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Abstract

This article considers a production lot sizing and scheduling problem with sequence-
dependent setup times that are not triangular. Consider, for example, a product p that
contaminates some other product r unless either a decontamination occurs as part of
a substantial setup time stpr or there is a third product q that can absorb p’s contam-
ination. When setup times are triangular then stpr ≤ stpq + stqr and there is always
an optimal lot sequence with at most one lot (AM1L) per product per period. How-
ever, product q’s ability to absorb p’s contamination presents a shortcut opportunity
and could result in shorter non-triangular setup times such that stpr > stpq + stqr. This
implies that it can sometimes be optimal for a shortcut product such as q to be pro-
duced in more than one lot within the same period, breaking the AM1L assumption
in much research. This article formulates and explains a new optimal model that not
only permits multiple lots (ML) per product per period, but also prohibits subtours
using a polynomial number of constraints rather than an exponential number. Com-
putational tests demonstrate the effectiveness of the ML model, even in the presence of
just one decontaminating shortcut product, and its fast speed of solution compared to
the equivalent AM1L model.

Key Words: Lot sizing and scheduling, Sequence-dependent setup times, Non-triangular
setup times.
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1 Introduction

Some manufacturing systems have to meet a regular but varying demand for products.
When manufacturing capacity is limited, such demand cannot be met instantaneously from
production, but from inventory accumulated previously. Lot-sizing decisions then need to
be made about how much of each product to produce in each demand period and how
much inventory to accumulate in order to meet demand while keeping within production
capacity.

If a setup cost or time is charged to change from one product to another, then a se-
quence or schedule of lots also needs to be decided. Many setups are sequence-dependent,
that is, the size of the setup charge depends on the product processed immediately be-
forehand. For example, it often takes less time to setup to a similarly-coloured product
than to one with a very different colour. Furthermore, such setup times are sometime
asymmetric, for example, it may take more time to setup from a dark coloured prod-
uct to a light one than vice-versa. Such distinctions matter because decisions involving
sequence-dependent setup times are generally more complex computationally than ones
with sequence-independent times.

Many manufacturers separate lot sizing decisions from lot sequencing in order to sim-
plify the complexity of the decision-making. Often sequences are decided first and then
lot sizes are determined taking into account forecasts of demand. However, this can result
in production being less effective and more costly than it needs to be. If a product has
relatively low demand then producing it frequently is probably not making efficient use of
production capacity. It may be more cost effective to produce infrequent lots, economise on
setup times and hold some of the product in inventory over several demand periods. But
deciding exactly which products should be produced infrequently and in which periods is
essentially a lot sizing decision that should be made before or with the sequencing decision.
In other words, lot sizing and sequencing decisions are ideally made jointly and simulta-
neously rather than separately in order to competitively satisfy the demand for products
within available production capacity.

This paper formulates and tests a new model for lot sizing and sequencing with asym-
metric sequence-dependent setup times, and in particular for non-triangular ones. After
a literature review in section 2, the model is developed in section 4 using a polynomial
number of multi-commodity-flow-type constraints adapted from Claus (1984), and then
computationally tested in section 5. The paper concludes in section 6 with a discussion of
the model’s value and flags remaining challenges and opportunities for future research.

2 Lot Sizing and Sequencing

Research into production lot sizing and scheduling has progressed substantially over the
last decades, as shown in the reviews by Drexl and Kimms (1997) and Karimi et al. (2003),
recent research (Kovács et al.; 2009), and a special issue (Clark et al.; 2011). In July 2010
at the 24th European Conference on Operational Research (EURO) in Lisbon, a stream on lot
sizing and scheduling was organized for the first time in the history of this conference,
containing seven sessions with more than 25 presentations.

In particular, much progress has been made in the area of lot sequencing when setup
times are sequence-dependent (Meyr; 2000, 2002; Clark and Clark; 2000; Araújo et al.; 2007).
The General Lot-sizing and Scheduling Problem (GLSP), developed by Fleischmann and
Meyr (1997), minimizes inventory and sequence-dependent setup costs on a single ma-
chine with finite capacity, allowing multiple setups in each single ’large-bucket’ time pe-
riod. The GLSP was extended by Meyr (2000) to consider sequence-dependent setup times
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(GLSP-ST). Toso et al. (2009) reformulated the GLSP-ST model to permit backlogging and
non-triangular setup times, but still assumed at most one lot per product in each period.

Clark et al. (2010) pursued an alternative approach via the Asymmetric Travelling
Salesman Problem (ATSP) which has been very extensively researched (Lawler et al.; 1985;
Carpaneto et al.; 1995). The adaptation of the ATSP to modelling lot-sizing and scheduling
with sequence-dependent setups is not direct, since the production system is often already
setup for a particular product (that is starting at a given city) and some products might
not be produced in a given period if the demand is sufficiently small or the capacity tight
(Clark et al.; 2010).

A method that has been found to be successful in practice for optimally solving the
ATSP is to quickly solve the corresponding Assignment Problem (AP) as a linear pro-
gramme, identify the resulting subtours, and then resolve the AP, explicitly prohibiting
these subtours using a potentially exponential number of Dantzig-Fulkerson-Johnson-type
constraints adapted from Dantzig et al. (1954). The method carries on iteratively in this
manner until no subtours result. It can be used heuristically (and its convergence rate
sometimes accelerated) by patching the subtours into a single tour at each iteration (Karp;
1979), thus providing a feasible solution (and an upper bound). Clark et al. (2010) adapted
the ATSP subtour elimination method to lot sequencing over multiple periods with setup
carryover between periods. An extension of the method then used a patching heuristic to
accelerate the time to converge to a provably optimal solution.

3 Non-triangular setup times

In certain industries, such as animal feed supplements, some products can contaminate
other products. For instance, copper is essential for pigs but kills sheep even in tiny doses.
Contamination is a particular concern for the feed industry, although the problem is gen-
eral and similar concerns also exist in a diverse range of other industries, such as food &
beverages, and the oil industry. In the feed industry, blending equipment must be cleaned
in order to avoid contamination, resulting in substantial setups that consume scarce pro-
duction time. Fortunately, the amount of cleaning can be minimised by the effective se-
quencing of production lots.

Certain intermediate “cleansing” or shortcut products can cause non-triangular setup
times. These products clean the machines whilst being processed (for example, certain
wheat mixtures) and hence reduce overall setup times. In other words, contamination
cleaning can occur during value-adding production time as well as during non-productive
setup time.

More precisely, “triangular” sequence-dependent setup times st occur when it is never
worse to set up from product p to r directly than to setup via a third product q, so that the
triangular inequality of setup times: st(p,r)≤ st(p,q) + st(q,r) always holds. However, in the
animal feed and other industries, the contamination of a product r by a previous product
p just beforehand can be often avoided by producing enough of an intermediate product q
so that it absorbs p’s contamination. For this to save time, the triangular inequality must
not hold in this case, that is, the sum of the setup times st(p,q) from p and st(q,r) to r must
be short enough so that st(p,q) + st(q,r) < st(p,r). Figure 1 shows an example of these
two possibilities. The nodes represent products and the arcs indicate possible production
sequences. The continuous arcs on the left side of Figure 1 indicate that in the case of
triangular setups it is better to change over from product p directly to product q. The right
hand side shows that, in the presence of non-triangular setups, it might be better to set up
from p to q and then from q to r. In the latter case, product q is considered to be a shortcut
product.
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qp r

Figure 1: Triangular and Non-Triangular Setups

q q q

Figure 2: A Sequence of Non-Triangular Setups via a Shortcut Product q

Existing mathematical models can be used when setup times are triangular, for exam-
ple, Meyr (2000) and Clark et al. (2010). Both these papers allow the production of at most
one lot per product per period. However, when setup times are non-triangular then it can
be optimal in certain circumstances for an intermediate shortcut product q to be produced
in more than one lot within the same time-period, as shown in Figure 2. Thus the assump-
tion of existing models (Meyr; 2000; Clark et al.; 2010) of at most one lot per product per
period would not hold in such a situation. The breaking of this assumption is the key
feature of the model developed below in section 4.

The GLSP models of Fleischmann and Meyr (1997) and Meyr (2000) allow non-triangular
setups, as in Toso et al. (2009), but the ATSP-based model of Clark et al. (2010) assumes one
lot per product per periods and so cannot allow multiple lots of shortcut products per
period, as required to take advantage of non-triangular setup times. A sequence with mul-
tiple lots per period for some products could look like that illustrated in Figure 3. Subtours
connected to the main sequence S by shortcut products are possible (for example, subtours
B and C in Figure 3).

Thus an appropriate formulation must allow connected subtours but exclude discon-
nected subtours (for example, subtours A and D in Figure 3). Menezes et al. (2011) devel-
oped such a formulation using an iterative model and method based on a potentially ex-
ponential number of subtour elimination constraints. In the next section, a model is devel-
oped that uses a polynomial number of multi-commodity-flow-type constraints adapted
from Claus (1984) to exclude disconnected subtours while allowing ones connected to the
main sequence.

4 Modelling non-triangular setups with multiple lots per product

per period

This section now develops a new model, denoted ML (multiple lots), for lot sizing and
sequencing with asymmetric non-triangular sequence-dependent setup times. It can be
viewed as a relative of the Travelling Salesman Problem with Multiple visits (TSPM) where
each node is visited at least once (Punnen; 2002).
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Figure 3: A main sequence (S) and different types of subtours (A,B,C,D)

Model ML considers a production process in which a set of products are to be pro-
duced over a finite planning horizon that is divided into several discrete periods. Product
demands are known in advance and specified for each period. Machine capacities are
taken into account in every period, as well as machine setup times which are sequence
dependent, asymmetric and can be non-triangular. To prevent model infeasibility due to
insufficient machine capacity, backlogs are allowed but penalized. Production of a short-
cut product is allowed, even when there is no demand for it, if the objective function value
is decreased by doing so. Minimum lot sizes are independent of whether the product is
a shortcut or not, and are modelled by assuming that there is at least one setup in each
period, as explained in section 4.5.

Production lots can cross over periods, i.e., begin in one period and finish in the next.
This means that the setup state is carried over between periods. However, a product setup
operation is not allowed to overlap periods, i.e., a setup begun in a given period cannot
end in a subsequent period. Overcoming this limitation requires more complex modelling
which will be developed in future research.

The ML model is innovative as it uses a polynomial number of constraints for pro-
hibiting disconnected subtours which can be implemented a priori rather than iteratively
as in Clark et al. (2010) and Menezes et al. (2011). The following indices will be used in the
model description:

p, q, r Product, ∈ {1, ...,P} where P = the number of products

t Time period, ∈ {1, ...,T} where T = the number of periods (for example, days or
weeks) in the planning horizon.

4.1 Input data

The input data required by the model are:

Capt Available capacity time in each period t.

up Time needed to produce one batch of each product p.

mlp Minimum lot size of product p.
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hp Inventory holding cost per period for product p.

gp Backlog cost per period for product p.

cot Unit cost of machine time in period t.

stpq Asymmetric setup time needed to changeover from product p to product q.

dpt Forecast of demand for product p at the end of period t.

I+p0 Inventory of product p at the start of the planning horizon.

I−p0 Backlog of product p at the start of the planning horizon.

pα1 The product already setup when period 1 starts, that is, the initial setup state.

4.2 Output decisions

The decisions output by the model are represented by the following variables:

I+pt Inventory of product p at the end of period t, non-negative.

I−pt Backlogs of product p at the end of period t, non-negative.

xpt Total size of all the lots of product p in period t, non-negative.

slackt Number of hours of slack capacity in period t, non-negative.

ypqt Number of times that production is to be changed over from product p to product q
in period t, integer non-negative, p 6= q. For example, in Figure 3, y12t = 1, and y23t
= 2.

zpt Number of times that product p is in a setup state in period t, integer non-negative.
For example, in Figure 3, z1t = 1, and z2t = 3.

pαt The product already setup when period t starts, that is, the crossover product. It is
integer non-negative. Thus the model allows the setup state at the start of a period
to be carried over from the previous period. Recall that pα1 is known, that is, it is an
initial condition.

αpt = 1 if p is the product already setup when period t starts (the setup state), = 0
otherwise, that is, it is binary. Note that t ∈ {1, ..., T + 1} and that αpα

t
,t = 1. For

example, in Figure 3, α1t = 1, α2t = 0, and α6,t+1 = 1.

Note that the variables pαt and αpt hold identical information. We shall use αpt in the model
formulation, but to allow a clear explanation we will make some use of pαt in the text when
referring to crossover products.

4.3 Objective Function

The objective function (1) minimizes the costs of inventory and heavily penalises backlogs.
It also prevents unnecessary capacity-eating setups by maximizing slack capacity (if back-
logs and inventory are readily zeroed by an excess of capacity). The last term [0.01

∑

p,t zpt]
is simply a mathematical device to eliminate any excessive zero-time setups. The value of
the coefficient 0.01 may need adjusting depending on the values of the other terms in (1).

Minimise
∑

p,t

(

hp I+pt + gp I−pt
)

−
∑

t

cot slackt + 0.01
∑

p,t

zpt (1)
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4.4 Main lot size and setup constraints

Constraints (2) balance inventory, backlogs, production and demand over consecutive pe-
riods:

I+p,t−1
− I−p,t−1

+ xpt − dpt = I+pt − I−pt ∀ p, t (2)

The capacity constraints (3) take into account setup and production times, and calculate
any capacity slack:

∑

p

up xpt +
∑

p,q

stpq ypqt + slackt = Capt ∀ t (3)

Constraints (4) ensure that a product can be produced in a period only if the machine is
setup for it at some time in period t:

xpt ≤ Mp zpt ∀ p, t (4)

The coefficient Mp of zpt in (4) is an upper bound on the value of xpt, calculated as:

Mp = min

{

Capt

up
,

T
∑

τ=1

dpτ − I+p0 + I−p0

}

In words, Mp is the minimum of (a) the amount of product p that can be produced if period
t were entirely dedicated to its production, and (b) the effective demand for product p

over all periods t = 1, ..., T (given that backlogs of demand may have to be produced as
well as current and future demand). The overproduction implicit in the definition of Mp

is theoretically allowed, but unlikely to happen. Other externally-imposed limits on the
value of xpt can be incorporated into the definition of Mp in order to bring down its value
so as to better fulfill its role as an upper bound on xpt to enforce the “Big-M” constraints
(4).

Constraints (5) prohibit setups between the same product:

yppt = 0 ∀ p, t (5)

Constraints (6) ensure that there is exactly one product in a setup state at the beginning of
each period:

∑

p

αpt = 1 for t = 2, ..., T + 1 (6)

4.5 Imposing a minimum lot size

In some contexts, it may be necessary to impose a minimum lot size. In the presence of a
cleansing product q, this is mandatory in order to force the proper cleaning of a previous
product p’s contaminants, that is, to avoid a setup from p to r via zero production of q

rather than directly. Moreover, in some situations, the minimum lot size may be sequence
dependent. For simplicity, this article only considers the case where the minimum lot size
is not sequence dependent.

Two extra decision variables are now defined:

xFpt The minimum quantity to be produced in the first lot of product p in period t if it
was setup in period t-1 (that is, p is a crossover product from period t-1 to period
t), but otherwise 0 as imposed by constraints (7):

xFpt ≤ Mp αpt ∀ p, t (7)
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xLpt The minimum quantity to be produced in the last lot of product p in period t if its
production continues into period t+1 (that is, p is a crossover product from period
t to period t+1), but otherwise 0 as imposed by constraints (8):

xLpt ≤ Mp αp,t+1 ∀ p, t (8)

Constraints (10) and (11) below impose a minimum lot size on the condition that at least
one product is setup in every period:

∑

p,q:p 6=q

ypqt ≥ 1 ∀ t (9)

Constraints (9) are likely to exclude optimal solutions when time periods are short in
length, and demand for specific products is infrequent but large when it occurs. The for-
mulation of minimum lot-size constraints that do not require constraints (9) is a topic for
future research.

When a setup state p is neither inherited from the previous period t-1 nor passed on
to the next period t+1, then total production xpt is composed entirely of non-crossover lots,
αpt = αp,t+1 = 0 and so xLpt + xFp,t+1 = 0 by constraints (7) and (8). In this case, constraints
(10):

xpt − xFpt − xLpt ≥ mlp (zpt − αpt − αp,t+1) ∀ p, t (10)

become xpt ≥ mlpzpt so that the total xpt of the lot sizes can be split into zpt separate lots,
each of which is at least mlp units in size.

However, if a setup state p is either inherited from the previous period t-1 or passed
on to the next period t+1 (or both), then at least some (if not all) of xpt is composed of a
crossover lot. In this case , either αpt + αp,t+1 = 1 and zpt ≥ 1, or αpt + αp,t+1 = 2 and
zpt ≥ 2. Thus zpt − αpt − αp,t+1 ≥ 0 so that constraints (10) impose xpt − xFpt − xLpt ≥ 0,

that is, xpt ≥ xFpt + xLpt. Constraints (10) also then impose that the (zpt −αpt −αp,t+1) lots of
p produced entirely within period t should be of total size at least zptmlp , again splittable
into zpt separate lots, each of which is at least mlp units in size.

Constraints (11) impose a minimum size on any crossover lot:

xLpt + xFp,t+1 ≥ mlp αp,t+1 ∀ p and t = 0, ..., T (11)

where xLp0 is known, being the amount already produced in the current lot for p = pα1 , the
initial setup state.

Note that, if constraints (9) were not imposed, then a crossover lot that was started in
period t-1 could possibly continue into t+1 and later periods. In this case, constraints (11)
would become xLpt + xFp,t+1 ≥ mlp which is too large a lower bound for this part of the lot,
given that the lot itself began earlier in period t-1.

4.6 Lot Sequencing Constraints

We have left until last the consideration of the ATSP-related constraints for sequencing
product lots. Constraints (12) and (13) are flow conservation constraints that relate the
αpt and zpt setup state variables to the ypqt changeover variables, to and from a product
respectively. In Figure 4, the inflow to node p is represented by the setup state variable
of product p in period t (αpt), and the changeover variables to p (

∑

q yqpt). The outflow is
represented by the setup state variable (αpt+1) in period t+1 and the changeover variables
from p (

∑

q ypqt). Note that product p is included in the sequence only if there is a setup for
it in period t (i.e., only if zpt = 1).
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p

Figure 4: Node flow modelled by constraints (12) and (13)

αpt +
∑

q

yqpt = zpt ∀ p, t (12)

∑

q

ypqt + αp,t+1 = zpt ∀ p, t (13)

For example, referring to Figure 3, if p = 1, then the values in constraints (12) and (13) are
1 + 0 = 1 and 1 + 0 = 1 respectively. If p = 2, then the values are 0 + 3 = 3 and 3 + 0 = 3
respectively.

The optimal solution to the model specified by expressions (1) to (13) will consist of a
single sequence starting with product p|{αpt = 1} and ending with r|{αr,t+1 = 1} (possibly
with embedded connected subtours), and maybe one or more disconnected subtours. For
example, in Figure 3, the main sequence is 1 → 2 → 3 → 4 → 5 → 6, with 4 subtours:

A: 7 → 8 → 9 → 7

B: 2 → 10 → 11 → 2 → 3 → 11 → 2

C: 4 → 12 → 4

D: 13 → 14 → 15 → 16 → 17 → 15 → 13

Subtours B and C are connected to the main sequence S and so permitted, but subtours A
and D are disconnected and so must be prohibited. Subtour A or D can be part of a solution
but only if connected to the main sequence S. How can this be modelled?

The paper by Öncan et al. (2009) reviews and analytically compares many ATSP for-
mulations. It highlights the tightness of the multi-commodity-flow (MCF) formulation by
Claus (1984) which is the inspiration for the formulation that prohibits disconnected sub-
tours a priori in the proposed model ML. The main idea of this formulation is to ensure that,
in any period t, there is always a walk from the crossover product pαt to any other product
r in period t’s sequence.

First define additional binary decision variables arpqt as follows:

arpqt = 1 if the arc p → q is on a walk from crossover product pαt to product r within
period t’s sequence of lots

= 0 otherwise

For any product r produced in period t, the variables arpqt’ encode a walk from pαt to r. It
can be called an r-walk. The existence of an r-walk ensures that product r is connected to
the main production sequence, maybe within a connected subtour. Figure 5 shows part of
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Period t-1 Period t

Figure 5: An r-walk from crossover product pαt to product r

a r-walk from the crossover product pαt to product r passing through the arc p → q. In this
case, arpqt = 1.

Constraints must be formulated to enforce an r-walk for all products r produced in
period t. To begin with, the arc p → q must be part of a solution in order for arpqt to have
value 1. Thus values of arpqt must obey constraints (14):

arpqt ≤ ypqt ∀ p, q, r, t (14)

Consider once again the infeasible sequence in Figure 3. Product r=10 in connected-subtour
B is reachable from crossover product pαt =1 by traversing arcs 1 → 2 → 10. This reach-
ability is indicated by the following non-zero values of arpqt that constitute an r-walk:
a101,2,t = a102,10,t = 1. In contrast, product r=9 in disconnected-subtour A in Figure 3 is not
reachable from crossover product pαt =1. No r-walk exists for r=9. This is indicated by the
impossibility of finding values of a9pqt that also obey constraints (15, 16, 18, 17, 19) below.

To prohibit disconnected subtours, further binary decision variables zbinpt are needed:

zbinpt = 1 product p is ever in a setup state in period t

= 0 otherwise

Note that zbinpt = 1 ⇔ zpt ≥ 1 and that zbinpt = 0 ⇔ zpt = 0. For example, in Figure 3, z11,t = 2

so zbin11,t = 1. This is enforced by the following constraints:

zpt ≥ zbinpt ∀ p, t (15)

zpt ≤ ZUBp z
bin
pt ∀ p, t (16)

where ZUBp is a prespecified upper bound (UB) on the value of zpt and must be ≥ 1. ZUBp

is automatically calculated in the computational tests below as the lesser of P (the number
of products) and the size of the ordered set {(p, q)|stpq ≥ stpr + strq}, which can be very
large, but is often 1 for non-shortcut products. More detailed analysis of setup times and
available production capacities might bring down the value of ZUBp.

The three sets of constraints (17-19) explained below will now allow connected sub-
tours, and prohibit disconnected ones a priori.

Firstly, constraints (17) ensure that the r-walk reaches product r (Figure 6) and is im-
posed only when the setup state is configured for r at least once during period t (that is,
only when zbinrt = 1), but not when the setup state is never configured for r during period
t, (that is, when zbinrt = 0):

αrt +
∑

p

arprt = zbinrt ∀ r, t (17)

For example, the r-walk 1 → 2 → 10 in Figure 3 is forced to reach product r=10 by the
following instance of constraints (17):

10



r

Figure 6: The r-walk from pαt must reach product r (if and only if zbinrt = 1)

p

Figure 7: The r-walk from pαt to r may only traverse those products p for which zbinpt = 1

(and if and only if zbinrt = 1 )

r = 10: α10,t +
∑

p a
10
p,10,t = zbin10,t which becomes 0 + 1 = 1

and enforces that a10p,10,t = 1 for a given p.

If a product r is not produced in a period t, then zbinrt = 0, and so constraints (17) force
arprt = 0 ∀ p (constraints (14) also force this via arprt ≤ yprt = 0)

Secondly, the r-walk in period t specified by the variables {arpqt | ∀ p, q} must start at
crossover product pαt and then traverse further products on its way to product r, as shown
in Figure 7. If αr,t = 1 then no r-walk is needed. If αrt = 0, then constraints (17) mean
that

∑

p a
r
prt = 1, i.e., arprt = 1 for exactly one product p that is the 2nd last product on

the r-walk. Constraints (18) then force arqpt = 1 for exactly one product q that is the 3rd
last product on the r-walk, and so on, going backwards along the r-walk, obliging the arpqt
along the r-walk to have value 1, until it reaches back to the initially-setup product p = pαt
(for which αpt = 1).

αpt +
∑

q

arqpt ≥
∑

q

arpqt ∀ r, p 6= r, t (18)

For example, in Figure 3, consider the r-walk 1 → 2 → 10 to product r=10. The following
two instances of constraints (18) oblige the arpqt along this r-walk to have value 1, reaching
back to an initially-setup product pαt = 1 (for which α1t is thus forced to have value 1):

p = 2: α2t +
∑

q a
10
q2t ≥

∑

q a
10
2qt becomes 0 +

∑

q a
10
q2t ≥ 1,

resulting in
∑

q a
10
q2t = 1.

p = 1: α1t +
∑

q a
10
q1t ≥

∑

q a
10
1qt becomes α1t + 0 ≥ 1,

resulting in α1t = 1.

Thirdly and finally, constraints (19) require that the r-walk from pαt stops at product r (Fig-
ure 8) and need go no further:

arrqt = 0 ∀ q, r, t (19)

For example, the r-walk 1 → 2 → 10 in Figure 3 stops at product r=10 as enforced by the
following instance of constraints (19):
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r

Figure 8: The r-walk from pαt must stop at product r (if and only if zbinrt = 1)

r = 10: a1010,q,t = 0 ∀ q, t

If r is not produced in period t, then constraints (19) simply force arrqt = 0 ∀ p, q, which has
no impact given that constraints (17) already oblige arpqt = 0 ∀ p, q.

Thus constraints (17, 18, 19) exclude disconnected subtours. For example, in Figure
3, there are no instances of constraints (17) - (19) that would show that product r=9 in
disconnected-subtour A is reachable by an r-walk from crossover product pαt . This is also
true for all the other disconnected products. Thus the setup sequence in Figure 3 is infeasi-
ble and will be correctly excluded by our formulation.

4.7 Concluding the model formulation

Lastly, note that constraints (4) are valid but loose: the value of zpt need only be 1, and not
≥ 2. Constraints (4) can thus be tightened by replacing zpt by zbinpt :

xpt ≤ Mp z
bin
pt ∀ p, t (20)

Thus our model, denoted ML, for lot sizing and sequencing with non-triangular setup
times and setup-state carryover between periods is specified by expressions (1-3, 5-20),
and restated completely in the Appendix.

Expressed as function of the number of products P and periods T, model ML has P 2T+
7PT + T variables and P 3T +2P 2T +11PT +3T constraints, as calculated in Table 1. The
ML formulation is thus polynomial-sized. This does not means that the model is solvable
in polynomial time - it cannot be, given that the NP-hard ATSP is embedded within it.
Rather, the innovation in this paper has been (a) the modelling of non-triangular sequence-
dependent setup times within a lot sizing model and (b) the derivation of a polynomial-
sized MILP formulation for this problem.

Note that model ML is valid irrespective of whether there are non-triangular setup
times or not. However, when setup times are triangular then there exists an optimal so-
lution with zero or one lots per product per period (Clark and Clark; 2000). In this case,
the formulation can then be simplified to a model that assumes At Most One Lot per prod-
uct per period (denoted AM1L) by merging zpt and zbinpt to be a binary variable zpt. Thus
constraints (15) and (16) disappear.

Model AM1L is also valid irrespective of whether the setup times are triangular or not,
but in the latter case, AM1L’s solution could be suboptimal given its limitation of zero or
one lots per product per period. In the presence of triangular setup times, multiple lots per
product per period could occur but this is not required for optimality and so in general it is
avoided in models for triangular setup times. The computational tests in section 5 explore
the impact of this limitation.
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Variables How many Variables How many Variables How many

I+pt PT I−pt PT slackt T

xpt PT xF
pt PT xL

pt PT

ypqt P 2T zFpt PT αpt PT

Total number of variables = P 2T + 7PT + T

Constraints How many Constraints How many Constraints How many

(2) PT (3) T (20) PT

(5) PT (6) T (7) PT

(8) PT (11) PT (10) PT

(9) T (12) PT (13) PT

(14) P 3T (15) PT (16) PT

(18) P (P − 1)T (17) PT (19) P 2T

Total number of constraints = P 3T + 2P 2T + 11PT + 3T

Table 1: Number of variables and constraints in model ML

5 Computational Tests

Many models in the literature assume that there will be at most one lot per product per
period. What are the pros and cons of this assumption? On the one hand, the model will
be smaller with fewer variables and constraints, so we might expect faster solution times
(although the tests below will show this is not so). On the other hand, the solutions with
multiple lots per product per period will be excluded, so we will expect worse solutions in
some cases. The computational tests in this section investigate this supposed trade-off and
show that often it may not exist.

The aim of the tests was to assess how effectively the ML model took advantage of
shortcut products to reduce the total time spent on setups, compared to the equivalent
AM1L model. The tests also evaluated the consequences of less setup time on reducing
demand backlogs (in the case of tight production capacity) or increasing the spare capac-
ity (in the case of loose capacity), as well as the computing time of both models. The
ML and AM1L models were both implemented in the AMPL modelling language (Fourer
et al.; 2003) and solved using the Gurobi optimizer v4.5.0 (64-bit) (Gurobi Optimization
Inc.; 2011) under Windows 7 on an Intel Core i5 CPU M460 at 2.53 GHz with 4Gb of RAM.
The Gurobi optimizer was allowed to run for a maximum of 1 hour of running time, at
which point the incumbent solution (i.e., the best found up to then) was used.

To obtain initial insights, the performance of both models was first compared on a
system with P = 10 products whose lot sizes and sequences were to be scheduled over a
horizon of T = 4 demand periods. The following data were used Ip0 = 0.0, Capt = 100.0, up
= 0.4, mlp = 1.0, hp = 10.0, cot = 1.0, ∀ p, t; and pα1 = product P1 (arbitrarily) for all instances.
The setup times were initially set to be stpq = (q − p) if q > p otherwise (10 + q − p)
where p, q ∈ {1...10}, so that product P2 would normally be setup immediately after P1.
However, P5 was then made an extreme shortcut product with zero setup times: st5q =
stp5 = 0. The periodic demand forecasts dpt varied over product p and period t to provoke
non-uniform lot-sizes and avoid lot-for-lot production. They were then randomly varied
by ±50% within the 25 runs of each statistical experiment.

To simulate loose capacity the overall demand was adjusted so that setup times could
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take up to 15% of capacity, that is 15 time units per period. Tight capacity was simulated
by increasing each demand dpt by 20% so that setups were left with no capacity in which
to occur, provoking backorders of demand.

Thus a total of 50 problem instances were generated with loose capacity. (25 with P =
10 and 25 with P = 20). Increasing each demand value by 20% then provided another 50
instances with tight capacity.

Table 2 compares the performance of both models on 6 key criteria calculated over the
planning horizon:

1. Total number of setups =
∑

p,t zpt

2. Total time spent on setups =
∑

p,q stpq ypqt

3. Amount of unused (slack) capacity =
∑

t slackt

4. Inventory =
∑

p,t I
+
pt

5. Backlogs =
∑

p,t I
−
pt

6. CPU time = the sum of the time spend by the Gurobi optimizer and the AMPL mod-
elling system (the latter is a few seconds at most).

For each criterion, the difference between the mean values for the two models were statisti-
cally tested using a balanced analysis of variance test. A similar test was carried out for the
difference between the median values using the non-parametric Friedman test (Corder and
Foreman; 2009) which is less likely to mistakenly indicate significance caused by outliers.
Both tests used the data instance (that is the run) as a random blocking factor. The null
hypothesis in both tests is that the difference between the model means/medians is zero.

Examining the results in Table 2, first note the highly significant increase in numbers of
setups and slack capacity, and decrease in total setup time and backlogs, for the ML model
compared to those for the AM1L model, particularly when capacity is tight.

For P = 10 products, model ML uses the shortcut product P5 to economise on setups
times, albeit with a larger number of actual setups, most of which (but not all) take zero
time making good use of P5. Table 2 shows that this is particulary pronounced under tight
capacity where model ML reduces the total setup time by 85%, thus keeping backlogs to a
minimum. This reduction in backlogs illustrates well the economic added value of model
ML over model AM1L.

Note the fast solution times for P = 10 products using the default settings of the Gurobi
4.5.0 solver. All instances of both models were solved within the maximum of 1 hour of
running time

Table 2 also shows the results with twice as many products (P = 20), two extreme
shortcut products (P5 and P15), double the capacity per period, but T=4 still. The demand
and setup times for products P11 to P20 simply replicate those for P1 to P10. Again P5
and P15 were used for nearly all setups, but not always as sometimes a direct but short
setup from, for example, P4 to P3 was more efficient as it avoided P5 and P15’s minimum
lot sizes.

Note the predictably much longer solution times for 20 products compared to those
for 10 products. When capacity was loose, 16 of the 25 instances of the AM1L model with
20 products used the full one hour allowance of computing time (with a median optimality
gap of 1.3% for these 16). This fell to 6 of the 25 instances for the ML model (with a median
gap of 1.4% for these 6). When capacity was tight, 9 of the 25 instances of the AM1L model
used the whole hour (with a median gap of 0.9% for these 9), while none did for the ML
model.
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Mean Median

P Capacity Meas. of Perf. AM1L ML p AM1L ML p

10 Loose

No. of Setups 33.0 43.1 0.000 33.0 43.0 0.000
Setup Time 22.4 11.7 0.000 23.0 12.0 0.000

Slack Capacity 49.2 60.0 0.000 49.8 60.8 0.000

Inventory 131.1 118.1 0.000 121.5 109.0 0.000

Backlogs 0.00 0.00 na 0.00 0.00 na
CPU time 13.44 7.20 0.020 10.0 6.0 0.001

P Capacity Meas. of Perf. AM1L ML p AM1L ML p

10 Tight

No. of Setups 27.1 39.0 0.000 27.5 39.5 0.000

Setup Time 16.0 2.6 0.000 16.0 2.0 0.000

Slack Capacity 2.94 7.96 0.000 0.00 2.80 0.002

Inventory 268.5 302.3 0.001 264.2 307.2 0.162
Backlogs 36.8 15.8 0.000 25.0 0.0 0.000

CPU time 8.48 21.24 0.064 7.5 6.5 0.683

P Capacity Meas. of Perf. AM1L ML p AM1L ML p

20 Loose

No. of Setups 66.2 84.5 0.000 64.50 83.50 0.000

Setup Time 17.56 2.04 0.000 17.5 1.5 0.000

Slack Capacity 123.5 139.0 0.000 121.9 137.9 0.000
Inventory 239.6 225.2 0.000 233.5 218.5 0.000

Backlogs 0.00 0.00 na 0.00 0.00 na
CPU time 3,189 1318 0.000 3,055 847 0.002

P Capacity Meas. of Perf. AM1L ML p AM1L ML p

20 Tight

No. of Setups 51.5 65.0 0.000 50.0 63.0 0.000

Setup Time 10.5 0 0.000 10.00 0 0.000

Slack Capacity 9.06 14.34 0.000 0 4.00 0.005

Inventory 631.4 655.0 0.004 672.5 702.0 0.317
Backlogs 33.66 20.64 0.000 15.0 0 0.000

CPU time 2,802 187.8 0.000 2,771 136.0 0.000

Table 2: Comparison of models AM1L and ML

For both 10 and 20 products, observe that model ML solves significantly faster than
AM1L, except under tight capacity for 10 products where there is not a statistically signif-
icant difference. The faster solution times of ML seem counter-intuitive given that it has
more binary and integer variables than AM1L and so might be assumed to be more combi-
natorial complex. However, model ML does permit the obvious optimal solution in which
P5 and P15 are used for nearly all setups, and so may home in more rapidly to an optimal
solution than AM1L. This hypothesis needs further computational testing with other data
sets.

6 Conclusions and Future Research

The theoretical contribution in this article has been the development of a new model for
lot sizing and sequencing with a polynomial number of constraints that can handle the
multiple lots per product per period that arise in the presence of non-triangular sequence-
dependent setup times. It is a practical advantage that the model can be solved by commercially-
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available MIP software, so that a user can readily implement the model without relying on
specialist algorithms. It could still be worthwhile to develop a specialist algorithm that
would accelerate the solution of the model, but this is left as a topic for future research.

The computational tests validated and confirmed that the multiple-lots feature of the
model enables more efficient production than when the formulation is restricted to single
lots per product per period. The model can also be faster to solve than in the latter case,
despite being more complex computationally, maybe because for some problem instances
(such as our tests above) there is an outstanding optimal ML solution that is quickly iden-
tified whereas an optimal AM1L solution may not be so clearly superior and hence more
difficult to find.

Of the 50 ML instances with 20 products, 6 (all under Loose capacity) did not iden-
tify a provably-optimal solution within the allowed 1 hour of running time, indicating the
need for future research to develop efficient solution methods for ML, possibly via exact
methods such as (1) Lagrangian Relaxation coupled with decomposition into single pe-
riods where the submodels can be solved very rapidly, or via heuristic methods such as
(2) Relax-&-Fix methods of various types (Ferreira et al.; 2009), (3) depth-first heuristics
(Zhang; 2000), or (4) local branching (Fischetti and Lodi; 2003).

Future work will also computationally compare the ML model against a functionally-
equivalent GLSP model (such as those based on Toso et al. (2009)’s reformulated GLSP-ST
model which assumed at most one lot per product in each period) and Menezes et al.
(2011)’s ATSP-based iterative method which allowed non-triangular setups.

Constraints for minimum lot sizes also need to be formulated that do not require con-
straints (9), that is, for crossover lots that span more than 2 periods, and also for sequence
dependent minimum lot sizes.

Given that the demand forecasts usually change as time advances from one period to
the next, the question arises as to whether it is worthwhile to schedule over even a medium
term horizon, let alone a log-term one. Frequent rescheduling (Haase and Kimms; 1999)
implies that firm schedules should really only be specified for the immediate to short term
over which demand forecasts will not change (much), while approximate or aggregate
planning (rather than scheduling should be carried out for medium to long term. This
poses interesting (and not trivial) research challenges about how to perform planning that
result in effective and efficient short term schedules (Clark; 2003).
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A The ML model

Minimise
∑

p,t

(

hp I
+
pt + gp I

−
pt

)

−
∑

t

cot slackt + 0.01
∑

p,t

zpt (1)

such that

I+p,t−1
− I−p,t−1

+ xpt − dpt = I+pt − I−pt ∀ p, t (2)
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∑

p

up xpt +
∑

p,q

stpq ypqt + slackt = Capt ∀ t (3)

xpt ≤ Mp z
bin
pt ∀ p, t instead of (4) (20)

yppt = 0 ∀ p, t (5)

∑

p

αpt = 1 for t = 2, ..., T + 1 (6)

xFpt ≤ Mp αpt ∀ p, t (7)

xLpt ≤ Mp αp,t+1 ∀ p, t (8)

xLpt + xFp,t+1 ≥ mlp αp,t+1 ∀ p and t = 0, ..., T (11)

xpt − xFpt − xLpt ≥ mlp (zpt − αpt − αp,t+1) ∀ p, t (10)

∑

p,q:p 6=q

ypqt ≥ 1 ∀ t (9)

αpt +
∑

q

yqpt = zpt ∀ p, t (12)

∑

q

ypqt + αp,t+1 = zpt ∀ p, t (13)

arpqt ≤ ypqt ∀ p, q, r, t (14)

zpt ≥ zbinpt ∀ p, t (15)

zpt ≤ ZUBpz
bin
pt ∀ p, t (16)

αrt +
∑

q

arqrt = zbinrt ∀ r, t (17)

αpt +
∑

q

arqpt ≥
∑

q

arpqt ∀ r, p 6= r, t (18)

arrqt = 0 ∀ q, r, t (19)
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Araújo, S. A., Arenales, M. N. and Clark, A. R. (2007). Joint rolling-horizon scheduling of
materials processing and lot-sizing with sequence-dependent setups, Journal of Heuristics
13(4): 337–358.

Carpaneto, G., Dell’Amico, M. and Toth, P. (1995). Exact solution of large scale asymmetric
travelling salesman problems, ACM Transactions on Mathematical Software 21(4): 394–409.

Clark, A. R. (2003). Optimization approximations for capacity constrained material re-
quirements planning, International Journal of Production Economics 84(2): 115–131.

Clark, A. R., Almada-Lobo, B. and Almeder, C. (2011). Editorial: Lot sizing and schedul-
ing - industrial extensions and research opportunities, special issue on lot sizing and
scheduling, International Journal of Production Research 49(9): 2457–2461.

Clark, A. R. and Clark, S. J. (2000). Rolling-horizon lot-sizing when setup times are
sequence-dependent, International Journal of Production Research 38(10): 2287–2308.

Clark, A. R., Morabito, R. and Toso, E. A. V. (2010). Production setup-sequencing and
lot-sizing at an animal nutrition plant through ATSP subtour elimination and patching,
Journal of Scheduling 13(2): 111–121.

Claus, A. (1984). A new formulation for the travelling salesman problem, SIAM Journal on
Algebraic and Discrete Methods 5: 21–5.

Corder, G. W. and Foreman, D. I. (2009). Nonparametric Statistics for Non-Statisticians: A
Step-by-Step Approach, Wiley-Blackwell.

Dantzig, G., Fulkerson, R. and Johnson, S. (1954). Solution of a large-scale traveling-
salesman problem, Operations Research 2: 393–410.

Drexl, A. and Kimms, A. (1997). Lot sizing and scheduling - survey and extensions, Euro-
pean Journal of Operational Research 99: 221–235.

Ferreira, D., Morabito, R. and Rangel, S. (2009). Solution approaches for the soft drink
integrated production lot sizing and scheduling problem, European Journal of Operational
Research 196: 697–706.

Fischetti, M. and Lodi, A. (2003). Local branching, Mathematical Programming, Series B
98: 23–47.

Fleischmann, B. and Meyr, H. (1997). The general lotsizing and scheduling problem, OR
Spektrum 19(1): 11–21.

Fourer, R., Gay, D. M. and Kernighan, B. W. (2003). AMPL - A Modeling Language for Math-
ematical Programming, second edn, Duxbury Press / Brooks-Cole Publishing Company,
USA. http://www.ampl.com/.

Gurobi Optimization Inc. (2011). Gurobi optimizer version 4.5.0. http://www.gurobi.com.

Haase, K. and Kimms, A. (1999). Lot sizing and scheduling with sequence dependent
setup costs and times and efficient rescheduling opportunities, International Journal of
Production Economics 66: 159–169.

Karimi, B., Fatemi Ghomia, S. M. T. and Wilson, J. M. (2003). The capacitated lot sizing
problem: a review of models and algorithms, Omega 31: 365–378.

18



Karp, R. M. (1979). A patching algorithm for the nonsymmetric traveling-salesman prob-
lem, SIAM Journal on Computing 8(4): 561–573.
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