
Middlesex
University
London

Middlesex University Research Repository:
an open access repository of

•

Middlesex University research
http://eprints.mdx.ac.uk

Mahmoud, Qusay H, 2002.
Evolution of network computing paradigms: applications of mobile

agents in wired and wireless networks.
Available from Middlesex Univers ity's Research Repository .

Copyright:

Middlesex University Research Repository makes the University's research available electronically.

•

Copyright and moral rights to th is thesis/research project are retained by the author and/or other
copyright owners . The work is supplied on the understanding that any use for commercial gain is
strictly forbidden. A copy may be downloaded for personal , non-commercial , research or study without
prior permission and without charge. Any use of the thesis/research project for private study or
research must be properly acknowledged with reference to the work's full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive quotations
taken from it, or its content changed in any way, without first obtaining permission in wri ting from the
copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact the
Repository Team at Middlesex University via the following email address:
epnnts@mdx.ac.uk

The item will be removed from the repository while any cla im is being investigated .

MIDDU:S:::X. UNIV(;RSiTY UBRi\P.V

Evolution of Network Computing Paradigms: Applications of
Mobile Agents in Wired and Wireless Networks

A context statement submitted to Middlesex University in partial
fulfilment of the requirements for the degree of Doctor of

Philosophy by Published Works

Qusay H. Mahmoud

School of Computing Science

Middlesex University

September 2002

BEST COpy

AVAILABLE

Variable print quality

11

Abstract

The World Wide Web (or Web for short) is the largest client-server computing system

commonly available, which is used through its widely accepted universal client (the Web

browser) that uses a standard communication protocol known as the HyperText Transfer

Protocol (HTTP) to display infonnation described in the HyperText Markup Language

(HTML). The current Web computing model allows the execution of server-side

applications such as Servlets and client-side applications such as Applets. However, it

offers limited support for another model of network computing where users would be

able to use remote, and perhaps more powerful, machines for their computing needs.

The client-server model enables anyone with a Web-enabled device ranging from

desktop computers to cellular telephones, to retrieve infonnation from the Web. In

today's information society, however, users are overwhelmed by the information with

which they are confronted on a daily basis. For subscribers of mobile wireless data

services, this may present a problem. Wireless handheld devices, such as cellular

telephones are connected via wireless networks that suffer from low bandwidth and have

a greater tendency for network errors. In addition, wireless connections can be lost or

degraded by mobility. Therefore, there ~s a need for entities that act on behalf of users to

simplify the tasks of discovering and managing network computing resources.

It has been said that software agents [26] are a solution in search of a problem. Mobile

agents, however, are inherently distributed in nature, and therefore they represent a

natural view of a distributed system. They provide an ideal mechanism for implementing

complex systems, and they are well suited for applications that are communications

centric such as Web-based network computing. Another attractive area of mobile agents

is processing data over unreliable networks (such as wireless networks). In such an

environment, the low reliability network can be used to transfer agents rather than a

chunk. of data. The agent can travel to the nodes of the network, collect or process

information without the risk of network disconnection, then return home.

The publications of this doctorate by published works report on research undertaken in

the area of distributed systems with emphasis on network computing paradigms, Web

based distributed computing, and the applications of mobile agents in Web-based

iii

distributed computing and wireless computing. The contributions of this collection of

related papers can be summarized in four points. First, I have shown how to extend the

Web to include computing resources; to illustrate the feasibility of my approach I have

constructed a proof of concept implementation. Second, a mobile agent-based approach

to Web-based distributed computing, that harness the power of the Web as a computing

resource, has been proposed and a system has been prototyped. This, however, means

that users will be able to use remote machines to execute their code, but this introduces a

security risk. I need to make sure that malicious users cannot harm the remote system.

For this, a security policy design pattern for mobile Java code has been developed. Third,

a mediator-based approach to wireless client/server computing has been proposed and

guidelines for implementing it have been published. This approach allows access to

Internet services and distributed object systems from resource-constraint handheld

wireless devices such as cellular telephones. Fourth and finally, a mobile agent-based

approach to the Wireless Internet has been designed and implemented. In this approach,

remote mobile agents can be accessed and used from wireless handheld devices.

Handheld wireless devices will benefit greatly from this approach since it overcomes

wireless network limitations such as low bandwidth and disconnection, and enhances the

functionality of services by being able to operate without constant user input.

IV

Acknowledgements

The research underpinning this body of published works has been undertaken

progressively between 1996 and 2001. During this period of time I have profited from

interactions with many colleagues, especially Weichang Du, to whom I would like to say

thank you.

I am deeply grateful to my supervisor Dr. Luminita Vasiu for her support and guidelines

throughout the preparation of this context statement for the degree of PhD by Published

Works.

Many thanks to Sardia Alhassan for providing great administrative support and answers

to all my questions.

I would like to thank my family for their long-term support, especially my brother Dr.

Mohammad H. Hamdan.

Finally, I would like to thank my wife, Reema, for her love, support, tolerance, and

coffee, and my baby son Yusef, who was born on October 14, 2001 for providing a fun

home environment while I finished this work.

Qusay H. Mahmoud

September, 2002

v

Table of Contents

Abstract .. ii

Acknowledgements .. iv

1. Introduction ... 1
1.1 Background... 1

1.1.1 The Client/Server Model. ... 1
1.1.2 The Object-based Model .. 2

1.2 Overview of the Work .. 2

2. Network Computing Paradigms .. 3
2.1 Sockets .. 3
2.2 Remote Procedure Calls .. 4

3. Mobile Agents .. 5
3.1 Security in Mobile Agents ... ·· 5
3.2 An Evolutionary Network Computing Paradigm ... 6

4. Web-based Distributed Computing ... 7
4.1 A Web-based Distributed Computing Platform .. 7

4.1.1 Dynamic Program Loading .. 10
4.1.2 Resource Constraint Specification ... 13
4.l.3 Server-side Resource Constraint Specification .. 14
4.1.4 Security Issues ... 14

Security in CGI-based Distributed Computing System 15
Security in Loading Code Dynamically .. 16

4.l.5 Implementing a Security Policy ... 16
Layer I: Safety Provided by Java .. 16
Layer II: Custom Security Policy ... 17

4.1.6 Testing the Web-based Distributed Computing Platform 18
4.2 An Application of Mobile Agents , .. 20
4.3 Related Work .. ··.·.············ 21

s. A Security PoHcy for Mobile Java Code ... 23

6. Wireless ComputiDg ••••••••••••••••••••••• ~ ••••••••••.••.••••..•..•.•••.••...•.....•••.••••••••••••••.•••••.••••••• 28
6.1 WAP .. 28

6.1.1 The W AP Architecture .. '" 29
6.1.2 The W AP Protocol Stack ... 29

6.2 12ME ... 30
6.2.1 Configurations ... , .. 31

CLDC .. 31
CDC .. 32

6.2.2 Virtual Machines .. 32

vi

The KVM .. 32
The CVM .. 33

6.2.3 Profiles ... 33
The MID Profile (MIDP) .. 33
The PDA Profile ... 33
The Foundation Profile ... 34
The Personal Profile .. 34
The RMI Profile .. 34

6.3 Accessing Internet Services .. 35
6.4 Accessing Distributed Object Systems ... 37

7. A Mobile Agent-based Approach to the Wireless Internet 39
7.1 Design Rationale ... 40
7.2 MobiAgent Advantages .. 42
7.3 Applications and Services ... 42
7.4 Limitation .. 43

8. Research Methods ... 43

9. Summary of the Published Works ... 44
9.1 Distributed Programming with Java (Book) ... 44
9.2 Learning Wireless Java (Book) ... 44
9.3 The Web as a Global Computing Platform (Conference Paper) 45
9.4 A Mobile Agent-based Approach to Web-based Distributed Computing
(Conference Paper and Book Chapter) ... 45
9.5 Jini for High-Performance Computing (Conference Paper) 45
9.6 A Security Policy Design Pattern for Mobile Java Code (Conference Paper) ... 46
9.7 MobiAgent: An Agent-based Approach to Wireless Information Systems
(Conference Paper and Book Chapter) ... 46
9.8 An Agent-based Approach to the Wireless Internet (Journal Paper) 46
9.9 Accessing and Using Internet Services from Java-enabled Handheld Wireless
Devices: A Mediator-based Approach (Conference Paper) 47
9.10 Agents for Devices and Devices for Agents (Journal Paper) 47

10. Summary, Contributions, and Future Work ... 47
10.1 Summary ... 47
10.2 Contribution to Knowledge .. ·· 49
10.3 Future Work .. ·· .. ·· · · 50

References .. S3

Appendix ... "" 57
A. Source Code for Web-based Global Distributed Computing Platfonn 57
B. Source Code for MohiAgent System .. 63
C. The Works ... ··· 67

C.I Refereed Journal Papers ... 67

vii

C.2 Books .. 67
C.3 Refereed Conference Papers .. 67
C.4 Book Chapters .. 68

1

1. Introduction

1.1 Background

A Distributed system consists of a collection of autonomous computers linked by a

network and equipped with distributed system software that enables computers to

coordinate their activities and to share the resources (such as hardware, software and

data) of the system. Resources in a distributed system are physically encapsulated

within one of the computers and can only be accessed from other computers by

communication. The resources are managed by a resource manager, which is an

important component of a distributed system. Thus, in a distributed system, resource

users communicate with the resource managers to access the shared resources of the

system [1,13].

The World Wide Web [5,6] represents a good example of a distributed system that is

used to share resources. Many web servers run on various computers, and each server

holds a wide range of documents and information in other media on diverse topics.

These web servers act as resource managers.

Distributed systems can be implemented using two models: the client/server model

and the object-based model (also known as distributed objects).

1.1.1 The Client/Server Model

The client server model is an important model for distributed systems. It contains a set

of server processes, each process is acting as a resource manager for a collection of

resources of a given type. It also contains a collection of client processes, each one

performs a task that requires access to some shared hardware and software resources.

Resource managers may themselves need to access resources managed by another

process, so some processes are both client and server processes. However, in the

client/server model, all shared resources are held and managed by server processes.

The client/server model is a form of distributed computing in which one program

(the client) communicates with another program (the server) for the purpose of

2

exchanging information. In client/server computing, both the client and server usually

speak the same language - a protocol that the client and server both understand - so

they are able to communicate.

In the client/server model, if a process acts as both a client and a server depending

on its role, then it is an example of the peer-to-peer lmodel of communication.

Information sharing systems such as Napster2 and Gnutella3 are good examples of this

model.

1.1.2 The Object-based Model

A distributed object-based model system is a collection of objects that isolates the

requesters of services (clients) from the providers of services (servers) by a well

defined encapsulating interface. In other words, clients are isolated from the

implementation of services as data representations and executable code.

In the object-based model, a client sends a message to an object, which in turns

interprets the message to decide what service to perform. This service, or method,

selection could be performed by either the object or a broker. The Java Remote

Method Invocation (RMf) and the Common Object Request Broker Architecture

(CORBAs) are examples of this model.

1.2 Overview of the Work

The publications which make up this context statement for a doctorate by published

works report on research undertaken in the area of distributed systems with emphasis

on network computing paradigms, the future of the Web as a global computing

platform, and the role of software agents in Web-based global computing and wireless

computing.

I http://www.jxta.org
2 http://www.napster.com
3 http://www.gnutella.com
4 http://java.sun.com!productsljdklnni
S http://www.omg.org

3

I first consider the network computing paradigms and the various distribution

mechanisms that can be used to develop distributed applications. These distribution

mechanisms are compared and contrasted. I show that the client/server model

employed by the Web is missing a computing model that allows users to upload code

to the server, which in turn executes the code and sends the results back to the client. I

discuss the architecture of this new model I propose and describe its components. Then

I show how mobile agents can be applied in Web-based computing for efficiently

managing computing resources.

The ability to upload code to remote foreign servers and execute it there raises

security issues that need to be dealt with. For example, remote foreign servers must be

protected against malicious code. To achieve this, I devise and implement a security

policy that states what foreign code can and cannot do. Then later I formalize this

security policy in a reusable design pattern.

Another major area that the publications of this work have contributed to is wireless

computing. First, I discuss the technologies that can be used to develop wireless data

services, then the design and implementation of a mediator-based architecture that can

be used to access Internet services and distributed object systems will be discussed. I

propose an Agent-based approach for the wireless Internet, and illustrate the feasibility

of this approach by constructing a proof of concept implementation. This approach

reduces the demand on wireless links [34] by supporting disconnected operations and

allowing users to launch remote agents to act on behalf of them.

2. Network Computing Paradigms

The client/server model can be implemented in various ways, it is typically done using

low-level sockets or remote procedure calls (RPC) [1,7]. Using low-level sockets to

develop client/server systems means that I must design a protocol, which is a set of

commands agreed upon by the client and server through which they will be able to

communicate. RPC is a high-level paradigm that abstracts the interface between the

client and server to a local procedure call [56]. Therefore, in RPC there is no need to

design a protocol for the client and the server to use.

4

2.1 Sockets

Facilities for Interprocess Communication (IPC) represent a major addition to the Unix

operating system. The basic idea was to make IPC similar to file input/output (I/O).

The IPC primitives are provided as system calls, which are implemented as a layer

over the TCP and UDP protocols. Message destinations are specified as socket

addresses.

IPC operations are based on socket pairs; one socket belongs to each of a pair of

communication processes. With IPC, information is exchanged by transmitting it in a

message between a socket in one process and a socket in another process. Messages

are queued at the sending socket until the networking protocol has transmitted them

and an acknowledgment has arrived, if the protocol requires one. When messages

arrive, they are queued at the receiving socket until the receiving process makes an

appropriate system call to receive them. In client/server terms, the server is the process

that listens for requests and the client is the process that sends the requests. Once the

server process receives a request it tries to process that request, and it sends the output

to the client.

2.2 Remote Procedure Calls

The Remote Procedure Call (RPC) approach, which was conceived in the 1970s, views

computer-to-computer communication as enabling one computer to call a procedure in

another computer. In RPC, all messages go through the network [52,53,57], each either

requests or acknowledges a procedure's action, as shown in Figure 1.

Client Server j

Figure J: RPC-ba ed Client/Server Computing Paradigm

An RPC is a high-level communication paradigm that allows network applications

to be developed by way of specialized procedure calls, which are designed to hide the

5

details of the underlying network mechanism. With RPC, the client makes a procedure

call which sends requests to the remote server, which in tum serves the procedures

registered at the remote machine as necessary. When these requests arrive, the server

calls a dispatch routine, executes the requested procedures, and sends back the reply,

and the procedure call returns to the client.

Programs that use RPC mechanisms have the advantage of avoiding the details of

interfacing with the network. This model, however, has its own limitations. Most

notably, all interactions between the client and server must go through the network as

shown in Figure 1 above. In Section 3 I discuss mobile agents, and discuss how they

represent a new paradigm for distributed computing.

3. Mobile Agents

An agent [50] can be defined, along with its characteristics, as an entity that: (1) acts

on behalf of others in an autonomous fashion; (2) performs its actions in some level of

proactivity and reactivity; and (3) exhibits some levels of the key attributes of learning,

cooperation, and mobility [3, 21,45,47].

The above characteristics are true for a software agent [60], which is a software

component that conforms to the characteristics of agents and also performs such tasks

as inhibiting computer and networks assisting users with computer-based tasks.

A software agent is considered a mobile agent if it is to migrate from host to host in

a heterogeneous environment. When the agent moves, its state moves with it and

therefore it would be able to perform appropriately in the new environment it has

moved to.

3.1 Security in Mobile Agents

Mobile agents raise security issues similar to Java applets. There are several security

issues to be considered in mobile agent-based computing [10,14]. Some people think

of mobile agents as viruses since they may exhibit similar behaviour. Mobile agent

security can be split into two areas:

• Protecting host nodes from destructive mobile agents.

6

• Protecting mobile agents from malicious hosts.

A mobile agent is an open system, so the host nodes are subject to a variety of

attacks. These attacks can be in one of the following forms:

• Leakage: acquisition of data by an unauthorized party.

• Tampering: altering of data by an unauthorized party.

• Resource stealing: use of facilities by an unauthorized party.

The standard approach to these problems is to use authentication and digital

signatures and to reject unknown mobile agents from entry into a host. However, this

does not seem like a good solution.

The other area of security deals with the issue of protecting mobile agents from

hosts, which may want to scan the agent for information, alter the agent's state, or even

kill the agent. The crucial issue here is that the agent will have to expose its data and

information to the host in order to run on it. It seems it is computationally impossible

to protect a mobile agent from a malicious host. Some researchers are tackling the

problem from a sociological point of view by means of enforcing good host behaviour

[21] and the use of cryptography [48].

3.2 An Evolutionary Network Computing Paradigm

The central principle oftoday's distributed computing is RPC, where most interactions

between the client and server must go through the network.

Mobile agents represent an evolutionary approach to network computing. This

approach was initially known as remote programming [53,57], which views computer

to-computer communication as one computer not only calling procedures in another,

but also supplying procedures to be performed. Each message that goes through the

network includes a procedure that the receiving computer is to perform and the data for

the procedure's arguments. The procedure and its state are called a mobile agent, since

they represent the sending computer even while they are in the receiving computer.

This approach is attractive [29,31,32] since the reliability of the network is not crucial

for the following reasons: 1) mobile agents do not consume much network bandwidth.

They only consume bandwidth when they move; 2) mobile agents continue to execute

7

after they move, even if they lose network connectivity with their creators. This

approach is depicted in Figure 2.

441 ...
Client ~ Agent 4-~.-or!~~'--- Agent ----.. Server

~

Figure 2: The mobile agent computing paradigm

Therefore, if a client requires extensive communication with a particular sever

somewhere on the network, then it is a good idea to implement such a system using

mobile agents - and agents can move close to the remote server (thereby reducing the

network traffic), perform all tasks, and come back. During that period the client

machine does not have to be switched on. It has to be turned on only when it is time to

welcome back the agent.

If you are thinking, "this is exactly what process migration is all about - this has

been done in the 60's". You would be absolutely right. However, mobile agents are

different since hey exhibit the characteristics, such as autonomy, reactivity and

proactivity, of a software agent as described earlier.

4. Web-based Distributed Computing

The World Wide Web (or Web for short) has been used as a global information

resource system [54]. When a user visits a web site, generally all he sees is information

(both static and dynamic), forms to fill out, and animated images.

The current simplified computing model of the Web allows the user to execute

server-side programs using CGI scripts. In addition, it allows the user to download and

execute server-side mini programs (applets) on his machine. In this case, when the user

requests a Web page that contains an applet, the applet migrates to the client's machine

and gets executed there [55].

It is apparent that one model which allows users to upload code to the server side for

execution is missing. In this model the program on the client's machine is executed on

a remote machine.

8

4.1 A Web-based Distributed Computing Platform

In his paper, The Next 10,0002 years, Ted Lewis contends that; "The limits of

parallelism seem to block further advances in processor performance beyond the next

10,0002 years. But a third alternative leads to the concept ofan uncoordinated, globally

distributed, parallel megacomputer. Such computers already exist in the fonn of

asynchronous nodes on the Internet, but they yet have to be used to their fullest

extent." [33].

In computational intensive program, there is always a need for more computing

power and better performance. Having a global computing platform would solve many

problems related to performance, fault tolerance, and resource limitations. One major

advantage would be the ability to use as many idle (and perhaps faster) machines on

the Internet as possible to solve large and complex problems. An example of such a

problem is the RSA-129 factoring project where more than 1600 machines were used

to factor an integer of 129 digits long.

In [35], the limitations of the Web for global network computing are outlined, and

the design and implementation of a system that aims to add computing resources to the

Hypertext Transfer Protocol or HTTP [15] are discussed.

A basic Web-based distributed computing system allows users to execute their

programs on remote HTTP-enabled compute servers. The system therefore consists of

servers and clients. A Web browser may serve as a client and the server runs on a

remote HTTP-enabled machine, acting as a remote compute server. In this model, in

order for the client to upload code to a remote compute server for execution, the client

needs to know the address (hostname and port number combination) of the remote

compute server. This is actually analogous to the conventional Web in the early days

where the user had to know the URL of the Web site before navigating it. Once the

URL of a remote compute server is known, the client can upload his code for

execution.

9

My first attempt at building a Web-based distributed computing system resulted in a

simple CGI-based distributed computing system that allows clients to upload their

program files to remote machines for execution as shown in Figure 3.

Figure 3: CGI-based Distributed Computing System

In this architecture, the client knows the compute server's address. The client fills

out a form specifying the class(es) to be uploaded to the remote compute server. The

form is then interpreted using a CGI script located on the server-side. The CGI script

saves the code that the client has uploaded and then invokes a third party application

(e.g. Java Bytecode Interpreter) to execute the program. Upon successful execution,

the output will be saved in a dynamically generated HTML page and sent to the client

for display in the Web browser. In this model, the user waits for the CGI script to

finish executing and sending the results back.

This simple CGI-based distributed computing system has the following advantages:

• Simplicity: The main advantage of using CGr and file uploading is the

simplicity of implementing such a system in which only one CGI script is

needed to handle the file uploading, saving the code, invoked the Java

interpreter to execute the code, and sending the results back to the client.

• Evolutionary: Web users are familiar with HTML forms. Building a new

system using existing technology makes the adoption and acceptance of the

y tern easier.

10

• Easiness: From the user's point of view, it is all point-and-click. When the

user is presented with the HTML form, the user needs only click on a button to

get a dialog box with a view of his local disk from which he can choose the

program file to be uploaded.

The drawbacks and limitations of using COl for distributed computing, however,

outweighs the advantages. The limitations are:

• Incompatibility: This is due to the fact that there are many Web browsers

available to the user, and not all of them are compatible since they don't all

implement the same features. Some browser may not support the file upload

feature, which allows users to upload file programs to remote servers, and

hence this represents a disadvantage in view of our system

• Space inefficiency: Having the whole file to be uploaded to the compute

server's machine is a waste of bandwidth. In addition, once the file is uploaded

to the compute server's machine it needs to be saved, thus taking up valuable

space on the server's machine.

• Inconvenience: lithe client's program consists of one main program and a few

subsystems, the client is required to upload all the program files to the server's

machine. This is both tedious and inconvenience.

• CGI is Slow: If the program is large, it may take a few minutes to run, and the

user will have to wait for the output to be sent and displayed in the Web

browser. In other words, the user cannot use the browser while the program is

being executed.

• Lack of control: If the client wishes to stop executing the program (by sending

an interrupt for example), CGI will not be able to catch that interrupt and stop

executing the client's code. In addition, COl is stateless and therefore it is not

possible to keep track of user activities.

• Limited Input/Output: COl was developed for the purpose of form-based

information processing. Once the user fills out the fonn and submits it, there is

no interaction between the user and the script interpreting the fonn. The user

11

submits the form once and waits for the output. This Input/Output limitation

presents a problem when using CGI to carry out real computations.

4.1.1 Dynamic Program Loading

From the discussion above on using CGI for web-based distributed computing, we

have seen that the process of uploading program files and saving them on the compute

server's machine is inefficient. Thus, we need a way in which the client does not have

to upload the whole files for execution to the compute server. Instead, the client should

just be able to send a URL of the code to be executed. The compute server in turn

should fetch the code from that URL and executes it dynamically. During execution,

the server can monitor the progress and report back to the client by sending report

messages if needed. In order to receive report messages, however, a specialized log

server should run on the client's machine. The log server listens for requests from the

compute server and log messages.

Once the code has been dynamically loaded, the compute server collects the results

and sends them back to the client.

This model eliminates the drawbacks of COl scripts by introducing several

advantages, including:

• Efficiency and speed: The client no longer needs to upload the whole files to

the compute server for execution. Instead, the client sends a URL to the

compute server, which will in turn load the code dynamically from that URL.

• Convenience: If the client's code consists of several Java classes (one main

program and several other classes), the client doesn't need to upload each and

every file to the compute server. The client only needs to pass the URL of the

main program to the compute server and, using the class loader mechanism, all

subprograms will be loaded automatically when needed.

• Control over execution: If the compute server starts loading a large program

on behalf of the client, and the client wishes to terminate execution at some

point, he only needs to send a signal to the compute server which will in turn

kill the thread that handles that client's code.

12

Although I have talked about loading code dynamically, I haven't discussed how this

can be accomplished. This technique can be implemented using Java's class loader

construct. Class loaders enable the Java Virtual Machine (JVM) to load code without

knowing anything about the underlying file system semantics.

One hidden issue when working with class loaders is the inability to cast an object

that was created from a loaded class into its original class. The objects to be returned

needs to be casted. A typical use of my NetClassLoader, which is shown in

Appendix A, would be of the form:

NetClassLoader ncl = new NetClassLoader() ;

Class c = ncl.loadClass("someClass");

Object 0 = c.newlnstance();

«someClass) 0) . someMethod() ;

The problem is that we cannot cast Obj ect 0 to someClass because only the class

loader knows the new class it has loaded. This presents a problem in the system in the

sense that it will not be able to run just any class without modifications. In fact, this is

a Java limitation. For example, in order to load an applet, one has to extend the

Applet class. To solve this problem6 I had to define either an abstract class or an

interface that clients who wish to use the system must implement. I have chosen to

define the following interface:

public interface RemoteCompute

void execute(String str);

Now, users who are interested in using the Web-based distributed computing platform

can easily develop applications simply by implementing the RernoteCornpute

interface defined above. An example application, that adds two arrays of integers, may

look as follows:

6 New versions of Java have solved this problem by providing the Core Reflection APls that can be used
to find information about classes at runtime.

import java.io.*;

public class AddArrays implements RemoteCompute {

public void execute{) {

int c[l new int[10l;

int a (] = {12, 12, 12, 12, 12, 12, 12, 12, 12, 12};

int b [] = {13, 13, 13, 13, 13, 13, 13, 13, 13, 13};

c = add{a, b);

System.out.println("The sum of the two arrays is: II);

for (int i=O; i<c.length; i++)

System.out.println(c[i]) ;

public static int[] add(int a[], int b[]) {

int c(] = new int[10];

for (int i=O; i<10; i++)

c[i] '" ali] + b[i];

return c;

4.1.2 Resource Constraint Specification

13

As noted above, when the client wishes to run a program on a remote compute server,

the client does not have to upload the program to the remote machine where the remote

compute server is running, but rather the client just send a URL of the location of the

program to be run, and the server will fetch the program and execute it. The client,

however, needs to decide on the computing resource needed. I propose the following

client-side resource-request specification, which can be submitted to the compute

server along with the URL for the program to be executed:

• Processor: This field allows the user to specify the kind of processor needed.

• MaxMem: This field allows the user to specify the approximate amount of

memory (in megabytes) required for the execution of the program. This field

along with the Processor field assist the user in requesting the remote

compute server capacity needed to execute his application.

14

• Output: This field can be used to specify whether the user wishes the output to

be sent to him via email, or whether it should be saved in a file accessed via a

specific URL that will be given to the user once the request is submitted. If the

user chooses for the output to be sent via email, the user must provide an email

address.

4.1.3 Server-side Resource Constraint Specification

Just as there are specifications on the client-side, there are also specifications on the

compute server side. The compute server resource constraint specification helps the

operator in configuring the compute server and helps the compute server in

determining whether it is capable of satisfying a client's request. I propose the

following resource constraint specification for the compute server:

• Domain: This field specifies the region (company, country, etc) where the

compute server is running.

• IP: This is the IP address of the compute server.

• Port: This is the port number on which the compute server is listening.

• Processor: This field specifies the kind of processor the compute server is

running on.

• StartTime and EndTime: These two fields specify the range in time for which

the compute server can be used.

• MaxMemory: This is the amount of memory (in megabytes) that compute

server is willing to give to client

• FreeMemory: This is the amount of free memory (in megabytes) that is still

available

• FileSize: In case the client chooses to have the results saved in a file, the

compute server will create an output file that can be accessed via a URL. This

field specifies the maximum size of the file that can be created.

15

4.1.4 Security Issues

A realistic security concern that arises in connection with remote execution is the risk

associated with executing code on remote compute servers. What if a client sends a

piece of malicious code that wipes out the host's disk?

Security is an important issue especially in network computing where code may be

running on remote machines. In general, there are two types of security problems:

nuisances and security breaches. A nuisance attack simply prevents you from getting

your work done; for example, client requests overload the compute server and the

computer may crash. Security breaches, on the other hand, are more serious; for

example, your files may be deleted. This can happen if a client sends a malicious piece

of code to the compute server and that code contains an instruction to delete files.

The security risks associated with the client-side are not of a major concern. The

client's machine may be contacted by the compute server to write into log files, or send

back output results. The data that is sent back to the client's machine is raw data and it

is not possible for such raw data to have malicious instructions. Thus, the main concern

here is that the compute server may generate huge data files; however, this is not a big

issue since the size of the log file can be limited.

Security in COl-based Distributed Computing System

Besides the drawbacks of using CGI scripts for distributed computing, there are some

server-side security risks involved:

• World-Wide-Writable: The directory under which the client's files are to be

saved has to be writable by the userID under which the HTTP server is running.

This is certainly a bad idea since users might be uploading all kind of files and

consuming too much disk space. However, after doing further analysis, this

turned out to be not a major security risk since a special account can be created

with limited access to the file system, and the HTTP server could run under that

userID.

16

• Server-Side-Protection: Since client's code is being executed on the server's

machine, what if some client's programs contain malicious code? This is

certainly a bad thing to happen. However, as mentioned above, a userID with a

limited access to the file system could be created under which the HTTP server

runs. This will reduce the chance for a malicious client's code to destroy the

server's machine. However, it is harder to prevent against nuisances in which

the client keeps sending programs to overload the server and the machine may

shut down. On the other hand, even existing systems cannot prevent this from

happening. For example, imagine a user establishing a connection to an HTTP

server and requesting the same document hundreds of times per second.

Security in Loading Code Dynamically

Having the compute server load arbitrary classes into the system through a class loader

mechanism, the compute server's integrity is also at risk. This is basically due to the

power of the class loader mechanism.

Loading code over the network cannot be trusted. Thus, to ensure that an untrusted

code cannot perform any malicious actions such as deleting files, the compute server

should run in a very restricted environment (a sandbox). An extensible security model

needs to be deployed to protect the compute server's file system from client's

malicious code. This extensible security model, which is discussed in the next section,

should not allow the client's code to perform actions such as: (1) reading from or

writing to files on the compute server's machine; (2) execute any system commands

such as "delete" or "rm" or any other command that can be used to create, delete, or

list files or directories; (3) stopping the compute server.

4.1.5 Implementing a Security Policy

In my prototype implementation, I developed an extensible security model to protect

the compute server's machine from malicious code. This model consists of two layers.

The first layer is provided by the Java runtime system itself. The second layer is the

17

Java Securi tyManager class that enabled me to implement my own security

policy.

Layer I: Safety Provided by Java

The first layer in my security model is provided by the Java language runtime system.

This layer provides the necessary features to limit the likelihood of unintentionally

flawed programs. This layer provides a simple secure execution environment that

consists of the following sub layers: (1) Java Compiler; (2) Java Bytecode Interpreter;

(3) A mechanism for dynamically loading and checking libraries at runtime; and (4)

An automated garbage collector.

Layer II: Custom Security Policy

In Layer I, the built-in Java safety mechanisms ensure that the Java system is not

subverted by invalid code. However, this layer will not be able to protect against

malicious code. For example, imagine that a client is aware of a file with the name

"personal.txt" that exists on the compute server's machine. The client may write a

piece of malicious code that may look as follows to delete that file:

public class MyDelete implements RemoteCompute

public void run (String str} {

File f = new File("./personal.txt");

if « f . delete () == true) {

System.out.println("File: "+ f + "has been deleted");

else {

System.out.println("File: "+ f + "cannot be deleted"};

This is the kind of malicious code that Layer I cannot protect the compute server's

machine against. However, given that Java code will adhere to the restrictions imposed

by the Java runtime system, I am able to devise my own security policy at the

18

application level that allows me to state what sort of instructions a Java program can

and cannot do. When client's code is loaded dynamically, my security policy does not

allow the code to perform any of the following actions:

• Read from (or write to) files on the compute server's machine.

• Execute commands such as "del" or "rm", or any other command that allows

the client to create, delete, or list files or directories. In other words, the client's

code is now allowed to invoke the method Runtime. exec () .

• Make the Java interpreter quit. That is, the client's code is not allowed to

invoke the method System. exi t () .

• Read any of the following properties: user. name, user. horne,

user.dir, java.home, java.dir,orjava.class.path.

• Create and load its own class loader.

• Create and install its own security policy.

• Manipulate threads other than its own.

The Securi tyManager class of the java. lang package provides the

necessary mechanisms for creating a custom security manager that defines tasks that an

application can and cannot do. The following segment of code demonstrates how the

Java interpreter's security manager works:

public boolean Operation(Type arg) {
SecurityManager sm = System.getSecurityManager();
if (sm != null) {

sm.checkOperation(arg);

This shows that when a public method call invokes the system security manager, the

system determines whether the Operation is allowed. This means if a security

manager is installed by an application, operations will be checked before they are

performed. Once a security manager is installed it cannot be overridden by foreign

code. If foreign code attempts to override a security manager an exception will be

thrown signalling that no new security manager can be installed. On the other hand, if

a security manager is not installed then foreign code will behave as local code and

19

therefore can do anything (e.g. read and write files) just like local code. Detailed

information on implementing the security policy for the Web-based distributed

computing platform is discussed in Section 5.

4.1.6 Testing the Web-based Distributed Computing Platform

Testing distributed computing applications is not an easy task. This is an area of

ongoing research. One way to make testing simple is to design applications with

testing in mind. This means organizing the system in a certain way may make it easier

to test. It also means that the system must have enough functionality and enough

output information to distinguish the different functional features of the system. To

achieve this, the requirements for the Web-based distributed computing platform were

split into two classes: functional and non-functional requirements. The functional

requirements are basically features that the system must provide and the non-functional

requirements are constraints related to configuration and usability of the system.

The functional requirements for the Web-based distributed computing system were,

similar to most industrial software systems requirements, in the sense that they

changed over time. For example, initially in the CGI-based system one of the

requirements was to allow the user to upload code to remote compute servers. But

later, after analyzing the drawbacks of CGI scripts, the requirement was changed to:

users must be able to up provide a URL only of the program to be executed. The

functional requirements were described in a UML use case diagram. This has

simplified the task of testing the system by allowing me to generate test scenarios from

the use case model. The scenarios were features that the system must provide. In other

words, the generation of functional tests and input for them was done manually. This

may not be efficient but it was sufficient for the Web-based distributed computing

system. A more efficient approach, that allows the achievement of total testing, would

be the use of state machine based testing in which the specification of the system is

expressed as a state machine. An important machine model that has been used as a

basis for the generation of test sets is the X-machine7
, which is a finite state machine

7 X-machine: http://www.dcs.shef.ac.ukI-wmlhl#COMPUTING

20

with memory. The transitions of the X-machine involve functions that manipulate the

memory as and when an input is received.

Testing the Web-based distributed computing platform was done at various stages.

For example, the components of the system (e.g. the network class loader, and the

customized security manager) were tested separately (unit testing). In order to perform

unit testing of the network class loader, I had to write a test driver, and in other cases I

had to write test stubs. Some of the tests that I performed for the network class loader

include: (I) Requesting the class loader to load an application from a remote machine;

(2) Providing the class loader with a bogus URL; (3) Requesting the class loader to

load a Java application that does not exist; (3) Requesting the class loader to load an

application from the local disk; (4) Requesting the class loader to load an application

from a remote machine and making sure that system classes are loaded from the local

machine and user classes are loaded from the remote machine. All tests passed. To test

the customized security manager, I developed a test case with all possible scenarios

that a malicious user may think of, which were discussed earlier, including: quitting

the Java interpreter, creating files, reading files, delete files, and so on. The system was

able to handle all the security issues.

Next, I performed integration testing. For example, I integrated the network class

loader with the compute server, and integrated the customized security manager with

the compute server. Finally, I tested the whole system together and ran some of the

crucial tests that were used at the unit testing level. The system satisfied all its

functional requirements.

The non-functional requirements that I have tested included: usability testing and

configuration testing. For usability testing, I asked several people to test the system

and collected feedback. Users were happy with the system and its simplicity. As for

configuration testing, I packaged the whole system together and asked several users to

install, configure, and start the system. Users were impressed how easy it was to

install, configure, and run the system.

21

4.2 An Application of Mobile Agents

The Web-based network computing system described above tries to harness the power

of the Web for computing. But with the amount of Web-based computing resources

that will be available, I believe there will be a need for entities (agents) that act on

behalf of users to simplify the tasks of discovering and managing network computing

resources. Mobile agents are distributed in nature, and therefore provide a natural view

of distributed systems [11].

In [37], a mobile agent-based system to effectively harness the power of the Web as

a global computing platform is described. The system consists of three main

components: the client (end-user), a remote manager with a master agent, and the

remote ervers (agent environments that are capable of welcoming agents and letting

them run) a shown in Figure 4.

Cbnt

Su,nul.T .. k

SlIbltut
R..WIO" SeJWIS

Figure 4: Mobile Agent-based Network Computing System

The client is the end-user who interacts with the system via an applet, a homepage

connected to a COl script that is responsible for launching services, or even a stand

alone networked application. The Remote Servers are simply high-end agent server

programs responsible for executing agent-based applications locally. The Manager is at

the heart of the system where it employs a master agent that takes the user request and

finds the appropriate server on which to run the agent.

An important feature of this system is its dynamic behaviour. When a remote

compute server becomes available or unavailable, it contacts the master agent to

register or deregister itself. Most importantly, when the user needs a compute server, it

submits a request to the Master Agent who will in turn create an agent that earches the

databa e for a suitable compute erver. Once a match is found, the address of that

compute erver it ent to the u er, and the u er's agent (compute application) migrates

22

to the remote compute server and executes there, then returns to the client with the

results. Writing the compute application as a mobile agent makes it easy to build fault

tolerance behaviour into distributed applications since agents are able to sense their

environment.

4.3 Related Work

There has been some proposed work to take advantage of the Web and Java to

implement global Web-based distributed systems. For example, Brecht et al [8]

describes a system called ParaWeb that allows users to execute serial programs on

faster compute servers, or parallel programs on a variety of heterogeneous hosts. Their

system includes building a parallel class library, and an extended Java runtime system

so as to allow programmers to develop programs with parallelism in mind. A similar

project is proposed by Fox et al [18] for high performance computing based on Web

technology, where they outline a process by which to build a World-Wide Virtual

Machine using Java as a candidate for Web-based computing. Their Web Virtual

Machine consists of a collection of CGI scripts that extend the functionality of Web

servers. The computational model of this system is given by user CGI processes acting

as computational nodes and system CGI processes to provide the required control and

management. In part, our Web-based distributed computing platform is similar to the

above two projects since they are all using Java and the Web as the enabling

technologies.

Grimshaw et al [24] proposed a global distributed parallel system, known as Legion,

that aims at providing an architecture for designing and building system services. Their

proposed system consists of workstations and supercomputers connected together by

local networks. When a user sits at a terminal connected to Legion, slbe will have the

illusion of a single virtual machine. It is important to note that the Web is not a

component of Legion.

23

Globus8 is another project that is developing the fundamental technology that is

needed to build computational grid, execution environments that enable an application

to integrate geographically-distributed computational and information resources [17].

All the systems proposed do not have a dynamic compute resource allocation

mechanism, or a broker, which is capable of satisfying requests dynamically. Also, our

system consists of a set of compute servers running on nodes around the Internet. The

nodes act as compute servers where users would be able to contact these nodes through

a broker and upload a reference (URL) of the code to be executed. Another

characteristic that distinguishes our work from the related projects is the user of mobile

agents for dynamic discovery and use of compute resources.

5. A Security Policy for Mobile Java Code

When users on the net visit a homepage that has an embedded applet, the mobile code

[19,25] is downloaded to the user's machine and executed there. In other words, the

applet's code migrates from the host's machine to the user's machine, where it will

run. In such an environment, I want to make sure that the code being downloaded does

not do any harm to the system on which it will be executed. Also, when network

computers (devices with not much local storage) get deployed on the net, they would

have to use the network as a source for all sorts of full-fledged applications. In such an

environment, it is difficult to predict what a downloaded application will need to do. In

such distributed environments, security is a major concern.

I have developed a Security Policy design pattern [20] that has been used in many

contexts, and proved to be useful, to develop applications capable of securely loading

classes off the network and executing them locally. The Security Policy pattern [38]

can be used either on the client- or server-side. For example, in the case of a Web

browser, the pattern is used on the client-side, and in the case of a global compute

server the pattern is used on the server-side. While the pattern may sound Java-centric,

it can however be implemented in other languages.

8 http://www.globus.org

24

The problem here is: how do you protect the user's machine file system and network

resources from, possibly malicious, code loaded off the network?

The solution is to define an extensible policy that can be customized and

implemented easily, then establish a security policy that states what foreign code can

and cannot do.

A security policy is a mapping from a set of properties that characterizes running

code to a set of access permissions granted to the code. The JDKI.O introduced the

Securi tyManager class, which defines and implements a security policy by

centralizing all access control decisions. Web browsers, such as Netscape's Navigator,

and Microsoft's Internet Explorer use the Securi tyManager class to implement a

customized security policy that gets installed when executing untrusted code or

applets, to reflect their own security policies. The SecurityManager is one of the

layers of Java's sandbox. The essence of the sandbox is that local code is trusted and

can have full access to the underlying file system. Likewise, downloaded remote code

is untrusted and can access only limited resources provided inside the sandbox. JDKI.I

has introduced the concept of signed applets. A correctly signed applet is treated as

trusted local code, and it can access the file system. Signed applets, together with their

signatures, are delivered in the JAR (Java Archive) format.

While this evolving sandbox opens up interesting possibilities, it is still crude in the

sense tha~ all local Java applications enjoy full access to the underlying system

resources while remote code is running in the sandbox, unless the code is signed by a

trusted entity [36]. This, however, has changed in Java 2 where signed code, in

addition to remote, has been extended to local code. With the new security model in

Java 2, all code (local and remote), signed or unsigned, will get access to system

resources based on what is mentioned in a security policy file. A security policy file

allows you to specify what permissions you wish to grant to code residing in a

specified code source, and what permissions you wish to grant to code signed by

specific persons. Note that the SecurityManager class (which was used to enforce

the security policy in JDKl.O and JDKl.l) has been kept in Java 2 for backward

compatibility.

25

As I mentioned earlier, I have implemented a security policy for the Web-based

distributed computing platform. The following snippet of code, for example, shows

how to protect against deleting files, and disallowing client's code from quitting the

compute server's JVM:

public class EngineSecurityManager extends SecurityManager {
private boolean silent = true;
private boolean checkExit = true;
private boolean checkDelete = true;
EngineSecurityManager() {

}
system.out.println("EngineSecurityManager started");

/**
* The following operations are allowed. This is just
* hypothetical though. More restricted access should be
* imposed when working with class loaders.
*/

public void checkConnect(String host, int port) { };
public void checkCreateClassLoader() { };
public void checkAccess(Thread g) { };
public void checkExec(String cmd) { };

/**
* Check to see if a file with the specified name can be
* deleted.
*/

public void checkDelete(String file) {
if (checkDelete) {

/**

throw new SecurityException("Cannot delete "+file);
else if (!silent) {
System.out.println("File: "+file+" has been deleted");

* Check to see if the JVM can be exited.
*/

public void checkExit(int status)
if (checkExit) {

throw new SecurityException("Cannot exit the JVM");
else if (!slient) {
System.out.println("JVM is quitting");

To check whether or not it is ok to read a certain file, the Java API invokes the

checkRead () method on the security manager and passes the path name of the file

to be read as a parameter. Also, to check if a client can exit the JVM, the Java API

invokes the checkExi t () method. The Securi tyManager class declares 28 of

these checks, and new check methods have been added in Java 2. Once I have the

EngineSecurityManager implemented, it must be installed by the compute

engine. This can be done as shown in the main () method below:

public class ComputeEngine implements Runnable
II some methods go here
public static void main (String argvl)
EngineSecurityManager esm;
try {

esm = new EngineSecurityManager();
system.setSecurityManager(esm) ;

} catch(SecurityException e) {
System.out.println("security manager already running");

}
new ComputeEngine();

The diagram in Figure 5 illustrates the structure of the Security Policy:

I computeEngine ~ -- - - - -- - - -- - - -- -- -;:. SecurityManager

.checkDeleteO

.checkExitO
~heckReadO
•... etc ... O

~

EngineSecurityManager

.checkDeleteOO
~heckE)(itOO

Figure 5: Structure of the Security Policy Design Pattern

The advantages of the security policy design pattern are:

26

• Users may feel their systems are protected. If users know that their web browser

enforces a security policy that protects their files and applications, they may not

mind visiting homepages with applets embedded in them. Major Web browsers

(e.g. Netscape Navigator and Microsoft Internet Explorer) devise and implement a

security policy by subclassing the Securi tyManager class.

• People might be willing to contribute their idle CPU cycles to be part of a global

compute engine if they are guaranteed that their files and applications will not be

altered. Such people can define their own security policies to state what foreign

code, running on their machines, can and cannot do.

27

• Allowing applets to read and write files and open network connections increase the

usefulness of applets. With the security policy, users can establish a policy that

states what applets can and cannot do.

• Users can specify what applets coming from a particular site are allowed to

perform. For example, they can establish a security policy which states that applets

coming from site X can read files only and applets coming from site Y may read

and write files. The same can be applied to communication channels and other

system resources.

While the security policy design pattern introduced several benefits for building secure

distributed and mobile systems, however, there are some limitations:

• Requires the existence of a framework. The security policy pattern uses the

SecurityManager as its framework. Also, it uses the advanced security features in

Java 2 (e.g. protection domains). The pattern, however, can be implemented in

other languages. It has already been implemented in Safe-Tcl [22,46].

• A security policy can be set by a user (as in Java 2). This idea has its own

disadvantages as users may not know what exactly they are granting code to do. It

is an error-prone task as any mistake made could potentially translate into a

security hole at runtime.

• No perfect world. The security policy pattern does not address potential threats

posed by mobile code. For example, an activity of malicious code that is not

addressed here is allocating memory (or creating new threads) until it runs out.

This type of attack is called denial of service, as it denies end-users from using

their own machines.

• If a signer is honest, the code is secure. A security policy file in Java 2 allows you

to specify what signed code can and cannot do. One myth about code signing is if

signed is honest, the code is secure. However, all the signature tells us is who

signed the code, and it says absolutely nothing about the code's security.

Certification authorities and schemes may begin to change the way this works

[42,43].

28

• Multiple security policies. Sometimes it is better to have mUltiple security policies

rather than just one policy that includes all the features that are safe for applets.

Multiple security policies are needed because safe features do not compose. For

example, if feature X is safe, and feature Y is safe, then the combination of X and

Y is not necessarily safe [28,46]. As an example, it is safe for an applet to open a

socket connection outside the firewall as long as the applet cannot communicate

with hosts inside the firewall. It is also safe for an applet to read files, as long as

this is the only communication the applet makes outside it is interpreter. However,

if the applet has access to both of these features then it can transmit local files

outside the firewall, which is a breach of both, security and privacy. Creating

multiple security policies, however, is error-prone for naIve users and it requires a

full understanding of how this is done.

6. Wireless Computing

Most Internet technologies are designed for desktop or large computers running on

reliable networks with relatively high bandwidth. Handheld wireless devices, on the

other hand, have a more constrained computing environment. They tend to have less

memory, less powerful CPUs, different input devices, and smaller displays.

There are two ways to develop wireless applications, either using the Wireless

Application Protocol (or W AP), which is a specification developed by the W AP

Forum9
, takes advantage of the several data-handling approaches already in use, or

using technologies (such as the Java 2 Micro Edition1o
) that allow full-blown

applications to be downloaded to devices and run there.

Developing wireless applications using W AP technologies is similar to developing

Web pages with a markup language (e.g. HTML) because it is browser based.

Developing J2ME [40] applications is similar to developing applets in that the target

environment must have a Java Virtual Machine (JVM) in order to run J2ME

applications.

9 http;//www.wapforum.org
10 http://java.sun.comlj2me

29

6.1 WAP

The W AP platform is an open specification that addresses the wireless network

characteristics by adapting existing network technologies, and introducing new ones

when appropriate, to the special requirements of handheld devices. Therefore, W AP

intends to standardize the way wireless devices such as mobile phone and PDAs access

Internet services.

To facilitate the delivery of Internet data content to wireless devices will certainly

lead to introducing new technology. For example, wireless devices have small screens

compared to desktop computers, and therefore HTML (which is visually rich) is not

appropriate for small screens. The W AP platform introduces several technologies that

are similar to existing ones but they have been designed specifical1y for wireless

devices.

6.1.1 The W AP Architecture

The W AP standard defines two essential elements: an end-to-end application protocol,

and an application environment based on a browser. The application protocol is a

communication protocol stack that is embedded in each W AP-enabled wireless device

(also known as the u er agent). The server-side implements the other end of the

protocol that is capable of communicating with any W AP client. The server-side is

known as a W AP Gateway that routes requests from the client to an HTTP (or Web)

server. The W AP gateway can either be located in a telecom network or a computer

network (an ISP). Figure 6 illustrates an example structure of a W AP network.

WAF Gate"",-y

Figure 6: Structure of a WAP network

30

In this example, the client communicates with the W AP gateway in the wireless

network. The W AP gateway translates W AP requests to WWW requests, and therefore

the WAP client is able to submit requests to the Web server. Also, the WAP gateway

translates Web responses into W AP responses or a format understood by the W AP

client.

6.1.2 The W AP Protocol tack

To minimize bandwidth requirements, and provide a guarantee that a variety of

wireless networks can run W AP applications, a new lightweight protocol stack is

developed. The W AP protocol stack is shown in Figure 7.

Web

TCP/IP
UDPIIP

WAP

Figure 7: The W AP Protocol Stack

Other Set~-ices
and

The W AP protocol stack has four layers: session layer, transaction layer, security

layer, and datagram layer. Note that the W AP protocol is designed to operate over a

variety of bearer services, including, CDMA, CDPD, etc. Figure 3 also contains a

Web-based protocol stack for your reference, allowing you to compare the two

technologies.

6.2 J2ME

The Java 2 Micro Edition (12ME) , a subset of Sun Microsystems's Java 2 Standard

Edition (J2SE), is aimed at the consumer and embedded devices market. It specifically

addre e the rapidly growing consumer space that covers commodities uch as

cellular telephone , pager , palm pilots, set-top boxes, and others. The J2ME provides

31

a complete set of solutions for creating state-of-the-art networked applications for

consumer and embedded devices. It enables device manufacturers, services provides,

and application developers to deploy compelling applications and services to their

customers.

The J2ME defmes the following set oftools that can be used with consumer devices:

• A Java Virtual Machine

• Libraries and APIs that are suitable for consumer devices (configurations and

profiles)

• Tools for deployment and device configuration

The first two components make up the J2ME runtime environment. Figure 8 shows

how the different high-level layers of J2ME fit together.

6.2.1 Configurations

Profiles

Configurations

Java Virtual Machines

Host Operating System

Figure 8: High-level View of J2ME

Cellular telephones, pagers, organizers, etc. are diverse in form, functionality, and

feature. For these reasons, the J2ME supports minimal configurations of the Java

Virtual Machine and APIs that capture the essential capabilities of each kind of device.

At the implementation level, a J2ME configuration defines a set of horizontal APIs for

a family of products that have similar requirements on memory budget and processing

power. A configuration specifies:

• The Java programming language features supported

• The Java virtual machine features supported

• The Java libraries and APls supported

32

Currently there are two standard configurations: the Connected Limited Device

Configuration (CLDC) and the Connected Device Configuration (CDC).

CLDC

The Connected Limited Device Configuration (CDC) is aimed for cellular phones,

two-way pagers, and organizers. It targets devices with 160 - 512 KB of memory. A

reference implementation of the CLDC is available. A configuration, such as the

CLDC or CDC, is however more useful when used along with a profile, such as the

MIDP profile that is discussed later.

CDC

The Connected Device Configuration (CDC) is aimed for set-top boxes, Internet TVs,

and in-car entertainment systems. The CDC targets devices that have at least 2 MB of

memory, and can support a complete implementation of the standard Java virtual

machine, and Java programming language. A reference implementation is available.

6.2.2 Virtual Machines

The CLDC and CDC configurations each define the set of Java and virtual machine

features supported. Therefore, each configuration will have its own Java virtual

machine. Clearly, the CLDC virtual machine will be smaller than the virtual machine

required by the CDC since it supports less features. The virtual machine for the CLDC

is the Kilo Virtual Machine (KVM), and the one for the CDC is the CVM.

TheKVM

The Kilo Virtual Machine (or KVM) is a complete Java runtime environment for small

devices. It is a true Java virtual machine as defined by the Java Virtual Machine

Specification except for some specific deviations that are necessary for proper

functioning on small devices. It is specifically designed from the ground up for small,

33

resource-constrained devices with a few hundred kilobytes of total memory. The KVM

is derived from a research project called Spotless 11 at Sun Microsystems Laboratories.

The aim of the project was to implement a Java system for the Palm Connected

Organizer.

TheCVM

Initially, the CVM used to stand for the Compact Virtual Machine. Sun Engineers

however, realized that it might be confused with the KVM. So the C does not stand for

anything now. It is just the C Virtual Machine or CVM. It is designed for consumer

and embedded devices, and it supports all Java 2 Platform, version 1.3, VM features

and libraries for security, weak references, JNI, RMI, and JVMDI. The reference

implementation from Sun Microsystems runs on Linux and VxWorks.

6.2.3 Profiles

The J2ME makes it possible to define Java platforms for vertical markets by

introducing profiles. At the implementation level, a profile is a set of vertical APIs that

reside on top of a configuration to provide domain specific capabilities, such as user

interface.

Currently, reference implementations exist for two profiles: the Mobile Information

Device Profile (MIDP), and the Foundation Profile (FP). MIDP is to be used with the

CLDC and FP is to be used with the CDC. Other profiles in the works include: the

PDA profile, the RMI profile, the Personal Profile, and others. The structure of the

various J2ME configurations and profiles is depicted in Figure 9.

The MID Profile (MIDP)

The Mobile Information Device Profile (MIDP) extends the CLDC to provide domain

specific APIs for user interface, networking, databases, and timers. MIDP is meant to

II http://www.sun.comlresearchlspotless

34

target wireless phones and two-way pagers. A reference implementation is available,

and an easy-to-use development environment is also available.

The PDA Profile

The Personal Digital Assistant (PDA) profile is based on the CLDC and will provide

user interface APls (which is expected to be a subset of the AWT) and data storage

APIs for handheld devices. As of this writing, the PDA profile is still in the works and

no reference implementation is not available yet. Applications for organizers running

the Palm OS, however, can be developed using the MIDP for PalmOS.

The Foundation Profile

The Foundation Profile extends the APIs provided by the CDC, but it does not provide

any user interface APIs. As the name "foundation" implies, the Foundation profile is

meant to serve as a foundation for other profiles, such as the Personal profile, and the

RMI profile.

The Personal Profile

The Personal profile extends the Foundation profile to provide GUI capable of running

Java Web applets. Since PersonalJava is being redefined as the Personal profile, it will

be backward compatible with PersonalJava 1.1. and 1.2 applications. As of this

writing, no reference implementation of the Personal profile is available.

The RMI Profile

The RMI profile extends the Foundation profile to provide Remote Method Invocation

(RMI) for devices. Since it extends the Foundation profile, it is meant to be used with

the CDClFoundation and not CLDCIMIDP.

35

The RMI profile will be compatible with J2SE RMI API I.2.x or higher. However, as

of this writing, no reference implementation is available yet. The structure of the

variou J2ME configurations and profiles is depicted in Figure 9 [40].

CVM

Host Operating System

Figure 9: J2ME Configurations and Profiles

6.3 Accessing Internet Services

The CLDC inherited some of the classes in the java. io package, but it did not

inherit classes related to file I/O mainly because not all devices support the concept of

file I/O. The Java 2 Standard Edition (J2SE) provides several classes for network

connectivity, however, none of these classes have been inherited simply because not all

devices require TCP/IP or UDP/IP; some devices may not even have an IP stack.

The I/O and network connectivity challenge is solved by defining a new set of

classes for I/O and network connectivity. These classes are known as the Generic

Connection Framework. This platform-independent framework provides its

functionality without dependence on specific features of a device. It provides a

hierarchy of connectivity interfaces as shown in Figure 10, but it does not implement

any of them. Implementations are to be provided by profiles (such as MIDP).

36

Connection

Stre amConnectionN otifier DatagramConnection

Figure 10: CLDC Generic Connection Framework

All connections are created using the open () static method from the Connector

class. If successfuJ, this method returns an object that implements one of the generic

connection interfaces.

The MIDP extends the CLDC connectivity to provide support for the HTTP

protocol. The reason behind the HTTP support is the fact that HTTP can either be

implemented using IP protocols (such as TCP/IP) or non-IP protocols (such as WAP

and I-mode). For example, a MIDP-enabled device may have no built-in support for

the IP protocol. In such a case, it would utilize a gateway responsible for URL naming

resolution to access the Internet as shown in Figure 11 [40].

Figure J 1: The benefit of HTTP support

37

The idea of having MIDP support the HTTP protocol is very clever. For network

programming, you can revert to the HTTP programming model, and your applications

will run on any MIDP device, whether it is a GSM phone with a WAP stack, an 1-

mode phone, a Palm VII wireless, or a handheld device with Bluetooth.

Using HTTP, it is possible to call Internet services that are based on the HTTP

programming model, such as CGI scripts and Servlets [41]. However, since there is no

support for Socket and Datagram connections, it is not possible to invoke socket-based

applications. However, it is possible to invoke Sockets and Datagram based

applications from toolkits that provide implementation for Sockets and Datagrams such

as the one from Motorola.

6.4 Accessing Distributed Object Systems

Since there is no support for RMI, it is not possible to invoke RMI-based applications,

or even CORBA-based applications. To provide wireless handheld devices with access

to distributed object systems implemented in RMI, CORBA, DCOM, or any other

distributed object technology, we propose a mediator-based architecture.

A mediator [58] is a service that functions simultaneously as a server on its front end

and as a client on its backend. It is much like a proxy [27], however, it performs some

useful processing on the request. In this model, the client makes a request to the

mediator, which then contacts the origin server to invoke a method; the mediator

produces an XML [12] response which it serves to the client.

The mobile wireless Internet can benefit greatly from mediators. All Internet

services available today can be made available to mobile user's handheld devices

through mediators that act as a middleware between mobile users and Internet services.

The architecture we propose here involves a mediator that accepts a request, to

invoke a method of a remote object, to the mediator. The mediator parses the client's

request, process it, and returns the results back to the client. The system architecture of

this mediator-based model is shown in Figure 12. The mediator is implemented as a set

of Java Servlets.

38

XMLRequest
RMI

CORBA
XML Response

Distnbuted Object Systems

Figure 12: Mediator-based Architecture

The client uses the eXtensible Markup Language (XML) to specify the object on

which the remote object will be invoked along with any needed parameters. The

mediator parses the request, creates an instance of the appropriate object, and invokes

the method passing any parameters provided by the client. The mediator then receives

the re ult and packaged them as an XML message and serves it to the client.

The objects may either be remotely distributed, or they can be local in which case

they are loaded dynamically. This architecture is transparent in the sense that object's

location is transparent to the client.

The benefits of this mediator-based architecture can be summarized as follows: (1)

The architecture is transparent as the client is not aware of the location of the object.

(2) Anytime, anywhere access to distributed object systems. (3) Based on open

indu try standards such as HTTP and XML.

One drawback of mediators is related to performance issues. For example, if a single

mediator is being used to handle all requests on a wireless network, then it will become

a bottleneck. One way to improve the performance of the mediator architecture is to

either use multiple mediators to handle different tasks and functionality, or employ

multiple same-functionality mediators to serve different users according to their area

code, for example, or some other scheme.

39

7. A Mobile Agent-based Approach to the Wireless Internet

An attractive application of mobile agents is processing data over unreliable networks

(e.g. wireless networks) [23). In such an environment, the low reliability network can

be used to transfer agent, rather than a chunk of data, from place to place. In this

scenario, the agent can travel to the nodes of the network, collect or process

information, without the risk of network disconnection, then return home.

Conventional mobile agent platforms such as Aglets [30,31], Concordia 12, and

Voyager 13, to name a few, operate within high-end desktop environments such as

Windows and Unix. Some research projects have been recently proposed to develop

mobile agent platforms for small devices. The Lightweight Extensible Agent Platform

(LEAP) [4], which was initiated in January 2000 and scheduled to last for

approximately three years, is being developed by a number of companies including

Motorola, Siemens, and British Telecom. The aim of LEAP is to develop, using

CLDC, a FIPA-compliant mobile agent platform for mobile devices. The services that

will be offered by LEAP are in the area of knowledge and travel management.

Mihailescu et al [44] proposed a mobile agent platform, for mobile devices, that

contains several common features, such as agent messages, events, and agent execution

environment, found in existing agent platforms. In their project they embedded their

agent platform directly into the KVM as opposed to defining additional classes on top

of the existing KVM. This approach, however, has the disadvantage that their KVM is

a proprietary one and therefore is not compatible with the standard KVM.

Both projects propose an agent platform for mobile devices. For example,

Mihailescu et al [44] embedded their agent platform directly into the KVM as opposed

to defining additional classes on top of the existing KVM. This approach, however, has

the disadvantage that their KVM is a proprietary one and therefore is not compatible

with the standard KVM. And in LEAP, agents run on mobile devices. I believe running

the agents on mobile devices is not a good idea for two reasons: (1) security, and (2)

mobile devices such as cellular phones have limited resources.

12 http://www.merl.comIHSUProjects/Condordia
13 http://www.objectspace.comlproductslvoyager

40

In [39] a mobile agent-based approach (MobiAgent) to the Wireless Internet has

been proposed. In this approach, agents do not run on mobile devices. To illustrate the

feasibility oftrus approach a proof of concept implementation has been constructed.

The MobiAgent sy tern provides an infrastructure for providing services to wireJess

handheld device . The goal of this system is to provide a framework and a software

infra tructure for wirele s handheld devices that minimizes the load on the wireless

link, and upport disconnected operations. There are four main components in the

MobiAgent sy tern a shown in Figure 13; the Clients, the Communication Manager,

the Agent Gateway, and the MobiAgent Services. The components are connected

together by both, wired and wireless links.

Communicat1on
Manager

Agent Gateway

\Agent Platform I
MobiAgent

Services

Figure 13: MobiAgent System Components

The Communication Manager act a mediator between the wireless device client and

the wired network. The communication protocol used between the wireless device and

the ommunication Manager i HTTP. The Agent Gateway is the interface between

the ommunication Manager and the MobiAgent Services. The MobiAgent Services

are ba ically entitie that offer services to the Clients. The Clients are applications

running on wirele s devices to provide user interface for accessing and using

MobiAgent Service .

7.1 Design Rationale

The mobile agent platform used III MobiAgent is Voyager, mainly because of its

implicity. AI 0, becau e I wa able to ea ily add several other components I have

con tructed to enable Voyager agents to gather information from Web sites. The

y tern architecture of MobiAgent howe er, is agent platform-independent meaning

that any ther ag nt platform (.g. JADE) can be used in place of Voyager.

41

It is important to note that in this work, the agent platform does not run on wireless

devices. This is actually a feature of the MobiAgent approach for accessing and using

mobile agents from wireless handheld devices. This decision was made for the

following reasons:

1. Security: allowing agents to run on wireless devices introduces new security

issues. For example, I need to guarantee the user that the device and its

information will not be subverted by malicious code.

2. Limited resources: some wireless devices have limited resources, and therefore it

would be virtually impossible to run an agent platform on a cellular phone for

example.

3. Interoperability: as discussed in the implementation section, the Java virtual

machine used on cellular phones such as the Motorola i85s for example, does

not support object serialization, and therefore some other mechanisms (e.g.

XML) need to be used to transmit mobile agents to and from the wireless

device. This presents a problem where users will have to worry about installing

new software components before they can use the system. In MobiAgent,

however, users can start using the system right away. No additional software

components are needed.

When a device connects to the Communication Manager for the first time, it

downloads a wireless application (or a MIDlet) that provides a user interface. This

application can be used to create a user profile on the Agent Gateway and then the user

will be able to request, access, and use agents to do some work on her behalf. When an

agent is requested, it will go do its task and at this point the user may disconnect from

the network. When the agent finishes its task, it goes back to its host environment and

passes the results on to the Agent Gateway, which in turn forwards it to the user. If the

user lost connection after the agent was dispatched and remained disconnected when

the agent finished its task, the Agent Gateway sends the user an SMS message. When

the user re-connects, the SMS message will be received on the device informing her

that the agent has finished its work. The user can then download the results.

42

7.2 MobiAgent Advantages

The advantages of the MobiAgent system are: (i) it overcomes low bandwidth and

network disconnection. This is achieved by reducing the communications over the

wireless link between the device and the Communication Manager. Also, as I

mentioned earlier, the system supports disconnected operations in the sense that the

user does not have to keep connected to the wireless network waiting for the results to

arrive. The user can disconnect from the network and when the results are available, an

SMS message will be delivered to the device; (ii) it enhances the functionality of

services by being able to operate without constant user input. The input to the services

is injected by Agent Gateway, which receives the request from the Communication

Manager or retrieves the input from the user's profile and feeds it to the MobiAgent

Services; and (iii) the system architecture is not tied to any agent platform. In fact any

agent platform can be used.

7.3 Applications and Services

The MobiAgent system architecture can be used for many applications and services.

To provide a proof of concept, I have implemented a BookAgent. This agent can be

used to search for books. Here I demonstrate how the BookAgent can be used to search

for books either by title or author.

When the user wants to use the BookAgent service (assuming that a profile already

exists for that user), a MIDlet is downloaded to the device. The user can navigate

through the MIDlet to select a service (e.g. BookAgent). The user enters the

information for the request and sends it off. The Communication Manager Servlet

receives the request and forwards it to the Agent Gateway, which in turn dispatches the

corresponding agent (BookAgent in this example). When the BookAgent finishes its

task, it goes back to its platform and sends the results to the Agent Gateway, which in

turns forwards it to the user. If the user is not connected, then an SMS message will be

sent. The next time the user is connected, she will receives the SMS message and the

43

results will be fetched from Agent Gateway. Figure 14 shows snapshots of the

BookAgent service.

'f •• 111 II) 'f •• ul lID 'f .. III <ibc IIIiID
hoose One: Book Agent Book Agent

Profile

CarAgent

T ravelAgent

About

ook Search

By Trtle

y Author

Exit

nter 6 Book Title:

Distributed Progra

mming with Javal

Back Send

Figure 14: MobiAgent's BookAgent Service

7.4 Limitation

A can be een from Figure 14, the MobiAgent was tested usmg an emulation

environment part of Sun Microsystem's J2MB Wireless Toolkit. I wasn't able to test

the MobiAgent system on a real wireless network for two reasons: (1) Limited access

to a wireless network; (2) Over The Air (OTA) provisioning of Java-based wireless

applications is not yet possible in North America.

The approach of testing the MobiAgent using an Emulation Environment connected

to a wired network has the disadvantage that issues related to performance wasn't easy

to a es or mea ure. In addition, the quality of service couldn't be assessed. This would

be a ubject for future research.

8. Research Methods

A significant proportion of the contribution of this work was the nature of scholarship.

In other words, the careful and disciplined examination and evaluation of a wide range

of resources including conference proceedings, computing journals, and online

material. That is by reading the literature. This was supported by practical experience

througb involvement in network computing variously as a graduate student, software

engineer, con ultant, and university lecturer.

It hould be noted that the e publications are not based on the dozens of technical

report and unrefereed publication which have arisen from some of my industrial and

44

consulting activities, but on refereed papers arising from appropriately careful and

considered research work, and subject to peer review.

The research methodology that was used to carry out this work includes: review of

previous work relating to my research (literature review), problem design or

formulation, solution design, prototyping, testing and evaluation. I believe that in order

to come up with a problem to work on, one needs to read all previous work available

on the topic (literature review). After reading literature, I would describe what is

missing (problem formulation). I would then design my solution and construct a

prototype as a proof of concept implementation. The implementation was then tested to

make sure it matches the requirements and the solution for the problem. The

implementation was then used to evaluate the solution and collect results.

9. Summary of the Published Works

The works are presented in a logical sequence, rather than their chronological order of

publication:

9.1 Distributed Programming with Java (Book)

This book, which was published in 1999 by Manning Publications, USA, is being used

for several senior undergraduate, and graduate courses at universities around the world.

The book explains the different paradigms that can be used to develop distributed

applications using Sockets, RMI, CORBA, and Agents. It compares and contrasts the

different network computing paradigms, and offers guidelines that can help managers

and developers to choose an appropriate distributed computing paradigm.

9.2 Learning Wireless Java (Book)

This book, which is published in 200 by O'Reilly, USA discusses the next generation

Internet - the Wireless Internet. It discusses the Java 2 Micro Edition and shows how

to develop wireless applications that can be downloaded on Java-enabled devices such

as cell phones. The book also presents some advanced topics such as wireless

client/server architecture for accessing Internet resources.

45

9.3 The Web as a Global Computing Platform (Conference Paper)

This paper was presented at the European leading conference on high-performance

computing (ih International Conference on High-Performance Computing and

Networking) and published in the proceedings. It establishes the basis for Web-based

distributed computing and shows how the Web can be used as a global computing

platform - the world's largest supercomputer whose nodes are the idle web servers. It

presents a prototype implementation ofa Web-based distributed computing system and

a broker system that enables users to discover servers and upload code to them for

execution.

9.4 A Mobile Agent-based Approach to Web-based Distributed
Computing (Conference Paper and Book Chapter)

This paper presents a technique and architecture for applying agents for Web-based

distributed computing. It presents a mobile-agent architecture to effectively harness the

power of the world-wide web as a global computing platform. The resulting system of

this paper provides the end-user with simpler, agent-based, means for utilizing the

power of the Web as a computing resource. This paper was published in the

Proceedings of the 14th Annual International Symposium on High Performance

Computing Systems and Applications, which was held in Victoria, Canada (2000).

This paper has also been published in the book High Performance Computing Systems

and Applications, Kluwer Academic Publishers, 2002.

9.5 Jini for High-Performance Computing (Conference Paper)

This paper presents the features of Jini that can be effectively used for networking

computing. It describes how Jini attributes in describing and searching for network

computing services. The paper then describes a system for global distributed

computing. This paper has been published in the Proceedings (published by the IEEE

Computer Society) of the International Conference in Parallel Computing in EE, which

was held in Trois-Rivieres, Canada (2000).

46

9.6 A Security Policy Design Pattern for Mobile Java Code (Conference
Paper)

This paper, which was discussed at the 2000 Pattern Languages of Programs (PLoP)

Conference and published in its proceedings, contributes a design pattern that has been

used in many contexts, and proved to be useful, to develop applications capable of

securely loading classes off the network and executing them locally. The design

pattern can be used either on the client- or server-side. In the case of a Web browser,

the pattern is used on the client-side, and in the case of a global computer engine

capable of downloading classes off the network and executing them locally, the design

pattern is used on the server-side.

9.7 MobiAgent: An Agent-based Approach to Wireless Information
Systems (Conference Paper and Book Chapter)

This paper, which was presented at the 3rd Workshop on Agent-Oriented Information

Systems 2001 and published in the proceedings, presents an agent-based approach to

the Wireless Internet that enables users of wireless handheld devices to access and use

remote mobile agent. Mobile devices benefit greatly from this approach since it will

overcome wireless network limitations such as low bandwidth and disconnection. This

paper has also been published in the book Agent-Oriented Information Systems 2001,

iCue Publishing, Berlin 2001. ISBN 3-8311-2138-9.

I am currently conducting a further stream of research which has grown out of this

project, which is examining the extent of how mobile agents can be used in service

discovery, content personalization for mobile users, and location-aware mobile

computing.

9.8 An Agent-based Approach to the Wireless Internet (Journal Paper)

This paper, which is an extended version of the paper 7.7, has been published in the

Journal of Internet Technology, special issue on the Wireless Internet. Volume 3

(2002) No.2.

47

9.9 Accessing and Using Internet Services from Java-enabled Handheld
Wireless Devices: A Mediator-based Approach (Conference Paper)

This paper, which is a joint work with my supervisor, Dr. Luminita Vasiu, was

presented at the Fourth International Conference on Enterprise Information Systems

(lCEIS 2002), and published in its proceedings. ICEIS 2002 was held in Spain, April

2002. This work presents a mediator-based architecture for accessing distributed object

systems from wireless handheld devices. It enables access to Internet services and

distributed object systems, such as RMI and CORBA, by providing a mediator-based

architecture that provides a software infrastructure for that access.

9.10 Agents for Devices and Devices for Agents (Journal Paper)

This paper, which is a joint work with my supervisor, Dr. Luminita Vasiu, has been

accepted for publication in the Communications of the ACM. It will be published in

Summer 2002. This work compares and contrasts two approaches for employing

agents in wireless handheld devices: have an agent platform run on the device and

therefore allow agents to run the device, or allow devices to access and use remote

mobile agents running on wired networks. While the two approaches are viable, the

paper describes the advantages and disadvantages of each, and offers guidelines for

when to use what.

10. Summary, Contributions, and Future Work

10.1 Summary

This work has described an extension to the We to include computing resources, and

the applications mobile agents to wired and wireless computing.

The current computing model of the Web was mainly designed for processing fill

out forms. Such a simplistic computing model cannot be used for real distributed

computing tasks. I have outlined the limitations of the Web computing model for

distributed computing by discussing the disadvantages of using CGI scripts, or similar

technology, for real computing tasks. More importantly, I have shown how to extend

48

the Web to include computing resources through the use of HTTP servers as compute

servers that use the dynamic class loading mechanism to load and execute clients' code

on the fly. To illustrate the feasibility of this approach, I have constructed a proof of

concept implementation. In addition, a mobile agent-based approach to Web-based

distributed computing, that harness the power of the Web as a computing resource, has

been proposed and a system has been prototyped. In this system, users are able to

upload code to remote, and perhaps faster, machines for execution. The system

consists of three main components: the client (or the end-user), a remote manager with

a master agent, and the remote servers. Remote servers are essentially agent

environments that are capable of welcoming mobile agents and letting them run. The

use of mobile agents in Web-based distributed computing simplifies the tasks of

discovering and managing network computing resources.

Using foreign remote compute servers for computing tasks mean that users will be

able to use remote machines to execute their own code. This, however, introduces

security risks. I need to make sure that malicious code cannot harm the remote system.

For this, a security policy design pattern for mobile Java code, that proved to be useful,

has been developed and guidelines for implementing it have been published.

In the area of wireless computing, a mediator-based approach to wireless

client/server computing has been proposed and guidelines for implementing it have

been published. The mobile wireless Internet may benefit greatly from this approach as

it allows access to Internet services and distributed object systems from handheld

wireless devices such as cellular telephones. Therefore, all existing Internet services

can be made available to users of handheld wireless devices through mediators. This

mediator-based approach has a transparent architecture since the client is not aware of

the location of the service to be used, and it is based on open industry standards, such

as HTTP and XML.

Also, a mobile agent-based approach to the wireless Internet has been designed and

a system known as MobiAgent has been implemented. The goal of the MobiAgent

system is to provide a framework and a software infrastructure for handheld wireless

devices that minimizes the load on the wireless link, and supports disconnected

49

operations. In this system, remote mobile agents can be accessed and used from

handheld wireless devices. Handheld wireless devices will benefit greatly from this

approach since it overcomes wireless network limitations such as low bandwidth and

disconnection, and enhances the functionality of services by being able to operate

without constant user input. It is important to note that in the MobiAgent system, the

agent platfonn does not run on wireless devices. This decision was made mainly

because: most wireless handheld devices have limited resources and it would be

virtually impossible to run an agent platform on them, allowing foreign agents to run

on handheld wireless devices introduces new security risks, and allowing agents on run

on devices mean that users would have to worry about installing new software

components and reading manuals on how to use them, something that mobile users

would not want to do.

10.2 Contribution to Knowledge

The main contribution of this work to knowledge is to demonstrate some specific

applications of mobile agents in the area of Web-based distributed computing and

wireless computing. It is hoped that this will strengthen the case for using mobile

agents in wired and wireless computing.

The main contributions of this work can be summarized in the following points:

• Outlined the limitations of the current Web computing model and explained

why this model is not suitable for distributed computing.

• Proposed an extension to the current Web computing model, through the use of

HTTP servers as compute server.

• Constructed a proof of concept implementation of the proposed Web-based

distributed computing model to show its feasibility.

• Discussed and outlined the advantages of using the dynamic class loading

mechanism for Web-based distributed computing.

• Extended the Web-based distributed computing model with mobile agents,

which can be used in the search and use of compute servers. Thus, simplifying

the tasks of discovering and managing compute servers.

50

• Prototyped a mobile agent-based system for Web-based distributed computing.

This system simplifies the life of users by enabling them to use agents to search

for computing resources and help in using them.

• Proposed and developed a security policy design pattern for mobile Java code.

This pattern, which has been widely used, is quite easy to implement and can

be used to protect remote machines from malicious code.

• Discussed and outlined the benefits of mediators for wireless infonnation

systems.

• Proposed and implemented a mediator-based solution to the wireless client

server computing model. This solution helps to bring all Internet services

available today to users of handheld wireless devices.

• Evangelised the use of mobile agents in wireless computing environments to

overcome wireless network limitations such as low bandwidth and

disconnection.

• Compared and contrasted different approaches for employing mobile agents in

handheld wireless devices.

• Proposed an agent-based approach to the wireless Internet that allows users of

handheld wireless devices to access and use remote mobile agents for

infonnation gathering.

• Constructed a proof of concept implementation of the agent-based approach to

the wireless Internet to illustrate the feasibility of the approach. This system

enhances the functionality of services by being able to operate without constant

user input.

10.3 Future Work

My future work includes:

• The Canadian Grid: The Canadian High Perfonnance Computing

CoJIaboratory (http://www.c3.ca) aims to address capacity computing in

Canada. Their goal is to develop a nationally shared, internationally

competitive, advanced computational resource pool. Currently, there are

51

several high performance computing resources available at some universities

across Canada, but in order to use one of these computing resources the use

must login to a remote machine. A computational grid, however, must provide

transparent and pervasive access to high-end computational capabilities, and it

must coordinate resources that are not subject to centralized access. My Web

based distributed computing platform can be extended and the mobile agent

based broker can be used to transparently provide access to the Canadian grid.

In addition, further research needs to be carried out to deliver nontrivial quality

of service relating to response time, throughput, availability, and security.

• Enhancing MobiAgent: The MobiAgent system makes extensive use of the

Mediator architecture. This architecture, however, may become a bottleneck.

The performance of the mediator architecture needs to be assessed and

techniques to reduce the load on it need to be developed. In addition, other

MobiAgent services in the area of mobile commerce, travel, and entertainment

need to be developed. Other enhancements include the use of XML for data

exchange.

• Secure discovery of mobile services: Many discovery protocols have been

proposed, but security issues in the discovery and interaction of mobile services

have not been investigated. In addition, such protocols describe how to

discover services, but they say little about how to interact with the discovered

services. This can be done either through message passing (which is expensive

over wireless links), or downloading the service to the device and then

executing it. But what if the device cannot host the service due to scarce

resources, then how do we interact with it?

• Integrating Multi-Agent Systems with the Internet: While several research

projects have been carried out in the areas of Multi-Agent Systems and the

Internet, the two are not well integrated together. Many Web sites (and their

wireless editions) make money from advertisement, and therefore would not

allow agents to visit their pages. How can multi-agent systems be integrated

with the Internet in such a way that everyone would benefit?

52

• Content personalization: Personalization for handheld wireless devices

requires the use of complex techniques for searching, filtering, and organizing

the vast quantities of information - a job that is well suited for mobile agents.

This, however, requires that application and content providers improve their

understanding of consumer needs, probably through user modeling, which is an

explicit representation of properties of a particular user. Security and reliability

are other issues that need to be investigated.

53

References

1. Bacon, J.M., Bates, J., Hayton, R.J., and Moody, K.: Using Events to Build
Distributed Applications. In Proceedings ofSDNE'95, (1995).

2. Barr, W.J., Boyd, T., and Inoue, Y.: The TINA Initiative. In IEEE
Communications, March, (1993).

3. Bharat, K., and Cardelli, L.: Migratory Applications. In Proceedings of the 1995
ACM Symposium on User Interface Software and Technology, Pittsburg, USA,
November, (1995).

4. Bergenti, F., and Poggi, A.: LEAP: A FIPA Platform for Handheld and Mobile
Devices. In Proc. of the 18th International Workshop on Agent Theories,
Architectures, and Languages, Seattle, W A, Aug., (2001).

5. Berners-Lee, T.: World-Wide Computing. Communications of the ACM, Vol. 40,
No.2 (1997).

6. Berners-Lee, T., Hendler, J., and Lassila, 0.: The semantic Web. In Scientific
American, 5, (2001).

7. Birrel, A.D. and Nelson 8.J.: Implementing Remote Procedure Calls. ACM
Transactions on Computer Systems Vol. 2, No.1, pp. 39-59 (1994).

8. Brecht, T., Sandhu, H., Shan, M., and Talbot, J.: ParaWeb: Towards World-Wide
Supercomputing. In Proc. of the 7th ACM SIGOPS European Workshop,
Connemara, Ireland, pp. 181-188 (1996).

9. Cardelli, L.: Obliq: A Language with Distributed Scope. Technical Report 122,
Digital Equipment Corporation, Systems Research Center, June, (1994).

10. Carzaniga, A., Picc?, G.P., and Vign~, G.: Designin{f. distribu~ed applications with
mobile code paradigms. In Proceedmgs of the 19 International Conference on
Software Engineering, pp. 22-32, ACM Press, (1997).

11. Chang, D.T., and Lange, D.B.: Mobile Agents: A New Paradigm for Distributed
Object Computing on the WWW. In OOPS LA '96 Workshop, Toward the
Integration ofWWW and Distributed Object Technology, San Jose, USA, October,
(1996).

12. Connolly, D. (ed.): XML: Principles, Tools, and Techniques, O'Reilly (1997).
13. Coulouris, G., Dollimore, J., and Kildberg, T.: Distributed Systems Concepts and

Design, 3rd Edition. Addison-Wesley (2000).
14. Farmer, W.M., Guttman, J.D., and Swamp, V.: Security for Mobile Agents: Issues

and Requirements. In National Information Systems Security Conference,
Baltimore, Maryland, USA, October, (1996).

15. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., and Berners-Lee, T.: Hypertext
Transfer Protocol - HITPIl.l. IETF Request for Comments 2068, January,
(1997).

16. Finin, T., Labrou, Y., and Mayfield, J.: KQML as an agent communication
language. In J. Bradshaw (editor) Software Agents, pp. 291-316. MIT Press,
Cambridge, (1997).

17. Foster, I., and Kesselam, C. (editor): Computational Grids: The Future of High
Performance Distributed Computing. Morgan Kaufinan, San Mateo, USA, (1998).

54

18. Fox, G.c., Funnanski, W.: Towards Web/Java High Performance Distributed
Computing - an evolving virtual machine. In Prof. 5th IEEE International
Symposium on High Perfonnance Distributed Computing, Syracuse, NY, (1996).

19. Fuggetta, A., Picco, G.P., and Vigna, G.: Understanding code mobility. In IEEE
Transactions on Software Engineering, 24(5):342-361, May, (1998).

20. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, (1995).

21. Green, S., Hurst, L., Nangle, B., Cunningham, P., and Somers, F.: Software Agents:
A Review. Technical Report, Department of Computer Science, Trinity College,
Dublin, (1997).

22. Gray, R.S.: Agent Tel: A flexible and secure mobile-agent system. In Mark
Diekhans and Mark Roseman, editors, Proceedings of the Fourth Annual Tcl/Tk
Workshop, Monterey, California, (1996).

23. Gray, R.S., Cybenko, G., Kotz, D., Peterson, R.A., and Rus, D.: D 'Agents:
Applications and performance of a mobile-agent system. Software: Practice and
Experience, (2001).

24. Grimshaw, A.S., Wulf, W.A., and the Legion Team: The Legion Vision of a
Worldwide Virtual Computer. Communications of the ACM, Vol. 40, No. 1
(1997).

25. Halls, D., Bates, J., and Bacon, J.: Flexible Distributed Programming using Mobile
Code. In Proceedings of the Seventh ACM SIGOPS European Workshop,
Connemara, Republic of Ireland, September, (1996).

26. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence,
117(2):277-296, March, (2000).

27. Joshi, A.: On Proxy Agents, Mobility and Web Access. Technical Report 99-02,
CSEE Department, University of Maryland, Baltimore County, (1999).

28. Karjoth, G., Lange, D.D., and Oshima, M.: A Security Model for Aglets. In G.
Vigna (editor) Mobile Agents and Security. Springer-Verlag, Germany, (1998).

29. Kotz, D., and Gray, R.S.: Mobile Agents and the Future of the Internet. In Proc.
ACM Operating Systems Review, Aug., pp. 7-13 (1999).

30. Lang, D.B., Oshima, M., Karjoth, G., and Kosaka, K.: Aglets: Programming
mobile agents in Java. In Worldwide Computing and Its Applications, volume
1274 of Lecture Notes in Computer Science, pages 253-266, Springer-Verlag,
(1997).

31. Lange, D.B., and Oshima, M.: Programming and Deploying Mobile Agents with
Aglets. Addison Wesley (1998).

32. Lange, D.B. and Oshima, M.: Seven good reasons for mobile agents.
Communications of the ACM Vol. 43, No.3, pp. 88-89 (1999).

33. Lewis, T.: The Next 10,0001 Years: Part I & II. IEEE Computer, (1996).
34. Maes, P.: Agents that reduce work and information overload. Communication of

the ACM, 37(7):31-40, July, (1994).
35. Mahmoud, Q.H.: The Web as a Global Computing Plaiform. In Proceedings of 7th

International Conference on High Perfonnance Computing and Networking
Europe, Amsterdam, The Netherlands, Lecture Notes in Computer Science, pp.
281-290, (1999).

55

36. Mahmoud, Q.H.: Distributed Programming with Java. Manning Publications Co.,
USA, (1999).

37. Mahmoud, Q.H.: A Mobile Agent-based Approach to Web-based Distributed
Computing. In Proc. of the 14th Annual International Symposium on High
Performance Computing Systems and Applications. Victoria, BC, Canada, June 14
- 16, (2000).

38. Mahmoud, Q.H.: Security Policy: A Design Pattern for Mobile Java Code. In
Proceedings of the i h Pattern Languages of Programs (PLoP) Conference,
Monticello, Illinois, USA, Aug 13 - 16 (2000).

39. Mahmoud, Q.H.: MobiAgent: An Agent-based Approach to Wireless Information
Systems. In Proc. of the 3rd International Workshop on Wireless Information
Systems, Montreal, May, pp. 87-90 (2001).

40. Mahmoud, Q.H.: Learning Wireless Java. O'Reilly & Associates, Inc., USA,
(2002).

41. Mahmoud, Q.H., and Vasiu, L.: Accessing and Using Internet Servicesfrom Java
enabled Handheld Wireless Devices: A Mediator-based Approach. In Proceedings
of the 4th International Conference on Enterprise Information System, Ciudad Real,
Spain, April, (2002)

42. McGraw, G., and Felten, E.: Java Security: Hostile Applets. Holes and Antidotes.
John Wiley and Sons, (1996).

43. McGraw, G., and Felten, E.W.: Security Java: Getting Down to Business with
Mobile Code. John Wiley & Sons, (1999).

44. Mihailescu, P., Kendell, E., Zheng, Y.: Mobile Agent Platform for Mobile Devices.
In the Poster Paper Collection of the Second International Symposium on Agent
systems and Applications and Fourth International Symposium on Mobile Agents
(ASAJMA 2000), Zurich, Switzerland, Sep., (2000).

45. Nwana, H.S.: Software agents: An overview. The Knowledge Engineering Review,
11 (3):205-244, (1996).

46. Ousterhout, J.K., Levy, J.Y., and Welch, B.B.: The Safe-Tel Security Model. In G.
Vigna (editor) Mobile Agents and Security. Springer-Verlag, Germany,
1998.Press, pp. 437-472 (1997).

47. Pham, V.A., and Karmouch, A.: Mobile software agents: An Overview. In IEEE
Communications, 36(7) 26-37, July, (1998).

48. Sander, T., and Tschudin, c.: Towards mobile cryptography. In IEEE Symposium
on Security and Privacy, May, (1998).

49. Schilit, B.N., Adams, N.I., and Want, R.: Context-Aware Computing Applications.
In Proceedings of the 1994 Workshop on Mobile Computing Systems and
Applications, Santa Cruz, USA, IEEE Computer Society, (1994).

50. Shoham, Y.: Agent-oriented programming. Artificial Intelligence, 60(1):51-92,
March, (1993).

51. Siegel, J.: CORRA - Fundamentals and Programming. John Wiley and Sons,
(1996).

52. Stamos, l.W., and Gifford, D.K.: Implementing Remote Evaluation. IEEE
Transactions on Software Engineering, 16(7):710-722, July, (1990).

56

53. Stamos, J.W.: Remote Evaluation. ACM Transactions on Programming Languages
and Systems, 12(4):537-565, October, (1990).

54. Van Steen, M., Homburg, P., and Tanenbaum, A.S.: Globe: A wide-area
distributed system. IEEE Concurrency, 7(1):70-78, January-March, (1999).

55. Vitek, J., and Tschudin, C., (editors): Mobile Object Systems: Towards the
Programmable Internet, volume 1222 of Lecture Notes in Computer Science,
Springer-Verlag, (1997).

56. Waldo, J., Wyant, G., Wollrath, A., and Kendall, A.: A Note on Distributed
Computing. Technical Report TR-94-29, Sun Microsystems Laboratories, Inc.,
November, (1994).

57. White, 1.: Mobile Agents. In Bradshaw, J.M. (editor), Software Agents, AAAIIMIT
58. Wiederhold, G.: Mediators in the Architecture of Future Information Systems.

IEEE Computer 25(3): 38-48, March, (1992).
59. Wollrath, A., Riggs, R., and Waldo, J.: A Distributed Object Model for the Java

System. USENIX Computing Systems, 9(4), (1996).
60. Wooldridge, M.J., and Jennings, N.R.: Software engineering with agents: pitfalls

and pratfalls. IEEE Internet Computing, 3(3):20-27, (1999).

57

Appendix

A. Source Code for Web-based Global Distributed Computing Platform

Listing AI: Compute.java

1*
* @(#)Compute.java
* @author Qusay H. Mahmoud
*1

1**
* This interface is designed to overcome one limitation found when working
* with class loaders. The limitation is described below. This limitation can
* now be solved with the new Reflection API mechanism.
* The Problem: One hidden issue when working with class loaders is the
* inability to cast an object that was created from a loaded class into its
* original class.
* This problem can be resolved by either having an abstract class or an
* interface that each client should implement. So this is my interface.
* Each client of the system will have to implement this interface.
*1

public interface RemoteCompute
1* Start the module *1
void run();

Listing A2: NetClassLoader.java

1**
* @(#)NetClassLoader.java
* @author Qusay H. Mahmoud
*1

import java.io.*;
import java.net.*;
import java.util.*;

1**
* This class implements a custom network class loader. The class is
* capable of loading classes off the network.<p>
* This class loader creates a cache of loaded classes so that classes
* that have been loaded before can just be fetched from the cache.
*1

public class NetClassLoader extends ClassLoader
private Hashtable classes ~ new Hashtable();

II constructor
1ubliC NetClassLoader() {

1**
* Loads a class with the specified name and return it.
* @return a class with the specified name.
*1

public Class loadClass(String className) throws ClassNotFoundException
return (loadClass(className, true»;

/**

* This method is called by the loadClass above.
* @return a class with the specified name.
*/

public synchronized Class loadClass(String className, boolean resolvelt)
throws ClassNotFoundException {

Class result;
byte classData[];
result = (Class) classes.get(className);
if (result==null) {

try {
result = findSystemClass(className);
if (resultl=null) classes.put(className,result);

catch(Exception e) {
e.printStackTrace() ;

}
if (result==null) {

classData = null;

}

if (O==className.indexOf(''http://''))
classData = loadnet(className);

}
if (classDatal=null) {

result = defineClass(classData, 0, classData.length);
if (resolvelt) resolveClass(result);
if (resultl=null) {

classes.put(className, result);

return (result) ;

/** * Loads a class with the specified name off the network.
* @returns an array of bytes representing the bytecode class.
*/

private byte[] loadnet(String name) {
URL url=null;
DatalnputStream dis=null;
URLConnection urlc=null;
byte data[];
int filesize;
system.out.println("Loading " + name + " from the network") ;
try {

urI = new URL(name);
} catch(MalformedURLException e) {

System. out .printIn ("NetCIassLoader: "+e);
}
try {

urIc = url.openConnection();
dis = new DatalnputStream(urlc.getlnputStream(»;

catch(Exception e) {
System.out.println("NetClassLoader: can not open URL

"+e.getMessage(» ;
}
filesize = urlc.getContentLength();
data = new byte [filesize] ;
try {

dis.readFully(data);
} catch(IOException i) {

system.out.println("NetClassLoader: could not read: "+name);
}
if (data==null) System.out.println("DATA = NULL");
return (data) ;

Listing A3: EngineSecurityManager.java

58

import java.io.*;
import java.util.*;

1*
* @(#)EngineSecurityManager.java
* @author Qusay H. Mahmoud
*
* A security policy. A very simple Custom Security Manager
* that protects against some malicious code to be executed by a class
* loader. <p>
*1

class EngineSecurityManager extends SecurityManager
private boolean silent = true;
private boolean checkRead = false;
private boolean checkWrite = false;
private boolean checkDelete = true;
private boolean checkExit = true;

II constructor
EngineSecurityManager() {

System.out.println("EngineSecurityManager started");

1**
* The following operations are alllowed. This is just hypotheitcal
* though, more restricted access should be imposed when working with
* class loaders
*1

public
public
public
public
public
public
public
public
public

1**

void
void
void
void
void
void
void
void
void

checkConnect(String host, int port) { };
checkCreateClassLoader() { };
cheCkAccess(Thread g) { !;
checkListen(int port) ;
checkLink(String lib) ;
checkPropertyAccess(String key) { };
checkAccept(String host, int ~ort) { };
cheCkAccess(ThreadGroup~) { J;
checkExec(String cmd) { J;

* check to see if a file with the specified file descriptor can be read.
*1

public void checkRead(FileDescriptor fd) {
if (checkRead) {

59

}
throw new SecurityException("Sorry , checkRead(l+fd+") not allowed");

if (! silent) {
System.out.println("EngineSecurityMan FD=I+fd+" : checkRead");

1**
* check to see if a file with the specified file name can be read.
*1

public void checkRead(String file)
if (checkRead) {

1**

throw new SecurityException("Sorry, checkRead(l+file+") not
allowed. II);

}
if (! silent) {

system.out.println("EngineSecurityMan FILE=I+file+" :checkReadll);

* check to see if a file with the specified file descriptor can be
* altered.

*1
public void checkWrite(FileDescriptor fd)

if (checkWrite) {

1**

throw new SecurityException("Sorry, not allowed to write "+fd);
else if(!silent) {
System.out.println("EngineSecurityMan FD=I+fd+" : checkWrite");

* check to see if a file with the specified file name can be altered.
*1

public void checkWrite(String file) {
if (checkWrite) {

1**

throw new securityException("Sorry, not allowed to write "+file);
else if(!silent) {
System.out.println("EngineSecurityManager FILE="+file+" :

checkWrite") ;

* check to see if a file with the specified file name can be deleted.
*1

public void checkDelete(String file) {
if (checkDelete) {

1**

throw new SecurityException("Sorry, not allowed to delete "+file);
else if (! silent) {
System.out.println("EngineSecurityManager FILE=I+file+" :

checkDelete") ;

* check to see if the system has exited the Java Virtual Machine.
*1

public void checkExit(int status)
if (checkExit) {

throw new SecurityException("Sorry, checkExit "+status);
else if(!silent) {
System.out.println("EngineSecurityManager STATUS="+status+"

checkExit") ;

Listing A4: ComputeEngine.java

import java.io.*;
import java.net.*;
import java.util.*;

1*
* @(#)ComputeEngine.java
* @author Qusay H. Mahmoud
*1

public class ComputeEngine extends Thread {
public static final int EXEC PORT = 5000;
protected ServerSocket listen;

II constructor
public ComputeEngine()

try {
listen = new ServerSocket(EXEC PORT);

} catch (IOException e) { -
system.out.println("Error in creating server socket: "+e);

60

1*

1**

System.out.println(nExec server listening on port: n+EXEC_PORT);
this.start() ;

* accepts a new connection in a seperate thread of execution.
*1

public void run() {
try {

1**

while (true) {
Socket cl = listen.accept();
Connection cc = new Connection (cl) ;

}
catch(IOException ex) {
System.out.println("Error listening for connections: "+ex);

* This is main where execution starts. Set our custom security
* manager, and create an instance of the Compute Engine.
*1

public static void main(String argvl]) {
EngineSecurityManager RSM;
try {

RSM = new EngineSecurityManager();
system.setSecurityManager(RSM) ;

} catch (SecurityException se) {
System.out.println("EngineSecurityManager already running");

}
new ComputeEngine();

* @(#)Connection.java
*1

class Connection extends Thread {
Socket client;
IISufferedReader is;
DatalnputStream is;
PrintStream os;

1**
* creates an input and output streams and make the inputstream ready to
* receive information from the client.
*1

public Connection(Socket s) { II constructor
client = s;
try {

is = new DatalnputStream(client.getlnputStream(»;
os = new PrintStream(client.getOutputStream(»;

} catch (IOException e) {
System. out. print In ("Error n +e) ;

}
this.start() ;

1**
* reads information from the client and creates an instance of our
* custom network class loader.
*1

public void run() {
String urI = null;
try {

urI = is.readUTF();
catch (IOException esl {
System.out.println("Error writing ... "+es);

61

}
String className = urI;
II redirect the output stream to the client socket.
system. setOut (os) ;

II use a class loader ...
NetClassLoader sc ~ new NetClassLoader();
try {

object 0;
o = (sc.loadClass(className, true» .newlnstance();
«RemoteCompute) 0) .run();

catch (Exception cne) {
System.out.println("Error "+cne);

62

II close the input and output streams and the connection to the client.
try {

}

is. close () ;
os.close();
client.close() ;

catch (IOException xx) {
System. out. print In ("Error closing ... "+xx) ;

Listing AS: ComputeClient.java

import java.io.*;
import java.net.*;

1**
* @(#)ComputeClient.java
* @author Qusay H. Mahmoud
*1

public class ComputeClient {
public final static int REMOTE_PORT = 5000;;
1**

* This is the main program of the client.
* @param host The host on which the Compute Engine is running on
* @param urI The urI of the class to be loaded.
*1

public static void main(String argv[]) throws Exception {
String host = argv[O];
String urI = argv[l] ;
Socket cl = null, cI2=null;
BufferedReader is = null;
DataOutputStream os = null;
II Open connection to the compute engine on port 5000
try {

cl = new Socket (host, REMOTE PORT);
is = new BufferedReader(new-InputStreamReader(cl.getlnputStream(»);
os = new DataOUtputStream(cl.getOutputStream();
System. out .println ("Connection is fine ... ");

catch(UnknownHostException ell {
system.out.println("Unknown Host: "+el);

catch (IOException e2) {
System.out.println("Erorr io: "+e2);

}
II write the urI to the compute engine
try {

os.writeUTF(url) ;
} catch (IOException ex) {

system.out.println("error writing to server ... "+ex);

~I receive results from the compute engine
String outline;
try {

while«outline = is.readLine()) != null)

System.out.println("Remote: "+outline);

}

}
catch (IOException cx) {
System.out.println("Error: "+Cx) ;

II close input stream, output stream and connection
try {

is. close () :
os. close () ;
cl. close () ;

catch (IOException x) {
System.out.println("Error writing "+x);

B. Source Code for MobiAgent System

Listing Bl: ClientMIDlet.java

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*:
import javax.microedition.io.*;
import java.io.*;

public class ClientMidlet extends MIDlet implements CommandListener {
Display display = null;

II book title form field
TextField titleField = nUll;
String title;
Form form;

String urI = "http://remotehost/servlet/MediatorServlet'';
static final Command sendCommand new Command("Send", Command. OK, 2);
static final Command backCommand = new Command("Back", Command. STOP, 3);

public ClientMidlet() {
display = Display.getDisplay(this) ;
bookTitle = new TextField("Enter a Book Title:", "Distributed

Programming with Java", 50, TextField.ANY);
form ,., new Form (IIBookAgent·) ;

public void startApp() throws MIDletStateChangeException
form. append (titleField) ;
form.addCommand(backCommand) ;
form.addCommand(sendCommand) ;
form.setCommandListener(this) ;
display.setCurrent(form) ;

yublic void pauseApp() {

public void destroyApp(boolean unconditional) {
notifyDestroyed() ;

void invokeServlet(String urI) throws IOException {
HttpConnection c = null;
InputStream is ,., null;
OutputStream os ,., null;
StringBuffer sb,., new StringBuffer();
TextBox tbox = null;

63

try {

}

c = (HttpConnection)Connector.open(url);
c.setRequestMethod(HttpConnection.POST) ;
c.setRequestProperty("IF-Modified-Since", "20 April 2001

16:19:14 GMT");
c.setRequestProperty("User-Agent","Profile/MIDP-1.0

Configuration/CLDC-1.0") ;
c.setRequestProperty("Content-Language", lien-CAli);
c.setRequestProperty(IContent-Type", "application/x-www-form

-urlencoded");
os = c.openOutputStream();
os.write«"title="+title) .getBytes(»;
os. flush () ;
is = c.openDatalnputStream();
int Chi
while (ch = is.read() != -1)

sb.append«char) ch);
System.out.print(char)ch) ;

}
tbox = new TextBox("Confirmation", sb.toString(), 1024, 0);
tbox.setCommandListener(this) ;

finally {
if(is!= null) {

is. close () ;
}
if(os !=null) {

os.close();
}
if (c ! = null)

c.close () ;

display.setCurrent(tbox);

public void commandAction(Command c, Displayable d) {
String label = c.getLabel();
if (label.equals ("Back"» {

destroyApp(true) ;
else if (label.equals(IISend"» {
title = titleField.getString();
try {

invokeServlet(url);
catch(IOException e) {
e.printStackTrace() ;

Listing B2: MediatorServlet.java

import java.io.*;
import java.net.*;
import java.text.*;
import javax.servlet.*i
import javax.servlet.http.*;

public class MediatorServlet extends HttpServlet {

public void doPost(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {
response.setContentType("text/plain") ;
PrintWriter out = response.getWriter();
String bookTitle = request.getParameter("title");
System.out.println("title is: "+to);
1/ Open connection to the Agent Gateway and forward the info to it.
Socket agentSocket = null;

64

DataOutputStream os = nUll:
try {

agentSocket = new Socket (lagentGatewayHost", 2500):
os = new Da~aOutputStream(agentSocket.getoutputStream()):

} catch(Except~on e) {
e.printStackTrace():

}
if(agentSocket l= null && os l= null) {

try {
os.writeBytes(bookTitle+ l \r\n") :
os.close() :
agentSocket.close() ;

catch(Exception ex) {
ex.printStackTrace() ;

Listing B3: AgentGateway.java

import java.io.*:
import java.net.*;

public class AgentGateway extends Thread {

private ServerSocket gateway;
public static void main(String argYl)) throws Exception {

new AgentGateway();

public AgentGaetway() throws Exception {
gateway = new ServerSocket(2500);
System.out.println("AgentGateway listening on port 2500 11):
this.start();

public void runt)
while (true) {

try {
Socket client = gateway.accept():
Connect cc = new Connect (client) :

} catch(Exception e) {}

class Connect extends Thread {
private socket cs;
private DatalnputStream br:

public Connect() {}

public Connect(Socket s) {
cs :. s;
try {

}

dos = new DataOutputStream(cs.getOutputStream());
catch(Exception ell {
try {

cs. close () :
}catch(Exception e) {}
return;

this. start () ;

public void callAgentServer(String mobileService, String input) {
II voyager related code.

65

public void runt) {
String title = null;
try {

}

title = br.readLine();
System.out.println("The string read: "+title);
dos.close() ;
cs.close();

catch(Exception e) {
e.printStackTrace() ;

II send request to agent server to dispatch book agent service
callAgentServer(flBookAgent fl , title);

Listing 84: AgentServer.java

66

A Voyager server can be started from the command line on a specific port
number. For example, to start a voyager server on port 3000, the command:
prompt> voyager 3000 will do. Alternatively, it can be started from within a
program using the statement: Voyager. startup (3000) ;

Listing B5: MobiAgentService.java

import com.objectspace.voyager.*;

public class BookAgent {
public static void main (String argYl]) {

String pI null;
String p2 = null;
String p3 = null;
try {

Voyager.startup(3000);
IBook book = (IBook) Factory. create ("Book") ;
IMobility mobility = Mobility.of(book);
mobility.moveTo("sitel");
String pl = book.getPrice();
mobility.moveTo("site2") ;
String p2 = book.getPrice();
mobility.moveTo("site3");
String p3 = book.getPrice();

} catch (Exception e) {
e.printStackTrace() ;

}
II gather all prices and construct a midlet
II the agent gateway should do this though

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class BookMIDlet extends MIDlet
private Display display;
Private Form form;
List list = nUll;
Private Command Back;
Private command Buy;

public BookMIDlet() {
list = new List(~Choose one:", Choice.EXCLUSIVE);
Back = new Command("Back", Command. STOP, 2);
Buy = new Command("Buy", Command. OK, 2);

public void startApp() {
display = Display.getDisplay(this);
list.append(pl, "null");

list.append(p2, "null");
list.append(p3, "null");
list.addCommand(Back);
list.addCommand(Buy) ;
list.setTicker(new Ticker(pl+p2+p3»;
display. set Current (list) ;

rUbliC void pauseApp() {

public void destoryApp(Boolean unconditional)
notifyDestroyed() ;

public void commandAction(Command c, Displayable d) {
String label = c.getLabel();
If(label.equals("Back"» {

DestoryApp(true) ;
else if (label. equals ("Buy"» {
II I need to enable users to buy an item

c. The Works

67

The works that make up the set of publications for this PhD by Published Works

consist of refereed conference and journal papers, two books, and chapters in books.

C.I Refereed Journal Papers

1. Mahmoud, Q.H.: An Agent-based Approach to the Wireless Internet. In the
Journal of Internet Technology, Special Issue on "Wireless Internet". Volume 3
(2002) No.2, pp. 153 - 158.

2. Mahmoud, Q.H., and Vasiu, L.: Agents for Devices and Devices for Agents.
Accepted for publication in the Communications of the ACM. To appear in
Summer 2002.

C.2 Books

3. Mahmoud, Q.H.: Distributed Programming with Java. Manning Publications
Co., USA, 1999. ISBN: 1884777651.

4. Mahmoud, Q.H.: Learning Wireless Java. O'Reilly & Associates Inc.,
USA, 2002. ISBN: 0596002432.

C.3 Refereed Conference Papers

5. Mahmoud, Q. H.: The Web as a Global Computing Platform. In the proceeding
of the 7th International Conference on High Performance Computing and

68

Networking Europe '99, Amsterdam, The Netherlands, April 1999. In Springer
Verlag' Lecture Notes in Computer Science, pp. 281-290, (1999).

6. Mahmoud, Q. H.: A Mobile Agent-based Approach to Web-based Distributed
Computing. In the 14th Annual International Symposium on High Performance
Computing Systems and Applications. Victoria, BC, Canada, June 14 - 16,
(2000).

7. Mahmoud, Q. H.: Using Jinifor High-Performance Network Computing. In the
Proceedings of the International Conference in Parallel Computing in EE.
Trois-Rivieres, Quebec, Canada, August 28 - 30, 2000. Published by the IEEE
Computer Society, pp 244-247, (2000).

8. Mahmoud, Q. H.: Security Policy: A Design Pattern for Mobile Java Code. In
proceedings of the 7th Pattern Languages of Programs (PLoP) Conference.
Monticello, Illinois, USA. Aug 13 - 16, (2000).

9. Mahmoud, Q. H.: MobiAgent: An Agent-based Approach to Wireless
Information Systems. In the Proceedings of the 3rd International Bi-Conference
Workshop on Agent-Oriented Information Systems, which was held with the
5th International Conference on Autonomous Agents 2001, Montreal, Canada.
May 28 - June 1, (2001).

10. Mahmoud, Q.H., and Vasiu, L.: Accessing and Using Internet Services from
Java-enabled Handheld Wireless Devices: A Mediator-based Approach. In
Proceedings of the 4th International Conference on Enterprise Information
Systems, Ciudad Real, Spain, April, (2002).

C.4 Book Chapters

II. Mahmoud, Q. H.: A Mobile Agent-based Approach to Web-based Distributed
Computing. In Dimopoulos, N.J, and Li, K.F., (editors) High Performance
Computing Systems and Applications, Kluwer Academic Publishers, pp. 61-68
(2002).

12. Mahmoud, Q. H.: MobiAgent: An Agent-based Approach to Wireless
Information Systems. In Wagner, G., Karlapalem, K., Lesperance, Y., and Yu,
E., Agent-Oriented Information Systems 2001, iCue Publishing, Berlin, (2001).

	568380_001
	568380_002
	568380_003
	568380_004
	568380_005
	568380_006
	568380_007
	568380_008
	568380_009
	568380_010
	568380_011
	568380_012
	568380_013
	568380_014
	568380_015
	568380_016
	568380_017
	568380_018
	568380_019
	568380_020
	568380_021
	568380_022
	568380_023
	568380_024
	568380_025
	568380_026
	568380_027
	568380_028
	568380_029
	568380_030
	568380_031
	568380_032
	568380_033
	568380_034
	568380_035
	568380_036
	568380_037
	568380_038
	568380_039
	568380_040
	568380_041
	568380_042
	568380_043
	568380_044
	568380_045
	568380_046
	568380_047
	568380_048
	568380_049
	568380_050
	568380_051
	568380_052
	568380_053
	568380_054
	568380_055
	568380_056
	568380_057
	568380_058
	568380_059
	568380_060
	568380_061
	568380_062
	568380_063
	568380_064
	568380_065
	568380_066
	568380_067
	568380_068
	568380_069
	568380_070
	568380_071
	568380_072
	568380_073
	568380_074
	568380_075
	568380_076
	568380_077
	568380_078
	568380_079
	568380_080
	568380_081
	568380_082
	568380_083
	568380_084
	568380_085
	568380_086
	568380_087
	568380_088
	568380_089
	568380_090
	568380_091
	568380_092
	568380_093
	568380_094
	568380_095
	568380_096
	568380_097
	568380_098
	568380_099
	568380_100
	568380_101
	568380_102
	568380_103
	568380_104
	568380_105
	568380_106
	568380_107
	568380_108
	568380_109
	568380_110
	568380_111
	568380_112
	568380_113
	568380_114
	568380_115
	568380_116
	568380_117
	568380_118
	568380_119
	568380_120
	568380_121
	568380_122
	568380_123
	568380_124
	568380_125
	568380_126
	568380_127
	568380_128
	568380_129
	568380_130
	568380_131
	568380_132
	568380_133
	568380_134
	568380_135
	568380_136
	568380_137
	568380_138
	568380_139
	568380_140
	568380_141
	568380_142
	568380_143

