve that 

and convergence h2s effectively ~e2sed. The range of 

values of le for which this phenomenon is observed is 

clearly dependent upon ~achine capacity and is referred to 

by Wilkinson as the "domain' of in1eter~inacy",. Lt is 

likely that subse1uent iterates will show no obvious 

pattern of behaviour with the eventual result that tailure 

will be in1icated when the maxi~um nu~ber of iterations is 

reached. Instead we shoul1 prefer the program to indicate 

that convergence has taken pl2ce and to output the ~ost 

. , 

accurate esti~ate obt2ined by the m~chine. This will ~lso 

prevent ti~e being wasted on further iterations which 

produce no improvement in the solution. Por ~ost 

algorithms it will not be s~tisfactory to apply the test 

at the start of the iterative procedure, ~s it is common 

for the process to require' sever~l iterations in which to 
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"settle 1own". Fig 2.2 shows ?ossible behaviour' p::ltterns 

for two well-known ~~th01s • 

.:x. .. 

Nt.\UtoY\ 

_ t\~\"'Q~ __ 

In both C::lses one poorer estim3te is obt3ine1 before 

conv~rgence is ::lpparent. ijence to i~91e~ent 3n autom3tic 

st09ping criterion of the for~ 

I x,. - xr _1 

we 31so require a condition to ensure th3t convergence h3S 

~om~~nce1. This C3n be of the fo~~ 

1xr - xr - t I < ~ 
or the re13tive condition 

I xr - x r_1 I < ~ I x( I 
wher'e b is 3 tolerance level consi1erably 13rger th3n 

3tt3inable 3ccur3cy (S3Y 0.01 for re13tive error). ~ 

proce1ure currently being developed 3t the ~3tional 

Physic31 Labor3tory [201 uses the latter condition which 

3g3in h3s the a1v3ntage of versatility 3nd shou11 suffice 

to ensure that sufficient iter3tions h::lve been ~3rried out 

to establish a ste3dy convergence pattern. Such devices, 
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if successful, will ~n~b19 t~~ US9r to get the ~~xi~um 

90ssibl~ ~ccur3cy from th9 im?le~ent~tion of th9 ~lgorithm 

for his particul~r com?ut~r inst~113ti0n,without the n~~1 

for guesswork in det9rmining the to19r3nc~.19vels. 

F~ilure Criteria 

Most of th~ 9rocedures to be discussed herein either 

set, or require th~ user to su??ly, 3 maximum number of 

iter3tions (or function ~v~luations) which should not be 

exceeded. This c~n refer to each individu~l root or to 

the total for all th~ required roots. This is essential 

in or1er to terminate execution or to switch to an 

~lternative ~lgorithm shoul1 the ~ethod fail to converge 

or should. th9 r~te of convergence be unacce9t3bly slow. 

~riters of software are often ~bl~ to suggest 9rob3ble 

numbers of iterations for "well-b~h3ved" functions. Such 

information will be b3S9d p3rtly on experience with a 

variety of test cases an~ partly on their knowledge of the 

theoretical r3te of convergence of th~ chosen ~lgorithm. 

For ~ convergent iter~tive process there exists 3 positive 

re~l number 9,' known as the or1er of converge'1ce, such 

that 
lim 

= c 
k->oo 

where et., e1+ 1 ~re the absolute e'rrors in the successiv9 

iter3tes xt ' Xt1'1 and c is 3 non-zero const3.nt. 
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The si~pl:st :xampl: of th~ use of this concept is 

provi1e1 by the bisection ~eth01 f~r which 0 = 1 an1 

c = 0.5 as th: interv~l of uncertainty is h~lv~1 in length 

aft~r each application. The number of iter3tions require1 

will thus be equal to the nu~ber of bin~ry 1igits require1 

in the answer; that is, ~bout 3.3 iterations per 1eci~al 

1igit (Kronsjo [251). 

Generally sp~aking, the causes of failure beco~e ~or: 

numerous the ~or: complicate1 the ~lgorithm, so a ch~nge 

to ~ si~ple method -such as bisection of the interval may 
, -

give s~tisfactory results wh~n other metho1s fail. For 3 

si~pl: isol~t:1 real root of a continuous function, the 

Bolzano-W:ierstr~ss theor~m ensur:s conv~rgence f~r this 

~lgorithm. 

If a particular ~etho1 produces 1iv~rgence, the 

values gener~te1 ~ay cause ov~rflow before the ~~xi~u~ 

number of iterations is reache1. This situation can be 

~llowed for by setting a bound on ~bsolut~ v~lues ofx. 

If this bound is exceeded th~ progr~m can then be 

terminated with ~ more helpful m~ss~ge which may enabl~ 

the user to locate the region of 1ifficulty. 

~lternatively the v~lue of x c~n be set to its upper bound 

and another attem?t made to obtain conv~rgence. 
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F~ilur~ to conv~rg~ will not n~c~ssarily r~sult in 

larg~ ~sti~at~s, howev~r. 

oscillatory behaviour or 

Some algorithms can 1is?lay 

~ay follow no obvious fixed 

pattern. Provision for the detection of oscillations 

would probably result in an unnec~ssarily co~plicat91 

program for such occurr~nces 

'Fig 2.3 illustrates a possible 

Newton's method. 

2.3 EFFICIENCY 

will be relatively rare. 

oscillatory ?att~rn for 

.:xo '" x 
.1. .. 

There are two aspects to o?erational ~fficiency 

time taken and storage capacity r~quir~d. The latter will 

be less i~portant in most exampl~s of th~ typ~ considered 

here, as large storage requireme~ts commonly arise from' 

either large amounts of data or the need to s~t uo arrays 

of large dim~nsions. Routines for the solution of a 

single equation ar~ only likely to requir~ array space 

suffici~nt to accommodate the ~stablished roots and 

corresponding function values. T~~ workspace requirements 

for the execution of iterative procedures are very mo~est. 
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It follows that storag~ will not be a ~ajor consideration 

except, perhaps, for microcompute~s. 

The 1uestion of execution 

upon ~achine characteristics 

ti~e will 

and the 

depend partly 

standards of 

programming style adopted, but the amount of arithmetic 

required is by far the ~ost im?ortant consideration. 

Kronsj 0 [25 ] refers to the la tteras "computa t ion"l I 

complexity" which may be interr.?r~ted as the number of 

operations re1uired to solve a problem of giv~n size n, 

but warns that the fastest methods are not necessarily 

stable. Equation-solving algorithms are mostly sim?le in 

structure so that for all but the sim?lest functions (e.g. 

polynomials of low degree) the ti~e taken is almost wholly 

dependent upon the speed of function evaluations. In the 

case of a polynomial the problem size may be soecified by 

the degree of the polynomial -but other for~s of function 

must be evaluated by truncation of infinite series and the 

number of computations involved will be machine dependent. 

The onus must b~ on th~ user to ensure that function 

evaluations are carried out as efficiently as possible; a 

number of ~et~ods have been dev~lo?ed for polynomials 

(e.g. Kronsjo [25]). If the algorithm r~1uires values of 

the derivatives, such evaluations ~ust of course be 

included in the operation count and are likely to reduce 

considerably the efficiency of such algorithms" despite 

their sup~rior speed of convergence. 
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~ss~ssm~nt of the effici~ncy of ~n ~lgorithm is based 

on the two f3ctors: 

1. The order of conv~r1ence, ~, which determines the 

numb~r of iter~tions r~quired to achieve ~ given 

accur~cy with ~ cert3in initi~l approximation. 

2~ The number of calcu13tions required to perfor~ one 
I 

iteration. ~hen derivatives ~re not involved this can 

often be measured by the number of function 

~valu3tions. 

The ide3l algorithm would perform well, in both these 

respects, but the relative importance of 1 3nd 2 may in 

practice depend upon the compar~tive costs of' ev~lu~tion 

of the function 3nd its derivatives and th~ cumUlative 

effects of rounding errors. 

Measur~s' of Bfficiency 

Two si~pl~ indices have be~n proposed, based on the 

order 0 and the number n of function evaluations oer 

iteration viz: 

the Tr~ub index pin 3nd the ~strowski in1~x 
Iln 

p • 

For a more pr~cise measure it is necess~ry to introduce as 

parameters th~ numbers of 3rithmetic operations required 

to evaluat~ the function(s) ~nd the iterative formula. 

~ Tr3ub suggests the formul~ E = P , wh~re ~ represents t~e 

tot~l cost of comput3tion for function evalu~tion. If th~ 

function and its d~riv~tives e~ch involve the sam~ number 
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of com?ut~tions to ~v~lu~t~, the for~ul~ r~1uc~s to the 

Ostrowski in1~x 1uot~d ~bov~. 

I~proving Effici~ncy 

~tt~~pts to spe~1 up conv~rg~nce by using :in 

~lgorith~ of higher or1er ten1 to yi~11 1i~inishing 

r~turns as the gr~at~r com?l~xity of the formul~tion not 

only incr~ases the ~mount of co~put:ition but th~ program 

may ~lso be more prone to f~ilur~ ~nd b~ mor~ difficult to 

When sever~l roots of ~ singl~ ~1u~tion ar~ r~1uired, 

~fficiency C:in be improved by ~dopting ~ syst~m3tic search 

procedur~. If ~pproxi~:it~ loc~tions of the roots ~re 

known the ord~r of their c~lcul~tion ~'3.y he !?r~1~termin~1. 

In the absence of such infor~ation it is desir':lble to 

~nsure th~t the same root is not foun1 rep~~tedly. This 

~~y be ~ccomplishe1 in the case of polynomials by ~ 

process of defl~tion, that is, supposing the root x = a 

has been found, the polyno1lli:ll is divided by (x - a). 8y 

this me~ns we not only remov~ known roots but we h~ve now 

~ lower degree polyno~ial to solv~ with correspondingly 

l~ss computation. ~ith ~ general function such ~ quotient 

cannot be found explicitly~ inste:ld ~n attempt c~n b~ 

~~de to suppress :l previous root by procee1ing with the 

function 
f(x) 

(x - ~) 

and perturbing the root slightly befor~ procee1ing to 

~void a division by zero. This will not prevent multiple 
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roots from being found in ~ccor1~nce w-ith their 

multiplicity. Wilkinson [461 h~s 1emonstr~ted th~t it is· 

desir~ble when solving ~ polynomi~l equation with 

deflation to find the roots in increasing order of 

m~SJnitude in order to avoid serious deterior~tion in the 

condition of the function. Less is I{nown of the 

significance of order of root determination for other 

functions. 

~fter suppressing the previ~us root it is often 

convenient to use this value as a "stepping-off" point in 

the search for the next root. This is not always 

sufficient, however, to ensure that the roots are found in 

numeric~l order. ~n ex~mple is the fre1uently used ~uller 

method, whose behaviour in this respect is not as yet 

predictable. ~bservation of results for this method w~uld 

seem to indicate sequential "runs" of roots broken by 

occasional "jumps". Predict~bly, roots obtained ~fter 

such "jumps" re1uire iather more iterations th~n roots 

which are near neighbou~s [Chapter 41. 

In addition to providing initial estimates, careful 

observation of the ,nature of the equ~tions can lead to 

improvements in efficiency. \nticipation of rel~tionshi?s 

between the roots, such ~s complex conjugates or the 

existence of geometrical or ~lgebr~ic symmetry can soeed 

up root-finding ~nd ~lso ~id in the ch~cking of results. 
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2.4 ~CCUR~CY 

Errors in nu~erical ?rocesses ~ay be cl~ssifi~d ~s 

trunc~tion errors or rounding errors. The for~er ~rise 

when an infinite process is replaced by ~ finite number of 

calculations, for ex~m?le the use of the first few ter~s 

of an infinite T~ylor series. In the context of 

e~u~tion-solving we encounter such ~??roxi~ations both in 

the esti~~tion of irrational function v~lues ~nd in th~ 

iterative formul~ itself since this usu~lly involves the 

replacement of our given function by so~e polynomial or 

r~tional function of low degree. Theoretic~l predictions 

can often be m~1e of truncation errors; such estimates 

enable us to calculate an order of converJence ~nd hence 

predict the likely number of iterations re~uired for a 

certain degree of accuracy, given the ~ulti?licity of the 

root. 

Rounding errors arise from several sources, 

?rincipally: 

1. Inaccuracies in experi~ental 1ata 

-
2. Conversions to ~nd from binary representation 

3. Li~ited machine ca?acity 

Such errors ~re ~ore difficult to predict th~n truncation 

errors ~nd conse~uently are not e~sy to ~llow for in 

progr~m design. ~ost of the current knowledge in this 

are~ is derived from practic~l observ~tio~ ~nd experience 
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is the best guide when fixing re~listic toler~nce l~vels. 

Optimistic~lly sm~ll 1i~its ~~y t~k: us inside the region 

of indetermin~cy where we risk not only wasting ti~e on 

superfluous iter~tions which give no improvement in 

~ccur~cy but ~lso ?ossi~le inst~bility. Wi1kinson [47] 

has noted th~t the danger of inst~bility is p~rticul~rly 

~pp~rent in the c~se. of ~uller's meth01 when further 

iter~tions m3Y result in ~ move outsi1e the region of 

indetermin~cy ~nd even subsequent convergence to 

different root from that sought. In settling for 

compar~tive1y large toler~nces for safety we 10 not 

~chieve the ~ccur~cy of which our machine is c~p~ble. 

Fixing toler~nce levels before commencing calculation 

is further complic'lte-:l by the oft:n unpre-:lictable 

occurrence of ill-conditioned roots. qere a s~all change 

in one or mor: coefficients results in a large change in 

the computed solution so the effect of roun-:ling errors 

becomes -:lrastic ~n1 the r:gion 

correspondingly large. The eX3~ple 

20 

f(x) = TT (x-r) 

r=l 

quote-:l by Wilkinson [46] , has 

of in-:leter~inacy 

become classic 

illustration of this phenomenon, as the compute-:l values of 

the l~rger roots ~re complex with imaginary parts of 

consi1er3ble ~~gnitude. In cases such as this the problem 

is inherent in the function itself and little improvement 

can be effected by switching to an ~lternative algorithm; 
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it becomes particularly i~portant to aim for maximu~ 

attainabl~ accuracy in such circumstanc~s a~1, wh~re 

possibl~, to t~st the results for accuracy. ~ultiple 

roots are particularly pron~ to ill-co~1itioning. 

Dahl~uist [13] d~rives formula~ for meth01-in1ependent 

~rror ~stimates but since th~se are depen1ent ·uoon 

derivative values they are lik~ly to present difficulties 

in practice. It is to be hoped that an "automatic 

stopping" criterion will take us some way towar1s 

overcoming these problems. 

It has been not~d earlier that att~mpts to increase 

. the rate of convergence of an algorithm will generally 

result in a mor~ complicate1 formulation. It follows that 

the gain in taking high~r ord~r processes becomes 

progressively less as the reduction in truncation error is 

count~rbalance1 by incr~ase1 roundi~g ~rrors. The major 

build-up of rounding errors will, however, be in the 

calculation of function. values unless the function is 

particularly si~ple, an1 at l~ast the same accuracy will 

be required in this computation as in the use of the 

iterative formula. ~ttai~abl~ accuracy in the root will 

usually be less than machine precision. In the particular 

case of the eigenvalue problem Wilkinson [47] has found 

that the required accuracy rarely exceeds ten significant 

figures but this will be insufficie~t for working 

accuracy. Thus a double precision facility will be 

_required for such problems on many installations. 
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To su~~arise, we c~n predict ~ probable number of 

iter~tions from t~e asy~ptotic behaviour 

lim 
= c 

k->~ 

but such a p~ttern is likely to be ~asked by roun1ing 

errors before it becomes app~rent. 

Testing Programs an1 Results 

Test data should consist of ~ wide variety' of 

functions to illustrate ~ultiple and 

closely-spaced roots. If the magnitude of the function 

values is likely to be rapidly changing in practical 

ap9lic~tions such examples shoUld, of course, be included. 

The inclusion of com9licate1 functions may enable Ug to 

examine the effect of error accumulation in t~e function 

evaluations. For similar reasons we should not c~nfine 

testing to exact data involving few ~igits. When a root a 

of odd multiplicity is obtained, the function values 

f(a - h) and f(a + h) on either side of the root should be 

exa~ined for a sign change. Care must be taken in the 

selection of h so as to be outside the region of 

indeterminacy whilst not being influenced by other roots 

in the vicinity. 

- 27 -



The effect of the or1er of c~lcul~tion of the roots 

on their ~ccur~cy h~s been ~entione1 i~ connection with 

efficiency. For ~ polyno~i~l ~quation Wilkinson [461 

st~tes that:' 

"There is ~ 1~nger that the zeros of quotient 
po1yno~i~ls ~~y gr~dually diverge fro~ those of 
the origin~l polynomial" 

He does not, however, reg~rd this 9roble~ as sufficiently 

serious to prohibit use of the deflation technique. 

Pre-deter~in~tion of the order of ~a1cul~tion of the roots 

c~n prove difficult for ~ general equation w~en we ~~y not 

even know the number of roots in the interv~l under 

consi1er~tion. When suppression of previous roots has been 

employed and the ~ccur~cy of the results is in 10ubt, 

further iter~tions c~n be perfor~ed usi~g the origin~l 

9qu~tion in order to "purify" the solutions. T~e 

sensitivity of ~ root to rounding errors m~y be estim~te1 

by means of experi~ental perturbations of the input dat~ 

[13] but further work may be necessary to sep~rate the 

effects of the algorithm fro~ the condition of the problem 

itself. 

2.5 R8BU5TNESS ~ND SECURITY 

These are factors of import~nce to ~ny purchaser of 

software and p~rticul~rly so in the case of "basic" 

routines, th~t is, those which will be used frequently for 

a variety of applic~tions. gqu~tion-solvi,g is j~st such 

~ situation and failure to produce roots of reason~ble 
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accuracy for "w~ll-behavei" functions wouli render a 

program unacceptable. The robustness of a procedure is 

its ability to solve satisfactorily a wiie range of 

problems; this will include, in equation-solving, such 

phenomena as, ~ulti?le ani closely-s?acei roots, 901yno~ial 

and transcendental equations, very large, small or ra9idly 

changing function values ani, perhaps, discontinuities. 

It should, howsver, be re~e~bered that striving for 

versatility ~ay reduce the efficiency of the algorithm for 

certain tYge S 0f proble~. ~cton [1 ] stresses the 

importance of "suiting the t00l to the task" and 

exploiting any special features 0f a set of equations to 

be solved. It is thus highly iesirable that the 

programmer shouli be aware of the type of equation which 

the user is likely to encounter and to include, if 

possible, in his testing some functions which have arisen 

from si~ilar applications or which possess comparable 

features. 

The possibility of accepting a value which is not 
\ 

actually an approximation to a ~oot has potentially :nore 

serious consequences. Such an eventuality will be 

referred to as insecurity. In the results obtained 

[ChaPter 4] it will be seen that routines frequently 

accept a disc0ntinuity as a valid root. It is advisable 

for the user always to request a print-out of function 

values ani estimates of derivatives, if available, to 

guard against such occurrences. ~any published 9rograms 
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also provide a count of th9 number of iterations perfor~9d 

for each root~ such information can be halpful as a st99? 

rise in t~e number of iterations may indicate a mOV9 away 

from th9 r9gion of interest or. an unre1iab19 estimate of a 

root. Problems can also arise- wit~ ind9terminate 

quantities of th9 form % such as 

sin x 
x ( wn9re x is small) 

~lthough th90r9tically stab19, ~ot all machines will give 

reliable results near the limit~ for examp19 the 

Commodore hand calculator SR4l48R gav9 the value of the 
-,~ 

ratio as approxi~ately 13 wh9n x = la If possible 

formulae should b9 rearranged to avoid this situation~ 

alternatively, power approximation to a 

transcen19ntal function may oe of use in the 1etection of 

limits (and might, incidentally, be quicker to evaluate 

than'toe library function). Oth9r safeguar1s against the 

acceptance of incorrect answers include function 

evaluation at neighbouri~g points, co~si1eration of the 

practical prob19m from which th9 equation arose an1 

repeati~g th9 calculation with different i~itial estimates 

and/or an alternativ9 algorithm. 
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2.6 ~~INTEN~NC8 ~ND ~~NVENIE~CE F~R USER 

Suitable presentation of softw~re is ~nother fe~ture 

gener~lly applicable to procedures which it is ~~ticip~ted 

will have frequent ~nd widespread use. It is not 

appropriate here to 

programming which make 

discuss in det~il those aspects of 

a routine easy to correct and 

update but the needs of the user should be considered when 

choosing an ~lgorithm and deciding upon the m~n~er of its 

implementation. Generally, the more complex the method, 

the less readable the program ~nd the more provisions will 

need to be made for possible types of failure. Similarly, 

the more sophisticated we wish to make the program in 

order to improve efficiency, the more information will be 

required from the user and the number of input p~r~meters 

may become unwieldy. If the "reverse communication" 

~ystem is adopted in order to "allow flexibility to the 

experienced user it may oe necessary to provide subsidiary 

programs to enable the routine to be used by the non

specialist in a straiJhtforward way for the solution of 

"simple" problems. Clear documentation, sample c~lling 

programs and guidance o~ the choice of converJence 

criteria can be of great assistance to users. 

Possible sources of failure cannot all be predicted, 

out the designer of the program should endeavour to forsee 

as many difficulties as possiole and arrange for 

explanatory messages to be output. Failure to do this can 

result in the program terminating prematurely for reasons 
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which are not at all obvious to the user, run-ti~e errors 

being notorious~1ifficult to trace on ~any systems. Such 

failure often ~anifests itself as overflow or un1erflow 

~essages which can arise fro~ numerous points in the 

procedure. ~t the -v~ry least, ?rovision snoul1 be ~ade 

for ch~cking the validity of th~ input (which ~ay arise 

from another subroutine and not be seen by the user) and 

for limiting the number of iterations to a fixed or 

user-supplied maximum. 

Ti~e and care at the testing and documentation stages 

can contribute greatly to the reliability an1 length of 

life of the progra~. 
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CHz\PTER 3 

ITER~TIVE ~ETHQOS 

.3.1 CLz\SSIFICz\TI0N 

~lthough ~ethods of obt3ini~g nu~eric~l solutio~s to 

equations have been of interest to both ?ure an1 3pplie1 

m3the~3ticians from 3ncient ti~es, the 1evelo?~ent of 3 

c13ssification system for algorithms h~s co~e ~bout 

concurrently with the incre~se1 us':! of co~puting 

~achinery. recent co~prehensive 
( 

theory of such 

31gorithms wa~ put forw3r1 in 1964 by J. F. Tr3~b [43]. 

Iter3tive for~u13e 3re c13ssified ~ccording as 

1. they are single-point or ~u1ti-poi~t 

2. they require or do not requir! the use of a ~':!~ory 

facility. 

Single point methods introduce only one ~ew value of tha 

independent variable at e3ch iteration, ~ll require1 

function and derivative values being calculated at this 

point or being re-used fro~ previous iterations. 
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~ulti-point ~ethods require two or more previously unuse1 

values of the in1epen1ent v~ri3ble at each st~ge. 

~ ~e~ory facility will be neede1 w~en the iterative 

formula involves previously cal~u13ted values of the 

function or its derivatives. 

within each of the four resulting categories, Traub 

examines the orjer and efficiency of various algorithms. 

Some general observations can be made concerning 

algorithms of particular types which may influence the 

choice of method for a given equation. 

3.2 ONE-POI~T ~ETHJOS 

The proce1ure without me~ory will be of the for~ 
I 11 

X r .... ' = ~ ( x (' , f r , f r , f r , ••• ) 

for some function~. Traub ?roves that the informational 

efficiency as measured by the index pin, where p is the 

order of ~onvergence and n is the total number of fun~tion 

and derivative evaluations at the new ?oint,cannot e~ceed 

unity for methods of this type.' qence an optillal 

one-point ~ethod without memory has efficiency equal to 

unity, and such a metho1 can be constructed for roots of 

any multiplicity and any chosen order p. It is ~lso shown 

that such a method must depend explicitly on the first 

(p - 1) derivatives of f. 
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If the. us~ of fll~fllory is perllitte1, the gener~l one 

point method f1l~y be re9resented: 

X("+I = <P. ( x ( 
I /1 I 11 

,fr ,fr ,fr , ••. ,Xr_1 ,f r - I ,f r - l ,f(_1 , ••• ) 

Traub conjectured that the order of a one-90int ~~th01, 

with or without memory, cannot exceed (n + 1), n being 

defined as above. This result. has since been proved, for 

exafll91e by Brent, Winograd ~nd Wo1fe in 1973 [9]. 

The order of the method approaches (n + 1) as we 

increase the extent of re-use of previously calcul~ted 

values ~nd the limit is approached sufficiently rapidly 

for the introduction of large afllounts of previous d~ta to 

be of little practical use. Sence methods of this tYge 

will usu~lly make use of either one or two previous data 

points only. It further follows that th~ Traub effici~ncy 

index will be less than (1 + l/n) so that it will ~lso b~ 

desirable to limit the number of evaluations to be,c~rrie1 

out ~t each iteration. 

Deriv~tive ~ethods 

It c~n be concluded from the abov~ th~t, even with 

the use of unlimited memory c~p~city, ~ one point fllet~01 

will require the evaluation of ~t le~st on~ derivative' of 

the function if the convergence rate is to be of order two 

or f1lor~. For fll~ny functions this will prove to be ~ 

serious dr~wb~ck to the 9rocedure. ~ronsjo [25] ~xpresses 

the difficulties thus: 
I 
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"In the case ~f numerical differentiation the 
problem is inherently unstable and so no good 
computational methods can be expected to exist 
at all" 

The proble~ is likely to be exacerbated in the case of 

eigenvalue problems by the formulation of the function as 

a determinant. This adds a formidable amount of 

computation t~ the probable numerical inaccuracy. 

~ronsjo's remarks may be considered an ov.erstatement, 

however, as there are a number of particular equations for 

which it is feasible to evaluate 1erivatives, for exa~ple: 

1. Oifferential equations where the given equation may be 

used to generate values of the derivatives from the 

function values. 

2. Functions for which analytical differentiation is 

straightforward; polynomials are t~e most obvious 

such case. The methods of ~ewton and Laguerre have 

been used with considerable success in this context 

[46]. When closely-related functions (e.g. sine, 

cosine, exponential) appear in the function and its 

derivatives, the computation of the latter can be 

quite economical. 
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3. Functions defined i~ the for~ of i~tegr~ls. 

Wilkinson has oointed out [46] that in the region of 

si'llple root the r~l~tive error in the computed 
, 

'deriv~tive will be s'llaller th~n in the function v~lue. 

ijence ~ deriv~tive method (such ~s ~ewton's) will h~ve the 

~dv~ntage over i~terpol~tion methods (such ~s ~uller's) of 

st~bility within the zone of indetermin~cy. It ~ay then 

be ~dvis~ble to choos~ ~ deriv~tive method in cases where 

this is feasibl~ and ~ high degree of ~ccuracy is desired. 

~ttentio~ is ,being given to the development of 

'1lethods which repl~ce the derivative by some suitable 

approxim~tion. This will involve inter?ol~tion and hence, 

for a single point met~od, requires use of memory. This 

appro~ch'may yield formul~e which ~re ~lready in common 

use; for exa'llple, Newton's method with the gr~dient 

~pproxi'1l~ted by the str~ight line through the points 

~nd (~i.,f~) '1lust clearly yield the sec~nt 

method. Some new formul~e have, however, bee~ produced 

from such considerations. In addition, D~hlquist and 

13jorck [13] remind us th~t methods which 

mathem~tic~lly equiv~lent are not necessarily ~umeric~lly 

equivalent in th~t the behaviours of rounding errors may 

be quite different. T~e introduction of the memory 

requirement ~lso increas~s the risk of i~stability ~s with 

cert~in predictor-corrector methods for solving ordin~ry 

differenti~l equ~tions. 

3.7 



Direct Interool~tion Metho1s 

~~ny of the non-deriv~tive metho1s currently in use 

consist of fitting ~ si~pler function of s?ecified form 

g(x) through the point (x~,f[1 ~nd one or ~ore previously 

c~lcul~ted dat~ points. Solution of t~e equation g(x) = 0 

then provides, in ~ost c~ses, ~n improved estimate of the 

required root. With these objectives we c~n define ~ 

large cl~ss of single ?oint methods with memory. The 

following descriptions cover inter?ol~tion methods which 

~re widely used: 

The Secant Method 

Let x._ 1 and x; be two successive distinct estimates of 

the root. Th est r ~ i g h t 1 in e t h r 0 u 9 h ( x i-I ,f i-I ) and 

(Xi ,f,:> has equation 

9 (x) = 

~nd solution of the equation g(x) = 0 yields the next 

estimate 

= x· -, f· L 

X I.'.' may be inside or outsi-1e 'the interv::ll (x· I ,x·) ,. ,- , 

these will be referred to as inter?ol~tion and 

extr~pol~tion steps respectively. qouseholder [22] shows 

th~t the ~symptotic beh~viour of the ~lgorit~rn is 

1ependent upon the signs of f ~nd f" in the following 

m3.nner: 

If f ;_1 ' ~nd f. • both h::lve the 53.me sign as f 
/I , the 
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subsequent iter'3.tions will '3.11 be extr3?o13tions 

(Fig 3.1), otherwise the ?'3.ttern consists of cycles of one 

extr'3.po13tion followe1 by two interyol'3.tions (Fig 3.2). 

~\'a 3.1 

11 

\ 
S~ >0 . 

~ I l. ... ,,::: 
, .J 

J. > 0 
• 

11 
S~ < 0 J ~ '= ~ I, ~ ...... 

.x ... 

- 39 -



Qstrowski [351 prov~s, using interpo13tion t~eory 3n1 

th~ ~ean v31ue theore~, th~t the orier of conv~rgence of 

"the sec~nt method is (1 + /5) 12 = 1.619. Since the ~etho~ 

requires only one new function ev~luation 3t e3ch 

iteration subs~quent to the first, the Traub ~n1 Ostrowski 

efficiency in1ices 3re each 3P9roxi~ately 1.618 which is 

superior to the Newton method. ~ non-rigorous ierivation 

of the or1er of conv~rgence, b~se1 on the methois of ~cton 

[1] and Kronsjo [251, is given in ~pp~ndix ~. 

The Regu13 F~lsi ~ethod 

This metho~ h3s a si~il~r formul~tion to th~ secant method 

but consists entirely of interpol~tion steps. ~t e~ch 

stage w~ use the point (x.,f·) , . ani the ~ost recent 

previous iter~te which pro1uce1 a function value of 

opposite sign to f i • Ulti~~tely we are required to ret3in 

one end point throughout 3nd this reduces the orier of 

convergence to linear. The a1vant~ge over the bisection 

methoi is not then subst~nti~l so the regul~ falsi ~ethoi 

is rarely used without ~odification~ 

~uller's ~ethod 

This 1irect interpolation ~ethod consists of fitting the 

unique p3r3bo13 g(x) through the points 

In his origin3l for~u13tion of the met~oi, ~uller employed 

L~gr~ngi3n interpo13tion to give 
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g(x) = fi. (x - x:_ 1 ) (x - Xi.-l.) + f'_1 (x - x~) (x - X~-2.) 

(X t - X,_I) (x.- x :-2.) 

+ f:_:1.. (x - x.) (x - X~_I 

but Tr~ub [43] sugg~sted th~t use of the Newtonian 

inter~olation formul~ 

wh ere f [ x, ,X i. _ I 

second divided differ~nces res?ectively, will simplify th~ 

solution of the qu~dr~tic ~nd will ~lso reduce the amount 

of ~omputation- nec~ss~ry to evaluat~ t~~ next esti~at~. 

Thus we obtain 

X. = x. -
~+l • 

( i) 

Iteration hence proceeds using the thr~e most recent 

values of x at each stage. Computer rout~nes which use 

the Muller method generally ado~t the Traub for~ula (i). 

This formulation also ensures that th~ sel~ct~d root of 

the quadratic is always the one closer to xi. 

It can be shown that the orier of ~onverJence of the 

~uller method is approxi~ately 1.84. Three starting 

values ~r~ ne~ied but each successive it~ration requires 

one function evaluation only so that the ~ffici~ncy index 

is ~gain equal to t~e orier of conver~ence. 
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~ frequently cited property of the ~uller ~ethod is 

its ~bility to produce com?lex iter~tes from purely re~l 

starting values. This c~n b~ usaful in ~ ?reli~inary 

search for complex roots but, conversely, m~y involve the 

use of ~omplex arithmetic when only real roots are sought. 

Small imaginary parts ~ay be suppressed in these 

circumst3nces by setting the square root term in (i) . to 

in zero (for example 

[6]). It should be noted, 

is not 

a progr3m by ~arrodale and Wilson 

however, that computation of 

confined to ~uller's method. complex roots 

Provided we allow a complex starting value, methods such 

as secant or Newton can also converge to a complex root. 

ijigher Order Polynomial Interpol~tion 

Theoretically it would be possible to fit polynomi3ls of 

higher degree, but the potential difficulties of solving 

the resulting equation 3nd selecting the appropriate root 

are prohibitive. In addition, the order of convergence of 

such met~ods could not exceed two, ~n1 t~e consequent 

reduction in the number of function evaluations would be 

slight [4{)]. Since the occurrence of instability is 

frequently associated with the use of the memory f~cility, 

this would constitute a further disadvantage of 

higher-order ~ethods of this type. 
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· Interpol3tion by R3tio~3l Functions 

The idea of approxim3tion usi~g ratio~3l fu~ctions is 

detail by J3rratt and Nudds [24]. 

Three point ration3l interpo13tion uses a function of 

the forlll 
g(x} = x - :a. 

Sx + C 

so that the equation .g(x} = 0 h3S the uni1ue solution 

x. = 1\ 
l+l 

= x· -
L 

The point x~_~ is then rejected 3n1 the next iter3tion 

It is convenient for practical implementation to us~ 

Thiele's interpol3tion formul3 which gives 

hi - h~_1 

3re the s_e~<;:-sLn~d3nd 

respectively [31]. 

f [;':-5 t ---:. 
- - --'.' - reciprocal 1ifferences 

For simple roots the rate of convergence of t~ree. 

point r3tion3l interpol3tion is the same as th3t of the 

~uller method but the formul3tion is simpler 3nd complex 

arithmetic is not involved in the determinatio~ of real 

roots. The m~th01 also has the a1vant3ge over polynomial 

interpo13tion of more successful ?erformance in the regio~ 
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of ~ simple pole of the function. On the other hand, th~ 

convergence rate for multiple roots is only linear which 

com9ares unfavour~bly with Mull~r. 

The method may be generalized by using a polynomi~l 

of higher degree as the denominator. ~gain, the 

improve~ent in speed of ~onv~rgence is not sufficient to 

warrant the use of such formul~e unless the function is 

exceptionally expensive to evaluate. If ~ higher degree 

polynomi~l is incor?orated in the numerator, the solution 

of the equation g(x) = 0 will no longer be unique and such 

methods are unlikely to be convenient for or~ctic~l - . 

purposes. 

Inv~rse In~erpolation ~ethods 

For a continuous function f(x) having a si~?le root 

or a root of odd ~ultiplicity th~re exists ~n interval 

[a,b] containing the root such that ~n inverse function 
-I 

f can be defined as follows: 

Let y = f (x) where x e. [a, b] 

then f- I (y) = x with yE. [f(a) ,f(b)] 

?-\t the root y = f (x) = 0 so that x = f -/ (0) • 

Hence, if an approximation g(y) to the inverse funct-ion 
-I 

f can be found, ~n estim~te of the root can b~ ootained 

by evaluating the interpolating function at zero. It is 

not then necessary to solve ~ polynomial equation. 

Inverse Linear Interpolation 

The str~ight line through the points (foL_t,x ~_I) and 
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(f. ,Xi) may be 'written: 

g (y) = (y - f· ) ,-I 

f~ - fi.-I ( 

y -

f. 
L-I 

Putting y = 0 gives 

g (0) = X. 
1.+\ 

which is the secant ~eth01 as before. 

Inverse Qua1ratic Interpolation . 

Interpolation using the thr~e 

(f,_1 ,xZ_,) and (f; ,xi) gives: 

so g(0) = X~+I = + 
-------------------------------

points 

which is usually use1 in the form: + 
(f~_I- f;) (f~_1 - f;-1.) 

~,5H .x.~-l.. 

X· = 
L-t' 

X· , f· , + 

The or1er of convergence for simple roots is ·of the 

same or1er as for the correspon1ing 1irect meth01 i.e. 

1.84 approximately. The principal advantage over the 

1irect :neth01 is the simpler formulation an1 the 

unilueness of each esti:nate. It is also convenient to 

avoid complex arithmetic in the 1eterrnination of real 

roots. 
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Wilkinson [47] finds, ~owever, that inverse metho1s 

are not generally satisfactory for the eigenvalue 9roblem, 

9articularly in cases of multi9le ~oots (clearly roots of 

even multiplicity cannot be determined by such means as 

the inverse function is not uniquely ~efined in any region 

containing the root) 

3.3 ~ULTI-POINT ~ET~OOS 

~ethods of this ty~e involve the us~ of two or more 

previously unused data points at each iteration and are 

being investigated with a view to reducing degendence on 

derivative values in addition to increasing efficiency. 

In particular, such met~ods will not be subject to the 

restriction that the order cannot exceed (n + 1) where n 

is the number of function evaluations required for each 

estimate. The multi-point methods which have been 

formulated are dependent upon aPl?roximations to 

derivatives by'function values and/or derivatives of lower 

order and are based on one or ~ore single point met~ods. 

When one method only is used, a recursive formula may be 

set Ul? which is si~~le to program. For exa~ple, ~ewton's 

method may be e~ployed as follows: 

Let \,= Xi and = 

wh ere ~ ~ ( x ~) = ).. ~ _, (x i) - f [ A ~ _, (x j ) ] 

I 
f (x ~ ) 

When l? = 1, this reduces to the standard Newton method. 

Each successive value of p defines a line parallel to the 
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t~ngent ~t the ?oint (x"ii)' Fig 3.3 illustr~t~s the 

c~se p = 2. 

The method is of or1er 3 for ~ si~ple root and requir~s 

two ev~luations of the function and one of its first 

derivative at e~ch iteration. The comput~tion can be 

~rranged ~s ~ series 'of iter~tions with ~ fixed small 

value of p or as one 1009 with 0 increasing until th~ 

required degree of ~ccur~cy is obt~ined. 

The composition of two different iter~tive methods is 

illustrated by the Newton-secant method viz: 

z. = x. - f (x: ) and x i-tJ = z· - f(z;)( z, - Xl) • • • 
f' (Xi) f(zt) - f(x,) . 

~-Ier e z· . is found by Newton's method ~nd is then combined 

with x. , by the sec~nt method ~s shown in Fig 3.4. 
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The order 3n1 number of function ~v31u3tions per iter~tion 

~re tne s~me ~s for th~ previo~s e~~m?le. 

For e3ch of th~ ~bov~ eX3~?les t~e Tr3ub efficie~cy 

in1ex pin = 1 but this C3n be i~prov~1 consid~r3bly. It 

h3S been conjectured by Ku~g ~n1 Tr3ub [271 th3t ~ 

multi-point iter3tive ~ethod wit~out m~mory b3se1 on n 
A-I 

function evalu3tions per iter3tio~ h3S optimal or1er 2 3n1 

such methods indee1 been constructed. The 

introduction of 3 memory f~cility C3n give further 

improvement. ~ simple eX3~ple of this type is the 

composition of secants metho1t~ illustr~te1 in Fig 3.5. 
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E3ch iter3tion uses the two points 

f(z"f(z,)) thus: 

Let ~;: f(z.) - f(x,) 

then define 

3nd 

Z. 
~+I 

= zi-t I - f ( Z i.+I 

b.. 

The order of the ~ethod is (1 + /2) 3nd two function 

evalu3tions 3re required 3t e3ch iter3tion, so the Tr3ub 

efficiency index is 3pproxi~ately 1.21. '1ulti-,?oint 

~ethods 10 not fe3ture pro~inently in pub1ishe1 progr3~s 

to 13te, but their f3vour3ble r3te of convergence woul1 

in1ic3te th3t they 3re worthy of 1evelo,?~ent. So~e 

ex,?eriment31 observ3tion of 3ccumu13te1 roun1ing errors 

wou11 also be helpful 3S the number of com,?ut3tions oer 
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iteration will necessarily be so~ewhat greater than for 

each of the individual algorithms on which the formulation 

is based. 

3.4 ~ULTIPL8 ROOTS 

The likelihood of ill-conditioning in the cag~ of 

~ultiple roots is apparent from the flatness of the curve 

in the vicinity of such a root; it would hence be 

opti~istic to expect the ga~e orier of accuracy ~s ~ight 

be attained for a si~ple root. In such circu~stances we 

must be prepared, therefore, to accept a larger region of 

indeterminacy or resort to double precision arithmetic. 

The order of converge~ce of an iterative ~ethod is algo 

generally reduced when the root is not simple; for 

example, in the case of a iouble root Newton's method has 

linear convergence whilst the order of convergence of the 

Muller method is about 1.23, so that ~ewton's ~ethod is a 

particularly poor choice. The case of a ~ultiple root of 

even multiplicity is further complicated by the fact that 

there is no change in sign of the function on either side 

of the root. 

If a is an m-fold zero of the function f(x) we have 

that f(x) = (x _a)mg(x) where g(a) ~ O. The function 

f(x) 
u (x) = 

f I (x) 

then has a si~?le root at x = a an1 can be used in place 

of f(x) provided that the derivative f/(x) can be found. 
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(11\-1) " '/m 
The functions f (x) 3n1 f (x) will ~lgo h3ve si~ple 

zeros 3t this point. 

For 311 these 3d3pted functiong we h3ve the 9roble~ 

of 1etermin3tion of 1eriv3tives ~n1/or the ~u1tiplicity of 

the root. Furthermore, the function evalu3tions will 

gener3lly involve more cornput3tion th3n for the origin3l 

function. 

In the ~bsence of a priori 1<nowle1ge of the 

~ultiplicity rn, Traub [43] shows th3t 

li~ In\f(x)1 
:n "-

x->~\ In\u(x)1 

u(x) being 1efined 3S above. Thus, if 3 1erivative method 

is being use1 to deter~ine the root, values of the r3tio 

lnlf(x)\ 

Inlu(x)\ 

:nay be output 3fter each iteration until convergence is 

appropriate to~. When it is not 9r3cticable to 1eter:nine 

rn, selection of the best algorithm is 1ifficult; in1eed 

Tr3ub conjectures that: 

"It is i:npossible to construct 
iter3tive for~u13 which 10es 
explicitly on :n 3n1 whose order is
in1e1;>endent." 
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The 3bove remarks 3lso apply to some extent to 

closely ?3cked roots which should be reg3r1ed with simi13r 

c3ution 3nd m3Y constitute 3 more import3nt ?r3ctic31 

problem. 

3.5 SELECTION OF METH00S FOR T8STI~G 

The spe~ific progr3ms to b~ discussed in the next 

h3ve been s~lected on the b3Sis of th~ir 

suit3bility for use with 3 wide r3nge of functions 

(including tr3nscendent3l) 3nd their potenti31ity for 

development to cover C3ses of complex roots. ~s some of 

the examples to b~ consid~red 3rise from ~igenvalue 

problems, 3ttention will be given to the c3p3city of the 

chosen routines to cope with the speci31 f~3tures of such 

functions. For th~se re3sons, 1eriv3tive methods will not 

be considered further~ the ~omput3tion3l difficulties 3nd 

3'l1.0unt of work involved, ?3rticu13rly in' associ3tion with 

determin3nts, effectively restricting their usefulness to 

polynomi3l equ3tions. 

Published progr3ms for the solution of equations 3re 

of two dis~inct types: 

1. Those which gU3r3ntee convergence e'or roots of 

continuous fun~tions. In return for such gU3r3ntee, 

of course, the user '1\ust be 3ble to supply 3 V31i1 

interv3l for e3ch of the required roots { i . e. 3n 

interv3l (3, b) such th3t f (3) 3nd f(b) 3re of opposite 
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2. 

signs and which is known to contai~ no other roots) 

~ethods which require only 

which will se~rch for ~ 

one starting value ~n1 

nu~ber of roots with or 

without further intervention fro~ t~e 

requirement for initi~l estimates is 

stringent, the responsibility for this 

transferred to the ~achine. It is 

user. The 

clearly less 

search being 

evident that 

failure will be a far ~ore frequent occurrence with 

such routines, but since ~any functions arisi~g in 

practice cannot be fully analysed theoreti~ally, the 

inclusion of such progr3~s must be regarded as vital. 

The bisection ~ethod will satisfy the criteria for ty?e 1 

but its convergence rate is too slow for it to be 

practic~ble as the sole method. It is, ~owever, 

~requently used in conjunction wit~ other ~ethods in order 

to ret~in the ~ecessary interval for the root. The ot~er 

algorith~s :0 be considered may ~ll be classified as 

interpolation ~ethods of types described herein. 
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CB~PTE~ 4 

SOME TEST RESULTS F~R RE\L RO~TS 

The selection of ~lgorith~s for testing h~s been 

confined to those which ~re ~vailable as fully documented 

user ~rograms in order that com~ent ~ay ~e ~ade on 

fe~tures of com~unic~tion with the user. Six ?rogr~~s ~re 

considered, three of which ~re "interval met~ods" as 

defined in the previous ch~~ter, the re~ainder being 

"se~rch methods" which· ~~y require only one initi~l 

estimate for all the required roots. ?~rticular ~ttention. 

will be given to the st~te of develo~ment of the latter 

type because of its potential use in the determination of 

complex roots. Oirect co~?~rison of these two ty~es of 

~ethod is difficult ~s the search routines must in m~ny 

cases incorpor~te suppression of ~nown roots; this is 

unnecessary where a sep~r~te interv~l is su?~lied for e~ch 

root. The tolerance criteria offered ~re ~lso m~rkedly 

different. Choice of ~ suit~ble routine for a given 

problem will be governed by the ~vailability of initial 

estimates and the rel~tive importance of reli~bility ~nd 

efficiency. 
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· The r~sults quoted in this ch~pter were obtaine~ 

using the DEC-lO ~~chine ~t ~i1dlesex Polytechnic, except 

where otherwise st~ted. 

4.1 THE SELECTED PR08R\~S 

Interv~l Methods 

\) ~~G Fortr~n Libr~ry Routi~e C05~ZF [33] 

This program i~ple~ents a ~odified v~rsion of the 

procedure "zeroin" due to Bus an1 Dekker [10]. This 

~lgorithm is based on the secant ~et~o1 but seeks to 

ret~in ~ v~lid interv~l for the root at each stage in 

order to guarantee co~vergence. If the asymptotic 

behaviour is of the type illustrated in Fig J.l this 

forces the adoption of a regu13 falsi procedure with 

consequent deterioration in the r~te of convergence. To 

re~edy this shortcoming 3 scheme is devised which retains 

~t 311 stages two points, Q an1 c, having functio~ v3lues 

of opposite siJns. The secant metho1 is applied using the 

best currently available estimates a and ~ (in the sense 

of sm~llest function values) where If(~)1 >If(b)\. This 

estimate is accepted if it lies i~ the current interval 

[b,c] and is closer to b th~n the mid-point of [b,c]. 

Otherwise bisection is applied to the interval [b,e]. ~ 

further modification intro1uces a rational interpolation 

step in the case of two successive ~stimates being very 

close together whilst t1-)e il'1terval [b,c] remains 
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un3cce9tably large. This accelerat9s the ?rocess in some 

C3ses of slow converg9nce and the authors claim ?articular 

success with zeros of odd ~ultiplicity. 

N~G routine C05~ZF employs reverse communication and 

the documentation provides a sample calling ?rogram (a 

dir9ct communication routine is also availabie). ~ll the 

conver3ence criteria ar9 bas9d on interval 19n9th, but 

provision is made for termination if the comput9d function 

value is zero. \nother 9rror indicator allows f~r 

possible detection of a pole of f(x} 

interval. 

in the given 

q) Subroutine ZEROIN - Forsyt~e, ~alcolm and Moler (17] 

This is a FORTR\N version of an ~LGOL ?rocedure by 

Brent (8]. The basic algorithm is similar to that of 

Oekker but inverse 'quadratic int9r?01ation is em?loyed 

whenever the 90ints a,b and c (as defin9d 3bov9) are 

distinct (i.e. extrapolation steps); rational 

interpolation is not used. We should expect the more 

frequent use of a higher order inter?olation formula to 

reduce the number of function evaluations required for 

"well-behaved" functions but Bus and Oekker [10] have 

found that Brent's met~od is less successful in the region 

of a high order inflexion ?oint. 
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The i~?lement~tion of ~rent's ~lgorithm used here 

incorpor~tes some s~fegu~rds ~g~inst under flow ~nd sets ~ 

mixed ~bsolute ~nd rel~tive toler~nce condition of the 

form 4.0 EPslxl + TOL where EPS is the rel~tive ~~chine 

,precision and TOL is the user-supplied tolerance for final 

interval length. 

communication so it 

The 

was 

routine does not use reverse 

necess~ry for these tests to 

incorporate a further output par~meter to count the number 

of function ev~luations. The point b is ~uto~atically 

accepted as a root'if the computed value of f(b) is zero. 

The final function value is not included in the outp~t 

par~meters: the user ~ay consequently need to exercise 

caution in the interpret~tion of results. 

C) N.P.L. ~lgorithms Library, Real Procedure ZERO -

Cox and Lehrian [11] 

Let the ~ost recent valid interval for a root be 

[a,bl where I f(b)\ < If(al\ and let m be the mid-point of 

[a,b] • The algorithm implemented in this AL~OL60 

procedure uses rational inter?olation/extr~polation where 

this produces an estim~te within the interval [m,bl, 

otherwise bisection is hsed. 

~n absolute tol=r~nce for the root is set by the ~ser 

who is ~lso required to supply a maximum nu~ber of 

iterations for each root, ~ v~lue of 25 being reco~mended. 

If this limit is reached the best currently ~vail~ble 

estimate is output: such provision is im?ort~nt when 

reverse communic~tion is not used ~s it prevents the tot~l 
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loss of useful infor~ation. ~gain, an esti~ata x will be 

accepted as a root if the computed value of f(x) is zero 

but otherwise it is left to the user to exa~ine the 

~agnitude of f(x). 

The use of rational interpolation in place of the 

secant meth01 may be expected to produce faster 

convergence than the Bus and Dekk~r method. The program 

was found, however, to be not co~pletely portable and so~e 

rearrangement was found to be necessary for use on the 

OEClO which incorporates a one-pass ~LGOL compiler, this 

necessitating a re-ordering of the procedures. 

Search Meth01s 

D) Function ROOTl - Gaston q. Gonnet .[18] 

The purpose of Gonnet's paper "On the Structure· of 

Zero Finders" is to 1~monstrate the advantagas Ot a 

~everse com~unication procedure ani to present a F~RTR~N 

function subprogram R00Tl which imple~ents this approach 

to zero finding. ~ return to the calling program after 

each iteration allows the user considerable flexibility; 

for exa~ple, he is able to set a ~axi~u~ number of 

function evaluations and control the stopping criteria. 

Such input parameters can be adjusted between iterations 

if they appear to be unsatisfactory. It may also be 

possi~le for the user to detect difficulties and arrange 

for ter~ination of execution thus avoiding waste of time 

in performing unhelpful iterations. 
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~onnet 1o~s not provi1e a sampl~ calling program for 

his routin~, although he gives an outline of the proce1ur~ 

to b~ followe1; reverse communication will inevitably 

impose greater demands upon the user than the direct 

method. ~pperidix B is a copy of the progra~ used for the 

tests herein and is designed for , interative use at a 

terminal. ~ root suppression procedure has been 

{ncorporated to facilitate the calculation of several 

roots from on~ initial estimate and each root accepted is 

used as a "st~pping-off" point for the next search. 

The algorithm uses ~uller's method wh~re possible; 

failing that, the secant method and then bisection are 

attempted. R~OTl returns the next ~sti~ated valu~ of x 

and the user must then comput~ the next fu~ction value an1 

test for acceptability before returning for further 

iterations if 1esired. The use~ is reluired to provide 

one initial estimate xo; at the seco~d entry ROOTI 

returns the estimate Xo + f(x o )' the next iteration uses 

the secant ~ethod. and thereafter the gener~l scheme 

oulined above is followed. ~ 1efault value of 90 is set 

for the maximum number of iterations per root, but this 

can clearly be reduced if desired. ~fter 30 iterations 

have been perforll~d the bisectio~ met"1od is use1 

exclusively whenever a sign ch:lnge interval has been 

detected as th~ function is th~n considered likely to 

possess featur~s of difficulty. 

- 59 -



~ther us~ful fe~tures of R00Tl inclu1e instructions 

for conversion to 10uble precision, the calcul~tion of ~n 

estimat~d deriv~tive in cert~in circumst~nces ~n1 the 

provision of sever~l error indic~tors. It ~lso ?rovi1~s 

the length of the interv~l of unc~rtainty whenever such ~n 

interval is avail~ble. In ~d1ition to the freedo~ of 

reverse communication, the ~uthor cl~i~s ~ f~vourable 

com?arison with other algorithms in res?ect of the number 

of function ev~lu~tions over ~ variety ~f functions. 

E) ~ FORTR~N Program for solving a non-linear elu~tion 

by ~uller's ~ethod - I.B~rrodale ~nd ~.g.Wilson [6] 

Subroutine ROOTS together with the function defl~tion 

subroutine TEST is desi3ned to c~lcul~t~ the require1 

number of real ~nd/or complex roots with or without 

ouser-supplied initial ~stimates and uses the Traub version 

of ~uller's method throughout. The three st~rting values 

for the ~lgorithm ~re t~ken as xo - 0.5, Xo and xo + 0.5 

where Xo is the user's estimate of the root sought; if Xo 

is not supplied, it is set to zero. The "stepping-off" 

points for second or subsequent roots ~re su?plie1 by the 

user or, by def~ult, are set to zero. Special features 

include ~ halving of the st~p 1~n3th in cases where 

divergence is indicated by ~ l~rge function value and a 

~odification to the current esti~ate in "fl~t" regions of 

the curve in order to i~prove t~~ efficiency for ~ultiple 

roots. 
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/ 

Two conv~rgence crit~ri~ ~re offered viz. relative 

change in x v~lues and ~bsolute function v~lu~. ROOTS 
-5 -I 

provides def~ult v~lues of 0.5 x la ~nd 1.0 x. la 

respectively for these, v~lues which ~ay ~ecessit~t~ 3n 

amendment to th~ dat3 st~t~ment, ?~rticularly wh~n the 

program is to be i~plemented in double ?recision (~ 

subprogr~m is provided for this purpose). Z\ further 

change to the root-finding routine is required if the user 

wishes to extract the numbers of function ev~luations 

taken for each root since this is calculated but not 

included in the par~meter list. 

\ 
Failure is indicated in some c~ses of inv~lid input 

and ~lso when the user- supplied m~ximum number of 

iterations is exceeded. The direct communic~tion ap?ro3ch 

adopted is str~ightforw~rd to use but could result in loss 

of v~lu3ble information in c~ses of f~ilure (other than 

maxi~um iterations in which case the best ~vail~ble 

estim~te c~n be output). In ?~rticul~r, if the number of 

roots requested exceeds the number which can be found by 

the ~lgorithm, ~n overflow failure ~ay be ~ntici?ated. 

- 51 -



F) ~.P.L. ~lgorithms Libr3ry FORTR~N Subroutines RTFSIC/Z 

These reverse co~munication routines ~re the ~ost 

flexible and 3mbitious of those ~onsi1ere1 herein. They 

3re designed for the calcu13tion of co~plex roots, 

~lthough 311 the comput3tion is performed using re3l 

vectors so that the doubl~ precision version RTFSIZ m3Y ~e 

used when double precision com?lex ~rithmetic is not 

i~plemented. Tpe origin31 version of the progr3m used 

Tr3ub's version of ~uller's ~ethod only~ ~n option of 

three-point ration3l interpolation h3s now ~een included 

as a result of favourable experience with the procedure 

ZERO of Cox and Lehrian (described in 3bove). In both 

cases linear interpolation is atte~pted if the three point 

~ethod would cause irrecoverable overflow. 

list for RTFSlC/Z has been include1 in ~p~endix C ~s an 

indication of t~e scope of the program and the consequent 

demands upon the user. These subroutines are p3rt of an 

extensive library and ~3ll u?on a number of other 

subroutines~ in particular routines are available which 

allow a close check to be kept on ?ossible sources of 

overflow. Stor3ge ~n1 timing requirements m~y ~e somewh3t 

greater than for self- contained routines, but this s~ould 

only be significant for very simple functions. 
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RTFSlC!Z seek to i~prove the reliability an~ accuracy 

of the search method by offering a versatile selection of 

options which enable the user to exploit to the full his 

knowle~ge of the function under consideration. 

Suppression of known roots is incorporated at each stage 

of the routine. The inclusion of the parameter 80U~O is a 

guard against unexpectedly lar~e esti~ates of the root and 

also provides an automatic termination when no ~ore roots 

can be found. ~ perturbation is ~a~e to accelerate 

convergence when this appears to be slow. Other features 

of particular note are the provision for scaling of 

function values, the inclusion of an auto~atic stoP?ping 

criterion in addition to the standard tests, a c~oice of 

~ethods for obtaining initial esti~ates for second and 

subsequent roots an~ a comprehensive set of values of the 

parameter INFORM to ~onitor progress and to indicate the 

acceptance criteria used for each root. The documentation 

includes a sample main program and further advice for 

users. ~ version RTFS1R which uses rational interpolation 

to calculate real roots only is in course of preparation. 

This will, in addition to the facilities offered by the 

complex routines, enable the user to detect and retain 

intervals for the roots w~enever possible. (This was 

found to be a useful feature of progra~ 0 above.) 
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4.2 EFFICIENCY 

Simple Roots 

The numbers of function ev~lu~tions required to 

obt~in simple roots of some str~ightforwar1 functions ~re 

compared in t~ble 4.1. In the c~se of progr~m E, re~l 

roots only are requested and for 9rogram F the ration~l 

interpol3tion met~o1 h3S been used exclusively to ensure 

th~t ~ll iterates are real. Single precision co~putation 

h~s been used throughout and the accuracy require~ents 

h~ve been chosen well within ~~chine precision. The 

"interv~l" methods all offer termin~tion criteri~ based on 

interval length: the toler~nce level set here is an 

3bsolute v3lue of lO-~ for the final interval length TOL 

except where otherwise st~ted. (Program 3 combines the 

re13tive ~nd 3bsolute criteria but the relative tolerance 

is comparatively sm~ll.) For the "search" methods, the 

criteria adopted have been 
-If. 

~ < 10 

is the relative tolerance 

where 

and 

'1 = I f(xr)1 ' although it should be noted that program 0 

will only invoke the former test if the routine has 

detected a valid interv~l for the root (in 9r~ctice, for 

simple roots, this will usu~lly be the case.) These 

tolerance levels will corres90nd roughly to an ~ccuracy of 

four significant figures for the 9~rticul~r functions 

under consider3tion. 
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Where it h~§ proved possib19, the se~rch routi~es 

h~ve been instructed to find ~ll the required roots from ~ 

single user-supplied esti~ate, suppression being employed 

~fter each root is found. ~hen this h~s been found 

unsatisf~ctory ~ separ~te esti~at9 h~s been used for e~ch 

root; in such cases root suppression h~s not been 

necessary. 

Functions which would be fitted exactly by ~ny of the 

interpolation formul~e used h~ve been omitted. 

On p~ges 66-68 ~re listed the functions tested, 

together with the numbers of roots requested, the initi3l 

intervals for progr~ms ~,8 and C ~n1 the initial estimat9s 

for progr3ms D,E ~n1 F. 
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Functions T:st:1 in Table 4. 1 

FUNCTION WJ. PHTI~L LNITI~L 

ROOTS INTgRV~L(S) V~La8(S) 

1. ( x-I) (x- 2) (x-3) (x- 4 ) 4 (0.1,1.1) /)./) 

(1.1,2.1) 

(2.1,3.1) 

(3.1,4.1) 

2. (x:l.+x-1) (x1 -x-1) 4 (-2.0,-1.0) 0.0 

(-1.0,0.0) 

(0.0,1.0) 

(1.0,2.0) 

3. x 3 -2x-5 1 (2.0,3.0) 2.0 

4. x~ +x 1 (-0.5,1.0) 1.0 

5. ~ 1 " . h x -( -x) Wlt 

~) n=3 1 (0.0,1.0) 0.0 

b} n=5 1 (0.0,1.0) /).0 

c) n=10 1 (0.0,1.0) 0.0 

6. [1+ (l-n)~ ] x- (l-nx)~ 

",oIith ~) n=l 1 (0.0,1.0) 0.0 

b) n=4 1 (0.0,1.0) 0.0 

c) n=S 1 (0.0,1.0) 0.0 

7. x3 +10-" 1 (-1.0,0.0) 0.0 

8 • x +1 1 (-3.0,0.0) 0.0 

x:l.+2 

(cont.) 
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Functions Tested iT'l Table 4.1 (cont. ) 

FUNCTION ~O. rUTt2\.L INITI~L 

ROOTS INTBRV~L(S) Va.LUB(S) 

9. xl.-x-l 2 (-1.0,0.0) -1.0 

x~-x+1 (1.0,2.0) '2.0 

10. xl..-2 2 (-2.0,-1.0) -1.0 
.a. 

(1.0,2.0) 1.0 (x-2) 

ll. x-4 JX-1 2 (1.0,2.0) 1.0 

(10.0,15.0) 15.0 

12. ex?(-x)-x 1 (0.0,1.0) 0.0 

13. 2x ex?(-1)+1-2exp(-x) 1 (0.0,1.0) 0.0 

14. (x-l)exp(-nx)+xf\ 

with 3) n=l 1 (0.0,1.0) 0.0 

b) n=5 1 (0.0,1.0) 0.0 

c) n=10 1 (0.0,1.0) 0.0 

15. x In(x)-l 1 (1.0,'2.0) 2.0 

16. sin(x)-0.5 4 (0.0,1.0) 0.0 

(2.0,3.0) 

(6.0,7.0) 

(9.0,9.0) 

17. ./'X -2sin(x) 1 (0.1,1.0) 1.0 

18. t3n(x)-1 1 (0.0,1.0)' 0.0 

19. 1n(x)-cos(x) 1 (1.0,'2.0) 1.0 

2'0 • x-cos \. 785-x/l+x· ) 1 (0.0,1.0) 0.0 

1+2x l.. 

(cont. ) 
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Functions Tested in T~ble 4.1 (cont.) 

Notes: 

1. ~ number of the functions list~d here ~r~ t~ken from 

the "~ Comparison of Non-Linear Eluation 

Solvers" by D.Nerinckx and ~.Haegemans [34]. Function 

20 is due to Kronsjo [251. 

2. Functions Sa) ,b) and c) each hav~ a~ inflexion ?oint 

in [0,1]. Functions 6b) and c) each have one turning 

3. 

point and one inflexion ?oint in [0,11. Functions 

14a) ,b) and c) ar~ i~creasingly -:lose to the x ~xis 

for increasing n. 

For functions 6b), 6c) and 7 the 

for the interval methods ar~ 

respectively. 
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Table 4.1 Numbers of Function Evaluations for Si~91e Roots 

(The figures given in1icate the total nU'l\ber of 

evaluations for all the required roots in each case.) 

PRaGR~~1· l3 ,.. 
0 E ..... 

FUNCTION 

1 32 30 31 29 27 27 

'2 33 29 30 26 23 32 

3 7 t5 7 6 6 5 

4 7 7 8 10* g 8 

5 a) 7 6 7 9 7 5 

b) 9 . 7 q 9 g 6 

c) 8 8 9 11 11 5 

6 a) 9 8 7 g 7 5 

b) 7 7 9 6 6 6 

c) 6 6 9 5 5 5 

7 16 16 13 19 11 9 

8 9 8 8 7 9 8 

9 16 14 13 11 12 12 

10 17 15 12 11 14 13 

11 14 14 14 13 14 9 

12 7 5 6 6 6 5 

13 7 6 6 7 6 5 

14 a) 7 7 6 7 <5 5 

b) 7 6 7 12 14 7 

c) 8 7 9 15* 12 9 

(~ont.r 
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T~ble 4.1 (cont.) 

~ROGRz\~1 B C 1) E 

FUNCTION 

15 6 6 6 5 6 5 

16 26 25 26 2'3 33 -# 32 

17 7 ' 7 8 5 '3 9 

13 8 7 7 8 8 7 

19 6 6 6 6 6 5 

20 5 5 6 7 8 q 

T0Tl\L 290 268 276 285 280 251 

* Under flow occurred but th~ corr~ct solution w~s obt3i~ed. 

( the OECI0 ~3chin9 giv9S und9rf1ow w3rni~gs.) 

~ The sm3119st neg~tive root W3S obt3ined in 913ce of the root 

in 't h 9 in t e r v a 1 ( g , 9) • 
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~ultiple ~nd Closely-Sp~ced Roots 

Results for ~ small selection of suc~ functions 

(listed on p~ge 72) ~re shown in t~ble 4.2. The toler~nce 

criteri~ ~10pte1 ~re indic~ted for e~ch in1ivi1u~1 

function. (~ost of these necessit~te1 ~ ch~nge to the 

def~ult v~lues set in progr~m E ~s. function v~lues 

did not yield satisf~ctory v~lues for the roots.) The 

Muller version of ?rogr~~ F has been included since, 

~lthoughcom?lex arithmetic was used, for these functions 

only real roots were found. 

- 71 -



Functions tested in T~b1~ 4.2 

FUNCTION ~ INITI'-L TOL INITI'-L E 1; 
R00TS INTERV'-L(S) V~LUE 

1. n with 1 (-0.5,1.0) 10-1f 1.0 0.0 10-11
. X 

a) n=3 

b) n=5 1 (-0.5,1.0) 10-If 1.0 0.0 10- loa 

c) n=9 1 (-0.5,1. 0) 10-4- 1.0 0.0 10-3
' 

2. (x-I)" ' wi th 

10 -4-
-J,. -Il. 

~) n=3 1 (0.0,4.0) 0.0 10 10 

b) n=5 1 (0.0,4.0) 10-4- 0.0 10-¥- 10 
-loa 

10 -¥- -(, -3' 
C) n=9 1 (0.0,4.0) 0.0 10 10 

(x-1 )l 10-~ 10-~ 
-1.2. 

3. 1 (0.0,4.0) 2.0 la 

XL +1 

'( 3x-2)~ 10-4- -If. -, 
4. 1 (0.0,1.0) 0.0 10 10 

-(, 
10-' 

-, -8 
5. sin(x)-1+10 2 (1.56,1.57) 1.5 10 10 

(1.57,1.58) 

(x" + 1) ~ 10-' 
-, -8 

6. 2 (1.0,1.1) 1.,0 10 10 
a. -, (x -2x+1-10 ) (0.9,1.0) 
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T3ble 4.2 Nu~bers of Function EV31uations for ~ultip1e 3n1 

Closely-Sp3cad Roots 

In the case of prog~~~ F, (1) indic3tes the r3tion31 

interpo13tion method 3nd (2) the ~ul1e~ ~ethod. 

"PROGR1\.M B ,... 
0 F ... 

FUr;.tCTION (1) (2) 

1 3) 44 42 26 16 18 29 17 

b) 45* 34 47 53 22* 48 76 

c) 47* 37* 48 >80 40* >80 >80 

2 3) 48 46 28 36 9 25 36 

b) 47* 42 47 53 19 ~ 34 44 

c) 51* 44* 58 >80 14 '* 54 >80 

3 45 40 29 32 11 '* 25 16 

4 41 39 25 39 17 27 34 

5 26 29 23 9 13 22 12 

6 25 32 31 11 17 ** 15 

TO·r1\.L 419 385 362 >449 180 >354 >430 

* Underflow occur~ed but the correct solution W3S obtained. 

~ The accuracy of these results was co~paratively poor -

see following co~~ents. 

** F~iled to find the second root; the first root being 

repeated. 
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Comments on Results 

Interv~l Methods 

For the ~odest ~ccur~cy levels set, higher order 

methods converge only slightly f~ster th~n the ~us ~nd 

Oekker ~ethod; this superiority is somewh~t ~ore ~?9~rent 

in the examples of T~ble 4.2. In ~d1ition, the r~tional 

interpol~tion ~ethod o~ Cox ~nd Lehri~n m~n~ges to ~void 

the problem of underflow. The co~par~tive inefficiency of 

Bus ~nd Oekker for multiple roots is demonstrated by the 

successive iterates for the function x~ [~Pgendix 0, 

9.~11]. This example shows every fourth iter~te moving 

away from the root, this p~ttern of behaviour persisting 

throughout. 

Search Methods 

In so f~r as comparison is possible, these methods 

require ~ si~il~r number of function evaluations to the 

interval ~ethods for simple roots, except in cases of 

polynomials where suppression of roots results in gre~ter 

efficiency for the l~st two roots. The tot~l number of 

function evaluations in Table 4.1 is r~ther less for 

r~tional interpol~tion than for the ~uller methods; this 

~dvantage occurs principally for curves which ~re "flat" 

in the region of the root (functions 5,7 and 14). The 

superiority of r~tional interpolation becomes marked in 

cases of ~ultiple roots, unless special provision is ~~de 

in the ~uller routine (~s in progr~m E). This would see~ 
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to indic3te that th~ asy~ptotic b~haviour has not been 

reached; th~ situation would perhaps be different at 

higher accuracy l=v~ls. The progress of the ~uller 

version (met,od 2) of program P is hampered by complex 

iterates and, in addition, the real p~rts may oscillate 

about' the root. This behaviour is illustrated for the 

function x!. by contrast 

rational interpolation (method 1) shows ~onotonic 

convergence to the root, all iterates being real. 

Observations at the N3tional Physical Labor3tory confirm 

that the convergence of rational interpolation is more 

rapid than that of Muller in the early stages. It also 

follows that failure to converge can m3nifest itself after 

a comparatively small number of iterations with the former 

~ethod. The ~uller method appears, how~ver, to be '1lore 

satisfactory for closely-spaced roots. In such cases root 

suppression frequently fails for the rational 

interpolation method, for example function 5 of table 4.2. 

In cases of multiple or closely-spaced roots we 

expect ill-conditioning and consequently a lower degree ot 
, 

attainable accuracy than in the examples' of T~ble 4.1. 

Por the functions 1,2,3 of Table 4.2 this is 

counterbalanced t6 som~ extent by Wilkinson's comments 

regarding functions "in which the parameters are exact 

numbers requiring f~w digits for their representation". 

He goes on to state that "Even if rounding errors 10 occur 

at some stages of the computation, the fact that part of 

it is p~rfor'1led without error may lead to answers of 
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exceptional ~ccur~cy" [46]. This is the obs~rved outcome 

for ~ll routines except th~t of 8~rrod~le ~n1 Wilson w~ich 

~chieves results consistent with the theoretic~lly 

att~in~ble ~ccur~cy ior such functions. This would seem 

to be a consequence of the ~cceler~ting device employed 

for flat regions of the curve. It was noted, however, 

th~t setting the parameter RE~LRT to .F~LSB. in 9rogram B 

produces numbers of iter~tions comparable with those 

achieved by the other routines. (The strategy when RE~LRT 

= .TRUE. is simply to set any square roots of negative 

numbers to zero.) 

4.3 DIFFICOLTIES ~SSOCI~TED WITH SE~RCB ROOTINES 

In addition to the functions listed in the 9revious 

section, a number of further ,tests were c~rried out. The 

"interval methods" were fo~nd to be very reliable 

throughout and the occurrence of under flow for some 

functions was not found to inhibit the ~chievement of 

correct solutions. Particular c~ution would seem to be 

required only in cases where the sign cha~ge interv~l 

contains a discontinuity of the functio~ r~ther th~n ~ 

root; for instance, none of the routines tested warned of 

this situation for the function t~n(x)- x and ~ root was 

claimed at x = ~/2. Output of the function v~lue is 

usu~lly sufficient protection in such situ~tions. 
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~s ~ight b~ antici?~t~d, se~rch routines 3r~ less 

reli~bl~ ,an1 perfor~anc: is often v~ry s~nsitive to choice 

of in?ut paramet~rs. The following dis~ussion ~overs 

those aspects which ap~ear to be crucial: 

Choice of Conv~rgence Criteria 

R~lative Error Test 

Unlike absolute interv~l length, the r~lative error 

criterion is not always a good in1icator of th~ accuracy 

of the r~sult. The value to be set for f will depend, in 

part, upon th~ condition of th~ roots sought. T1is is 

particularly ap~arent for roots of high multiplicity such 

as function 2c} of Table 4.2 and th~ extr:~e example 

(x-l)exp(-l/(x-l)~} illustrated in ~~pendix 0 (p.~l7). 

Such cases are characterised by a slow convergence rate 

requiring an alternative ~ethod or some means of 

accelerating convergence even when ~ is not small. ~ 

potentially more serious problem is the ?ossi~ility of 

accepting an invali1 root on the basis of the relative 

criterion. ~s a test case the routines were instructed to 

find two real roots of the function exp(-x} - x. 

the vali1 root was foun1 successfully 

In each 

in six 

iterations. Program 0 terminated with an error in1icator 

after a further eleven iterations, but the other two 

programs each ?roduced a further root. The ~rroneous 

results here were clear from the large fun~tion values. 

shows the results for program F and 

illustrates how false roots may be eliminated by a 
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suit~ble r~duction in the bound on v~lu~s of x. In the 

tests conducted, f~ilures of this type wit~ the rel~tive 

criterion h~ve been few and ~lw~ys distinguished by l~rge 
r 

function v~lues or ~rithmetic error w~rnings. Further 

indicators of f~lse roots ~re an unexpected increase or 

decrease in the number of iterations per root or ~ ~ove 

away from the region of interest. ~n exa~ple of such 

phenomena is provided by the function: 
:loQ 

L 
2r - 5 )2. 

(=1 

(hereinafter referred to as Srent's function). This is 

used as ~ test function by Cox and Lehrian [111 ~nd has 

nineteen real roots, lying in the intervals 

r ~ < x < (r + l)~, [r = 1,2, ... ,19]. Such ~ function 

p6ses particul~r proble~s for se~rch'routines as the roots 

are separ~ted by poles of the function and, in a11ition, 

the curve is flat in the, region of each root. The best 

results were obtained by progr~m F using a relative 

criterion [Appendix O,p.A19]. Two inv~lid roots 

claimed, the first near the pole ~t x = 289 and the se~ond 

beyond the v~lid r~nge; in each c~se the change in the 

number of iterations is marked. The ~xample also serves 

as a reminder that results obt~ined following ~n underflow 

message should not be accepted without further 

verific~tion. The provision of ~n absolute interval of 

uncert~inty by progr~~ ry is a further safegu~r1 when using 

the rel~tive criterion; on the other h~nd, f~ilure to 

detect such ~n interv~l prevents the use of this criterion 
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~nd the result is frequently ~n unnec~ssarily l~rge nu~ber 

of iter~tions. 

Function Value Tests 

If the function value test for convergence is to be 

invoked it is essential to h~ve so~e ~ priori knowledge of 

the magnitude of such v~lues in the region of the root. 

~hen function v~lues ~re small throughout ~ large interv~l 

we ~re in 1~nger of accepting a poor approximation to the 

root. Conversely, if function v~lues are large compared 

with relative changes in x we ~ay 1e~an1 ~n unatt~inable 

accur~cy if ~ is set too small. To illustrate the ~bove 

remarks, let 

f ( x) = (" x - O. 1 ) It ( X - O. '2 ) ~ ( x - O. 3 )1. (x - O. 4 ) 

and g ( x ) = (i (x - r ) 
t' :: I 

and contr~st the magnitudes of f(x) and g(x) when x is ~ 

root to within one unit in the fourth ~ignific~nt digit: 

f(O.09999) 

g (0.999'9) 

= 2.524 x 10 
-1.~ 

= 1. 21 7 x 10 I? 

There are also ~any instances in which s~all function 

v~lues do not indicate the presence of a root: for 

example, with certain choices of initi~l estimate, 

programs D and E both claimed a neg~tive root for 8rent's 

function with ~ = 10-
6

• Progra~ F offers two function 

v~lue criteria based on values of the origin~l and 

suppressed functions respectively. The for~er test was 

used exclusively for this study to enabl~ co~p~rison with 

other routines. Exa~ination of the suppressed "function 
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values also has the ?otential disadvantage that the 

behaviour of this function is not likely to be as well 

known as that of the original function. It must be 

concluded that function value tests are fr equ'en t 1 y 

unreliable when used as the sole criterion for 

convergence. 

~utomatic Sto~ping 

~
-.--.--.--

rf 
/) 

~n automatic stopping criterion of the type described 

in Chapter 2 is imp1e~ented in program F only. ~dditiona1 

safeguards are also included which seek to ensure that a 

convergence pattern has been establis~ed. The convergence 

test will not be brought into operation until 

and the -authors suggest that 

toll = 0.05 is "normally ade1uate". The object of the 

test is to ensure that results are of the maximum accuracy 

consistent with the condition of the function and the 

number of digits employed in the computation. This was 

well reflected in the output for the functions of tables 

4.1 and 4.2~ simple roots being obtained to near machine 

accuracy (approximately eight digits) and multiple roots 

to a precision in accordance with the theory as indicated 

in ~ppendix E. 
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It w~s observed, ~owever, that the ~utom~tic sto??ing 

criterion quite frequently ?r01uces tot~lly incorrect 

roots which cannot be ~ccounte1 for by ill-conditioning. 

Such extr~neous roots occur ?~rticul~rly in c~se~ where ~ 

number of roots ~re requested. The following m~y be cited 

1. Th e fun c t ion f ( x) = sin ( x) - O. 5 • Four roots were 

sought st~rting from the origin. Three roots were 

obtained correctly but the result 7.2941 w~s produced 

in place of the root 6.8058. 

;La 

2. The function f(x) = ~ (x-r). The explicit for~ of 
(= I 

this polyno1l1i~1 has number of extre1l1ely 

ill-conditioned roots [461, but this difficulty is ~ot 

encountered with the f~ctored for1l1 [~ppendix El which, 

nevertheless gave rise to ~ nU1l1ber of incorrect roots 

with toll = 0.05 [~ppen1ix D,?~191. The st~nd~r1 

relative error criterion, however, produced all twenty 

roots correctly. 

3. ~utomatic stopping m~y be used in conjunction with 

other tests ~nd ~??en1ix 0 (p.~20) shows the results 

for Srent's function with t~e option of ~utom~tic 

stopping or the stand~r1 rel~tive error criterion. 

Nineteen roots ~re cl~i1l1ed but of those ~ccepted on 

the b~sis of ~utom~tic stopping, only two ~re near to 

~ctual roots, where~s t~ose obt~ined by the stand~r1 

test ~re all of ~ccept~ble ~ccur~cy. 
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It is apparent that at p~esent fu~the~ evidence needs' to 

be obtained befo~e accepting roots on the basis of 

auto~atic stopping. The best procedure ~ay prove to be 

use of automatic stopping to. refine an esti~ate, having 

established by other means that a root is indeed present. 

Further investigation may also be required into 

appropriate values for tol,. The user will not usually be 

able to anticipate the condition of the roots ~nd if he 

wishes to know the ~ccuracy of the results obtained it 

will be necessary to examine the convergence pattern 

display~d by the last few iterates. 

Initial Estimates 

3001 approxi~ations to the roots are not always 

necessary for success when the function is ~ polyno~ial 

and the search can often be co~menced from so~e distance 

away provided that, the function values remain within 

machine capacity. The situation is less satisfactory, 

however, for other functions and many observed instances 

of failure can be attributed to poor starting values. 

When the first esti~ate is not sufficiently near to a 

root, the first iteration will produce a large increment; 

this may result in convergence to a root which is not the 

nearest to the starting point. For exa~ple, program D 

applied to 8rent's function with x4 = 2.5 produced the root 

near x = 11 rather than that near x = 3. ~hen several 

solutions of an equation are required this tendency to 

"skip" roots may result in an inco~plete picture as it can 
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prove difficult for the ~lgorith~ to nb~cktr~ck" in se~rch 

of ~issing roots; in ~ppendix 0 (p.~18) progr~m F ~isses 

~ number of the sm~ller roots of Brent's function. 

If there ~re no roots in the vicinity, poor st~rting 

v~lues will often c~use ~ move to ~ region of l~rge values 

of x or f(x) or to ~ region in which the function is 

undefined, thus c~using complete f~ilure. The following 

are examples: 

1. f (x) = (4x-7) l(x-2). The in 

(pp.~2l-22) shows that very go01 first esti~~tes ~re 

likely to be required when the root is close to ~ pole 

of the function. C~ses of fai~ure caused iterates of 

large m~gnitude, so th~t the imposition of ~ bound on 

x prevents an excessive number of iter~tions in 

program F. 

2. f(x) = x In(SOx) + 0.005. This function h~s two close 

roots of small ~agnitude so th~t good esti~~tes ~re 

likely to be required to prevent a move to negative 

values of x. ~ll the progr~ms obt~ined the l~rger 

root without difficulty st~rting from x = 1.0. 

Progra~s E ~nd F also obt~ined the smaller root, 

despite ~n overflow in the case of ?rogr~m 8, but 

program D f~iled with ~ l~rge neg~tive value of x. 
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0ccasionally, a poor first 9stimate may giv9 ris9 to 

the situation illustrated in ~ppendix 0 (pp.~23-25). H9r9 

the rational interpolation method is applied to the 

function f(x) = x~ - 2x - 5 starting from x = 0.0 and a 

large number of iterations is perfor~ed before convergence 

to the real root is establish9d. This ~ay perhaps be 

attributed to the presence of complex roots in 

neighbourhood of the starting point'. The "1uller version 

of the program performed much better for this example. 

~uller and three point rational interpolation 

for:nulae each requir9 thr99 points for t~e first 

it9ration. It follows tl1at, if the user is to supply, one 

esti~at9 Xo only, th9 routine will need to construct x, 

and x~ fro~ ~o. The procedure a~o?t9d in program 0 is to 

set x = I Xo + f(x o ) an,:] then to use one iteration of the 

secant llethod. This has proved a serious shortcoming of 

the program since it preSU?pOS9S that f(x o ) is of a 

similar order of :nagnitude to xo· If either of the 

quantities is negligible in comparison with 

the other, failure will result with either r9?eated 

argument or function values. This difficulty is 

particularly notic9able on second ~nd subsequent roots as 

the function value will be sllall wh9n th9 initial esti~at9 

is taken close to the,root just found, for examp19, if 
+ ~ ~ f(x) = (x-O.l) (x-0.2) (x-O.3) (x-O.4) 

then f(O.lOl) = 1.1489 x 10-1
'7 

=) 0.101 + f(O.lOl) = 0.101 to machine precision and 

program 0 fails with a repeated argu~ent message. 
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Progr::im F 

step. may "Je 

calculates x, = Xo (1.0 + 4.0 ster;» where 

chosen by the uSer, ::ind x~ = (xo+ x , )/2.0. 

This nethod was found to be much ~ore satisfactory. 

Problems ~ssociated wit~ the Requirement for Several Roots 

When separate estimates are not available for each 

root subsequent to. the first, a 1ecision must be 1lade 

concerning self-starting ~oints for each search. Program 

F offers two ::ilternatives to the user viz. 

1. ~ point close to the root just found. 

2. The complex conjugate of the root just found. 

Program E sets xo= 0.0 by default. 

~ll the routines tested g::ive good results for simple 

functions such as numbers 1,2 and 16 of Table 4.1. For 

functions 9,10 and 11 of this table it was found necessary 

to provi1e se~arate estimates for each root. 

Particular problems must be 

functions ?ossessing sin~ularities or 

antici?ated with 

undefined over a 

segment of the real line. It was found that the routines 

tested frequently failed or required a very large number 

of iterations after the first root in such circumstances. 

~idely. s~aced roots can create ~ further com?lication •. 

~ppendix D (p~.~26-~29) contains test results for the 

function f(x) = x - 4 Jx - 1 which has two real roots ::it 

x = 1.07180 and x = 14.9282 (each correct to 6 significant 
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figures). ~n atte~pt to take the s1uare root of a 

negative argument causes failure or an incorrect solution 

with program 0; the. other two routines require an 

excessive number of iterations to obtain a second root. 

The results for program E with RE~LRT= .F~LSE. and 

x = 1.0 show that it can sometimes be helpful to conduct 
c 

the search in the co~plex plane even though the re1uired 

roots are both real. This tactic is less successful, 

however, when xo= 15.0. 

Global convergence properties of iterative processes 

have not yet been fully exa~ined theoretically. In 

practice, regions of convergence will depend also uoon 

~achine characteristics. Continuity of the function over 

the real line is not sufficient to guarantee the 

successful co~?utation of all roots fro~ a single starting 

point. ~ppendix 0 (pp.~30-~32) shows the results obtained 
2.0 

with the functions f(x) = x - 1 and 

f(x) = (x~ - x - l)/(x'-- x + 1) respectively. 

Table 4.3 illustrates some of the problems which ~ay 

be encountered w~en a large number of roots is re1uired. 
J 

For each function, program F was instructed to seek twenty 

t th t 1 f 1 · . 1 0 x lO-6 
roo s, e 0 erance or re atlve error belng . 

in each case. In the case of function B, function values 

were calculated in 
c. 

the for'YI a x '2 (~ separate routine 

for such scaling being included in the library.) The 

results obtained for. function 9 reflected the ~oderate 

ill-conditioning at the ends of the range [461. Fro~ the 
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li~ite1 1ata, no clear pref~rence ~ay be given to either 

~et~od; the only apparent conclusion being th~ greater 

variability in the numbers of iterations with the ~uller 

metho1. The or1er of root 1etermination was in each case 

roughly monotonic but for functio~ C a number of the later 

roots were skippe1, ?articularly with method 1. For 

function 0 the behaviour of method 2 was more erratic in 

this respect. 

roots 

required the exact number of roots in existence may be 

unknown. In such circumstances we would wish the program 

to indicate that as many roots have been found as is 

possible. Programs 0 and E can only ter~inate by means of 

an ~rror condition; this ~ay occur only after many 

superfluous iterations. The parameter 80U~O in program F 

provi1es . a natural termination in most cases as the 

suP?ression of all known roots usually ~auses iterates to 

become lar3e in magnitude quite rapi1ly. 
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Tabl~ 4.3 R9sults for Functions with a Larg9 Number of 

Roots 

The Functions: 

l.<> 

1\ = -11 x - r ) 
r:. I 

B = 11 ( x - 1/2 ,. 

r= 1 

C = sin (x) 

.0 = cos (20 
-I 

x) cos [The Chebyshev polynomial of order 201 

FUNCTI0N ~ETij'JO ST1\RTING NO.R'JOTS ME1\N NO. ST1\ND1\RO 

V1\LUE FOUND ITER1\TIONS DEVIATION 

A 1 0.0 21) q.q5 1.98 

2 0.0 20 8.65 5.19 

1 1.0 20 17.4 5.51 

'2 1.0 1 96 

C 1 3.0 9 8.11 2.09 

2 3~0 20* 7.85 2.66 

1) 1 1.0 19 26.6 20.48 

2 1.0 10* >41.5 >30.89 

* underflow occurred but the roots obtained were correct. 

- (CO'1t.) 
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Table 4.3 (cont.) 

The causes of failure were as follows: 

Function 8, metho1 2 - the first root was r=?eate1. 

Function e, method 1 - x excee1ed the i'll?osed bound 

of 100.0. 

Function 0, 'llethod 1 - one of the roots was foun1 twice. 

'lletho1 2 - the 'llaxi'llum number of iterations 

(1600) was excee1ed. 
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4.4 CQNCLUSIQ~S 

Progra~ F is notice3bly su?erior to the other se3rch 

routines teste1 in ter~s of reliability an1 sco?e. It 

also shows at least comp3rable efficiency except in cases 

of rnulti?le ~oots where program E provi1es effective 

acceleration. The ~ajor factors governing this success 

wou11 appear to be the inclusion of a para~eter to im?ose 

a bound on argument values and the use of relative 

increments in setting "stepping-off" points. In its 

present state of 1evelopment automatic stopping will 

probably be' of use principally in refining esti~ates of 

roots obtained on the basis of other tests. Its 

reliability as the sole criterion for acceptance of roots 

remains in doubt. 

Search routines generally 10 not eli~inate the 

requirement for a go01 knowledge of the function. If this 

cannot be obtained analytically, a certai~ number of 

experimental function eV3lu3tio~s is likely to be reluire1 

in order to fix ~ppro?ri3te i~itial estimates, bounds 3n1 

convergence criteria. If a suitable interval is 3vailable 

for a root, a ~etho1 which retains such an interval is 

likely to be the best choice; 

- 90 -



Whilst r~tional int~r?013tion worked ~ore efficiently 

in many cases, there is 

~ethod will cope better 

some evi1ence that the ~uller 

with the situation of 

closely-spaced roots and ~~y be c~pable of obt~ining more 

roots when a l3rge number ~re requir~d. 80th these ooints 

may be relev~nt to ~igenvalue tr~cking proble~s. 

Root se~rching from a single starting point is 

gener~lly more successful for continuous funct~ons so if 

possible ~ny poles should be removed when formul~ting the 

function. ~lso ~ny obvious sC3ling factors should be 

e!llp10ye1. 

Despite the substanti~l ~dv~nces outlined above, the 

complete soluti0n of ~ gener~l e1u~tion is still f~r from 

being ~n autom~tic procedure. In comp~rison with methods 

designed 

L~guerre's 

specific~lly 

method) ~ 

for polynomi3l 

much gre~ter ~mount 

(e.g. 

of 

experimentation will be demanded of the user in his 

selection of input p~rameters. 
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CQ1\PTER 5 

EI3ENV~LUE PR0BLE~S 

The standard eigenvalu~ probl~~ is of t~e form 

~!. = >. x where ~ is a given n x n l1atrix with constant 

coefficients, ~ is an n x 1 vector and' ~ a scalar. The 

requirement may be for all or selected ~igenvalues with 

or without the corres~on1ing ~igenvectors x. This 

situation has been studied extensively an~ a number of 

effective algorith~s are available. Senerali~ed 

eigenvalue proble~s involving several matrices 

whose ele~ents 

non-linear functions of A have received comparatively 

little theoretical treatment and, in the latter case, most 

existing algorithms have been develo~ed to solve s~ecific 

practi~al proble~s only. 

The ai~ of this chapter is to indicate how eigenvalue 

problems can arise and to discuss the role of 

equation-solving techniques 

solutions to such ?roblems. 

in obtaining numerical 

Consideration will also be 

given to special features of the equations thus obtained 
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and the consequent difficulties which ~ay oe encountered 

in the application of currently available algorithms. 

Complex roots will be sought i~ many eigenvalue problems, 

and this requirement may restrict the choice of 

appropriate methods and, in ~ost cases, will substa~tially 

increase both the work-load and the risk of failure. 

5.1 OIFFERENTI~L EQU~Tt~NS ~NO 8I~8NV~LU8 PROBLE~S 

The standard eigenvalue problem is encountered in a 

wide variety of practical situations including economic 

~odelling, ~ar~ov processes and geometry in addition to 

mathematical physics. The generalized problems have, to 

date, arisen ~ainly from .engineering applications. 

Wilkinson [48] st~tes t~at: 

" the primary reason for the practical 
importance of the algebraic eigenvalue problem 
is its close relationship with the problem ~f 
deterl1ining the expl icit solution. of a 
homogeneous syste~ of linear differential 
equations with constant coefficients." 

\lso of frequent occurrence- are ordinary and partial 

differential problems involving a variable 

parameter~. For 3iven boundary conditions, solutio~s 

will exist for particular values of A only. The 

deterl1ination of such numerical solutions again gives rise 

to an eigenvalue proble~. In this sectio~ the 

relationship between eigenvalue proble~s and differential 

equations will be outlined and mention will be made of 

relevant practical applications. 
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The For~ of Solution of Initi~l Value Proble~s for 

0rdinary Differential Elu~tions 

a) Explicit First Order Syste~s 

The simplest type of initi~l value problem may be 

expressed in the form 

.ia. = ~:K given th~t ~ = x (0) when t = 0 
dt 

( i) 

where ~ is an nxn matrix with const~nt coefficients (real 

or complex). 

Guidance on the form of solution is gaine1 by 

consi1eration of the one-1imension~1 case dx = ax which is 
dt 

Q.C 
known to have the general solution x = ~e where ~ is an 

arbitrary constant. If x = Xo when t = 0, we then have 

the particular solution x 

This leads to a trial solution for (i) of the form 
)"E: 

! = OI..le wherel is ~ non-zero vector. 

This will be ~valid solutio~ if an1 only if ~l = ~l. 

If has n linearly indepen19nt eigenvectors 

(1·, i=1,2, ••• ,n) this leads immediately to the gener~l 
-~ 

solution 

x = 
n >-. ~ [ .. 

c(.q. e 
'-

,.,. I 

In this cas9,if the matrix ~ has be9n 1iagonalized by a 

similarity transformation, each 1. reduc9s to th9 
-" 

elem9ntary unit v9ctor ~i and th9 equations are completely 

decouple1. 
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When ~ is defective, i.e. there exist fewer than n 

linearly independent eigenvectors, ~dditional terms will 

need to be introduced to give the gener~l solution. 

~ simple example is 

1 o 

~ = o 1 

o o a 

which has the eigenvalue A = a with multiplicity 3 and 

all 'the eigenvectors are parallel to g, • 

The solution of (i) is in this case 

tl.j2 co> to> to) 
XI x..) + tx ... + x, 

t (0) (0) t\.t 
xl.. = X3 + xl. e 

x,3 x (C» 

l 

In I"feneral,the solution of ( i) may be written 
(0) 

X = exp (~t)~. 

Example 

Let u l ,u i ' ••• ,un be the concentr~tions at time t of a 

g, i v e n mol e c u 1 e i nth e fin i t e se g men t s S"S,..,..., S n 0 fan 

infinite tube, the segments being separate1 by oorous 

partitions. 

The diffusion rate between adjacent seg~ents is directly 

?roportional to the difference in concentr~tions, so that 

with ap?ropriate choice of units we have 
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1u, = -U1 + ( U.1.. - U, 
dt 

1u- = ( u"_ 1 u- ) + u i ... , u, ) -" L 

1t 
[i=2,3, •.• ,n-l] 

du = (u -1\ 1\-1 

dt 
un) 

the concentrations in the infinite sections ~ ,Sn+\ 

taken as zero. 

qence 1u = ~~ where ~ is the nxn matrix 
at:. 

-2 1 0 o o 

1 -2 1 o o 

o 1 -2 1 o 

. . . . . . . . . . . . . . . . . . . . . 

The solution 

where 

t i) 

\ = 1\-
I 

0 0 0 

is given by 

-2 + 2 cos 

0 -2 

1\ 

u = o(;q I (~) 

(::.1 

( 
ur ) 
n+l 

e Ai. I: 

being 

and ~.. = 
1 

(
_2 )'/1.s in (i j Tt ) i = 1,2, •.• ,n+l ] 

n+l n+l 

as ~uote1 by Gregory an1 Karney [19]. ~s t -> ~, ui. -> 0 

as each \i is negative [ i = 1,2, .•• ,n+l]. This is in 

accor1ance with the ulti~ate physical state of the syste~. 

The above theory is a finite ~pproxi~ation to the heat 

equation dU 
cd: 

rod. 

= ~4U governing conduction along a 
d::x.>" 
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b) Implicit First Or1er Systems 

The system of 1ifferenti3l equ3tions ~~ = ~ d~ m~y 
dt 

3g3in be analysed by ~?suming ~ solution of the form 

~qe~e. This< leads to an eigenvalue problem of the form 

with ch3racteristic equation 

det(~ - AB) = O. The theoretical treatment of this 

equation presents greater difficulties than the standard 

case; in p3rticu13r, if ~ and ~ are both singular we can 

have det(~ - AB) = O. Such a system is said to be 

incomplete 3nd any value of ~ is a valid solution. 

Wilkinson [481 gives examples of this situation but 

considers th3t incomplete systems are likely to be the 

result of incorrect formu13tion of a ?ractical problem. 

If det(~) ~ 0 the system can, in theory, be reduced to the 

-I \ stan1ard form B ~~ = A~ but if det(B) 

there may exist less th3n n finite 

Wilkinson [481 observes further that: 

= 0 and det(~) ~ 0 

solutions for \. 

" when ~ and B are general qermitian 
matrices there may be nothing distinctive about 
the problem ~~ = A13~. No general purpose 
algorithm has been derived which gives an 
effective. reduction while retaining the 
Bermitian property." 

The situation is, however, more favourable when at least 

one of ~ and B is positive definite as a solution in 

exponentials may then be formulated. 
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.. 
Systems of the form 3x = -~! with ~ ~nd a both 

positive definite ~rise commonly in connection with 

vibr3tion problems (both ~ech3nic~l ~n1 electrical). For 

solution of 
;/AI:. 

the form x = o(~e 

There are n positive eigenv3lues A5 and n in1e,?endent 

eigenvectors q. 
-) 

e3ch of which gives rise to the two 

solutions 0(. q. e i~ t 
1_.1 and 

- i.f).. l: s.q. e j 
\..) -) 'flhen 1\ ~nd a 

both real, it follows that the general solution may be 

expressed in the for~ 
1\ 

L u~ ( 1X~'=OS(f\t) + ~;sin(n:it» 
)",1 

Exa~ple 

The diagram represents two particles of masses rn. and m:l, 

connected to each other and to fixed points ~ ~nd a by 

three springs each of stiffness s, other resistances being 

negligible. Let x.' x~ denote the dis,?lacements of m. and 

m~ from their respective equilibrium positions. 

The L~grange equations then give >.. 
I..) a! = 1\x where 

1\ = [ 2 - -11 
-1 2 

and a = 

[

'111 Is~ o· J 
o m ... /s 

Transforming to the' stand~r1 problem 4 -I 
~ X = 3 1\x gives 

the characteristic (pulsatance) equation 

+ = 0 
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The eigenvectors correspon~ing to the two 

represent the nor~31 ~odes ~f the vibr3tion. ~ll other 

possible patterns of ~otion be 3S 

combin3tions of t~ese two extremes. 

c) Gener3l Systems of Line3r Differenti3l ~lu3tions with 

Const3nt Coefficients 

problems of the form 

()..'1\/" + ••• +X~, + ~o).! = Q be 1erived fro'll 

homogeneous systems of line3r 1ifferenti31 eq1l3tions with 

const3nt coefficients of the form 

+ ~,dx + 1\o~ = Q 
1t 

by 3g3i n assuming a so llJtion of the form x = 0( qe),e • 

Problems ~f this type commonly arise in the qua1r3tic form 

~g3~n, 3 comprehensive theory is not 3vailable but special 

C3ses ~ave been consi1ere1, notably the overdampe1 

physical system which is referre1 to by Lancaster [281 3nd 

Ruhe [401. • ijere [a, (~) 1 > 

3re all self-adjoint. For such systems t~e eigenvalues 

are all real and there exist n linearly independent 

eigenvect~rs. Qua1r3tic proble~s of this type ~ay be 

converted to the line3r symmetric for~. 
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Existence of solutions in th~ gen~r~l 1u~1r~tic c~se 

is not, how~ver, gu~rante~d. For example, the following 

equ~tion, luoted by Lancaster [28]: 

= Q where 1\.0 = 

Examples 

D~mped oscill~tions can ~rise from th~ introduction of 

a dissip~tion function dependent on x into the 

L~gr ang~ equ~tions.' Such ~ function ty?ic~ll y takes 

the for~ of ~ mechanical or electrical r~sistance. 

The resulting differenti~l equ~tion can henc~ be 

written 

+ 1\, dx 
1t 

2. T~rray· and L~ncaster [42] 

+ = Q. 

discuss qu.adrat ic 

~igenv~lue problem ~rising from a study 0f he~t 

transf~r to fluids flowing b~twe~n par~llel ol~tes. 

In this case they ?rove th~t: 

"The spectrum of ~(~) consists of at most a 
countable set 'of eigenv~lues with infinity 
as the only ?ossible limit point." 

Limited observations are ~lso obtained concerning the 

eigenvectors. Such observations ~re likely to be 

rather too general to assist in the numerical 

calculation of specific roots for which reference must 

usually ~e made to the ?r~ctic~l ?roblem co~cerne1. 
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Numeric3l Solution of Differenti3l Bqu3tion Proble:ns 

involving a V~ri3ble P3r~~eter 

Ordin~ry :md 1ifferenti~l equ3tions 

representing physical situ3tions ~ften h~ve coefficients 

dependent uoon 3 par~~eter, A say, which arises from the 

v~riation of the constraints with time or position. 

Fe~sible solutions will exist for particul~r values of A 
only. The usu~l ~ethod adopted is to use ~ finite 

difference aproxi~ation to the derivatives over a mesh of 

suit~ble size. This results in an eigenv~lue formulation 

from which the ~?propriate v~lues of A m3Y be f~und. 

1. The or1in~ry differential equation 

+ (>.g - ~ )y = o 

where ~,g ~n1 J are continuous functions of x and 

bound~ry conditions ~re given. This g~verns, for 

instance, the temper3ture distribution in 

heterogeneous b3r [231. 

2. The equ3tion 

AU 

(quoted by Peters and Wilkinson) [361 which could 

3rise, for example, in potenti~l problems. 
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3. The flutter ?robl~m in ~erodyna~ics which lea1s to a 

~uadratic eigenprobl~m having v~locity as the variable 

poH ameter )... Solutions with the r~al part of ~ 

positive are of interest as they represent "flutter 

'velocity" [47]. 

Non-Polynomial Eigenvalue Proble~s 

~tte~pts to 1escrib~' and compare algorithms for the 

general problem hav~ been made by Ruhe [401 and Lancaster 

[291, although Lancast~r stat~s that n ••• because ~uch of 

the activity is very recent or still un1er development 

there is no comprehensive survey of results." Ruhe 

for~ulates a 1efinition of over1amping in ter~s of a 
"-

generalized Rayleigh ~uotient which may be ex~ende1 to 

cover the general ~ig~nproblem. Such a system is known to 

possess n real eigenvalues and again the linear sym~etric 

theory is of assistance. There remain, however, practical 

exallples which do not come into this categ,ory and for 

which little is known about the existence of solutions. 

The fol~owing are examples which have arisen in practical 

applications: 
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1. ~ittrick ~n~ Williams [49] discuss .t~e problem of 

1eter~ining the n~tur~l undam?ed frequencies of 

vipr~tion of ~ line~rly elastic structure for which 

they derive ~n equation of the form ~(~)D = 0 where 0 

is the matrix of ~is9lacements and ~ is the frequency 

to be determined. If 0 is not of full rank, solutions 

~re sought which satisfy either det ~(v) = 0 or 0 = O. 

The elements of the dynami~ stiffness ~atrix K are, in 

general, non-linear functions of~. In the case of a 

finite number of degrees of freedom these functions 

are quotients of two ?olynomials~ for an infinite 

number of degrees of freedom they are generally 

transcendental. 

The potential difficulties of such problems are 

well-illustrated by Fig 5.1 which is reproduce~ fro~ 

Wittrick and Williams paper. The large number of 

poles an~ the wide range of function values would make 

considerable ~emands on the ~ost sophisticated 

equation-solving routines. 
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~. \ prob19m encQunt9red recently 3t the N3tion31 

Physic31 L3bor3tory [15] 

310ng 1i~19ctric tubes. \n31ysis b3sed on ~3xwell's 

equ3tions pro1uc~d 3n eigenvalue equ3tion of the form 

\(~)! = Q, wher9 ~ is the ?h3se coefficient to be 

deterlline1 :md the eigenvector x cont3ins the 

COllpOn9nts of the electric 3nd ~3gn~tic fi~11 v~ctors. 

\ is 3n eight by eight non-symlletric lIatrixwhose 

elem~nts 3re Bessel functions involving the 

p3rameter~. The requirement W3S for 3S lIany roots as 

possible within 3 given interv31 together with the 

3ssoci3ted eigenvectors. The method of forllulation 
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ensure1 tnat 311 the require1 roots were real but 

their 1istribution ~3ttern was not known a priori. 

3. The characteristic equation for the earth-ionosphere 

wave-guide (as encountere1, for instance, in the 

propagation of radio waves) ~otivate1 the 1evelo~ment 

of a proce1ure by Bahar and Pitzwater [51 for tracing 

the loci of complex roots as the electromagnetic 

parameters are varie1 along the propagation path. ~s 

in the ,previous example, the coefficients involve 

Bessel functions and the root-finding exercise is 

again complicated by the presence of poles and the 

wide variation in magnitude of the function values. 

It is considered that initial estimates of the number 

of roots and' their locations may be unavailable for 

such problems. 

5.2 ~ETHOOS)P NU~ERIC~L SOLUTIO~ 

Pormulation 

The solution of the eigenproblem ~(~)~= Q, where ~ is 

any square matrix whose elements are functions of a scalar 

parameter ~, by means of the scalar equation det[~(~)] = 0 

may be applie1 generally regardless of the properties 

possibly possesse1 by~. Such meth01s hence have the 

strength of versatility, but may fail to take into account 

any special features of the problem. Evaluation of the 

1eterminant may be carried out using either 3aussian 
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e1imin3tion with row 3nd/or column interch3nges or by 3 

sequence of orthogon31 tr3nsfor~ations such ~s in the 

method of Householder. In the opinion of Wi1kinson [471 

"The we3kness of such methods lies in the vo1u~e of work 

required ~nd not in their stability". 

The Probl~m \x = ~x 

For the st~ndard problem ~~ = A! the deciding f3ctor 

in the choice of ~ethod is likely to be the number of 

roots required. The OR algorithm is ~ widely accepted 

method for obt3ining the full set of eigenv91ues. 

Wilkinson observes, however, that "in pr3ctice it is 

uncommon for 311 the eigenv3lues of 3 13rge ~atrix to be 

required." For example, the beh3viour of solutions 
~'C , containing ter~s of the form e' where 1\, is re31 ':'Ii 11 ':>e 

largely governed by the largest (domin~nt) eigenv9lue. In 

such cases ~any of the difficulties associated with the 

search for a large number of roots of an equation will be 

irrelevant. 

Determinant evaluation routines, such as those 

contained in the ~~G library, have been designed to take 

advantage of particular forms of !llatrix such 

tridiagonal 'and positive definite which are of common 

occurrence. 1?otenti~l disadvantage of the 

equ3tion-solving 9?proach is the wide r~nge of values 

assumed ':>y determinants; provision of 3 'sc31ing f3ctor 

will usually be necess9ry for success. 
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The Proble~ \x = ~gx 

If l\ and B are sym'lletric and 13 is positive 1efinite, 

the Cholesky f:tctorization B = LL 
T 

m:ty be used. Then 

~LL" ~ L -I \x 
" L '7" 

-. -'1 
(L"T~) >'(L

T 
~) ~~ = => = ~ => L \L = 

which is of st:tndard form. 

-I When l\ and B ~re of band form L m:ty still be :t full 

matrix, so it is li~ely to be unecono~ic to calculate L 

explicitly. Instead Peters and Wilkinson (36] suggest 

working with the successive 'lli~ors det(l\r -·~gr) which 

form a Sturm se1uence. l\lternatively Crawford (12] gives 

:tn :td:tptation of the Choles~y factor ~ethod which produces 

a reduction to standard form whilst ret~ining 

sym'lletric band form. Re1uction of such systems to 

standard form is only justified if the system is small and 

:tll the eigenvalues are re1uir~d: even in such cases 

there is a risk of ill-conditioning with respect to 

inversion unless one of l\ and 9 is positive definite. 

Eigenvectors when re1uired m:ty then be found using the 

inverse iteration scheme (\ - AB)!r = kcB~~1 where k is ~ 

nor~alizing factor. 

Other ~ethods discussed by Peters and Wilkinson (36] 

and [37] :tre iterative techni1ues which are useful for 

obtaining complete sets of eigenvalues and vectors but 

which are generally more demanding on storage than the 

e1uation-solving :t?proach :tn1 are hence less well suiied 

to the isol:ttion of specific eigenva1ues. 
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With general matrices ~ and S, it is possible to 

express the ?roblem in stand ard form as ~ i ther S -/ ~x = }.. ~ 
-/ 

or (l/A)~ = ~ B~, provided that at least one of ~ and B 

is non-singular. It is, however, usually ?referable to 

apply the QZ algorithm directly to reduce ~ and B to upper 

tr i :mgul ar form. This is effected by applying an 

transformation of the form 
-I , -I 

X~Y(Y X) = AXBY(Y ~) [37] and m~y also be employed when 

both ~ and B are singular. Peters and Wilkinson use 

Gaussian elimination with com?lete pivoting for the 

factorization but suggest that other methods such as the 

singular value decomposition, might also prove appro?ri~te 

in this context. 

The problem (>.'"~f' + ••• + ~~, + ~o )K = Q. 

~ reduction to the form ~~ = AB~ may be made, 

will in this case be of dimension rn with 

o I 

o o 

o 

I 

o 

o 

. . . . . . . . . . . . . . . . . 

o o o I 

I 

o 

and B = 

o 

o 

o 

I 

o 

o 

o 

o 

o 

o ... 

I 
whi~h 

o 0 

o ·0 

I o 

o 

The alternative method is to work directly with the 

equation det( ~~r + ••• + ~" + ,~ ) = O. This obviously 

has the advantage of reducing storage requirements but 

does not enable use to be made of the considerable 

experience which has been gained in the develo?ment of 
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algorith~s for the standard ~roblem. Wilkinson [47] also 

~entions that caution may need to be exercised in the 

evaluation of the ele~ents of the deter~inant as, being 

explicit polynomials, these 

ill-conditioned. qe considers, 

~ay prove 

however, that 

to be 

this is 

unlikely to be serious in pr~ctical problems for which r 

is usually small. 

The General Problem A(~)~ = 0 

When the elements of ~ are non-polyno~ial functions 

of A transformation to staqdard form will not usually be 

possible and the choice will normally be between a matrix 

iterative methdd and determinant evaluation. Ruhe [40] 

describes three methods of the for~er ty~e~ namely: 

1. ~n algorithm based on inverse iteration and a 

generalization of the Rayleigh quotient. 

2. Generalizations of the QR algorithm based on work by 

Kublanovskaya [26]. 

3. Formulation as a sequence of linear problems obtained 

from the Taylor series 

2\( ).. + h ) = ~ ( A) + h2\ I (A) + h.&. 12 R ().. , h) 

Since all these ~ethods involve computation of the 

derivative ~' (~), questions are inevitably raised as to 

the accuracy and efficiency of such a procedure. 

Wilkinson [47] states that: 
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" the evaluation of a 1erivative involves 
far more work than that of a function value. 
The contrast is even ~ore ~arked for the 
generalized eigenvalue proble~ for which the 
relevant function is of the form 
det (~r)..t" + ~f-I 'A r

-
I + ••• + ~ .. )" 

We might expect this proble~ to be further exacerbated in 

the general case when for~ulae for the derivatives are 

known. . For non-polynomial ?roble~s, however, an 

analytical expression for the 1erivative ~ay not be 

available. Ruhe [401 suggests that in some cases the 

difference approxi~ation 

mav be used and comments favour~b1y on'the results whilst 

conceding that the limiting accuracy is poorer. 

5.3 SOLUTION gy EQU~TIO~-SOLVI~G TECHNI2UE3 

Choice of ~lgorithm 

The reliability of "interval" ~ethods is a strong 

argu~ent in favour of their use whenever possible. ' This 

will apply in particular to problems which can be solved 

by the Sturm se~uence method with bisection as this ~ethod 

is extremely stable.' It also has the virtue of 

flexibility as, it enables the user to direct the search 

towar1s -specific roots or to gain an overall picture of 

the root distribution. Once ap?ropriate intervals have 

been isolated a switch can be made to an interpolation 

method in order to accelerate convergence, although the 

gain ~ay not be worthwhile if the eigenvalues are 
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clustered. 

Peters and Wilkinson [361 use ~ ~ombine1 line~r 

inter~olation ~nd bisection ~ethod for which they report 

results of "almost the o~timum accuracy for the precision 

of the computation". 

When the problem is non-symmetric or when bisection 

fails due to roots of even ~u1tiplicity, a "se~rch" 

strategy must be employed. The possibility of complex 

roots must also be considered. Laguerre's ~ethod has 

gained wide acceptance for the standard ~roblem because of 

its global convergence properties and rapid rate of 

convergence~ it is not however appro~riate for 

non-polynomial problems for which first ~nd second 

deriv~tives are not readily available. The algorithm most 

frequently use1 for the generalized'prbblem is ~u11er's 

method which has produced results of high ~ccuracy [37]. 

Wilkinson [47] finds inverse interpolation methods less 

satisfactory but there seems to have been less experience 

with rational interpolation in connection with eigenvalue 

problems. Peters and Wilkinson [37] prefer an inverse 

iteration method to equation-solving, however, for 

eigenvalue tracking problems as in such cases the 

eigenvalues will be required in chronological order 

together with the corres~onding ~igenvectors. 
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Tne order of root determin~tion is 9~rticul~rly 

import~nt if the char~cteristic equ~tion is expressed ~s 

ex?licit 90lynomi~1 in order to minimize 

ill-conditioning following defl~tion. ~s the order of 

comput~tion c~nnot e~sily be predetermined, the explicit 

form is gener~lly ~voided ~nd sU9pression of roots is 

employed r~ther than explicit defl~tion. The role of 

suppression is simply to prevent repe~ted convergence to 

the same root; it should not, therefore, ~dversely ~ffect 

the ~tt~in~ble ~ccuracy of subsequent roots. 

Initi~l Estim~tes 

In t.he, c~se of the stand~rd problem l\~ = ). ~ we have 

(i=1,2, .•• ,n) for ~ny ~~trix norm. The 

usu~l choice is I ?\~I or 11 l\ 1\ 00> both of which ~re quick to 

compute. This provides ~ st~rting interval for the 

bisection process or a bound for the se~rch routine if 

this c~n be set in the c~11ing progr~m. ~erschgorin's 

theorems ~lso 9rovide ~ method of fixing bounds but these 

~re not so str~ightforw~rd, p~rticu1~rly when n is l~rge. 

These theorems can be of use if they reveal isolated discs 

since e~ch of these will cont~in one eigenv~lue only. 

Such ~n outcome is not likely to occur frequently but 

would give v~lu~ble inform~tion in the complex c~se when 

the bisection metnod is not ~pplicable. ~,qhen 

eigenva1ues have been found (m) 2), ~ilkinson [47] 

suggests the 11 stepping-off ll points l( )"'_, + 2 ~"') ~n,d 
3 

for the next se~rch when using ~n 
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int~rpo1ation method, ~lthough an increase in the shift 

might be necess~ry if the first iter~te is not near a 

root. He goes on to say, however, that " iterative 

~ethods appear to best advantage when approximations to 

the eigenva1ues are ~vail~ble from an independent source." 

~t present practic~l considerations are probably the only 

w~y of, obtaining estimates for generalized problems w~ich 

Ruhe [401 considers to require better estimates than the 

line~r c~se. 

Checking of Results 

The results of the investigation described in the 

previous' chapter indicate t~at it is highly 1e~irable to 

have some means of checking the v~lidity of roots obt~ined 

by iteration, particularly where the function value varies 

widely (as will often be the c~se with eigenv~lue 

problems) • The test usu~lly' recommended for the stan1~r1 
t\ 

problem is to use t~e rel~tion L Ai = tr(1\) . This is 
;,,' 

not foolproof as the selected algorithm might le~d to the 

introduction -of errors which cancel on ~1dition. 

r..vi1kinson [471 considers the test to be effective, 

however, when a suppression techni1ue is employed as the 

zeros are then located independently of e~ch other. 
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In real examples ~ny complex roots will occur in 

conjugate pairs but it is a sensible precaution not to 

accept a conjugate automatically. If the secon1 root is-

also obtained iteratively little extra work will be 

involved but the agreement between the conjugate roots 

will be a guide to their accuracy. It may also be the 

case that a co~pute1 eigenva1ue with a small imaginary 

part actually represents a real root. 

~ possible approach to checking results for the 

generalized problem ~(~)~= Q is illustrated by example 2 

of section 5.1. The problem was solved at the National 

Physical Laboratory using the routine RTFS1R (desqribed in 

section 4.1) with an option of either ~uller or rational 

interpolation and a relative or automatic stopping 

criterion. ~ppropriate scaling was employed in t~e 

calculation of the elements of ~ and in the evaluation of 
I 

the determinant from the upper triangular form [15]. The 

typical behaviour of the function near a root is as 

illustrated in Fig 5.2 and indicates that function value 

convergence tests would be inappropriate. 
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~nother method of solution ~tt~m?t~1 W3S the minimiz~tion 

of the singular v~lues of ~ which ?roved to be highly 

unsuit~ble for numeric~l estim~tion being of the form 

shown in Fig 5.3 (It may be noted in this connection th~t 

R u he [40 1 fin d s the m i n i m i z ~ t ion 0 f 11 ~ ( A ) 1\ to be ~ 

somewh~t unsatisf~ctory method.) 

The singular value decom?osition 

0', 

o 
Q 

o 
0"", 

with QTQ = pTp = I, W3S, however, very useful for 

calculating the eigenvectors an1 for checking the 

eigenvalues by examining the 'l1~gnitud~ of th~ r~tio d',.!a' •• 

This was found to be very much smaller for v~li1 roots 

th~n for the false roots which ~?pe~red occasionally as 3 

result of ~utomatic stopping. I1~ntification of valid 

roots by this method w~s ~ssisted by row ~nd column 

scaling of the matrix ~ befor~ d~cornposition. 

c~lculation of the eigenvectors is described 

l.\ppendix G. 
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5.4 ~U~ERIC~L EX\~PLES 

The National Physi~~l Labor~tory's equ~tion-solving 

routine [201 was use1 in conjunction with N~S routines 

F03~FF ~nd F03~HF [33] for re~l ~nd co~plex deter~inant 

evaluation respectively, to solve ~ variety of eigenvalue 

problems. These routines enabled all function values to 

be scaled in the for~ a x 2 c 
• 

For the standar1 problem, the ~ain program used, a 

list of the ~atrices tested and the results using Muller'S 

~ethod are given in ~ppendix F. The data chosen was from , 

selection by Gregory and ~~rney [191. Isolated 

eigenvalues were found to ~achine precision, whilst 

~ultiple roots were of poorer limiting accuracy an1, 

predictably, required a ~uch larger nu~ber of iterations. 

The difficulties encountered in proble~s 3 and.ll wera 

suc~essfully overcome by respectively increasing.the bound 

and suppressing the ze~o root. The rational interpGlation 

method applied to the same ex~mples gave si~il~r results 

excepting number 7 for which the smallest root w~s found 

twice. In the majority of examples the Muller method 

required slightly fewer iterations. 

Four generalized eigenv~lue problems were examined, 

the 1et~ils being given in ~ppen1ix F. The first example 

is of the for~ ~~ = AB~, with ~ ~nd 8 b~nd symmetric. ~ll 

20 eigenvalues were calculated successfully but the total 

number of iterations w~s si~ilar to that obtained by 

Peters and Wilkinson with a linear interpolation and 
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bisection method, despit~ the higher order iterative 

'Uethod em?loyed. 

The remaini~g three examples are all taken from the 

pap~r by Ruhe [4~], the first involving an exponential 

term in ~ and the others being of quadratic form with 

complex roots. 8xample 1 has 16 distinct ~igenva1ues 

which were obtained successfully by both the rational 

interpolation and, "1uller metho1s, the former being 

slightly more efficient in this case. 

The secon1 exarnpl~ was sol~ed by ~uller's metho1 with 

only a slightly greater number of iterations tha~ the 

metho1s teste1 by Ruhe. Taking into account the fact that 

these require derivative values, ~ull~r may be considered 

superior from the efficiency point of view. The latter 

also has th~' virtue of requiring only o~e initial 

estimate, subsequent roots being located automatically. 

The final example involves a variable paramet~r ~ and 

is ill-conditioned for small values of~. 'stan1ard 

error test was sufficient to solve the oroblem in the case 

()(=0.5, but an excessive number of iterations was 

required when 0(.= 0.0. 

roots at ,,= ± i ,an1 

In this case there are triple 

a double root at th~ origin. The 

automatic stopping criterion was applie1 

this case, the results reflecting the 

accuracy attainable. 
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CH~PTER 6 

SE~RCq STR~TEGIES IN THE CO~PLEX PL~NE 

Until r~cently litt19 attention h~s been p~i1 to th~ 

computation of complex roots in comp~rison with the re~l 

c~se. Henrici [21] justifi~s the need for further 

investig~tion in the polynomial case, stating th~t: 

"Even if the given ?olynomi~l has r~~l 
coefficients, it can be proved that in ~ c~rt~in 
statistic~l sense, if the degr~e is high enough, 
most of its zeros will be complex. In most 
applications of polynomials (9.g. in the theory 
of control syst9ms or in differenti~l equations) 
re~l ~nd complex zeros ~re equ~lly relev~nt." 

Such comments may well extend to the general function. 

Henrici's work 'is ~ develo?ment of complex analysis which 

gives particul~r attention to num9ric~1 as?ects of the 

subject. ~ considerab19 ~mount of theory is ~vailable to 

~ssist in the solution of ?olynomi~l equ~tions; in 

particul~r the est~blishment of ~ounds ~nd methods for 

determining the numbers of zeros in specific regions [221. 

It is thus desirable in such cases to employ ~ ?rogram 

specifically designed for polynomials. To d~te few 

algorithms h~ve been published for the solution of 



non-polynomial equations an1 those available show a 

1iversity of Brief '1escriptions of so~e 

approaches to the problem are given below, together with 

comments on the practical performance of algorithms where 

available. Pew comparative stu1ies wou11 appear to have 

been carrie1 out, however. 

6.1 SEARCH METHODS 

Graphical ~ethods 

A preliminary sket~h pf a polynomial function may 

give clues to the location of complex roots. Por the 

general function Larkin [29] 1escribes how automatic 

plotting of the real and imaginary parts can give useful 

information on the location of roots and poles an1 their 

orders. Such a diagram may be expensive to produce if the 

region of interest is.uncertain or when the function is 

complicated. In the, latter case, not only will each 

function evaluation be lengthy, but a fine mesh may be 

required to give a clear picture of the behaviour of the 

function. Por a transcendental function f(z), the graphs 

are likely to be complicated and Larkin suggests that 

plots of In If(z)l = constant and arg(f(z)) = constant are 

likely to be more helpful. This representation also 

provi1es an analogy with electric field theory. The field 

lines thus generated also indicate convergence regions for 

the iterative process with 'A 

small, although a warning is given that starting within 
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such a r~gion 10es not guarantee that a subsequent iterate 
) 

will not, in ?ractice, jum? outsi1e the region. 

Comparison with a Polynomial 

~hlfors [2] suggests that practical use may be ma1e 

of Rouch~'s theorem in the following manner: 

Suppose that the function fez) Dossesses Taylor 

expansion of the form 
f\ 

fez) = P n - I (z) + z fn (z) wher~ 

P n - I (z) is polynomial of 1egree (n-l) 

R"I fn (Z)I < I P,,_I (z'>I . on the circle I zj= R, then fez) has 

the same numb~r of zeros in ,the region Jz/( R as Pn - I (z). 

Routines to determine the number of zeros of a ?olynomial 

in a given circle are available, for example Lehmer [30]. 

Th~ ~olutions of the ?olynomial ~quation P
n
-, (z) = 0 might 

also provid~ suitable first estimates for th~ zeros of 

f (z) • 

If the conditions for the 3.??lication of Rouche's 

theorem ar~ not fulfilled, the use of a truncated series 
I 

approximation is considerably more risky. 'This is 

illustrated by Oelves and Lyness [14] with the example 

fez) = e whose nth. degree Taylor expansion must have n 

zeros in the compl~x plane whilst th~ original function 

has none. They also warn that obtai~ing the coefficients 

of the ap?roximating polynomial is likely to involve heavy 

computation and the resulting equation may 

ill-conditioned irrespectiv~ of the con1ition of f(z). 
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Nu~eric31 Use of the Principle of t~e ~rgum~nt 

Henrici [21] consi19rs the princi?le of the 3rgument 

to be powerful instrument for fin1ing first 

3pproxim3tions, however crud9, to the zeros of 3n~lytic 

functions". For such 3 function the number of roots 

within 3 simple close~ curve C is given by 

f'(z) dz 
f(z) 

= = n(f(z) ,0) 

where n(f(z) ,0) is the win1ing number of f(z) :tbout th9 

origin, 9rovid9d th3t no root of f(z) 1i9s on C. In the 

C3se of 3 ~eromor?hic function, W9 have the ~or~ gener31 

formul~ N - P = n(f(z) ,0) where ~ is the number of roots 

and P is the number of 9019s within C. 

The curve usually chosen for the numeric:tl 

ca1cul~tion of the integr31 is either a circle or 3 

rect~ngle. Henrici points out th3t 31thoughthe winding 

number is 3n integer, it is quite possible to select the 

wrong value unl~ss careful 3tt~ntion is given to the 

effect of rounding errors. The 31gorithm given by Henrici 

depends .upon 3 sub1ivision of the contour C which is such 

th3t e3ch sub~rc subtends :tn ~ngle not gre~ter th3n "/2 at 

the origin; nu~eric31 qU3dr3ture is avoide1. '3oth this 

method 3nd the direct eV31u:ttion of t~e integr31 C3n 

present the following ?rob1e~s: 
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1. It is 1ifficult to ensure th~t no zero lies on the 

ooun1ary C. 

2. ~ very small sub1ivision of the curve is required if a 

root is near to the boundary. 

For these reasons it may be more ?racticable to use an 

algorithm s~ch as that of Wehl [45] for ?olynomials which 

systematically eliminat~s regions which contain no root. ' 

~ frequently discusse1 implementation of the 

principle of the argument is Lehmer's method for 

polynomials [30]. The first stS? is to fin1i by starting 

with the unit circle an1 successively doubling or halving 

the radius, an annulus R < Izl < 2R, containing at least one 

root of the ~quation. T~is annulus is covered by eight 

smaller circles, at least one of which must contain a 

root. When such a circle has been found, an annulus is 

again obtaine1 and the process may be rs?eated as 

illustrated in Fig 6.1. 
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'f.\'d ,. \ 

This method of generati~g successive regions may be use1 

for non-?olynomial equations; alternatively the 

efficiency can be i~prove1 by varying the ra1ii of the 

covering circles [161. Leh~er's met~01 for 1etermining 

whether a region contains a root is, however, restricte1 

to polynomials. The principal criticism of Lehmer as the, 

sole ~eth01 has been that of inefficiency [11, [141, 

without compensating improvement in limiting accuracy. 

Susceptibility to machine un1erf16w or overflow has also 

been mentione1. ~ more practical proposition is to use 

Lehmer's method for the initial search, switching to an 

alternative method, such as Newton, as soon as it will 

give convergence [22]. 
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The method of Delves an1 Lyness [14] adopts a similar 

technique but evaluates the actual numbers of roots in 

each region and can be used to solve f(z) = 0 where f(z) 

is any analytic function of z. The algorithm consists of 

the following steps: 

1. The number of roots in the initial region is evaluated 

by contour integration: the region is subdivided and 

the evaluation is repeated until the number of roots, 

N, in each subregion is acceptably small (N = 5 is 

suggested) • 

2. Numerical esti~ation of 

1 
21fi J z" 

c 

I 
f (z) 1z 
f(z) 

gives, by Cauchy's theorem, the sum of the nth. 

powers of the roots. These sums 1etermine , 

polynomial equation whose zeros are the same as those 

of the given function. 

3. The polynomial e~uation is solve1 using a subroutine 

specifically des~gne1 for suc~ functions. 

4. If necessary the solutions may be refined by the use 

of an iterative method with the original function. 

Details are given of alternative methods of subdivision 

based on rectangles or circles and suitable methods of 

numberical ~uadrature are described in each case. The 

algorithm is claimed to be ~ore efficient than that of 

Lehmer for solving high order polynomials an1 also reduces 
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the build-up of rounding errors associat~d with explicit 

deflation. 

~ major problem associated with the direct-use of the 

principle of the argument is the re1uire~ent f~r 

derivative values. Oelves and Lyness [141 have developed 

two ~ethods for use in cases where an analytic exp~ession 

for f'{z) is unavailable. These algorithms are based on: 

1. evaluation of In{f{z)). 

2. obtaining coefficients of the truncated Taylor series 

for f{z) using numerical integration: 

Spira [41] presents an alternative of 

calculating based on function evaluations at 

discrete points but the selection of covering discs is 

based on a knowledge of the least upper bound of If'{z)\ 

in the region. 

Descent ~ethods 

These methods are based on the idea of ~ini~ization 

of th~ ~agnitude of the function value. ~ne such example 

is the ~ethod of steepest descent which has the 

disadvantage of requiring derivative values~ in addition, 

the rate of convergence can be slow [21]. 
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~ 1irect se~rch ~etho1 for equ3tion-solving was 

proposed by Ward [441. This seeks to ~inimize the 

function'\Re(f(z»1 +IIm(f(z»\ by eX3mining 3 set of five 

points (xo ,Ye)' (Xo"!. A ,Y.) and (xa ,Y .. "t._'A), choosing th~t 

which gives a ~inimum function v~lue 3nd t~king this ~s 

the centre point for the next iter3tion. ~hen the chosen 

point is the centre of the five, the step length A is 

reduced before resuming the search. ~ore generally, any 

number of points pl3ced equidistantly on the circumference 

of a circle ~ay be used. The most serious shortcoming of 

the 3lgorithm is the possibility of locating a loc~l 

~inimum which is' not 3 root of the equation. 

B3ch [41 presents a more sophisticated "walk o3ttern" . - -

commencing with the vertices of an equilateral triangle 

3nd subsequent searches in forwar1 branching 1irections ~s 

shown in Pig 6.2. If the process converges, the algorithm 

is repeated with a smaller step length~ otherwise tl-le 

origin3l configur3tion may be rotated. In 3ddition to 

improving the success rate, S3ch claims that his algorithm 

will 3lso give improved efficiency 3S comp3red with Ward's 

selection of points. 

: 
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When several roots of ~n ~quation ar~ r~quired, 

descent ~eth01s will generally require separ~te esti~ates 

for each. Hence this approach is likely to be 

inappropriate for root-tracking ?robl~~s. 

The iterative meth01s describe1 in Chapter 3 ~ay also 

be used for the co~putation of co~?lex roots provided that 

their for~ulation is not dependent upon the retention of 

an interval containing a root. In practice a meth01 is 

usually chosen which allows iter~t~s to ~ove auto~atically 

into the complex plane. Thus Laguerre's ~ethod has found 
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favour for polynomi3l equations whilst that of ~uller is 

th9 usual choice in th9 gener3l ~ase. The former ~ethod 

has been found to have good global conv9rgence properties. 

Less is known in the case of ~uller, but the results of 

Chapter 5 would seem to indicate that, given suitab19 

bounds, it ~ay be possible to dispense with oth9r 

preliminary search strategi9s. If a complex initial 

esti~ate is provided, rational interpolation may be used 

although there has b99n less experience with this method. 

Bahar and Fitzwater [5] have developed a ~ethod_ of 

solution for an equation expr9ssed in the form F(~) = 1, 

which is designed to enable the loci of the roots to be 

traced as the parameters of F are varied. '~n outline of 

th9 procedure is as follows: 

The first two esti~ates are obtained by fixing Re(V ) 

varying Im(y ) by bisection until, I F(v )1 ~ 1. 

Subsequent iterations use the starting 'point ('2'V r+, - 'V f ) 

and a search direction i())f''t' - 'Y f ) for the bisection Le. 

approxi~ately peq>endicular to the locus IF ('J ) 1= 1. This 

process is repeated until Im(F(V» changes sign. The 

estimated root is then refined by linear interpolation 

parallel ~o \F(v)1 = 1 and bisection perpendicular to this 

direction. 
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The authors state that, for the functions consider~d, 

"F/(~) cannot be writt~n in a closed analytical for~ and 

numerical differentiation is subject to significant ~rrors 

in critical r~gions." The method described does not 

require esti~at~s of the derivative giv~ 

satisfactory results even when F(u) has isolated poles in 

the region of interest. 

6.2 NUMERIC~L EX~~PLES 

The descent and interpolation methods were tested on 

a small selection of functions using FJRTR~~ routi~es by 

8ach [3] and the National Physical' Laboratory [201 

respectively. Table 6.1 shows th~ fu~ctions chosen, 

together with the roots sought. Separate esti~ates of 

each root wer~ supplied in the case of the downhill 

algorithm: for the interpolation ?rogra~ an attempt was 

made to obtain all the required roots from a single 

user-supplied starting value. ~uller's method was chosen 

in preference to rational interoolation as it gave more 

satisfactory results in most cases. 

The results obtained are given in Tables 6.2 and 6.3. 

90th routines performed successfully with polynomial 

functions (numbers I to 3) although the suoerior 

efficiency of routine RTFSIC in terms of the numbers of 

function evaluations is apparent. The inclusion of a poor 

starting value for function nu~ber 1 de~onstrates that 

success can be achieved even when the initial estimate is 
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some distanc~ from a root. Bett~r starting values are 

required for transcendental functions in both ~ases; for 

roots succ~ssfully comput~1, the observations regarding 

efficiency are similar to the polynomial examples. 

The tables for this section are given on pages 

131-135. 
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TABLE 6.1 FUNCTIONS TEST8D (C~~PLEX ~OOTS) 

FUNCTION ROOTS SOUG8T 

l. Z3 - 1 1, -0.5 ± O.9660i' 

2. Z3 (3+4i)z L + 2, 3i, l+i 

(-1+11i)z + (5-6 i) 

3. 
L • L 

(z+l) (Z+l) -1,-I,-i,-i 

4. -£ Z - ~ R9a1 root 0.5671 

+ 5 compl~x roots 

5. 4i(z-i) - ~x?(-2 Re(z» 0.2699+0.7301i 

-0.7440+1.7440i 

-1. 3089+2. 3099i 

6. z.1.. + In 12 + Re(z)1 -1.980, -2.017 

±O.8326i 

7. z - cos (z) Real root 0.7391 

+ 6 compl~x roots 

8. The ';(_'~:coustic waveglji1~ ~ cO'llplex root 

function as giv~n by near 0.1 + O.li 

Ro1m:m [39]. 
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T~BLE 6.2 RESULTS OBT~I~8D USING ROUTINE RTFSIC 

TOLERl\NCES 

(Re13tive error in root < ~ or m~gnitu1e of final function 

va1u8 < 1, ) 

Functions 7 3n1 9 

Remaining Functions 

FUNCTIO~ RO:)T 

1 l\LL 

1 ~LL 

2 l\LL 

3 - l\LL 

4 (0.5671,0.0) 

(-2.4016,-10.776) 

(-2.4016,10.776) 

(-1.5339,4.3752) 

(-1.5339,-4.3752) 

- 132 -

ST~RTING 

POINT 

(0,0) 

-8 
'1. = 10 

-, 
"1- = 10 

TOTl\L NO. 

FUNCTI')N 

EVl\LUl\TIr:>NS 

16 

(100,100) 32 

(0, 0) 19 

(0,0) 31 

(0.0,0.0) 49 

(cont.) 



T~BLE 6.2 (cont.) 

FUNCTION, 

5 ' 

6 

7 

~O,)TS 

(0.2699,0.7301) 

(-0.7440,1.7440) 

fails to find 

thir1 root. 

(0.0,0.8326) 

(0.0,-0.9326) 

(-2.0171,0.0) 

(-1.9802,0.0) 

(0.7391,0.0) 

(-2.4869,1.8094) 

(-2.4869,-1.8094) 

(-9.1100,2.9502) 

(-9.1100,-2.9502) 

(-15.488,3.4566) 

(-15.488,-3.4566) 

(0.07200,0.005304) 
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ST~RTI~G 

POINT 

(0,0) 

(0,0) 

(-2.01,0) 

(-1.98,0) 

(0,0) 

(0.1,0.1) 

T,)T~L ~O. 

FUNCTIO"1 

EV~LU~TIONS 

140 

13 

9 

6 

53 

12 



T~BLE 6.3 RESULTS OBT~INED USING ROUTI~E CRP (B~CB) 

INITI~L STEP LENGTHS 

Punction 1 (starting point (100,100» 10.0 

Punction 5 (real roots) 0.01 

Punction 7 0.01 

Punction gO. 1 

Re~aining Punctions 1.0 

T'JLER~NCES 

(Pinal step length < z or ~~gnitu1e of fin~l function 

value < '1) 
Punction 1 (starting point 

Punctions 7 an1 8 

Remaining Punctions 

PUNCTION R'JOT 

1 (1.0,0.0) 

(-0.5,0.8660) 

(-0.5,-0.9660) 

(-0.5,-0.8660) 

'2 (1.0,1.0) 

(0.0,3.0) 

('2.0,0.0) 

"3 (-1.0,0.0) 

(-1.0,0.0) 

(0.0,-1.0) 

(100,100» z 

z 

z 

5T~RTING 

P0INT 

(0.0,0.0) 

(-1.0,-1.0) 

(-1.0,1.0) 

(100,100) 

(0.0,0.0) 

(0.0,1.0) 

(4.0,0.0) . 

(0.0,0.0) 

(2.0,0.0) 

(1.0,1.0) 
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10-1 
-). 

= 1. = 10 

= 10-' '7. = 10-3' 

= 10-1,0- 1 = 10-' 

N'J. 1?UNCTI0N 

EV~LU~TI0NS 

1'2 

69 

69 

87 

96 

75 

6 

"3 

63 

63 

(cont. ) 



TABLE 6.3 (cont. ) 

FUNCTION ROOT ST1\RTING NO. FUNCTION 

POIl\7T 8V1\LUl\TIONS 

4 (0.5671,0.0) (0.0,0.0) 237 

(-2.4015,10.775) (0.0,10.0) 153 

(-2.4016,-10.776) (-2.0,-10.0) 91 

(-1.5339,4.3752) (0.0,5.0) 114 

(-1.5339,-4.3752) (-1. 5,-4. 0) 72 

5 (0.2699,0.7301) (0.0,0.0) 138 

(-0.7440,1.7440) (-1.0,1.0) 300 

(-1. 3099,2.3089) (-1.5,2.5) 324 

6 (0.0,0.8326) (0.0,1.0) 102 

(0.0,-0.8326) (0.0,-1.0) 102 

(-1.980,0.0) (-1.98,0.0) 258 

(-2.017,0.0) (-2.01,0.0) 36 

7 (0.7391,0.0) (0.0,0.0) 216 

(-2.4869,1.8094) (-2.0,2.0) 63 

(-2.4869,-1.8094) (-2.5,-1.8) 144 

(-9.1100,-2.9501) (-10.0,0.0) 90 

(-9.1100,2.9501) (-9.1,3.0) 147 

(-15.488,-3.4566) (-15.0,0.0) 117 

(-15.489,3.4566) (-15.5,3.5) 99 

9 (0.07200,0.5304) (0.1,0.1) 199 
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6.3 CONCLUOI~G RE~~RKS 

It is not always possible to ~ake a clear aistinction 

between global and local ~ethods for root evaluation since 

the region of convergence of an iterative procedure is 

heavily dependent upon the nature"of the function under 

consideration. Delves and Lyness [14] consider that "~ 

feature of al~ost any global ~ethod for locating zeros is 

that it is uncommon to find the zeros to high accuracy". 

~ccording to this criterion, the ~ethod of Leh~er and 

direct search descent methods are be~t suited to finding 

crude esti~ates of the roots only, since each of these 

methods re~uires a large number of iterations in 

com~arison with, say, interpolation ~ethoas. The results 

obtained above indicate, however, that it ~ay ~e possible 

to dispense with a preli~inary global search and to use an 

interpolation al~orith~ with root suppression to conduct 

the search and to carry out the iterative i~prove~ents. 

In practice it is likely that further infor~ation 

will be available to the user fro~ consideration of the 

source of the e~uation and the nature of the re~uired 

roots. ~any theoretical results for the eigenvalue 

problem, in particular the calculation of bounds using a 

matrix norm and the singular value decomposition are valid 

in the complex case. Wilkinson [47] has observed that: 

"favourable distributions are not unco~~on for 
matrices which arise in connexion with da~ped 
~echanical ana electrical oscillations, for 
which the eigenvalues are, in general, co~plex 
conjugate pairs." 
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If the prob1e~ can be reformulated as a real root-finding 

exercise, for exa~?le the waveguide ?roblem for die1~ctric 

tubes referred to in Chapter 5, considerable economies can 

be ma1e and the chances of success improved. 

On the question of attainable accuracy Wi1kinson 

points out that "in our experience polynomials with 

complex zeros which have arisen in practice have had quite 

well-conditioned zeros." [46] There - appears to be 

insufficient evidence to extend this comment to the non-

polynomial case. The two-dimensional nature of the 

problem, in addition to complicating the initial search, 

will make accuracy checks on the computed results, 

1ifficult. It may, however, be the case that high 

accuracy is not required, as in a problem of automatic 

control mentioned by qenrici [21] in which only the number 

of zeros in a given region is required. 

The development of programs for complex root-finding 

tends to reflect the extent to which complex roots have 

been sought in practical situations. 
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CH~PTER 7 

I~PLIC~TIONS FOR SOFTN~RE OEVEL~P~ENT 

Interpol~tion ~ethods ~re well-establishe1 for the 

comput~tion of re~l roots ~nd it is likely th~t they will 

continue to form the basis of ~lgorith~s for some ti~e. 

For this re~son, the inclusion of more sophistic~ted 

fe~tures of iffiplement~tion, such ~s those described in 

Chapter 2, is desir~ble, both to extend the scope ~nd to 

iffi9rove the reliability of the progr~m. 

The algorithms described, when convergent, can 

generally be relied upon to produce results of the ~~ximum 

~tt~in~ble accuracy consistent with machine precision ~nd 

the condition of the problem, provided th~t ter~in~tion 

criteri~ ~re selected with c~re. ~ost published numeri~al 

tests h~ve been carried out using very go01 initial 

estimates of the roots. \lthough this is prob~bly 

necess~ry for so~e functions, there is potenti~l for the 

use of such methods 3S se~rch procedures over a wider 

region, ?~rticul~rly in the polyno~ial c~se. 

roots required, iter~tive methods 

~hen co~plex 

using ~n 



? 

interpol3ting function C3~ 31so be strongly re~ommen1ed 

from the point of view of efficiency. 

Deter~in3nt eV3luation combined with e1uatio~-solving 

-has given very s3tisf3ctory results for gener31ized 

eigenvalue problems 3n1 is preferable to matrix iterative 

methods f~r the selection of specific roots 3nd for 

tracking oroblems. The use of an adjust3ble bound has 

proved a p3rticul3rly useful fe3ture in this co~text. 

~ullerls method h3s been widely used when derivative 

values 3re not readily 3v3i13ble; there is now, however, 

increaSing interest in the use of rational functions for 

interpo13tion. In a recent paper [71 9arzi13i 3nd Ben-Tal 

show th3t the 3symptotic rate of convergence of an 

algorithm to 3 simple r~ot is independent of the n3ture of 

the interpo13ting function and depends only upon the 

number of interpo13ting points used and the orders of 

derivatives matched 3t these points. Thus the ~hoice 

between r3tiona1 interpo13tion 3nd ~u11er's method will be 

determined principally by the nature of the fun~tion whose 

zeros 3re ,required. Very -s3tisf3ctory r'esults are 

obt3ined' for polynomials; both real 3n1 complex by the 

Muller method, but B3rzi1ai 3nd gen-Tal favour rational 

interpol3tion when the function 

The examples of Ch3pters 4 

v31ues ch3nge r3pidly. 

3nd 6 tend to confir~ this 

view. It W3S 31so observed th3t although the r3tio~al 

interpolation method can be economical in ter~s of the 

number of function evaluations required, it is more prone 
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to failur9 wh9n a larg9 number of roots is sought ~nd ~ 

suppr9ssion techniqu9 is em~loy9d. Robinson [181 w~rns 

that success with 1uadr~tic interpol~tion for ~inimization 

problems cannot be guaranteed because of th9 possibility 

of rep9~ted function valu9s. Practical exp9rience with 

the routine by Gannet [18] shows that this can ~lso be a 

cause of failure when such an inter~ol~ting function is 

used for equation-solving. 

~hilst published routines h~ve tended to f~vour three 

point interpolation, the rate of conv9rgence in pr~cti~e 

is not p9rhaps as good as might be expect9d in comparison 

with lower order methods. Barzilai ~nd Ben-Tal suggest 

that maximum 9ffici9ncy is obtain9d using two point 

interpolation. They also point out, howev9r, that 

attempts to improve reliability by retaining an interval 

for the root are likely to incur the penalty of a slower 

converg9nce rate; a fact which is well-known for the 

S9cant and regula f~lsi methods. 

The major outst~nding difficulties concern the 

automatic se:Hch for sever~l roots. In '?~rti-:ular, th9 

following problems wer9 noted: 

1. The difficulty 

mu1tip19 roots 

of distinguishing 

and the failure 

suppress a previous root. 
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2. Locating a second root which is som: distance from the 
( 

first without causing a complet~ breakdown of the 

procedure by, for example, the occurrence of overflow. 

3. The acceptance of points which are not roots of the 

given equation. This is particularly associated with 

the use of the automatic stopping criteriorr. 

4. Pailure to det:ct som: of the roots when several are 

required. 

The above points suggest that the jreatest ~urrent need is 

for further study of the global convergence properties of 

iterative methods. ~nother area for further investigation 

is the detection of multiple roots and the development of 

an effective techni1ue for the acceleration of convergence 

in such cases. It is also worthwhile to i~corporate 

facilities for handling function values in a scaled form. 

The development of routines for the computation of 

standard functions in this form will be a necessary 

adjunct to the equation-solving program. Reverse 

communication is another valuable feature, allowing 

flexibility to the user, particularly when solving 

non-polynomial equations which still require some 

experimentation with input parameters in many cases. 
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I\PPENDIX 1\ 

ORDER OF CONVERGENCE OF THE SECI\NT METHOD 

The iterative process may be written 

= 

= > r:J.. + E ~~ ,= ('" + E:. _ I ) f (oC.. + ~. 

f(oe.. + ~i f ( '" + ~;'_I 

where 0(. is the exact root and E.: is the error in xc:. 

Using Taylor's series to second order terms 0<. + ~i.~' = 

~ol + ~L-I 

[f(l1.) + 

Putting 

+ ~. f I (0<.) 
l. 11 

) (f(o<.) + ~f (0<.)) 
~ 

.2.. 

- (0<. + ~L ) (f (0(.) + ~,-, f'(o<.) + 

/ zi. f (ot..) + 4 /I ] t~ f (0<.) - [f(ol) 
J + ~~_, f(o<.) 

f (0<.) = 0 gives 0<.. + ~i."'1 ~ 

(~. - 2.;_1 ) f' (0<.) + (~t- l:i-~ ) fl/(aI,.) 

:z. 

- Al -

,. /1 ~ f:1-, f (0<)) 

. l. 11 ~ + ~~,f (0<) 



=) 0{ + E .... , ~ o(.f'(o(.) + 'e~f.i_lfl/(~) + (c!.: + e.-, )0<. fA(ot..) 

~ ~ 

f ' (0<) ( f" ( + 2:. + ~~_I ) ..c..) 

whence ~':+I: 
11 

~:. ~ .. _ I f ( 0<) 
:t.. 

I n 
,f (ot..) +,(~; + ~'_I)f (0(.) 

!l 

=) ~.·~1 = kE c:: ~ ~-, c. L where k is constant. 

~ssume a solution of the form I ~; 
~. f 

l-I 

= c 

where c is constant, then I"E.~ 1= c I ~~_IIf' 

=) I I r - - 'If I \1 ... lip c~· - kc ~. 
l _ • 

.2... 

I 
2f (0() 

(i = 1,2, .•• ) 

If this is to be valid for all positive integers i, we 

require 

p = 1 + 1 

r 

For convergence we must have 12:~ 1< 1 ~'-I 1 

so we select the root greater than unity to give 

p = (1 + /5) /2 
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~PPENDIX B 

C~LLING PROGRAM FOR A REVERSE COMMUNIC~TION ROUTINE 

c 

C 

PROGRAM GONNET.FOR 

C M~IN PROGRAM C~LLING FUNCTION ROOTI OF GONNET AND 

C INCORPORATING FUNCTION DEFLATION. 

C MAXIMUM NUMBER OF ROOTS TO BE FOUND IS TWENTY. 

C "STEPPING-OFF" POINT FOR SECOND AND SUBSEQUENT ROOTS 

C IS PREVIOUS ROOT FOUND. 

C 

C 

C 

EXTERN~L F 

DIMENSION W(9) ,ROOTS(20) 

D~T~ IN,NOUT/5,5/ 

WRITE (NOUT,l) 

1 FORMAT(//lX,34H RESULTS FOR GONNET WITH DEFLATION/ 

* lX,20HFUNCTION EXP(-X) - Xl) 

WRITE(NOUT,2) 

2 FORMAT(lX,28H NUMBER OF ROOTS REQUIRED = 

RE~D(IN,3)NROOTS 
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3 FORMAT (I 2) 

WRI'rE (NOUT, 4) 

4 FORMAT (lX, 7H EPS = 

READ{IN,6)EPS 

WRITE (NOUT,S) 

5 FORMAT{lX,7H ETA = 

READ{IN,6)ETA 

6 FORMAT (E) 

WRITE ('NOUT,,7) 

7 FORMAT(lX,20H INITIAL ESTIMATE 

READ{IN,8)X 

8 FORMAT (F) 

FX=F{X) 

c 

C NEXT ROOT 

C 

DO 17 I=l,NROOTS 

WRITE (NOUT;9) 

- 9 FORMAT(/12X,lHX,20X,2HFX) 

ITS=O 

IF(I.EQ.1)ITS=1 

·W{l)=O 

XERR=1.0E32 

C NEXT ITERATION 

10 IERR=O 

WRITE(NOUT,ll)X,FX 

11 FORMAT(2(SX,lP,E1S.8» 

IF{I.EQ.1)GO TO 14 
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C FUNCTION DEFLATION PROCESS 

DO 13 J=1,I-1 

D=X-ROOTS(J) 

IF(D.NE.O.O)GO TO 12 

C PERTURB IF COMPUTATIONALLY EQUAL TO ~ PREVIOUS ROOT 

X=1.01*X 

FX=F(X) 

ITS=ITS+1 

GO TO 10 

12 FX=FX/D 

13 CONTINUE 

C 

C CALL TO ROO'r-FINDER 

14 X=ROOT1(X,FX,XERR,ESTD,IERR,W) 

GO TO (18,20,22)IERR 

FX=F(X) 

ITS=ITS+1 

C CONVERGENCE TEST 

IF(XERR.GT.EPS*ABS(X) .AND.ABS(FX) .GT.ETA)GO TO 10 

C 

C ROOT FOUND 

15 WRITE(NOUT,16)X,FX,ITS 

16 FORMAT(/1X,83 ROOT =, ,1P,E15.8/ 

* 1X,18H FUNCTION V~LUE = ,lP,E15.8/ 

* lX,34H NUMBER OF-FUNCTION EVALUATIONS = I2/) 

ROOTS(I)=X 
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C 

17 CONTINUE 

STOP 

C FAILURE TERMINATION 

18 WRITE(NOUT,19) 

C 

19 FORMAT(/lX,24H MORE THAN 80 ITERATIONS/) 

STOP 

20 WRITE(NOUT,21) 

21 FORMAT(/lX,25H REPEATED ARGU~ENT VALUES!) 

STOP 

22 NRITE(NOUT,23) 

23 FORMAT(/lX,27H UNABLE TO APPLY ANY METHOD/) 

STOP 

END 

C FUNCTION EVALUATION ROUTINE 

FUNCTION F(X) 

F=EXP(-X)-X 

RETURN 

END 

- \6 -



~PPENDIX C 

INPUT P~RAMETERS FOR ROUTINE RTFS19 

~ list of the 'parameters to be supplied by the user is 

given, together with a summary of the purpose of each. 

\ 

METHOD Offers choice of three-point rational 

interpolation or quadra~ic interpolation. 

X Vector containing up to three approximations to 

the next root sought. 

Function values are supplied in the form 
c 

ab • 

Vector ~ contains the values of a corresponding to 

the estimates in ·X. 

IBASE The base, b, used for function evaluation. 

IC Vector containing the values of c in the function 

values corresponding to the estimates in X. 
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NMAX The maximum number of roots required. 

N The number of roots found so f~r. 

ROOTS Vector containing the known roots and, if 

required, approximations to later roots. 

LROOTS The length of the vector ROOTS. 

STEP When one estimate only is provided, this parameter 

may be used to construct the two further estimates 

required for three point interpolation. 

TOL Vector giving tolerances for each of the four 

convergence tests: automatic stopping, relative 

error in the root, magnitudes of function value 

and suppressed function value. 

BOUND 

NEXTX 

Maximum magnitude for each iterate. 

Determines how an approximation to the next root 

is to be found following the acceptance of a root. 

The choice is between a user-supplied estimate, 

the last iterate, the root just found or its 

conjugate. 

MAXNFV The maximum total number of function evaluations. 

NFV Indicates the number of approximations to the next 

root which are being supplied. 
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INFORM 

IFA.IL 

Is set to zero before the first call 

subsequently takes the value returned by 

and 

the 

routine. This parameter indicates the progress of 

iterations. 

Failure parameter giving options of hard failure 

'(wi th message) or soft failure (wi th or wi thout 

message) • 
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APP8NDIX D 

OUTPUT DATA FOR RE~L ROOT TESTS 

RE50LTS FOR 8US AND DEKKER METHOD USING NAG ROUTINE C05AZF 

FUNCTION K ~ 

NUMBER OF ROOTS REQUIRED = 1 

MAXIMUM, NU~'13ER OF ITERATIONS P8R ROOT = 99 

ABSOLUTE TOLERANCE = 0.5E-04 

INITIAL INTERVAL = (-0.5, 1.0) 

... 5.000'100008-01 

l"-()'OOOOOOOE+OO 

3.333333408-01 

-2.63157900E-01 

-1" 67810830.8-01 

4'.160945808-01 

-1. 3186626 OE-,C)l 

-9.798535508-02 

- A10 -

f (x) 

-1.250000008-01 

1.000000008+00 

-3.703703808-02 

-1.822423108-02 

-4.725632908-03 

7.204041208-02 

-2.29298430E;-03 

-9.40770tl08-04 



x f (x) 

-6.24008580E-02 -2.42980650E-04 

1.76846860E-01 5.53085250E-03 

-5.23325790E-02 -1.43323170E-04 

-3.78528050E-02 -5.42368180E-05 

-2.40977780E-02 -1.39936500E-05 

7.63745420E-02 4.45498100E-04 

-2.10379310E-02 -9.31127350E-06 

-1.49531850E-02 -3.34349820E-06 

-9.51793390E-03 -8.62239790E-07 

3.34283040E-02 3.73545100E-05 

-8.54898830E-03 -6.24804520E-07 

-5.99923370E-03 -2.15917250E-07 

-3.81826460E-03 -5.56670290E-08 

1.48050200E-02 3.24509180E-06 

-3.50418440E-03 -4.30289600E-08 

-2.434832508-03 -1.443468408-08 

-1.549587008-03 -3.72089900e-09 

6.627716508-03 2.91133220E-07 

-1.44639390E-03 -3.025935808-09 

-9.970812008-04 -9.91269110E-10 

-6.345453008-04 -2.554982308-10 

2.996585608-03 2.690791608-08 

-6.00390990E-04 -2.16422550E-10 

'-4.112257208-04 -6.9540,9800E-11 
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x f(x) 

-2.616994908-04 -1. 79229150E-11 

1. 36744310E-03 2.55698250E-09 

-2.366994908-04 -1. 326148008-11 

-1. 655761208-04 -4.539344408-12 

-1.053803908-04 -1.17025210E-12 

6.310313308-04 2.512770108-10 

-8.038039208-05 -5.193383208-13 

-5.538039208-05 -1.698509908-13 

-3.038039208-05 -2.804013708-14 

3.00325460E-04 2.708797108-11 

-5.38039240E-06 -1.557549508-16 

1. 961960808-05 7.552156008-15 

ROOT = -5.38039240E-06 

FUNCTION V~LU8 = -1.557549508-16 

NUMBER OF ITERATIONS = 44 
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RESULTS USING ROUTINE RTFS1C 

FUNCTION x 3 

TOLERANCE FOR FUNCTION V~LUE = 1.0E-12 

FIRST ESTIMATE = 1.0 

METHOD 1 - RATIONAL INTERPOLATION 

f(x) 

1.20000000E+00 1.72800000E+00 

1.10000000E+00 1.33100000E+00 

'5.46202690E-01 1.62952680E+00 

4.05109520E-01 6.64840340E-02 

2.78531050E-01 2,. 1608 313 0 E - 0 2 

1.86557710E-01 6.49291340E-03 

1. 28224540E-01 2.10820800E-03 

8.74674260E-02 6.69173950E-04 

5.96148870E-02 2.11867420E-04 

4.06999000E-02 6.74186450E-05 

2.77686220E-02 2.14122830E-05 

1. 89461350E-02 6.80082990E-06 

1.29280080E-02 2.16070170E-06, 

8.82106230E-03 6.86376910E-07 

8.73910860E-03 6.67423360E-07 

4.88067840E-03 1.16262740E-07 

3.39173420E-03 3.90180380E-08 

2.36583750E-03 1. 32420350E-08 
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x 

2.34385730E-03 

1.30260760E-03 

9.07216760E-04 

6.32605250E-04 

6.26727920E-04 

3.48332020E-04 

2.42592040E-04 

1.69161060E-04 

1.67589440E-04 

9.31451930E-05 

SOLUTION = 9.31451930E-05 

NUMBER OF ITER~TIONS "= 29 

- 1\14 -

f(x) 

1. 28763710E-Oa 

2.21024710E-09 

7.46677720E-10 

2.53161920E-10 

2.46171130E-10 

4.22649350E-11 

1. 42767600E-11 

4.84062250E-12 

4.70695410E-12 

8.08130210E-13 



~ETHOD 2 - QUADRATIC INTERPOLATION 

x f (x) 

1. 2000000E+0 O.OOOOOOOE+O 1.7280000E+00 O.OOOOOOOE+OO 

1.10000008+0 0.00000008+0 1.33100008+00 0.00000008+00 

5.4848492E-1 3.14903798-1 1.83332708-03 2.52975678-01 

3.72848218-1 3.36242608-1 -7.4629842E-02 1. 02213818-01 

2.08617348-1 3.13096708-1 -5.2272713E-02 1. 0186300E-02 

7.6628333E-2 2.6262930E-1 -1. 5406168E-02 -1. 3488232E-02 

3.9331354E-3 2.0397'476E-1 -4.9086143E-04 -8.47704738-03 

-3.78813128-2 1.46374158-1 2.38050648-03 -2.50598598-03 

-5.66447358-2 9.6487597E-2 1.4003112E-03 3.04920858-05 

-5.97185498-2 5.7548959E~2 3.80367918-04 4.25116088-04 

-5.4138352E-2 2.90605108-2 -2.1515734E-05 2.30983698-04 

-4.44450088-2 9.84366948-3 -7.48749628-05 5.73805098-05 

-3.36744518-2 -1.89522238-3 -3.78229098-05 -6.44055978-06 

-2.36358008-2 -8.11076578-3 -8.53955638-06 -1.30597008-05 

-1.5228538E-2 -1.0529142E-2 1. 53321158-06 -6.1580985E-06 

-8.74763678-3 -1.05657338-2 2.26024048-06 -1.24600368-06 

-4.1179948E-3 -9.29118888-3 9.96639958-07 3.29396378-07 

-4.07973'58E-3 -9.20486738-3 9.69118828-07 3.20300448-07 

1. 38564798-4 -6.3656681E-3 -1.68419878-08 2.57581228-07 

1.31440028-3 -4.58824568~3 -8.07414308-08 7.2811122E-08 

1.80660908-3 -3.13243758-3 -4.72837628-08 6.47054428-11 

1.8233937E-3 -3.1033351E-3 -4.66192558-08 -1. 06632018-09 

1.86672288-3 -1.26943078-3 -2.51953228-09 -1. 1'224951E-08 

1. 59723438-3 -5.71860998-4 2.50778988-09 -4.18970968-09 
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x 

1.27963078-3 -1.26631518-4 2.03377858-09 

1. 26774208-3 -1.25455028-4 1.97761808-09 

7.53158508-4 2.73664208-4 2.58010618-10 

4.96344858-4 3.40708998-4 -5.05723898-11 

3.023329TE-4 3.41434688-4 -7.81009758-11 

2.99524098-4 3.38262528-4 -7.59443048-11 

7.7845092E-5 2.73382488-4 -1.69822248-11 

5.21778118-6 2.13469728-4 -7.13169928-13 

-3.53106038-5 1.57856408-4 2.59565008-12 

-3.56386638-5 1:56389808-4 2.56966148-12 

-6.25363588-5 7.91181368-5 9.29805738-13 

-6.03762788-5 4.57755958-5 1.59448918-13 

SOLUTION = (-6.037627808-05, 4.577559508-05) 

NUMB8R OF IT8R~TIONS = 37 
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f (x) 

-6.20029458-10 

-6.029080487"10 

4.45210908-10 . 

2.12258998-10 

5.38230918-11 

5.23368268-11 

-1.54620778-11 

-9.71023508-12 

-3.34310288-12 

-3.22904728-12 

4.32990568-13 

4.04678228-13 



RESULT USING ROUTINE RTFS1C 

FUNCTION (X - 1)EXP[-1/(X - 1)~ 

METHOD 1 - RATIONAL INTERPOLATION 

RELATIVE TOLERANCE FOR ROOT = 1.0E-4 

FIRST ESTIMATE = 1.5 

SOLUTION = 1.1441417 

NUMBER OF ITERATIONS = 34 

RESULTS USING ROUTINE RTFSIC 

FUNCTION EXP(-X) - X 

RELATIVE 'rOLERANCE FOR ROOT = 1.0E-4 

FIRST ESTIMATE = 0.0 

NUMBER OF ROOTS REQUESTED = 2 

BOUND = 100.0 

SOLUTION = 5.67143290E-Ol 

NUMBER OF ITERATIONS = 5 

SOLUTION = -1.77339410E+01 

NUMBER OF ITERATIONS = i2 

BOUND = 25.0 

SOLUTION = 5.67143290E-01 

NUMBER OF ITERATIONS = 5 

rERMINATES BY EXCEEDING BOUND 
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RESULTS POR ROUTINE RTFS1C 

BRENT'S FUNCTION 

REL~'rIVE TOLER~NCE POR ROOT = 1.0E-6 

PIRST ESTIM~TE = 3.0 

NUMBER OF ROOTS REQUESTED = 19 

SOLUTION NUMBER OP 

3.02291530E+00 

4.19061160E+01 

5.59535960E+01 

9.00088680E+Ol 

1. 1 0 0 2 6 53 0 E +0 2 

1.32040550E+02 

1.56052110E+02 

1.82062060E+02 

2.10071100E+02 

2.40080050E+02 

2.72090270E+02 

3.06105120E+02 

2.89013770E+02 

3.42136940E+02 

P10ating under flow occurs 

ITERATIONS 

6 

15 

14, 

8 

7 

7 

8 

9 

10 

8 

10 

9 

4 

8 

5.45443620E+02 exceeds 100 

H~RD PAILURE OCCURS WITH IRRECOVER~BLE OVERFLOW 
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RESULTS USING ROUTINE RTFSIC WITH RATIONAL INTERPOLATION 

FUNCTION: PRODUCTR=1 TO R=20 OF (I - R) 

AUTOMATIC STOPPING WITH TOLERANCE = 0.05 

FIRST ESTIMATE = 0.0 

NUMBER OF ROOTS REQUESTED = 20 

SOLUTION NUMBER OF ITERATI0NS 

1.00000000E+00 11 

2.00000000E+00 11 

3.00000000E+00 10 

4.00000000E+00 10 

5.00000000E+00 9 

6.00000010E+00 5 

7.00000000E+00 9 

8.00000000E+00 12 

1.20000000E+Ol 9 

1.41833500E+Ol 6 

1. 70082570E+01 6 

1.90000000E+Ol 9 

1. 95331750E+Ol 9 

2.00000000E+01 9 

1.80000000E+Ol 14 

1. 78666890E+Ol 5 

1.60000000E+Ol 15 

1. 59242180E+Ol 5 

1. 71162410E+Ol 11 

1.40000000E+Ol 17 
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RESULTS USING ROUTINE RTFS1C WITH RATIONAL INTERPOLATION 

BRENT'S FUNCTION 

AUTOMATIC STOPPING WITH TOLERANCE = 0.05 (A) 

OR RELATIVE TOLERANCE FOR ROOT = 1.0E-06 (B) 

FIRST ESTIMATE = 3.0 

NUMBER OF ROOTS REQU8ST8D = 19 

SOLUTION NUMBER OF 

ITERATIONS' 

3.022915308+00 

3.25241210E+00 

5.670850508+00 

6.683753608+00 

1. 28949690E+01 

1.87007450E+01 

1. 967600008+01 

2.803146908+01 

-2.98282270E+01 

3.92464580E+01 

4.19061160E+01 

5.846610708+01 

7.198566508+01 

8.85848240E+01 

1. 085636008+02 

1. 32040550E+02 

1. 560521108+02 

6 

7 

6 

6 

10 

7 

8 

25 

9 

6 

10 

6 

9 

6 

6 

8 

7 

Floating underf10w occurs 

1.86999610E+02 

2.071607408+02 
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6 

43 

STOPPING 

CRITERION 

B 

Z\ 

Z\ 

B 

Z\ 

Z\ 

B 

Z\ 

Z\ 

Z\ 

Z\ 

!\ 

B 

Z\ 

A 

A 

B 



RESULTS FOR THE FUNCTION (4x - 7)/(x - 2) 

RELATIVE TOLERANCE FOR ROOT = 1.0E-4 

TOLERANCE FOR FUNCTION VALUE = 1.0E-6 

ROUTINE BY GONNET 

INITIAL ESTIMATE = 1.6 

FAILS - UNABLE TO APPLY ANY ~ETHOD 

INITIAL ESTIMATE = 1.7 

ROOT = 1.75000000E+00 

NUMBER OF FUNCTION EVALUATIONS - 10 

ROUTINE BY B~RRODALE AND WILSON 

INITIAL ESTIMATE = 1.0 

FAILS - MAXIMUM NUMBER OF ITERATIONS EXCEEDED 

INITIAL ESTIMATE = 1.5 

FLOATING DIVIDE CHECK INDICATED 

FALSE ROOT CLAIMED AT x = 1.5 

INITIAL ESTIMATE = 1.6 

ROOT = 1.75000000E+00 

NUMBER OF FUNCTION EVALU~TIONS = 9 
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ROUTINE RTFS1C 

FIRST ESTIMATE = 1.0 

'rERMIN~TES BY EXCEEDING BOUND 

FIRST ESTIMATE = 1.5 

ROOT = 1.75000000E+00 

NUMBER OF FUNCTION EV~LU~TIONS = 6 
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R8SULTS USING ROUTIN8 RTFS1C WITH RATIONAL INTERPOLATION 

FUNCTION x~ - 2x - 5 

, 

R8LATIVE TOLERANCE FOR ROOT = 1.08-4 

TOL8RANC8 FOR FUNCTION V~LU8 = 1.0E-6 

FIRST 8STIMAT8 = 0.0 

x f (x) 

2.000000008-01 -5.392000008+00 

-1.000000008-01 . - 5. 1990 0 0 008 +0 0 

-1.786905908+00 -7.131837208+00 

-3.689731408-01 -4.312286108+00 

-7.188466008-01 -3.933763908+00 

-1.25653490E+00 -4.470848008+00 

-7.87057390E-01 -3.913435308+00 

-1.137189408+00 -4.196234308+00 

-1.570847008+00 -5.734465808+00 

-1.963320908+00 -8.641231508+00· 

-6.126245608+01 -2.298059008+05 

-7.813854208-01 -3.914314308+00 

2.333086708-01 -5.453917708+00 

-3.216387208+00 -3.184122408+01 

-1.713054308+00 -6.600943708+00 

-4.105513508+00 -6.598839108+00 

-1.003184,608+00 -4.003215108+00 

1.166127708+00 -5.746492108+00 

-2.439994708+00 -1. 464670008+01 
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x f (x) 

-1. 65887770E+00 -6.24726940E+00 

-2.59816010E+00 -1.73423920E+01 

-4.08890130E-01 -4.25058260E+00 

-5.29274090E+00 -1.42680630E+02 

1. 06417480E+00 -5.92320570E+00 

-2.17093550E+00 -1.08896640E+01 

-5.01862390E+01 -1. 2630663 OE+O 5 

5.54213240E+00 1. 54143610E+02 

-1,. 727844808+00 -6.70270050E+00, 

-1.46265040E+00 -5.20381470E+00 

-6.45013390E-01 -3.978326108+00 

-2.60233960E+00 -1. 74188110E+01 

-5.69349440£+00 -1. 781725408+02 

3.82437830E-01 -5'.70894080E+00 

4.86842140E+00 1. 006521808+02 

6.07223150E-01 -5.990551008+00 

3.85838420E+01 5.735809308+04 

8.74495030E-01 -6.08022740E+00 

-3.37979140E+01 -3.85447280E+04 

8.79259590E-01 -6.07876590E+00 

4.77454920E+01 1. 08741660E+05 

8.83516310E-01 -6.077358808+00 

1.38158090E+01 2.60448290E+03 

9.24066540E-01 -6.05907360E+00 

7.49925010E+00 4.01749960E+02 

1.09051690E+00 -5.88416160E+00 

- 1\24 -



x 

4.06190380E+OO 

1.53028370E+OO 

2. 39886460E+OO _ 

2.04488530E+OO 

2.09675470E+OO 

2.09454450E+OO 

SOLUTION = 2.-09455150E+OO 

NUMBER OF ITERATIONS = 52 
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f(x)' 

5.38937960E+Ol 

-4.47599790E+OO 

4.00665990E+OO 

-5.38968090E-Ol 

2.46212480E-02 

-7.76052480E-05 



RESULTS FOR THE FUNCTION x - 4 J{x - 1) 

REALATIVE TOLERANCE FOR ROOT = 1.0E-4 

TOLERANCE FOR FUNCTION V~LUE = 1.0E-6 

NUMBER OF ROOTS REQUESTED = 2 

ROU'l'INE GONNET 

INITIAL ESTIMATE = 1.0 

ROOT = 1.07179680E+00 

FUNCTION VALUE = -2."98023220E-08 

NUMBER OF FUNCTION EVALUATIONS = 9 

~TTE~PT 1'0 TAKE SQUARE ROOT OF NEG~TIVE ARGUMENT. 

FALSE ROOT GIVEN AT x = 9.44271910E-01 

INITIAL ESTIMATE = 15.0 

ROOT = 1.49282030E+01 

FUNCTION VALUE = O.OOOOOOOOE+OO 

NUMBER OF FUNCTION EVALUATIONS = 4 

ATTEMPT ']0 TAKE SQUARE ROOT OF NEGATIVE ARGUMENT. 

FAILS - UNABLE TO APPLY ANY METHOD. 
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ROUTINE BY B~RROD~LE ~ND WILSON WITH RE~LRT = .TRUE. 

INITIAL ESTIMATE = 1.0 

ROOT = 1 .• 07179680E+00 

FUNCTION VALUE = -2.23517420E-07 

NUMBER OF FUNCTION EV~LU~TIONS = 9 

FLO~TING UNDERFLOW OCCURS 

TERMINATES BY EXCEEDING MAXIMUM NUMBER OF ITER~TIONS. 

FIRST ESTIM~TE = 15.0 

ROOT = 1.49282030E+01 

FUNCTION VALUE = O.OOOOOOOOE+OO 

NUMBER OF FUNCTION EV~LU~TIONS = 5 

FLOATING UNDERFLOW OCCURS. 

TERMINATES BY EXCEEDING MAXIMUM NUMBER OF ITER~TIONS. 
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ROUTINE BY B~RROD~LE ~ND WILSON WITH RE~LRT = .F~LSE. 

FIRST ESTIM~TE = 1.0 

ROOT = (1.07189010E+00, 6.31861800E-06) 

FUNCTIO~ V~LUE = (-6.03094700E-04, -4.08135640E-05) 

NUMBER OF FUNCTION EV~LU~TIONS = 40 

ROOT = (1.49272000E+01, 2.85409660E-04) 

FUNCTION V~LUE = (-4.65393070E-04, 1.32453580E-04) 

NUMBER OF FUNCTION EV~LU~TIONS '= 65 

FIRST ESTIMATE = 15.0' 

ROOT = (1.49282030E+01, O.OOOOOOOOE+OO) 

FUNCTION V~LUE = (O.OOOOOOOOE+OO, O.OOOOOOOOE+OO) 

NUMBER OF FUNCTION EV~LU~TIONS = 5 

F~LSE ROOT GIVEN ~T x = (1.15009130, 1.20104330E-05) 
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ROUTINE RTFSIC WITH RATIONAL INTERPOLATION 

FIRST ESTIMATE = 1.0 

ROOT = (l.07179690E+00,'O.00000000E+00) 

FUNCTION VALUE = (8.04662700E-07, O.OOOOOOOOE+OO) 

NUMBER OF FUNCTION EVALUATIONS = 5 

ROOT =' (1.49282030E+Ol, 4.58385330E-I0) 

FUNCTION VALUE = (O.OOOOOOOOE+OO, 2.12737370E-I0) 

NUMBER OF FUNCTION EVALUATIONS = 56 
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RESULTS FOR THE FUNCTION x 40 
- 1 

RELATIVE TOLERANC~ FOR ROOT = 1.0E-4 

NUMBER OF ROOTS REQUESTED = 2 

ROUTINE BY GONNET 

INITIAL ESTIMATE = 0.5' 

FAILS - UNABLE TO APPLY ANY METHOD 

INITIAL ESTIMATE = 0.6 

JVERFLOW OCCURS 

ROOT = 9.99975090E-Ol 

,FUNCTION VALUE = -4.98056410E-04 

NUMBER OF FUNCTION EVALUATIONS = 51 

FAILS WITH REPEATED ARGUMENT VALUES 

. ROUTINE BY BARRODALE AND WILSON 

INITIAL ESTIMATE = 0.5 

ROOT = 1.00000000E+00 

FUNCTION VALUE = O.OOOOOOOOE+OO 

NUMBER OF FUNCTIJN EVALUATIONS = 5 

FLOArING DIVIDE CHECK. 

FAILS BY EXCEEDING MAXIMUM NUMBER OF ITERATIONS. 
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ROUTINE RTFSIC WITH R~TION~L INTERPOL~~ION 

FIRST ESTIMATE = 0.5 

ROOT = 9.99999890E-Ol 

FUNCTION VALUE = 2.23517420E-06 

NUMBER OF FUNCTION EVALU~TIONS = 15 

FALSE ROOT GIVEN AT x = -3.895683808+00 
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RESULTS FOR THE FUNCTION (x 4 
- X - l)/(x~ - x +1) 

REL~TIVE 'rOLERANCE FOR ROOT = 1.0E-4 

TOLERANCE FOR FUNCTION VALUE = 1.0E-6 

INITIAL ESTIMATE = 0.0 

Rou'rINE BY GONNET 

ROOT = -6.18034000E-Ol 

FUNCTION V~LUE = 7.45058050E-09 

NUMBER OF FUNCTION EVALU~TIONS = 6 

FLOATING OVERFLOW OCCURS. 

TERMINATES BY EXCEEDING MAXIMUM NUMBER OF ITERATIONS. 

ROUTINE BY B~RRODALE AND WILSON 

ROOT = -6.18033980E-Ol 

FUNCTION VALUE = -7.45058070E-09 

NUMBER OF FUNCTION EVALUATIONS = 7 

ROOT = 1.61803400E+00 

FUNCTION V~LUE = 7.45058050E-09 

NUMBER OF FUNCTION EVALUATIONS = 10 

ROUTINE RTFSIC WITH RATIONAL INTERPOLATION 

ROOT = -6.18033990E-Ol 

FUNCTION V~LUE = 1.86264510E-09 

NUMBER OF FUNCTION EVALUATIONS = 7 

TE&~INATES BY EXCEEDING BOUND 
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APPENDIX E 

ATTAINABLE ACCURACY FOR THE ROOTS OF AN EQUATION 

Suppose that the equation f(x) = 0 has a root of 

.. nultiplicity m at x = 0<. 

Then f (r) (cc.) = 0 (r = 0, 1, ••• m-I) 

Let f(x) and ~ denote the com9uted values of the 

function and root respectiVely. 

Thus we may write f(x} = f(x} + ~(x) 

and . 0<. = 0<. + E 

where ~(x) and E are perturbations due to rounding errors. 

Hence 0 = f (()(} = f (;;(. - £ ) 

=f (-;.) - f. f / (:() + ••• + (-1>," f'" f U·) (~) + ••• 
r! 

I -= f(o<} - 'Z(~} - 'E f (e>C.) + ••• + (_l>,~rf(r)(~) + ••• 
r! 

No further improvement in accuracy can be achieved 

when the computed function value f(~} is zero. 

- I -Then 0 = - ~ (o() - ~ f (o() + • •• + + ••• 
r! 

Retainin3 the first non-zero derivative ter~, we have 

o = -'1(~} + (_l(~"'f{rn)(:) 
R\ I, 
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1ft 1'1\-1 
=) c: = (-1) m! '1 (;.) 

I 
\ ~ 

5(::,(~) -jY""j 
=) 'e I = (-1) m! "1 (0(.) 

r("')(~ ) 

~ttainable accuracy is hence dependent upon the accuracy 

to which we can evaluate the function in the region of the 

root and also upon the multi!?licity of the root. The 

occurrence of m! and the exponent l/m will usually mean 

that multiple roots cannot be computed to an accuracy 

a!?proaching machine precision. ~-1ul tiple precision 

arithmetic becomes necessary in such circumstances unless 

a low degree of accuracy is sufficient. 

EXAMPLES 

1. The function x - exp(~x) has a simple zero in the 

interval [0,1]. 

~e can expect standard functions to be computed to 

approximately machine precision. 

Hence relative error in co~puted f(x) ~ u 

where u is the unit rounding error (maximum e such 

that 1.0 + e is represented as 1.0) 

The maximum value of exp(-x) on the interval [0,1] 

is 1.0 so that the absolute error in f(x) < u. 

!\l so f I (x) ) 1. 0, X £ [0, l] 

Hence th~ absolute error in the root satisfies 

I El - < u 
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The actual root is 0.567 to three significant figures 

so that its relative error will not excee1 about l.8u. 

It should theref~re be possible to calculate the root 

to near machine precision. 

2. The function f(x) = x 3 
- 3x~ + 3x - 1 which has a 

triple zero at x = 1. 

If the nested multiplication method is used for the 

evaluation of the function, we have 

f(x) = ((x - 3.0)x + 3.0)x - 1.0 

Let x = 1.0 + Eo., then 

f·(x) = ((€- 2~0)(E + 1.0) + 3.0)(1.0 +~) -1.0 

= (~~- z. + 1.0) (1.0 +~) - 1.0 

~ = f: + 1.0,) - 1.0, 

This will be computed as zero if 
l 

t < u. 

For example, if u = 0.75E-8 ·(The approximate value for 

single precision on the DEClO) this gives 

~ < 0.002 approximately, so x will be accepted 

as a root if it lies in the approximate interval 

0.998 < x < 1.002 

Dahlquist [13] points out that a root may not remain 

ill-conditioned i£ the function can be given " ••• in 

such a form that its value can be computed with less 

absolute error as x approaches ~". This remark is 

applicable to the following two examples in which 

polynomial functions are presented in factored form: 
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3. f(x) = (x - l.O):!. 

4. 

In this c~se the rel~tive error in f(x) will be 

3pproxim3tely 3u. 

If x = 1.0 + e then f(x) = e~. 
On the DECIO the sm~llest represent~ble number is 

of or1er l.OB-39 so th3t the compute1 v~lue of 

f(x) will rem3in non-zero whilst e ) u. 

Hence the 3bsolute error in t(x) - 3ue • 

1\lso f"/(x) = 31 for ~ll v~lues of x. 

It follows th3t 'J~ 
(3u) lel 

which 1ecre3ses in ~~gnitude ~s x ~ppro~ches the root. 

Convergence will thus continue until the root is 

com?ute1 to machine precision. 

;0. .. 

f (x) = n (x - r) 
r= I 

The rel~tive error in f(x) will be ~?proxill~tely 20u. 

Let x = k + e where k is ~ root. 
;LO 

Then 1. (x) ~ 20ue n (x - r) 

;1.0 

When e is s'11~ll we ~lso h3ve th~t fl (x) :: n (x - r) 

so th~ t I EoI - "1 (x) \ ~ 
f I (x) 

20u lel 

which ~g~in 1ecre~ses 3S e -) u. 

r=1 

Hence the root m~y ~e c~lcul~ted to machine ?recision. 
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~PPENDIX F 

NUMERIC~L RESULTS FOR EIGENV~LUE PROBLE~S 

THE STANDARD PROBLEM ~x = ~x 

MAIN PROGRAM USED: 

C 

C PROGRAM EIGENl.FOR 

C 

C SOLUTION OF THE ST~ND~RD COMPLEX EIGENV~LUE PROBLEM 

C USING DETERMINANT EVALUATION BY NAG ROUTINE F03~HF 

C AND EQUATION-SOLVING BY LASLIB ROUTINE RTFSIC. 

C 

C 

REAL X(8),A(8) ,ROOTS(40) ,STEP(2) ,WORK(lS),TOL(4) 

COMPLEX ARRAY(20,20) 

INTEGER IC(4) ,IWORK(6) 
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,... 
'-

,., 
I.. 

C 

SET P!\RAMETERS FOR RTFSIC: 

* 

* 

METHOD=2 

IBASE=2 

NEXTX=-3 

TOL(l}=O.O 

TOL (2) =1. OE-6 

TOL(3}=0.0 

'rOL(4'}=0.0 

STEP(l}=O.l 

STEP(2}=0.0 

WRITE(21,1}METHOD,IBASE,NEXTX,X(1} , 

x (I) , TO L ( I) , T0 L ( 2) , S T E P ( I) , 

STEP(2} 

1 FORMAT(lH3,7X,26HRESULTS OF PROGRA~ EIGENl.// 

* 8X,8HMETHOD =,I2,14X,78IBASE =,I2// 

* 8X,7HNEXTX =,I3// 

* 8X,18HINITI~L,ESTI~ATE =,F5.1,lH,F5.1// 

* 8X,8HTOL(1} =,E8.1,8X,88TOL(2} =,E8.1// 

* 8X,6HSTEP =,F5.1,lH,F5.1//} 

READ(20,2}NMATS 

C NEXT MATRIX: 

DO 20 ITI~ES=l,NMATS 

X(l}=O.O 

X(2}=1.0 
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C 

C 

IWORK(l)=O 

IWORK(2)=O 

N=O 

NFV=O 

IFAIL=l 

READ(20,2)NMAX 

2 FORMAT(//8X,I3//) 

DO 4 I=l,NMAX 

READ(20,3) (ARRAY(I,J) ,J=l,NMAX) 

3 FORMAT(8X,8F5.1) 

4 CONTINUE 

C COMPUTE BOUND OSING COLUMN NORM: 

C 

BOUND=O.O 

DO 6 J=l,NMAX 

COLSUM=O.O 

DO 5 I=l,N~AX 

COLSUM=COLSUM+CABS(ARRAY(I,J» 

5 CONTINUE 

IF (COLSUM.GT. BOUND) BOOND=COLSUM 

6 CONTINUE 

-LROOTS=2*NMAX 

MAXNFV=lOO*NMA'X 
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c 

C 

WRITE{21,8) 

8 FORM~T{lH1,8X,6HMArRIX,/) 

DO 9 I=l,NMAX 

WRITE (21, 3) {1\RR~Y (I, J) , J=l, NM1\X) 

9 CONTINUE 

WRITE{21,10)NM~X,BOU~D,M~XNFV 

10 FORM~T{/8X,27HNUMBER OF ROOTS REQUESTED =,13// 

* 

* 

8X,7HBOU~D =,F5.1// 

8X,8HM~XNFV =,14//) 

C FU~CTION EV~LU~TION ~~D C~LL TO ROOT-FINDER: 

11 C~LL DETERM{NM~X,ARRAY,X{l) ,~(1) ,IC{l» 

* 

* 
C 

CALL RTFS1C{METHOD,X,~,IBASE,IC,~M~X,N,ROOTS, 

LROOTS,STEP,TOL,BOUND,NEXTX,M~XNFV, 

NFV,WORK,IWORK,INFORM,1FAIL) 

C TESTS FOR CONVERGENCE OR F~ILURE: 

C 

12 1F{1NFORM.EQ.1.0R.1NFOR~.EQ.2)GO TO 11 

1F{1NFORM.GT.6)GO TO 14 

WRITE{21,13}ROOTS{2*N-1} ,ROOTS{2*~), 

* IWORK{l) 

13 FORM~T{8X,12HEIGE~V1\LUE =,F10.6,lH,F10.6, 

* 2X19HNUMBER ITER~T10NS =,13/) 

IF{1NFORM.LT.O)GO TO 20 

GO TO 11 
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C FAILURE DETECTED: 

14 IF(INFORM.EQ.8)GO TO 16 

IF(INFORM.GT.8)GO TO 18 

WRITE(21,15) 

15 FORMAT(/8X,~9HCURRENT ITERATE EXCEEDS BOUND/) 

30 TO 20 

16 WRITE(21,17) 

17 FORMAT(/8X,28HMAXIMUM FUNCTION EVALUATIONS/) 

GO TO 20 

18 WRITE(21,19)INFORM 

19 FORMAT(/8X,31HFAILURE OF RTFS1C WITH INFORM =,13/) 

C 

20 CONTINUE 

STOP 

END 

C 

C 
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C SUBROUTINE ~OR DETERMIN~NT EV~LU~TION. 

C 

C 

C 

SUBROUTINE DETER~(NM~X,~RR~y,X,DET,ID) 

RE~L RINT(20) ,DET(2) 

COMPLEX X,~RR~Y(20,20) ,XARR~Y(20,20) 

I~=20 

IF~IL=l 

DO 2 I=l,NM~X 

DO 1 J=l,NM~X 

XARR~Y(I,J)=~RR~Y(I,J) 

1 CONTINUE 

XARRAY(I,I)=~RRAY(I,I}-X 

2 CONTINUE 

C~LL F03AHF(NMAX,XARRAY,IA,D8T(l) ,DET(2) ,ID,RINT, 

* 1FA1L) 

IF(1F~1L.8Q.0)RETURN 

DET(l)=O.O 

DET(2)=0.0 

10=0 

RETURN 

END 
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DATA FOR PROGRAM EIGEN1: 

MATRIX 

1. (8 x 8) 

-2 1 0 o 0 

2. 

3. 

4. 

1 -2 1 o 0 

••••••••••••••• • e-. 

000 1 -2 

541 1 

4 5 1 1 

114 2 

1 1 2 4 

6 4 4 :l 4 6 1 

4 1 6 :J 1 4 4 

123 0 1 2 

2 4 5 -1 0 3 

3 5 6 -2 -3 0 

o -1 -2 1 2 3 

1 0 -3 2 4. 5 

2 3 0 3 5 6 
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EIGENV?\LUES 

\ 

-0.120615, -0.467911 

-1.000000, -1.652704 

-2.347296, -3.000000 

-3.532089, -3.879385 

1, 2, 5, 10 

-1, 5, 5, 15 

-1. 696322849 

-1. 696322851 

,0.2849864395 

0.2849864365 

12.41133642 

12.41133643 



5. 

r 

6. 

7. 

8. 

9. 

MA'rRIX 

(n = 6) 

1/\_ , 

1 2 

6 -3 4 1 

4 240 

4 -2 3 1 

4· 2 3 1 

5 7 6 5l 
7 10 8 7 

6 8 10 9 

5 7 9 10 

8 -1 -5 

-4 4-2 

18 -5 -7 

-1 -1 -1 -1 

1 000 

o 100 

o 010 

1 l 
2 

n-1 

n-l n 

- ~44 -

EIGENV~LUES 

1, 1, 1, 1 

-4.326238 

11. 326238 

5.236068 twice 

0.763932 twice 

0.01015 

0.84311 

3.85806 

30.28868 

1, 2 T 4i 

0.309017 ~ 0.951057i 

-0.809017 t 0.587785i 



MA.TRIX 

10. 1+2i 3+4i 21+22i 

11. 

43+44i 13+14i 15+16i 

5+6i 7+8i 25+26i 

7 3 1+2i 

3 7 1-2i 

1-2i 1+2i 7 

-1-2i -1+2i -3 

-1+2i 

-1-2i 

-3 

'7 

- A.45 -

EIGENVALUES 

-7.47753 + 6.88032i 

6.70088 -'7.87599i 

39.7767 + 42.99567i 

0, 8, 8, 12 



RESULTS USING MULLER'S METHOD: 

l. 

2. 

3.' 

4. 

EIGENVALUE 

-0.120615 

-1.000000 

-1.652704 

-2.347296 

-3.000000 

-3.532089 

-3.879385 

-0.467911 

1.000000 

2.000000 

5.000000 

10.000000 

-1.000000 

5.000000 

5.000000 

CURRENT ITERATE EXCEEDS BOUND 

0.284986 

0.284986 

-1.696323 - O.OOOOOli 

-1.696323 + O.OOOOOli 

12.411336 + O.OOOOOli 

12.411337 - O.OOOOOli 
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NO. ITERATIONS 

14 

14 

8 

7 

7 

6 

5 

6 

9 

5 

5 

7 

16 

4 

17 

5 

15 

5 

8 

4 



5. 

6. 

I 

" 

7. 

8. 

9. 

EIGENVl\LUE 

0.999983 - 0.000116i 

1.000038 + 0.000018i 

1.000003 + 0.000009i 

0.999997 - O.OOOOOOi 

-4.326238 - O.OOOOOOi 

11.326238 + O.OOOOOOi 

0.763979 + 0.000004i 

0.763863 + O.OOOOOli 

5.235777 + O.OOOOOOi 

5.236055 - 0.000002i 

0.010150 

0.843107 

3.858057 

30.288685 

1.000000 - O.OOOOOOi 

2.000000 + 4.000000i 

2.000000 - 4.000000i 

0.309017 + 0.951057i 

-0.809017 + 0.587785i 

-0.809017 - 0.587785i 

0.309017 - 0.951057i 

- 1\.47 -

NO. ITERl\TIONS 

191 

89 

30 

17 

8 

6 

109 

36 

11 

20 

9 

9 

6 

6 

7 

6 

6 

7 

9 

6 

6 



EIGENVP.LUE 

10. -7.477530 + 6.880321i 

6.700876 7.875989i 

39.776655 + 42.995667i 

11. MAXIMUM FUNCTION EVALUATIONS REACHED 

- !\48 -

NO. ITERATIONS 

7 

6 

6 



GENERALIZED PROBLEMS 

THE EQUATIONS CONSIDERED: 

1. An equation of· the form A~ = ~B! given by 

Peters and Wilkinson [36] • 

A and B are of order 20 and band symmetric of width 

a· . = 51 - i, a·· = 1, 0 < I i jk 3 
" I.l 

b·. = 41 - i, b·. = 1, 0 < li j I~ 3 
" <) 

Eigenvalues in the range -10 < 'A < 10 are sought. 

2. The probl em t{ e >. - 1) B, + ~ B1. - B).~.= 0 quoted by 

Ruhe [40], where 

Bo = boI, 

(bl~) ) , 0) 
[n 1 max ( j , k) ] • j . k B, = bi,," = + -

(b ~2.) (>..) 

n ~j'- 1/ (j S,.. = ) , bi I- = + + k) li. 

in the case n = 8 and bo = 100. 

3. Quadr~tic equation (Bo + ~S, + ~). S~= Q as quoted by 

Ruhe [40] , having 

I 121. 0 18.9 15.9 
-

So = l 0.0 2.7 0.145 

11.9 3.64 15.5 

\ 7.66 2.45 2.1 

8, 0.23 1. 04 0.223 = 

L 0.6 0.756 0.658 

- A49 -
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4. 

B = 
~ 

17.6 1.28 

1.28 0.824 

2.89 0.413 

Prob1 em of the form (Bo + ~ 8
1 

discussed by Ruhe [40]. 

Here we define 

>.. 

2.
89 l 

0.413 

0.725 J 

+ '" i B )~ = Q., 3. g a i n 
1. 

~ 

-1 + 20<.1- 1i.{1 - of.... - 2 ~ ) 2o(l.f 1. 
o(~ { 0( 

... 
+f 

. Bo = 2ot. 

1 

0 

301. -{1 

2 

o 

o 

8.1 = I 

l. 
-{ex: + 2 f" } 

0 

1 

>.. 
+ 2~ } 

o 

2 

o 

2o<f 
0 

0 

0<.(1 + 2 ~1.} 

o 

o 

2 

- r{ 

where 0( is a non-negative parameter and ~ = 1 + 0( • 

o(~ + ~1. 

0 

0 

o 

o 

The case ~ = 0 gives triple eigenva1ues 'at ±i and a double 

eigenvalue at O. 
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RESULTS USING ROUTINE RTFS1C ~ND N~G DETERMIN~NT ROUTINES: 

1. METHOD - RATION~L INTERPOL~TION 

B~SE FOR FUNCTION EV~LU~TION = 2 

INITI~L ESTI~ATE = 1.0 

TOLERANCE FOR REL~TIVE ERROR IN ROOT = 1.0E-6 

E~CH SE~RCH COMMENCED FROM PREVIOUS ROOT WITH STEP 

LENGTH = 0.01 

NUMBER OF ROOTS REQUESTED = 20 

MAXIMUM NUMBER OF FUNCTION EV~LU~TIONS = 400 

BOUND = 10.0 

E:IGENV~LUE NO. ITER~TIONS 

1. 236230 27 

1.261924 7 

1. 285635 11 

1.312505 11 

1.345003 22 

1.357572 9 

1.371315 6 

1.386684 8 

1.403472 8 

1.422235 6 

1.447517 6 

1.470427 6 

1.495213 7 

1.333394 17 
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EIGENV~LUE NO. ITERATIONS 

1.322600 10 

1. 277398 15 

1.303011 6 

1.294097 7 

1.269440 10 

1.254381 5 

The results obtained agree, to 'the six decimal places 

quoted, with those given by Peters and Wi1kinson, but 

were computed in the order given above. 
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2. METHOD - R~TIONAL INTERPOLATION 

BASE FOR FUNCTION EVALUATION = 2 

INITIAL ESTIMATE = 0.0 

TOLERANCE FOR RELATIVE ERROR IN ROOT = 1.0E-6 

EACH SEARCH COMMENCED FROM ROOT JUST FOUND WITH STEP 

LENGTH = 0.1 

NUMBER OF ROOTS REQUESTED = 16 

MAXIMUM NUMBER OF FUNCTION EVALUATIONS = 320 

BOUND = 100 

EIGENVALUE NO. ITERATIONS 

0.217461 6 

0.884962 10 

1.394724 9 

1.726304 12 

2.007944 7 

2.335425 7 

2.731077 6 

3.182596 8 

-3.491853 40 

-3.801275 8 

-3.968169 9 

-4.521556 9 

-3.702762 14 
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EIGBNV1\LUE 

-3.627468 

-3.571756 

-7.642558 

'rhe roots agree, 

values given by 

given above. 

NO. ITERA.TIONS 

9 

6 

7 

to six decimal places, with the 

Ruhe and were obtained in the orjer 
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3. METHOD - QU~DR~TIC INTERPOL~TION 

B~SE FOR FUNCTION EV~LU~TION = 2 

INITI~L ESTIMATE = -1 + i 

'TOLERANCE FOR REL.a.TIVE ERROR IN ROO'r = 1.0E-6 

E~CH SE~RCH COMMENCED FROM COMPLEX CONJUG~TE OF ROOT 

JUST FOUND USING STEP = 0.1 + O.li 

NUMBER OF ROOTS REQUESTED = 6 

MAXIMUM NUMBER OF FUNCTION EV~LUATIONS = 120 

BOUND = 10.0 

EIGENV~LUE NO. ITERATIONS 

-0.917998 + 1. 760584i 7 

-0.917998 - 1.760584i 4 

0.094722 + 2.522877i 8 
-, 

0.094722 _. 2. 522877i 4 

-0.884830 + 8.441512i 6 

-0.884830 - 8.441512i 4 

These r~su1ts agree, to six decimal places, with those 

given by Ruhe and were obtained in the order shown 

above. 
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4. The actual roots are as follows: 

0, -0<, ±. i,' :t (l + 0(.) i and - 0( :± (1 + IX.) i. 

For each value of ~ the following input parameters 

were set: 

METHOD - QU~DR~TIC INTERPOLATION 

BASE FOR FUNCTION EV~LU~TION = 2 

E~CH SEARCH WAS CO~MENCED FROM THE COMPLEX CONJU3~TE 

OF THE ROOT JUST FOUND USING STEP 0.1 + O.li 

NUMBER OF ROOTS REQUESTED = 8 

SOUND = 10.0 

0( = 0.5 

INITIAL ESTIMATE = -1 - 2i 

RELATIVE TOLER~NCE FOR ROOT = 1.0E-6 

~~XIMUM NUMBER OF FUNCTION EV~LU~TIONS = 320 

EIGENV~LUE 

0.000000 - 1.S00000i 

-0.000000 + 1.S00000i 

-0.000000 - 1.000000i 

-0.000000 + 1.000000i 

. 0.000000 + O.OOOOOOi 

-0.500000 O.OOOOOOi 

-0.500000 - 1.S00000i 

-0.500000 + 1.500000i 

- A.S6 -

NO. ITERATIONS 

15 

4 

11 

4 

13 

260 

6 

4 



0<.= 0.1 

INITI~L ESTIM~TE = -1 - i 

'RELATIVE TOLE;Rl\NCE FOR ROOT = 1.0E-6 

~l\XIMUM NUMBER OF FUNCTION EV~LUATIONS = 800 

E;IGENVl\LUE NO. ITERl\TIONS 

-0.000000 - 1.100000i 20 

-0.100000 + 1.100000i 11 

-0,.100000 - 1.100000i 4 

-0.000000 + 1.100000i 9 

0.000000 - 1.000000i 8 

0.000000 + 1.000000i 9 

-0.100000 - O.OOOOOOi 8 

Ml\XIMUM FUNCTION EV~LU'TIONS REl\CHED 
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0(.=0.0 

INITIAL ESTIMATE = -0.01 - 1.01i . 

RELATIVE TOLERANCE FOR ROOT = 1.OE-6 OR· 

AUrOMATIC STOPPING WITH TOLERANCE = 0.01 

MAXIMUM NUMBER OF FUNCTION EV~LUATIONS = 800 

EIGENVALUE 

0.004300 - 1.00l796i 

-0.000251 + 0.998630i 

0.000241 0.999292i 

-0.000288 + 1. 000035i 

-0.000279 - 1.000037i 

-0.000016 + 1.000204i 

O.QOOOOO - O.OOOOOli 

0.000000 + O.OOOOOOi 

The results reflect the increasingly 

nature of the t?roblem as 0<-> O. 
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15 

24 

14 

14 

5 

10 

21 

5 

ill-conditioned 



!\PPENDIX G 

!\PPLICATION OP THE SINGULAR V!\LUE DECO~POSITION 

The Singular Value Decomposition 

The singular values of an m x n ~atrix A. are defined as 

0", ( !\ ) ) 0 s u c h t hat 6"'/. ( A ) = ~,( A H !\) [i = 1, 2, ••• • , n ] ( 1 ) 

It can be shown that A may be factorized in the for~ 

H 
A·= UL,V where U and V are m x m and n x n unitary 

matr ices respectively and ~ is ,an m x n matr ix wi th 

= ~ l' 
= 0 j 

[i = 1,2, •.. ,k and k = min(m,n)] 

otherwise. 

If A is of rank r we have, further, that 

u'r1- I ' ••• , if'i. = O. 

1\1so !\HA = V 2-.J. V H in accordance with (1) above. 

In the real case the factorization may be carried out 

using equivalence transformations so as to produce the 

singular values in the order 0', + a'~ ) ••• ~ o~. 

An example of such a procedure is provided by NAG routine 

F02WAF [33] which performs the following steps: 
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1. Reduction to upper triangular form by means of 

Householder transformations 

2. Further reduction to bidiagonal form by a se~uence o~ 

Given's ~lane rotations 

3. Iterative use of the QR algorithm to obtain an 

a~proximation, to the desired accuracy, to diagonal 

form 

Acceptance of Roots 

In generalized eigenvalue problems we seek values of a 

variable parameter ~ such that A(~) is singular. There 

will then exist at least one zero singular value. 

'rhus, in pr actical computation, ~ will be acce~ted as a 

root if the ratio ~"- I cl, 'is sufficiently small. 
J 

For 'the 'dielectric tube problem considered at the Nati-onal 

Physical Laboratory [15] it was found that, for valid 

roots, ~l Id, < macheps, where macheps, the unit rounding 

error, was of order 1.08-16. 

The false roots claimed occasionally as a result of the 

automatic stopping criterion were detected by much larger 

values of this ratio (typically of order 1.08-3). 
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Calculation of the Eigenvectors 

In the real case, if ~ is an eigenvalue of ~ and ~ is the 

T corresponding eigenvector, then A.(~)~ = Q. and A. = Q2:.P 

where P, Q are orthogonal. 

Thus Q ~ p"T X = Q. =) 'i pT ~ = .Q. 

Putting pr Z. = Y we qave that 2..x, = Q 

But ~ may be partitioned as 

where 0 is r x r diagonal. 

Similarly, y may be written 

where y, is of dimension r. 

Hence ~¥, = 0 =) y' = 0 and an arbi trary choice 
-I 

may be made for y • _. 
In particular, if we set y equal to the elementary unit 

-1.. 

vector ~~, we have that x =. Py 

=) X = £i (the ith. column of P) [i = r+l, •.• , k] 

~ set of eigenvectors may thus be read directly from the 

details of the singular value decomposition. 
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