
Static Verification of Wireless Sensor Networks with Formal Methods

Alessandro Testa1,2, Antonio Coronato1

(1) ICAR - CNR
Via P. Castellino 111, 80131 Napoli, Italy

alessandro.testa@na.icar.cnr.it,
antonio.coronato@na.icar.cnr.it

Marcello Cinque2

(2) DIS
Universita’ di Napoli Federico II

Via Claudio 21, 80125 Napoli, Italy
a.testa@unina.it,macinque@unina.it

Juan Carlos Augusto3

(3) SEIS, Middlesex University
London, United Kingdom

jcaugusto.work@gmail.com

Abstract—Wireless Sensor Networks (WSNs) are widely
recognized as a solution to build monitoring systems, even in
critical environments. WSNs, however, are subjected to faults
due to several causes (i.e. rain, EMF radiations, vibrations,
etc..) and tools and methodologies for the design of dependable
WSN-based systems are needed. Formal methods partially meet
such needs by assessing the degree of correctness of design
models and identifying potential system bottlenecks.
The aim of this paper is to define a methodology for the
static verification of WSN based systems using a formal
language (Event Calculus). In particular we show how the
formal specification can be used to verify the design of a
WSN in terms of its dependability properties. To this aim, we
define a set of correctness specifications that apply to a generic
WSN, coupled with specific structural specifications describing
the target network topology to evaluate. Finally, after having
presented an automatic tool, designed to support the designer,
we adopt this methodology to a case study.

Keywords-Reasoning, Formal Methods, Testing, Static Veri-
fication, Wireless Sensor Network

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are being more and
more adopted in critical application scenarios where the
level of trust on sensor nodes becomes very important,
affecting the success of large-scale industrial applications.
Examples of such scenarios are environmental monitoring
(e.g. detection of fires in forests), structural monitoring of
civil engineering structures [1] and in medical scenarios (e.g.
health monitoring) [2], [3].
WSN are dynamic systems, exposed to several threats due to
the unreliability of the wireless medium, the limited energy
budget, the deployment into harsh environments, and the
cheap hardware adopted [4]. Typically a node can fail due
to battery exhaustion or due to network partition. If a node
fails and stops to operate, it can cause an isolation towards
the nodes connected to it.
Exploring all possible consequences of node failures at de-
sign time is difficult, since the number of cases to be consid-
ered grows exponentially with the number of sensor nodes.
However, it is possible to verify the behavior of a given WSN
topology statically, i.e., under given circumstances, in order
to evaluate the consequences of the failure of a given set of
nodes in terms of its impact on the correct functioning of the

rest of the network. This type of verification is paramount
to pinpoint dependability bottlenecks in the network (i.e.,
sensor nodes or communication links which are particularly
critical for the correct functioning of the network) and to
guide the designer on how to modify the WSN configuration
in order to meet given design constraints.
In this paper, we propose the use of formal languages to
conduct the static verification of WSN-based systems, in
terms of their dependability properties. In particular, since
WSN nodes behavior can be characterized in terms of an
event flow (e.g. a node turns on or a node connects to an-
other node, etc.), we adopt an event-based formal language,
namely Event Calculus. By means of this formalism we can
specify and reason about WSN nodes events and their effects
on the whole network.
An open issue with formal specifications of WSNs is that
they need to be adapted when changing the target WSN
configuration, e.g., in terms of the number of nodes and
topology. To address this problem, we conceive two logi-
cal sets of specifications: a general specification for WSN
correctness properties that is valid for any WSN, and a
structural specification related to the topology of the target
WSN, designed in order to be generated automatically. To
simplify the adoption of the specification and the com-
putation of relevant dependability metrics, we also define
a support tool designed to i) automatically generate the
structural specifications given the target WSN topology, ii)
perform reasoning, by means of an Event Calculus reasoner,
starting from the correctness and structural specifications
and from an initial event trace (i.e., to verify the WSN
under given circumstances), and iii) compute dependability
metrics, such as connection resiliency and coverage, starting
from the event trace produced by the reasoner.
The rest of the paper is organized as follows. Section II
presents related work, while in Section III we present the
specifications of a WSN using Event Calculus; in particular
we introduce the Event Calculus formalism and we define
the global and structural specifications for a WSN. The
proposed support tool is illustrated in Section IV whereas
in Section V we describe the adoption of the approach with
reference to a case study. Finally, conclusion and future work
are provided in Section VI.

II. RELATED WORK

A Wireless Sensor Network is composed of N nodes,
each one equipped with a processor, a power supply unit,
including batteries, a sensor board with one or more sen-
sors (e.g., light sensor, accelerometer, etc.), a radio board
enabling the wireless multi-hop communication. The WSN
includes a sink which gathers data from WSN nodes.
Several studies adopt analytical models to assess the perfor-
mance and dependability of WSNs. These models are based
on a mathematical representation of the WSN characteristics
and are solved by means of simulation.
In [5] authors define a mathematical model of the energy
consumption of nodes to forecast the network lifetime.
Another approach for assessing WSNs makes use of behav-
ioral simulators, i.e., tools able to reproduce the expected
behavior of a system by means of a code-based description.
Several simulators for WSNs have been proposed in litera-
ture, such as [6], [7] and [8].
Behavioral simulators, compared to the analytical models,
allow to reproduce the expected behavior of WSN nodes on
the basis of the real application planned to execute on nodes.
However, it is not always possible to observe non-functional
properties of WSNs by means of simulative approaches,
since models need to be redefined and adapted to the specific
network to simulate. In [9] authors introduce an approach
for the automated generation of WSN dependability models,
based on a variant of Petri nets.
Recently, different formal methods and tools have been
applied for the modeling and analysis of WSNs, such as
[10], [11], and [12].
In [10] authors apply a formal tool to wireless sensor
networks. Authors propose a formal language to specify
the WSN and a tool to simulate it. However, the formal
specification has to be rewritten if the WSN under study
changes.
In [11] authors address the problem of verifying the cor-
rectness of sensor networks through a case study. They do
not consider wireless sensors and they use Approximate
Probabilistic Model Checker (APMC), a tool that allows
to approximately check the correctness of extremely large
probabilistic systems, to verify it. Instead, we rely on deter-
ministic checking of correctness properties.
In [12] authors describe a model-driven performance engi-
neering framework for WSNs (called Moppet). This frame-
work uses the Event Calculus formalism to estimate the per-
formance of WSN applications in terms of power consump-
tion and lifetime of each sensor node. Similarly to [12], we
propose to use Event Calculus, focusing however not only
on lifetime, but mainly on dependability properties, such
as resiliency and coverage, and by enabling the automatic
generation of the structural specification, which is important
to foster the adoption of the approach.

III. WSN SPECIFICATIONS

In this section we introduce the Event Calculus formalism
and we define the specification of both WSN correctness
properties and WSN structure, using Event Calculus. Finally,
we define the metrics considered in this paper.

A. Event Calculus

In the context of the formal methods, Event Calculus
acquires particular interest [13].
Event Calculus was presented by Robert Kowalski and
Marek Sergot in 1986 [14] and it was extended by Murray
Shanahan and Rob Miller in the 1990s [15].
It is a logical language for representing and reasoning of the
events and their effects [16]. The basic elements of Event
Calculus are represented by the concept of fluent, event and
predicate [13]. You can specify the value of fluents at some
given time points, the events that took place at given time
points, and their effects.
In the event calculus, there is a single time line on which
actual events occur. A set of actual event occurrences is
named narrative so for this reason the event calculus is
narrative-based.
Over the years the event calculus has evolved considerably
from its original version adding new predicates. We just re-
port main predicates of Event Calculus: Initiates, Terminates,
HoldsAt and Happens.
Let us suppose that e is an event, f is a fluent and t is a
timepoint.
We have,

Initiates(e, f, t)

means that, if the event e is executed at time t, then the
fluent f will be true after t.
The predicate

Terminates(e, f, t)

has a similar meaning, with the only difference being that
when the event e is executed at time t, then the fluent f will
be false after t.
The predicate HoldsAt is used to tell which fluents hold at
a given time point.
For example,

HoldsAt(f, t)

means that the fluent f is true at time t.
The predicate Happens is used when the event e occurs at
timepoint t.

Happens(e, t)

1) Event Calculus Reasoners: A number of techniques
can be used to perform automated reasoning in the event
calculus, including logic programming in Prolog, answer
set programming, satisfiability solving, and first-order logic
automated theorem proving.

Several event calculus reasoning programs have been built
that exploit satisfiability (SAT) solvers.
The Discrete Event Calculus (DEC) Reasoner [17] [18]
uses SAT solvers to perform various types of event calculus
reasoning including deduction, abduction, post-diction, and
model finding. It was implemented by Erik Mueller [19]
and its syntax is explained in [20] (e.g. the meaning of the
symbols used in the formulas).
The DEC Reasoner has been used in this work to check the
correctness properties written in Event Calculus.

B. Correctness Specifications

We define a set of global specifications in Event Calculus
aimed to verify the WSN behavior when undesirable events
occur, like a failure of a node (both transient and permanent)
or the connection/disconnection of a node from another
node or from the whole network. So, we want to check the
consequences of these events on the whole network.
For instance, let us consider the figure 1 and let us suppose
that node i permits the data transmission between the sink
node and the subnet A. We want to check when the subnet
A is isolated from the rest of network. We suppose that node
i is connected with node j and k. If node i fails, the nodes
j and k (and all the nodes of the subnet A) are alive but
isolated and so the whole subnet A is isolated.
More in general, if a subnet depends on a node and this
node becomes isolated then all of the nodes of the subnet
are isolated.

Figure 1: Isolation of a WSN subnet

The correctness specifications are reported in the listing
1. They define the basic set of events that can happen
in the WSN, the second level events that can occur as a
consequence (e.g., isolation), and the fluents used to specify
the correctness properties.

Listing 1: Correctness Specifications of a WSN
1 sort sensor:integer
2 sort to_sensor:integer
3 sort from_sensor:integer
4
5 predicate Neighbor(sensor,from_sensor)
6
7 event Start(sensor)
8 event Stop(sensor)

9 event Connect(sensor, to_sensor)
10 event Disconnect(sensor, from_sensor)
11
12 event Join(sensor)
13 event Isolate(sensor)
14
15 fluent IsAlive(sensor)
16 fluent IsLinked(sensor,from_sensor)
17 fluent IsReachable(sensor)
18
19 [sensor] HoldsAt(IsAlive(sensor),0).
20 [sensor] HoldsAt(IsReachable(sensor),0).
21 [sensor,from_sensor] Neighbor(from_sensor,

sensor) <-> HoldsAt(IsLinked(sensor,
from_sensor),0).

22
23 [time,sensor] Initiates(Start(sensor),

IsAlive(sensor), time).
24 [time,sensor] Terminates(Stop(sensor),

IsAlive(sensor), time).
25 [sensor,to_sensor,time] Initiates(Connect(

sensor,to_sensor), IsLinked(sensor,to_
sensor), time).

26 [sensor,from_sensor,time] Terminates(
Disconnect(sensor,from_sensor),
IsLinked(sensor,from_sensor), time).

27 [sensor,time] Initiates(Join(sensor),
IsReachable(sensor),time).

28 [sensor,time] Terminates(Isolate(sensor),
IsReachable(sensor),time).

29
30 [time] !Happens(Isolate(1),time).
31 [time] !Happens(Join(1),time).
32
33 [time, sensor]
34 HoldsAt(IsAlive(sensor),time) -> !Happens(

Start(sensor),time).
35
36 [time,sensor]
37 !HoldsAt(IsAlive(sensor),time) -> !Happens

(Stop(sensor),time).
38
39 [time, sensor]
40 HoldsAt(IsReachable(sensor),time) -> !

Happens(Join(sensor),time).
41
42 [time,sensor]
43 !HoldsAt(IsReachable(sensor),time) -> !

Happens(Isolate(sensor),time).
44
45 [sensor,from_sensor, time]
46 !Neighbor(from_sensor, sensor) -> !Happens

(Connect(sensor, from_sensor),time) &
!Happens(Disconnect(sensor, from_
sensor),time).

47
48 [time, sensor, to_sensor]
49 HoldsAt(IsLinked(sensor, to_sensor),time)

-> !Happens(Connect(sensor, to_sensor)
,time).

50
51 [time,sensor, from_sensor]
52 !HoldsAt(IsLinked(sensor, from_sensor),

time) -> !Happens(Disconnect(sensor,

from_sensor),time).
53
54 [sensor,from_sensor, time]
55 Neighbor(from_sensor,sensor) & HoldsAt(

IsReachable(sensor),time) & HoldsAt(
IsAlive(sensor),time) & (!{from_
sensor2} (HoldsAt(IsAlive(from_sensor
2),time) & HoldsAt(IsReachable(from_
sensor2),time) & HoldsAt(IsLinked(
sensor,from_sensor2),time)) & Neighbor
(from_sensor2,sensor)) ->

56 Happens(Isolate(sensor),time).
57
58 [sensor,from_sensor, time]
59 (!HoldsAt(IsReachable(sensor),time) &

HoldsAt(IsAlive(sensor),time) &
HoldsAt(IsAlive(from_sensor),time) &
HoldsAt(IsReachable(from_sensor),time)
) & HoldsAt(IsLinked(sensor,from_

sensor),time) & Neighbor(from_sensor,
sensor) ->

60 Happens(Join(sensor),time).
61
62 [sensor,from_sensor, time]
63 ((HoldsAt(IsAlive(from_sensor),time) &

HoldsAt(IsReachable(from_sensor),time)
& HoldsAt(IsLinked(sensor,from_sensor

),time)) | !HoldsAt(IsReachable(
sensor),time) | !HoldsAt(IsAlive(
sensor),time)) & Neighbor(from_sensor
,sensor) ->

64 !Happens(Isolate(sensor),time).
65
66 [sensor,from_sensor,time]
67 (HoldsAt(IsReachable(sensor),time) | !

HoldsAt(IsAlive(sensor),time) | !
HoldsAt(IsLinked(sensor,from_sensor),
time) | !HoldsAt(IsAlive(from_sensor),
time) | !HoldsAt(IsReachable(from_
sensor),time)) & Neighbor(from_sensor,
sensor) ->

68 !Happens(Join(sensor),time).

1) Sorts: In the first part of the specification (lines 1 to
3), we define three types:

• sensor
It is the reference sensor for events and fluents.

• to sensor
This sort is used for events and fluents with two
parameters in input. For instance, we use to sensor in
case of connection (i.e. a sensor connects to another
sensor).

• from sensor
It has the dual meaning of to sensor.

2) Predicate: In line 5 we pre-declare the predicate
Neighbor(sensor, from sensor) to control if there is a con-
nection between two nodes: it means that a sensor receives
data from a from sensor. In practice, this predicate is
declared in the structural specification (see III-C).

3) Events: We distinguish events of first level (lines 7
to 10) from events of second level directly caught from the
WSN by means of specific monitors (lines 12-13).
The set of basic events includes:

• Start(sensor)
This event occurs when a sensor switches on.

• Stop(sensor)
This event occurs when a sensor switches off, e.g., due
to a failure.

• Connect(sensor, to sensor)
This event occurs when a sensor connects to another
sensor.

• Disconnect(sensor, from sensor)
This event occurs when a sensor disconnects from
another sensor for an unknown reason (i.e. sensor
movements or channel fading).

Events of second level are generated by the reasoner on the
basis of our specifications and of the sequence of first level
events actually occurred.

• Join(sensor)
This event occurs when there is at least a connection
between a sensor and one or more sensors. This event
is an effect of the Connect(sensor, to sensor) event.

• Isolate(sensor)
This event occurs when a sensor is completely isolated
from the network. In case of point-to-point connec-
tion, if there is a Stop(sensor) or Disconnect(sensor,
from sensor) event, then also an Isolate(sensor) event
occurs. If a sensor has n neighbors, then it will be
isolated if and only if all the n neighbors are not alive
or isolated or not connected to the sensor.

4) Fluents: The values of the fluents (defined in the lines
15, 16 and 17) are determined by the events in according to
the axioms illustrated in the lines 23-28. They are:

• IsAlive(sensor)
It is true when a Start event occurs for a sensor; it is
false when a Stop event occurs (lines 23-24).

• IsLinked(sensor, to sensor)
It is true when an Connect event occur and so a sensor
is connected to a sensor from which it receives data; it
is false when a Disconnect event occurs (lines 25-26).

• IsReachable(sensor)
It is true when a sensor is reachable and there is at
least one path between the sensor and the sink sensor;
it is false when the sensor is completely isolated from
all its neighbor nodes and so from the whole network
(lines 27-28).

5) Initial conditions: From line 19 to line 21 we set some
initial conditions. The reasoner considers these conditions
when it starts the reasoning.
In particular, we state that at the beginning every sensor is

alive, is reachable and is linked with another sensor on the
basis of the WSN topology.

6) Definition of the correctness properties: In lines 30-
31 we assert that the node 1, being hypothetically the sink
node, is never isolated and then it cannot receive Isolate and
Connect events.
In lines 33-52 we show conditions in which events generally
can or cannot occur. For example if a node is alive, it cannot
be started as well as if a node is isolated it cannot occur an
Isolate event.
In lines 54-68 we show the axioms that determine when
defined events specifically happen.
For example in the lines 54-56 we define conditions for
having an Isolate event. A sensor can be isolated if it is
initially reachable from every sensor, alive and, considering
each neighbor sensor, there is not connection among them
or every neighbor sensor is not reachable.

C. Structural Specification

In this section we define the structurual specifications
related to the topology of a WSN. Differently from the
specifications described in previous sub-section III-B, these
specifications vary on the basis of the structure of the WSN.
To this aim, we use the predicate Neighbor (pre-declared
in the previous sub-section, line 5 of the specification) to
specify how nodes are linked in the topology. For instance,

Figure 2: Example of topology of a WSN

considering the topology in figure 2, let us suppose node i
is connected with j and k and let us consider a tree graph
where sink node (root node) is the node i and the nodes j
and k are child nodes. The resulting specification is reported
in listing 2, where sensor1 is the parent node (i) and sensor2
are the child nodes (j and k).

Listing 2: Example of Neighbor predicate Specification
1 [sensor1,sensor2] Neighbor(sensor1,sensor

2) <-> (
2 (sensor1=i & sensor2=j) |
3 (sensor1=i & sensor2=k)
4).

The role of the Neighbor predicate is very important to
understand when an axiom can be applied. Let us examine
the axiom related at a possible isolation (lines 54-56 of
listing 1) and let us apply it for the figure 2. The described
implication is true when, given a couple of nodes (sensor,
from sensor), the conditions about isolation are true and

there is a link between nodes (in this case, between node
j and i or node k and i). This, for instance, can never be true
for the couple of nodes j and k, since there is not a physical
link between them.

D. Initial Event Trace

In order to verify the behavior of the target WSN under
given circumstances, we need to indicate an initial event
sequence (Event Trace). For example, observing listing 3,
by means of Happens predicates, we can declare that at
time-point 1 sensor j stops, at timepoint 3 sensor k stops,
etc. In this way, by means of the reasoner, we can observe
the consequences of any initial sequence of events of interest
for the designer, e.g., to test the robustness of the designed
topology against the temporary unavailability (failure/recov-
ery) of a given set of nodes, or to quantify to what extent
the modification of the topology can be beneficial for the
network.

Listing 3: Example of initial event trace
1 Happens(Stop(j),1).
2 Happens(Stop(k),3).
3 Happens(Start(k),4).
4 Happens(Disconnect(k,i),5).
5
6 completion Happens

Finally in the structural specifications we have to include
the number of the sensors of the topology and the number
of timepoints to select the observation time.

E. Metrics

In this paper we focus on the following dependability
metrics, defined in [9]:

• Connection Resiliency represents the number of node
failures and disconnection events that can be sustained
while preserving a given number of nodes connected
to the sink.

• Coverage is the time interval in which the WSN can
operate, while preserving a given number of nodes
connected to the sink.

As described in the following, these metrics are evaluated
by analyzing the event trace generated by the reasoner, given
the target WSN and the initial event trace.

IV. THE SUPPORT TOOL

A Java-based tool has been designed and implemented
to simplify the application of the proposed methodology.
By means of a graphical user interface (GUI), shown in
figure 3, the user can simply specify i) the topology of the
target WSN, in terms of a connectivity matrix (topology
section of the GUI), ii) the time horizon to consider, in
terms of the number of timepoints (EC section), and iii) the
initial event trace, by pressing the New Event Trace button
in the EC section. Figure 4 shows an example of dialog

Figure 3: Application GUI

associated with such button, where the user can specify the
initial event trace. Hence, the user does not need to know

Figure 4: Example of an Initial Event Trace specified by the
user

the details about the underlying formalism, which is hidden
by the tool.
Once user inputs are inserted, the tool is able to
automatically generate the structural specification and the
initial event trace in terms of Event Calculus specification
files. These files, together with the general correctness
specification, are then provided by the tool as inputs to the
DECReasoner, which produces the event trace as the result
of the reasoning (this happens when the user presses the
Reasoning button in the EC section). The obtained trace is
finally analyzed by the tool to evaluate the dependability
metrics defined in section III-E, namely coverage and
connection resiliency (when the user presses the respective
buttons in the Metrics section of the GUI). Other metrics,
such as availability, lifetime, and isolation, will be treated
in next releases of the tool.

A. Metrics computation

By means of a parser that analyzes the trace produced by
the DECReasoner, the tool calculates the metrics defined in

section III-E.

The computation of Coverage and Connection Resiliency
depends on a threshold parameter, to be indicated as a
percentage by the user in the GUI (see the “Threshold”
text field in the Metrics section in figure 3). The threshold
expresses the fraction of failed and isolated nodes that the
user can tolerate, given its design constraints. For instance,
over a WSN of 20 nodes, a threshold set to 100% means
that all the 20 nodes have to be connected, whereas 50%
means that the user can tolerate at most 10 isolated nodes.
Considering the threshold value, we calculate the Coverage
analyzing the IsReachable(sensor) and IsAlive(sensor) flu-
ents found in the event trace produced by the reasoner: if a
-IsReachable(x) or a -IsAlive(sensor) fluent is found in the
event trace, this means that node x became isolated or it
stopped. For example in the case of coverage at 50%, for a
WSN with 7 nodes, there is coverage when at least 4 nodes
are not isolated (i.e., they are reachable). Hence, as soon as
4 different nodes are no more reachable or alive (looking at
the fluents), the network is no more covered. The coverage
can be then evaluated as the interval [0, t], being t the time
point of the last failure or disconnection event before the
isolation (e.g., the time point of the event that caused the
isolation of a number of nodes exceeding the threshold).
The Connection Resiliency can then be easily evaluated as
the number of failure and disconnection events (namely,
Stop(sensor) and Disconnect(sensor, from sensor) events)
that happen within the coverage interval, excluding the last
failure/disconnection event, that is, the one that actually
leads the number of isolated nodes to overcome the thresh-
old. For example, if we have coverage in the interval [0,

6], and during this period 3 failure/disconnection events can
be counted, than the Connection Resiliency is 2, that is, the
WSN was able to tolerate 2 failures or disconnections while
preserving more than 50% of the nodes connected.
In the next section we show the computation of these two
metrics by considering the event trace generated in the
context of a case study.

V. CASE STUDY

Let us consider the wireless body sensor network reported
in figure 5 and proposed by Quwaider et al. in [21].
This Wireless Body Sensor Network (WBSN) is constructed

Figure 5: Wireless Body Sensor Network topology

Figure 6: WBSN topology

by mounting seven sensor nodes attached on two ankles, two
thighs, two upper-arms and one in the waist area. In figure 6
it is reported the topology of the WBSN, in which the arrows
indicate the relationships between couples of nodes (i.e. node
2 is linked with node 1, node 3 and 4 are linked with node 2,
etc.). Node 1 is the sink of the network. Each node consists
of a 900 MHz Mica2Dot MOTE (running Tiny-OS).
The objective of the case study is to observe the behavior
of this WBSN in 10 timepoints, supposing that, after one
timepoint, a disconnection between node 5 and node 3
occurs, and that node 4 stops at timepoint 3. In particular,
we are interested to evaluate if the reasoning performed by
the DECReasoner on our specifications is correct. For a
coverage threshold set at 50%, we should observe a coverage
interval equals to [0, 3] (i.e., when node 4 stops at time point
3, 4 nodes are not reachable, namely 4, 5, 6 and 7), and a

connection resiliency equals to 1 (i.e., only the disconnection
event is tolerated).
In the following, we show the specifications generated by
the tool and the trace produced by the DECReasoner by
providing the WBSN connectivity matrix and the initial
event trace as inputs to the tool, as explained in the previous
section.

A. Event Calculus Specifications obtained by the tool

1) Structural specification: analyzing the connectivity
matrix of the WBSN topology, the tool establishes how the
nodes are linked (see Listing 4).

Listing 4: Neighbor predicate definition
1 [sensor1,sensor2] Neighbor(sensor1,sensor

2) <-> (
2 (sensor1=1 & sensor2=2) |
3 (sensor1=2 & sensor2=3) | (sensor1=2 &

sensor2=4) |
4 (sensor1=3 & sensor2=5) |
5 (sensor1=4 & sensor2=6) |
6 (sensor1=6 & sensor2=7)

2) Initial event trace: the initial event trace produced by
the tool in our case is reported in Listing 5.

Listing 5: Initial event trace
1 Happens(Disconnect(5 , 3),1).
2 Happens(Stop(4),3).
3
4 completion Happens

B. Outcome and Metrics computation

Listing 6 reports the outcome (also called the narrative)
produced by the DECReasoner when invoked by the tool.
The event trace confirms our expectations. We can observe
that after the stop of node 4, nodes 6 and 7 becomes
not reachable. Considering that node 5 was already not
reachable, this means that a total of 4 nodes are isolated. The
coverage is computed as the time point of the last failure
event causing such isolation, that is 3. Consequently, the
connection resiliency is computed by counting the number
of failure and disconnection events in the interval [0, 3],
excluding the last event; hence, it is equal to 1.

Listing 6: Outcome of the DECReasoner
0
1
Happens(Disconnect(5, 3), 1).
2
-IsLinked(5, 3).
Happens(Isolate(5), 2).
3
-IsReachable(5).
Happens(Stop(4), 3).
4
-IsAlive(4).
Happens(Isolate(6), 4).

5
-IsReachable(6).
Happens(Isolate(7), 5).
6
-IsReachable(7).
7
8
9
10

VI. CONCLUSIONS AND FUTURE WORK

This paper has described a methodology for the verifi-
cation of WSN based systems using the Event Calculus.
Using Event Calculus formalism we have presented global
specifications for a generic WSN that are integrated with
structural specifications for a particular topology. A Java-
based tool, designed to automate this approach, has been
proposed. Finally a WBSN is been considered as case study.
Albeit simplistic, the case study has been performed to show
the correctness of the trace produced by the DECReasoner
when processing our specifications.
As future work we want to extend this approach also
to perform Model Checking and to compute other typical
dependability metrics such as lifetime, availability, isolation
(for a generic node). Also, other experimental campaigns
have to be performed on more complex topologies. Finally,
we think that this methodology is useful to do Runtime
Verification which allows the system to self assess its de-
pendability level, to detect faults and to recover from failures
while running.

REFERENCES

[1] Marcello Cinque, Domenico Cotroneo, Catello Di Martino,
Stefano Russo, and Alessandro Testa. Avr-inject: A tool for
injecting faults in wireless sensor nodes. In IPDPS, pages
1–8, 2009.

[2] Yang Hao and Robert Foster. Wireless body sensor networks
for health-monitoring applications. Physiological Measure-
ment, 29(11):R27–R56, November 2008.

[3] M. Paksuniemi, H. Sorvoja, E. Alasaarela, and R. Myllyla.
Wireless sensor and data transmission needs and technologies
for patient monitoring in the operating room and intensive
care unit. Engineering in Medicine and Biology Society, 2005.
IEEE-EMBS 2005. 27th Annual International Conference of
the, pages 5182–5185, 2005.

[4] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John
Anderson, and David Culler. An analysis of a large scale
habitat monitoring application. In Proceedings of the 2nd
international conference on Embedded networked sensor sys-
tems, SenSys ’04, pages 214–226, New York, NY, USA, 2004.
ACM.

[5] Jae-Joon Lee, Bhaskar Krishnamachari, and C.-C. Jay Kuo.
Impact of energy depletion and reliability on wireless sensor
network connectivity. In In Proceedings of the SPIE Defense
and Security, 2004.

[6] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora:
scalable sensor network simulation with precise timing. In
Proceedings of the 4th international symposium on Informa-
tion processing in sensor networks, IPSN ’05, Piscataway, NJ,
USA, 2005. IEEE Press.

[7] Philip Levis, Nelson Lee, Matt Welsh, and David Culler.
Tossim: accurate and scalable simulation of entire tinyos ap-
plications. In Proceedings of the 1st international conference
on Embedded networked sensor systems, SenSys ’03, pages
126–137, New York, NY, USA, 2003. ACM.

[8] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/.

[9] Catello Di Martino, Marcello Cinque, and Domenico Cotro-
neo. Automated generation of performance and dependability
models for the assessment of wireless sensor networks. IEEE
Trans. Comput., 61(6):870–884, June 2012.

[10] P.C. Olveczky and S. Thorvaldsen. Formal modeling and
analysis of wireless sensor network algorithms in real-time
maude. Parallel and Distributed Processing Symposium,
International, 0:157, 2006.

[11] Akim Demaille. Probabilistic verification of sensor networks.
In In Proc. 4th IEEE Int. Conf. on Comput. Sci., Research,
Innovation and Vision for the Future (RIVF06, pages 45–54.
IEEE Computer Society, 2006.

[12] Pruet Boonma and Junichi Suzuki. Moppet: A model-driven
performance engineering framework for wireless sensor net-
works. Comput. J., 53(10):1674–1690, 2010.

[13] Murray Shanahan. The Event Calculus Explained. Lecture
Notes in Computer Science, 1600:409–??, 1999.

[14] R Kowalski and M Sergot. A logic-based calculus of events.
New Gen. Comput., 4(1):67–95, January 1986.

[15] Rob Miller and Murray Shanahan. Reasoning about dis-
continuities in the event calculus. In in Proceedings of the
Fifth International Conference on Principles of Knowledge
Representation and Reasoning (KR’96, pages 63–74. Morgan
Kaufmann, 1996.

[16] F. Van Harmelen, V. Lifschitz, and B. Porter. Handbook
Of Knowledge Representation. Foundations of Artificial
Intelligence. Elsevier, 2008.

[17] Erik T. Mueller. Event calculus reasoning through satisfiabil-
ity. Journal of Logic and Computation, 14:2004, 2004.

[18] Erik T. Mueller. A tool for satisfiability-based commonsense
reasoning in the event calculus. In FLAIRS Conference’04,
pages –1–1, 2004.

[19] E. Mueller. Decreasoner. http://decreasoner.sourceforge.net.

[20] Erik T. Muller. Discrete event calculus reasoner documenta-
tion. 2008.

[21] Muhannad Quwaider and Subir Biswas. Dtn routing in body
sensor networks with dynamic postural partitioning. Ad Hoc
Netw., 8(8):824–841, November 2010.

