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This paper proposes a new distributed space-time block code (DSTBC) over frequency-selective fading channels for two-hop
amplify and forward relay networks, consisting of a source node (S), two relay nodes (R1 and R2), and a destination node (D).
The proposed DSTBC is designed to achieve maximal spatial diversity gain and decoupling detection of data blocks with a low-
complexity receiver. To achieve these two goals, S uses zero-sequence padding, and relay nodes precode the received signals with
a proper precoding matrix. The pairwise error probability (PEP) analysis is provided to investigate the achievable diversity gain
of the proposed DSTBC for a general channel model in which one hop is modeled by Rayleigh fading and the other by Rician
fading. This mixed Rayleigh-Rician channel model allows us to analyze two typical scenarios where {Ri} are in the neighborhood
of either S or D .

1. Introduction

The reliability of wireless communications over fading
channels can be greatly improved by the use of diversity
schemes. For multiple-input multiple-output (MIMO) sys-
tems, transmitted diversity can be realized in the form of
space-time block codes (STBCs) [1, 2]. With low-complexity
maximum-likelihood (ML) decodability and high achiev-
able diversity gain, STBCs are widely used for wireless
communications. Generally, the conventional STBCs were
designed for the colocated antennas, and thus are easily
deployed at the base station to improve the performance
of the downlink transmission. Nevertheless, the realization
of STBCs is impractical in the uplink transmission due to
the constraints on size and hardware complexity in mobile
handsets. Fortunately, mobile users can cooperate to form
a virtual multiple-antenna system, which is now known as
cooperative diversity [3, 4].

The distributed space-time block codes can be viewed
as the distributed implementation of conventional STBCs
for cooperative communications. Originally, the DSTBCs
were proposed for flat-fading channels [5–7]. The prob-
lem of DSTBC in frequency-selective fading channels was

investigated in [8] with decode-and-forward (DF) relaying,
and in [9] with amplify-and-forward (AF) relaying. How-
ever, these DSTBCs were devised for relay networks where
there exists one active relay node and a direct communication
link between the source and the final destination.

In this paper, we design a new DSTBC for two-hop relay
networks [6, 7] over frequency-selective fading channels with
AF protocol, where there are two active relay nodes. The
proposed DSTBC operates as follows: in the first time slot,
the source (S) sends two blocks of information data to two
relays (R1 and R2). What is remarkable in our proposed
DSTBC is that one of the two relays precodes its received
signals that will be sent to the destination (D) in the next
time slot. The precoding matrix is designed such that each
relay conveys a distinct column of the block Alamouti scheme
(see, e.g., [1, 10, 11]). Our main contributions in this paper
are summarized in brief as follows.

(i) With our proposed DSTBC, the data rate of 1/2 is
achieved, which is proved to be the maximum data
rate for two-hop relaying networks. As we can see
later, the extension of [9] to two relays results in a
rate of 1/3.



2 EURASIP Journal on Wireless Communications and Networking

(ii) We propose the precoding matrix at the relays such
that the decoupling detection of two data blocks in
both time and frequency domains is possible at D .
The PEP analysis is carried out with ML detection
in time domain, and numerical results are obtained
with minimum mean square error (MMSE) receiver
in frequency domain.

(iii) We study the achievable diversity gain of the pro-
posed DSTBC for the general scenario where the
relays are located near the source or the destination,
that is, one of the two hops (S to {Ri} or {Ri} to D)
is line-of-sight (LOS) transmission, while the other is
nonline-of-sight (NLOS) transmission. Accordingly,
the considered channel model is a mix of Rayleigh
and Rician fading.

The theoretical results prove that our proposed scheme
achieves the spatial diversity order of min(LSR1 ,LR1D) +
min(LSR2 ,LR2D) + 2, where LSRj and LRjD are the channel
memory lengths for the links from S to R j and from R j

to D , respectively. The analysis also shows that the n-factor
of Rician fading in the LOS component provides a coding
gain to the PEP performance. It means that as the n-factor
increases, a better performance is observed.

The rest of this paper is organized as follows In Section 2,
we describe the system model of the proposed DSTBC
and the proof of decoupling capability in time domain
and frequency domain. Performance analysis is presented in
Section 3. We present the numerical results in Section 4, and
Section 5 concludes this paper.

Notation. Bold lower and upper case letters represent vectors
and matrices, respectively; (·)T , (·)∗, and (·)H denote
transpose, complex conjugate, and Hermitian transpose
operations, respectively; IM and 0M denote an identity matrix
and an all-zero matrix of size M × M; E[·] denotes the
expectation; ‖ · ‖ denotes the Euclidean norm of a vector;
FM stands for a Fast Fourier Transform (FFT) matrix of size
M × M; S → Ri and Ri → D represent the links from
the source (S) to the ith relay (Ri) and from Ri to the
destination (D), respectively.

2. System Model and the Proposed DSTBC

We consider a four-node wireless relay network shown in
Figure 1, where the source terminal cannot communicate
directly with the intended destination. The data transmission
from S to D is completed via two-hop protocol [6, 7] with
the assistance of two relays R1 and R2. The frequency-
selective channel from X to Y is characterized by hXY =
[hXY (0), . . . ,hXY (LXY )]T , where LXY is the channel memory
order. Two transmitted data blocks x1 and x2 of length M,
shown in Figure 1, are created by padding a zero sequence of
length L to two information data blocks si, i = 1, 2, of length
B. To achieve the decoupling property of data detection, the
length of the zero sequence must satisfy L ≥ max(LSR1 +
LR1D,LSR2 +LR2D) [9]. This condition makes circulant channel
matrices from source to relays and relays to destination.

In the first time slot, the source serially transmits two
data blocks to two relays. In the next time slot, one relay
only amplifies and forwards its received signals, while the
other precodes its received data blocks by a precoding
matrix before transmitting to the destination as illustrated
in Figure 1. The idea behind our design is that precoding
in R2 is designed to send the second column of the block
Alamouti’s scheme (see, e.g., [1, 11]) to D . This enables the
decoupling detection of two data blocks at the destination
and achieves a rate of 1/2. To achieve the same goal in
the considered scenario, the source with repetition code in
[9], which is devised for one-relay system, must send two
columns during two time slots. Thus, the rate of this scheme
is reduced to 1/3. Recall that the maximum achievable data
rate of an N-relay repetition-coding network is 1/(N + 1)
[12]. Clearly, our design can achieve a higher data rate
transmission.

We now proceed to prove that our proposed DSTBC can
decouple the detection of two data blocks. Throughout this
paper, the superscript j denotes the relay index, while the
subscript i refers to data block index. The received signal at
the relay is given by

r
j
i =
√
ESRj HSRj xi + η

j
i , i = 1, 2, j = 1, 2, (1)

where ESRj is the average energy of S → R j link; HSRj is the

M ×M circulant channel matrix of S → R j link; η
j
i is the

white Gaussian noise vector at the jth relay with each entry
having zeromean and variance of N0/2 per dimension. For
any M ×M circulant matrix HXY , its (k, l) entry is written as
[HXY ]k,l = hXY ((k − l) mod M).

At R2, the received data [(r2
1)T , (r2

2)T]T is conjugated,
followed by the precoding operation which is denoted by
precoding matrix P

P =
⎡
⎣0M −PK

M

PK
M 0M

⎤
⎦, (2)

where the matrix PK
M is designed as

PK
M =
⎡
⎣ P1 0K×(M−K)

0(M−K)×K P2

⎤
⎦. (3)

In (3), the matrix P1 of size K × K and the matrix P2 of size
(M−K)× (M−K) have (l, k) element given, respectively, by

P1(l, k) =
⎧⎨
⎩

1, if k = K − l + 1,

0, otherwise,

P2(l, k) =
⎧⎨
⎩

1, if k =M − K − l + 1,

0, otherwise.

(4)

We choose K = B + LSR2 to ensure that, after precoding,
at least last LSR2 samples of −PK

Mr2
2 and PK

Mr2
1 are all zeros

to make the circulant channel matrix R2 → D . Before
transmitting the signals to the destination, the relay R j
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Figure 1: System model and data structures.

normalizes its signals by (ESRj + N0) to have unit average
energy. The received signals at the destination are written by

y1 =
√
ER1DHR1D r̃1

1 −
√
ER2DHR2DPK

M

(
r̃ 2

2

)∗

+ ηD,1,

y2 =
√
ER1DHR1D r̃1

2 +
√
ER2DHR2DPK

M

(
r̃ 2

1

)∗

+ ηD,2,

(5)

where ERjD is the average energy of R j → D link; r̃
j
i is

the normalized received signal; HRjD is the M ×M circulant
matrix, denoting the channel R j → D ; ηD,i is white
Gaussian noise vector at the destination with each entry
having zeromean and variance of N0/2.

Using (1), we can rewrite (5) as

y1 =
√
ER1DESR1

ESR1 +N0
HR1DHSR1 x1 −

√
ER2DESR2

ESR2 +N0
HR2DPK

MH∗
SR2

x∗2

+ η1,

y2 =
√
ER1DESR1

ESR1 +N0
HR1DHSR1 x2 +

√
ER2DESR2

ESR2 +N0
HR2DPK

MH∗
SR2

x∗1

+ η2,
(6)

where η1 and η2 include the Gaussian noise of relays and
destination. It is common to normalize the noise variance in
(6) to be N0/2, which results in

y′1 = α1HR1DHSR1 x1 − α2HR2DPK
MH∗

SR2
x∗2 + η′1, (7)

y′2 = α1HR1DHSR1 x2 + α2HR2DPK
MH∗

SR2
x∗1 + η′2. (8)

The values of normalization factors in (7) and (8) are defined
by

αi

=
⎡
⎣ βj /= iγiESRi

β1β2 +β2γ1
∑LR1D

l=0

∣∣hR1D(l)
∣∣2 +β1γ2

∑LR2D

l=0

∣∣hR2D(l)
∣∣2

⎤
⎦

1/2

,

(9)

where βi = 1 + ESRi /N0 and γi = ERiD/N0 for i, j ∈ {1, 2}.
By conjugating, and multiplying both sides of (8) with

PK
M , and noting that PK

MH∗PK
M = HH for any circulant matrix

H, we can rewrite (8) as

y′′2 = α2HH
R2DHSR2 x1 + α1HH

R1DHH
SR1

PK
Mx∗2 + η′′2 . (10)

For mathematical convenience, we group (7) and (10) in
vector-matrix form as

[
y′1
y′′2

]
= H

[
x1

PK
Mx∗2

]
+

[
η′1
η′′2

]
, (11)

where

H �
⎡
⎣α1HR1DHSR1 −α2HR2DHH

SR2

α2HH
R2DHSR2 α1HH

R1DHH
SR1

⎤
⎦. (12)

Let us denote Ω = [α2
1〈HSR1〉2〈HR1D〉2 +

α2
2〈HSR2〉2〈HR2D〉2]1/2, where 〈HXY〉2 � HXYHH

XY =
HH
XYHXY for any circulant matrix HXY . Then, HH H =

I2 ⊗ Ω2 is a block-diagonal matrix. By multiplying both
sides of (11) with the unitary matrix (I2 ⊗Ω−1)HH , we can
decouple the detection of two data blocks. That means two
data blocks can be detected independently, rather than joint
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detection, without any loss of gain, which is based on the
following model
[

z1

z2

]
=
(

I2 ⊗Ω−1
)

HH

[
y′1
y′′2

]
=
[

Ωx1

ΩPK
Mx∗2

]
+

[
η1
η2

]
,

(13)

where ηi is the Gaussian noise vector resulting from the
space-time decoupling.

Since the general ML detection or standard equalization
techniques based on (13) require complex receiver, we
introduce the decoupling in the frequency domain that
allows for low-complexity equalizers [13].

We notice that any M × M circulant matrix H can be
diagonalized as H = FH

MΛFM , whereΛ is theM×M diagonal
matrix whose diagonal elements are the DFT of the first
column of H. Taking the DFT of both sides of (11) results
in

[
ỹ1

ỹ2

]
=
[

FMy′1
FMy′′2

]
= Λ

[
x̃1

x̃2

]
+

[
η̃1

η̃2

]
, (14)

where x̃1 = FMx1, x̃2 = FMPK
Mx∗2 ,

Λ =
⎡
⎣α1ΛR1DΛSR1 −α2ΛR2DΛ

∗
SR2

α2Λ
∗
R2DΛSR2 α1Λ

∗
R1DΛ

∗
SR1

⎤
⎦. (15)

Let us denote Ψ = [α2
1〈ΛSR1〉2〈ΛR1D〉2 +

α2
2〈ΛSR2〉2〈ΛR2D〉2]1/2. Then, ΛHΛ = I2 ⊗ Ψ2 is a block-

diagonal matrix. By multiplying both sides of (14) with the
unitary matrix (I2⊗Ψ−1)ΛH , we can decouple the detection
of each data block in frequency domain as

z̃i = Ψx̃i + ωi, i = 1, 2. (16)

Since the matrix Ψ is diagonal, (16) can be decomposed
into a set of M scalar equations

z̃k = Ψkx̃k + ωk, k = 0, 1, . . . ,M − 1. (17)

In (17), we omit the dependency of subscript i because
the detection of two data blocks is based on the same model.
Typical frequency domain equalizers in [13] can be applied
to the outputs of decoupling process.

3. Performance Analysis

In this section, we derive the PEP expression of the proposed
DSTBC model over frequency-selective fading channels
based on the joint channel model (11), where the links
S → R and R → D experience Rician fading and
Rayleigh fading, respectively. For the case when S → R and
R → D are Rayleigh fading and Rician fading, the PEP
expression can be similarly obtained with some interchanged
parameters.

Defining the decoded codeword vector as x̂ and the
Euclidean distance between x and x̂ as d(x, x̂), the condi-
tional PEP under fading channels is given by

P
(

x −→ x̂ | hSR1 , hSR2 , hR1D, hR2D
) = Q

⎛
⎝
√
d2(x, x̂)

2N0

⎞
⎠,

(18)

whereQ(·) is theQ function. By applying Chernoff bound to
Q function, this PEP is upper bounded by

P
(

x −→ x̂ | hSR1 , hSR2 , hR1D, hR2D
) ≤ exp

(
−d

2(x, x̂)
4N0

)
.

(19)

The Euclidean distance in (19) is calculated by

d2(x, x̂) = α2
1

∥∥HR1DHSR1 (x1 − x̂1)
∥∥2

+ α2
2

∥∥∥HR2DHSR2 PK
M(x2 − x̂2)

∥∥∥2
.

(20)

Using the fact in [9], we can approximate (20) to

d2(x, x̂) ≈ α2
1

M

∥∥HR1D

∥∥2∥∥HSR1 e1
∥∥2 +

α2
2

M

∥∥HR2D

∥∥2∥∥HSR2 e2
∥∥2

≈ α2
1

M

∥∥HSR1

∥∥2∥∥HR1De1
∥∥2 +

α2
2

M

∥∥HR2D

∥∥2∥∥HSR2 e2
∥∥2

≈ α2
1

M

∥∥HR1D

∥∥2∥∥HSR1 e1
∥∥2 +

α2
2

M

∥∥HSR2

∥∥2∥∥HR2De2
∥∥2

≈ α2
1

M

∥∥HSR1

∥∥2∥∥HR1De1
∥∥2 +

α2
2

M

∥∥HSR2

∥∥2∥∥HR2De2
∥∥2,

(21)

where ei = (xi − x̂i), and i = 1, 2. We note that
‖HXY‖2 = M

∑LXY
lXY=0 |hXY (lXY )|2, and ‖HXYei‖2 =

∑LXY
lXY=0 λi(lXY )|νi(lXY )|2; i = 1, 2. λi(lXY ) denotes the eigen-

value of codeword difference matrix, and ν is zero-mean
complex Gaussian vectors with unit variance. In (21), we
mean that the distance can be approximated by one of four
possible forms. Each component of the summations of the
right hand side of (21) can be expressed by one of the two
following factors

d2
1 =

LRD∑

lRD=0

|hRD(lRD)|2
LSR∑

lSR=0

λ(lSR)|ν(lSR)|2, (22)

or

d2
2 =

LSR∑

lSR=0

|hSR(lSR)|2
LRD∑

lRD=0

λ(lRD)|ν(lRD)|2. (23)

In (22), (23), and for the rest of the paper, the subscript R
stands for R1 or R2 for sake of generality because the links
S → R1 → D and S → R2 → D can be treated in
the same way. To derive the PEP, we differentiate three cases
based on the relation of LRD and LSR because of the different
characteristics of fading S → R and R → D .

Case 1 (LRD > LSR). We consider (22) and define
Z1 = d2

1 = X1Y1, where X1 = ∑LRD
lRD=0 |hRD(lRD)|2 and

Y1 = ∑LSR
lSR=0 λ(lSR)|ν(lSR)|2. Applying Chernoff bound,

the PEP corresponding to d2
1 is upper bounded by

EZ1 [exp(−α2Z1/4N0)] = ΦZ1 (s)|s=−α2/4N0 , where Φ(·)
denotes the moment-generating function. If we consider R1



EURASIP Journal on Wireless Communications and Networking 5

(R2), α will be corresponding to α1 (α2). ΦZ1 (s) can be
evaluated as [14]

ΦZ1 (s) =
∫∞

0
fX1 (x1)ΦY1 (sx1)dx1, (24)

where f (·) is the probability density function. Since the
fading channels S → R and R → D are frequency-selective
Rician and Rayleigh fading, respectively,

ΦY1 (s) =
LSR∏

lSR=0

[
1 + n2

1+n2−sλ(lSR)
e[n2sλ(lSR)/(1+n2−sλ(lSR))]

]
, (25)

fX1 (x1) = (LRD + 1)LRD+1

Γ(LRD + 1)
xLRD1 e−(LRD+1)x1 , (26)

where n is the Nakagami-n or Rician fading parameter, and
Γ(·) represents the Gamma function defined by Γ(k) � (k −
1)! for any positive integer k.

Substituting (26) and (25) into (24), we have

ΦZ1 (s)
∣∣
s=−α2/4N0

=
∫∞

0

(LRD + 1)LRD+1

Γ(LRD + 1)
xLRD1 e−(LRD+1)x1

×
LSR∏

lSR=0

[
1 + n2

1 + n2 + (α2/4N0)x1λ(lSR)

×e−n2(α2/4N0)x1λ(lSR)/(1+n2+(α2/4N0)x1λ(lSR))

]
dx1.

(27)

We can rewrite (27) as

ΦZ1 (s)
∣∣
s=−α2/4N0

= (LRD + 1)LRD+1

Γ(LRD + 1)

∫∞
0
xLRD1 e−(LRD+1)x1

×
LSR∏

lSR=0

[
e−x1/(x1/n2+ ((1+n2)/n2)/(α2/4N0)λ(lSR))

(α2/4N0)λ(lSR)[x1/(1 + n2)+1/(α2/4N0)λ(lSR)]

]
dx1,

(28)

Assuming high signal-to-noise ratio (SNR), that is,
α2/4N0 � 1 and (1 + n2)/n2 ≈ 1, (28) can be evaluated as

ΦZ1 (s)
∣∣
s=−α2/4N0

≈ (LRD + 1)LRD+1

Γ(LRD + 1)

(
α2

4N0

)−(LSR+1)

× (1 + n2)
LSR+1

e−(LSR+1)n2
LSR∏

lSR=0

1
λ(lSR)

×
∫∞

0
xLRD−LSR−1

1 e−(LRD+1)x1dx1.

(29)

The integral in (29) when LRD > LSR is given by [15]
∫∞

0
xLRD−LSR−1

1 e−(LRD+1)x1dx1 = Γ(LRD − LSR)

(LRD + 1)LRD−LSR
. (30)

Substituting (30) into (29), we obtain

ΦZ1 (s)
∣∣
s=−α2/4N0

≈
[

(LRD + 1)(1 + n2)
en2

]LSR+1

× Γ(LRD − LSR)
Γ(LRD + 1)

(
α2

4N0

)−(LSR+1)

×
LSR∏

lSR=0

1
λ(lSR)

.

(31)

Case 2 (LSR > LRD). We examine (23) and similarly define
Z2 = d2

2 = X2Y2, where X2 = ∑LSR
lSR=0 |hSR(lSR)|2 and

Y2 = ∑LRD
lRD=0 λ(lRD)|ν(lRD)|2. Applying Chernoff bound,

the PEP corresponding to d2
2 is upper bounded by

EZ2 [exp(−α2Z2/4N0)] = ΦZ2 (s)|s=−α2/4N0 which is given by

ΦZ2 (s) =
∫∞

0
fX2 (x2)ΦY2 (sx2)dx2, (32)

where

fX2 (x2) = (LSR + 1)1−LSR/2

nLSR

×
xLSR/22 ILSR

[
2(LSR + 1)3/2nx1/2

2

]

e(LSR+1)2n2−(LSR+1)x2
,

(33)

ΦY2 (s) =
LRD∏

lRD=0

1
1− sλ(lRD)

. (34)

The modified Bessel function of the first kind, Iα(β) in
(33), is defined as

Iα
(
β
)

�
(

1
2
β
)α ∞∑

k=0

(
(1/4)β2

)k
k!Γ(α + k + 1)

, α ∈ R. (35)

Substituting (33) and (34) into (32), we have

ΦZ2 (s)
∣∣
s=−α2/4N0

=
∫∞

0

(LSR + 1)1−LSR/2xLSR/22

nLSRe(LSR+1)2n2−(LSR+1)x2

× ILSR
[

2(LSR + 1)3/2nx1/2
2

]

×
LRD∏

lRD=0

[
1

1 + (α2/4N0)x2λ(lRD)

]
dx2.

(36)

Under the assumption of high SNR (α2/4N0 � 1), (36)
can be computed as

ΦZ2 (s)
∣∣
s=−α2/4N0

≈
(
α2

4N0

)−(LRD+1)
(LSR + 1)1−LSR/2

nLSRe(LSR+1)2n2

LRD∏

lRD=0

1
λ(lRD)

×
∫∞

0

xLSR/2−LRD−1
2 ILSR

[
2(LSR + 1)3/2nx1/2

2

]

e(LSR+1)x2
dx2.

(37)
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Let ξ�
∫∞

0 xLSR/2−LRD−1
2 e−(LSR+1)x2ILSR[2(LSR+1)3/2nx1/2

2 ]dx2.
After some mathematical manipulations [15], we obtain

ξ = (LSR + 1)LSR/2+LRDnLSRΓ(LSR − LRD)

× 1F̃1

[
LSR − LRD;LSR + 1; (LSR + 1)2n2

]
,

(38)

where 1F̃1(a; b; z) is hypergeometric 1F1-regularized func-
tion and is defined as

1F̃1(a; b; z) � 1F1(a; b; z)
Γ(b)

=
∑∞

k=0

(
((a)k/(b)k)

(
zk/k!
))

Γ(b)
.

(39)

Substituting (38) into (37), we obtain

ΦZ2 (s)
∣∣
s=−α2/4N0

≈ (LSR + 1)LRD+1Γ(LSR − LRD)

e(LSR+1)2n2

× 1F̃1

(
LSR − LRD;LSR + 1; (LSR + 1)2n2

)

×
(
α2

4N0

)−(LRD+1) LRD∏

lRD=0

1
λ(lRD)

.

(40)

Case 3 (LSR = LRD). Considering (22), ΦZ1 (s) can be
calculated as

ΦZ1 (s)
∣∣
s=−α2/4N0

= (LSR + 1)LSR+1

Γ(LSR + 1)e(LSR+1)n2

(
α2

4N0

)−(LSR+1)

×
LSR∏

lSR=0

[
1

λ(lSR)

×
∫∞

0

xLSR1 e−(LSR+1)x1

∏LSR
lSR=0[(x1/(1 + n2)) + 1/(α2/4N0)λ(lSR)]

dx1

⎤
⎦.

(41)

Let t1 = x1/(1 + n2), (41) can be rewritten as

ΦZ1 (s)
∣∣
s=−α2/4N0

= (LSR + 1)LSR+1(1 + n2
)LSR+1

Γ(LSR + 1)e(LSR+1)n2

(
α2

4N0

)−(LSR+1)

×
LSR∏

lSR=0

⎡
⎣ 1
λ(lSR)

∫∞
0

tLSR1 e−(LSR+1)(1+n2)t1
∏LSR

lSR=0[t1 + 1/(α2/4N0)λ(lSR)]
dt1

⎤
⎦.

(42)

Let us define

ζ �
LSR∏

lSR=0

⎡
⎣ 1
λ(lSR)

∫∞
0

tLSR1 e−(LSR+1)(1+n2)t1
∏LSR

lSR=0[t1 +1/(α2/4N0)λ(lSR)]
dt1

⎤
⎦.

(43)

By using some mathematical expansions [15], we can
express ζ as

ζ =
LSR∑

lSR=0

⎡
⎣
(
α2

4N0

)LSR
plSR

λ(lSR)

∫∞
0

tLSR1 e−(LSR+1)(1+n2)t1

t1+ 1/(α2/4N0)λ(lSR)
dt1

⎤
⎦,

(44)

where plSR � ∏LSR
l=0,l /= lSRλ(lSR)/[λ(lSR) − λ(l)]. Calculating the

integral in (44), the value of ζ is evaluated as [15]

ζ =
LSR∑

lSR=0

plSR
[λ(lSR)]LSR+1 e

(LSR+1)(n2+1)/(α2/4N0)λ(lSR)

× Γ(LSR + 1)Γ

[
−LSR,

(LSR + 1)
(
n2 + 1

)

(α2/4N0)λ(lSR)

]
,

(45)

where the incomplete Gamma function is defined by
Γ[α, x] �

∫∞
x tα−1e−tdt.

Substituting ζ into (42), we have

ΦZ1 (s)
∣∣
s=−α2/4N0

=
[

(LSR + 1)(1 + n2)
en2

]LSR+1(
α2

4N0

)−(LSR+1)

×
LSR∑

lSR=0

[
plSR

[λ(lSR)]LSR+1 e
(LSR+1)(n2+1)/(α2/4N0)λ(lSR)

×Γ
[
−LSR,

(LSR + 1)
(
n2 + 1

)

(α2/4N0)λ(lSR)

]]
.

(46)

Generalizing the three above cases with (31), (40) and
(46), we can conclude that the diversity gain of our proposed
DSTBC is min(LSR1 ,LR1D) + min(LSR2 ,LR2D) + 2 by extracting
the exponential terms of α2/4N0. Although the Rician fading
parameter n does not produce any diversity gain, it acts as a
coding gain, and thus can improve the PEP.

We provide here one example of PEP calculation for the
case LR1D > LSR1 and LR2D > LSR2 . Suppose that ESR2 /N0 =
ER1D/N0 = ER2D/N0 � 1 and ESR1 /N0 > ESR2 /N0, the
normalization factor in (9) can then be approximated as
α2

1 ≈ α2
2 ≈ ESR2 . From the result in (31), the PEP is upper

bounded by

PEP ≤ (1 + n2)LSR1 +LSR2 +2
e−(LSR1 +LSR2 +2)n2

× (LR1D + 1
)LSR1 +1(

LR2D + 1
)LSR2 +1

× Γ
(
LR1D − LSR1

)

Γ
(
LR1D + 1

) Γ
(
LR2D − LSR2

)

Γ
(
LR2D + 1

)
(
ESR2

4N0

)−(LSR1 +LSR2 +2)

×
LSR1∏

lSR1=0

1
λ
(
lSR1

)
LSR2∏

lSR2=0

1
λ
(
lSR2

) .

(47)

We observe that the diversity order of this case is
LSR1 + LSR2 + 2 = min(LSR1 ,LR1D) + min(LSR2 ,LR2D) + 2.
Additionally, PEP reduces to zero when the Rician parameter
n goes to infinity. That explains the positive effect of LOS
component on the quality of received signals.
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Figure 2: BER performance of DSTBC with FD-LE for various
combinations of channel memory orders.

4. Numerical Results

As aforementioned, the PEP analysis is carried out based on
(11). Moreover, the derivation of the PEP is accomplished
under the assumption of an ML detection scheme at the
receiver. However, such an ML scheme for the system model
in our paper requires high complexity. Instead, we use MMSE
frequency-domain linear equalizer to verify the analytical
results. Since MMSE receiver is a suboptimal solution to the
data detection problem, there is always a gap between the
performance of ML and MMSE schemes. Note that the slopes
of the performance curve of ML and MMSE receivers are
similar at high SNR [16]. Consequently, the diversity gain
can also be verified based on the performance of MMSE
receiver.

In this section, we evaluate the BER performance of the
proposed DSTBC via Monte Carlo simulation to justify the
analysis of the achievable diversity gain. By observing the
slope of these BER curves, we can confirm the validity of
analysis since BER is proportional to PEP [16]. Each data
block consists of 64 symbols including the zero sequence
and information-carrying data which is modulated by QPSK
with Gray mapping. We assume that the receiver has perfect
channel state information.

Figure 2 shows the BER performances of the proposed
DSTBC for various combinations of channel lengths using
frequency domain linear equalizer (FD-LE), such as MMSE
receiver. The fading S → R and R → D are assumed to be
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Figure 3: BER performance of DSTBC with different values of n-
factor over Rician fading channels.

Rayleigh fading. We assume that the value of ESR1 /N0 is fixed
at 25 dB, ER1D = ER2D = 10 dB, and plot the BER curves as
a function of ESR2 /N0. Let us show the comparison of three
cases.

Case 1. LSR1 = LSR2 = LR1D = LR2D = 1 (black curve
and square marker); the diversity order is calculated by
min(LSR1 ,LR1D) + min(LSR2 ,LR2D) + 2 = LSR1 + LSR2 + 2 = 4.

Case 2. LSR1 = 1, LSR2 = 2, LR1D = 1, LR2D = 2 (red curve
and round marker); the diversity order is LSR1 + LSR2 + 2 = 5.

Case 3. LSR1 = 1, LSR2 = LR1D = LR2D = 2 (green curve and
upper-triangular marker); the diversity order is LSR1 + LSR2 +
2 = 5.

The simulation results indicate that the slopes of the
curves for Case 2 and Case 3 are steeper than that for Case 1
since Case 1 achieves smaller diversity gain. We can also
see that the curves for Case 2 and Case 3 have the same
slope, which can also be shown using the diversity order
expressions we derived. These facts confirm our conclusion
of the achievable diversity gain in the analysis. Another
observation is for the same value of LSR1 = min(LSR1 ,LR1D) =
1 and LSR2 = min(LSR2 ,LR2D) = 2 (e.g., red curve and green
curve), the better performance is achieved as the number of
paths from the relays to destination increases. However the
slopes of these BER curves are identical at high SNR since
they have the same diversity gain of LSR1 + LSR2 + 2 = 5.

The performance of DSTBC over wireless fading chan-
nels where the fading S → R and R → D are characterized
by Rician and Rayleigh distributions, respectively, is drawn in
Figure 3 with different values of n-factor and the assumption
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Figure 4: BER performance of DSTBC with different values of
channel memory orders and n-factor over Rician fading channels.

of channel memory order of LSR1 = 4,LSR2 = 6,LR1D =
4,LR2D = 6. We remark that the better performance is
achieved as the n-factor of Rician fading increases. However,
the slopes of the performance curve are almost the same at
high SNR, that is, they achieve the same diversity gain. This is
because the term n only produces the coding gain to the PEP
as we can see in the analysis. This confirms our conclusion
about the achievable diversity gain from the PEP analysis
mentioned in the previous section.

The performances of two cases n = 0 and n = 5 for
various combinations of channel memory orders are shown
in Figure 4 to study the effects of LOS component and
channel memory orders on the BER. For each value of n,
the BER curves corresponding to different channel memory
orders are plotted to show the variations of slope due to
different achievable diversity gains. We observe that the BER
curves are shifted down if we increase n. That reflects the
effect of LOS component on the coding gain through all
range of SNR from low to high SNR. Meanwhile, the channel
memory orders only have noticeable effects on the BER
curves at high SNR caused by the change of diversity gain.

5. Conclusion

A DSTBC scheme for two-hop cooperative systems over
frequency-selective fading channels has been proposed. The
proposed DSTBC can achieve half-data rate transmission,
spatial diversity order of min(LSR1 ,LR1D)+min(LSR2 ,LR2D)+2.

Furthermore, the data detection of the proposed DSTBC
can be decoupled in frequency domain for a low-complexity
receiver. The main idea in our design is that each relay con-
veys a distinct column of the conventional STBC developed
for colocated antennas. We prove that the data rate of the
proposed DSTBC is higher than that of repetition code which
has the maximum data rate of 1/3 for a two-relay system. The
design of DSTBC in our paper is inspired by the idea of linear
dispersion codes where each column of the code matrix is
a linear summation of transmit data and their conjugations
[17]. In this paper, we analyze the PEP with a mixed Rayleigh
and Rician frequency-selective fading channel model. The
analysis shows that the LOS component effectively improves
the error rate performance at the destination. Simulation
results over different channel parameters and different n-
factors were provided to verify the theoretical analysis.
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