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Abstract 

The aim of this project was to produce a fully automated prototype system 

for the treatment of premature babies who are suffering from renal failure or 

metabolic disorders. These patients are difficult or impossible to treat 

conventionally, due to their very small total blood volume and their intolerance to 

donated blood. There was a strong case for developing a dialysis system 

specifically designed for the treatment of such patients. 

The system is based on a manually operated device developed at the Royal 

Victoria Infirmary, Newcastle Upon Tyne. It differs from conventional dialysis 

methods in several ways. Blood access to the patient is via a single venous 

catheter. Only a very small amount of blood is needed to prime the extracorporeal 

circuit - this can be as little as 6.8 ml in the smallest patients. This compares very 

favourably with the volumes needed in conventional circuits, which are in the range 

of 15 - 40 ml. This small priming volume means that donated blood is not needed 

to prime the circuit. The clearance and ultrafiltration rates that can be achieved are 

independent of the rate that blood can be accessed from the patient, since the 

same blood passes back and forth through the haemofilter several times. The 

clearances that have been obtained experimentally are consistently above 40 % of 

the mean blood flow rate through the system. The largest mean blood flow rate 

available is 5 mllmin, so the maximum clearance is approximately 2 mllmin. The 

maximum ultrafiltration rate that can be obtained is 50 mllh. 

The new system is more effective at treating premature babies than 

conventional dialysis circuits. The hand driven system was tested in vivo and found 

to work well, so the automated system was developed on a solid foundation. 

A prototype system has been successfully developed and tested. This thesis 

details both the development and the testing. The new system uses stepper 

motors and DC servo motors for actuation, and is controlled by Labwindows/CVI 

and NIDAQ software running on a standard PC platform. The interface between 

the PC and the machine is provided by a National Instruments data acquisition 

board. A comprehensive single fault analysis of the safety of the system was 

undertaken, including both software and hardware. 

In vitro testing covered several areas of operation. The accuracy of the 

ultrafiltration process was established. The clearance rates that could be achieved 

were determined. The amount of damage caused to the blood by the system was 



also tested. This was found to be well within acceptable clinical limits. In vivo 

testing established the feasibility of using a computer algorithm to control the 

withdrawal of blood from the patient. Finally, the system was successfully used to 

treat a patient with an in-born metabolic disorder. 

In summary, a new system has been developed that is superior to any other 

treatment method currently available for neonates with these types of disorders. 
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Glossary of Terms 

Arteriovenous Haemofiltration A method of haemofiltration whereby the blood is 

withdrawn from the patient via an artery, and returned via a vein. 

Cannula Another name used for a catheter, i.e. a tube used to obtain access to a 

vein or an artery through the skin. 

Catheter A tube that can be inserted into a body cavity (e.g. a blood vessel) so 

that substances can be administered and removed from the body. 

Clearance A measure of the efficiency with which the kidneys (or a dialysis 

machine) remove substances from the blood. It is defined as the volume of blood 

that is completely cleared of a given solute in unit time. 

Countercurrent Mechanism A mechanism used to maximise the clearance 

obtained from a dialysis machine. The blood and the dialysate fluid flow in opposite 

directions in the haemofilter. This increases the average concentration gradient 

across the filter and so increases the diffusion of substances across the 

semipermeable membrane. 

Creatinine An organic molecule that is a product of muscle metabolism and is 

excreted by the kidneys. 

Dialysate The fluid that is used to exchange substances with the blood inside the 

haemofilter. This usually consists of purified (but not sterile) water with various 

salts dissolved in it. 

Erythropoietin A hormone produced by the kidneys that stimulates the 

manufacture of red blood cells in the bone marrow. . 

Extracorporeal Outside the body. 
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Frusemide A powerful diuretic drug that increases urine output and reduces total 

blood volume, thereby reducing blood pressure in renal failure. 

Haematocrit The percentage by volume of the blood that consists of red? blood 

cells. 

Glomerulus A spherical structure situated at the beginning of each kidney tubule. 

The first stage of blood filtration occurs in this structure, through the mass of 

capillaries contained within it. 

Haemodialysis The process of removal of plasma solutes by diffusion down their 

concentration gradients across a semipermeable membrane. The process does not 

depend on the bulk movement of water. 

Haemofilter The device that performs the exchange of substances between the 

blood and the dialysate fluid. Modern haemofilters consist of many small 

semipermeable tubes packed together inside a larger plastic tube. The blood flows 

inside the small tubes and the dialysate circulates outside the tubes. 

Haemofiltration The process of removal of plasma solutes by bulk convection of 

protein free plasma water across a semipermeable membrane. 

Haemoglobin A substance contained in red blood cells that provides the main 

oxygen carrying capability of the blood. 

Haemolysis The escape of haemoglobin into the plasma, caused by the 

breakdown of the cell membrane of the red blood cells. 

Heparin An anticoagulant drug - used to prevent clotting of the blood. 

Hirudin The first anticoagulant drug - derived from leeches. 

Hypotension Low blood pressure. 

Hypoxia A condition of low levels of oxygen in the tissues. 
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Infusion Pump A device used to control the delivery of intravenous drugs to a 

patient. It often takes the form of a motor driven syringe. 

In Vitro Outside the living body. 

In Vivo Inside the living body. 

Luer Lock A standardized connection system in widespread use in clinical 

equipment. It allows a wide range of equipment (e.g. syringes, tubing) to be easily 

connected together. 

Lumen A general term used to refer to the space inside an artery, vein or tube. 

Necrotising Enterocolitis A disease of the gut common in preterm infants - loss 

of blood supply to the gut leads to necrosis. Surgery is often needed to remove the 

necrotic sections of the gut. 

Neonate Newborn baby. 

Peritoneal Dialysis A method of dialysis that uses the peritoneum ( the membrane 

surrounding the gut) as the semipermeable membrane. Dialysis fluid is infused into 

the peritoneal space through the abdominal wall. Solutes from the blood pass 

through the peritoneum into the fluid, which is subsequently drained from the 

peritoneal space, thus removing the unwanted solutes from the body. 

Plasma The fluid portion of the blood in which the formed elements (the cells) are 

suspended. 

Recirculation Fraction In the extracorporeal circuit of a dialysis machine, not all 

the blood is returned to the body at the end of each cycle. Some will remain in the 

access lines. This blood is 'recirculated' to the machine, resulting in a loss of 

efficiency, since the same blood is effectively dialysed more than once. The 

recirculation fraction is the volume of this recirculating blood expressed as a 

percentage of the total extracorporeal volume. 
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Respiratory Distress Syndrome A common condition of preterm babies -

insufficient surfactant is produced by the lungs, leading to a decreased respiratory 

capability. 

Right Atrium The chamber of the heart that receives deoxygenated venous blood 

from the vena cava. 

Semipermeable Membrane A membrane that allows the passage of certain 

substances but restricts the passage of others. 

Subclavian Vein A large vein that lies underneath the clavicle (collar bone). It is 

often used as a point of entry for a venous catheter. 

Surfactant A chemical produced in the lining of the lungs, which reduces surface 

tension and makes lung tissue expand more readily. 

Transmembrane Pressure The pressure difference that exists across a 

semipermeable membrane, which drives the passage of sUbstances across the 

membrane. 

Ultrafiltration A more general term than haemofiltration - it covers filtration both by 

the use of a blood circuit and by use of the peritoneum as a semipermeable 

membrane. 

Vena Cava A large vein that opens into the right atrium of the heart, through which 

most of the deoxygenated blood returning from the body passes. 

Venovenous Haemofiltration A method of haemofiltration by which blood is 

withdrawn from the patient via a vein and also returned via a vein. 
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CHAPTER 1. INTRODUCTION 

1.1 Background to the Present Study 

In recent years there has been a steady improvement in the survival rates of 

premature babies. This is not due to anyone major advance in this field of 

medicine. Rather it is because of steady progress in a number of areas of neonatal 

intensive care. The equipment available has improved as well as the actual 

methods of treatment. 

However, these general improvements have exposed one area of weakness, 

that of the management of acute renal failure (ARF). Up to 8 % of neonates 

admitted to intensive care can be expected to develop renal failure 1,2. In most of 

these cases the renal disease is secondary to some other serious condition. 

Common amongst these are respiratory distress syndrome (RDS), necrotising 

enterocolitis and cardiac disease. RDS is the most common complication of preterm 

birth. It is caused by insufficient production of surfactant in the immature lungs - this 

prevents proper lung function. 

For higher birthweight babies, a range of dialysis treatments are available. It 

is generally accepted 3 that peritoneal dialysis is the preferred treatment. If this is 

not feasible (e.g. because of abdominal surgery) then either arteriovenous or 

venovenous extracorporeal circuits can be used. 

However, for babies with birthweights below 1 kg, the treatment options 

available are much more limited. Necrotising enterocolitis is a common complaint in 

premature babies - abdominal surgery is usually needed to correct this condition, 

and this makes peritoneal dialysis very difficult, due to the increased risk of 

abdominal infection (peritonitis). Continuous arteriovenous filtration requires a 

minimum mean arterial pressure of 40 - 50 mm Hg 4 to achieve a sufficient 

extracorporeal blood flow rate. A typical blood pressure for a very low birthweight 

baby is 45/30 mm Hg, so this criterion is not met. In theory this limitation could be 

overcome by using venous access and an externally pumped circuit - in practice it 

is difficult to achieve adequate blood flow with this technique as well. 

If the problems of blood access can be overcome there still remains the 

difficulty of priming the circuit. It must be remembered just how small the total blood 

volume is in a 1 kg baby. A typical value is 40 ml 5 as compared with 5 litres in an 

average adult I i.e. just 0.8 % of the adult volume. This means that priming even 

1 



the smallest extracorporeal circuit with donated blood can produce massive, rapid 

changes in overall blood biochemistry. In very small babies, normal whole blood 

can never be used to prime the circuit. It contains large amounts of glucose (this 

keeps the cells alive) and all the calcium is removed from it. The processing it 

undergoes for preservation renders it very dangerous for babies of this size. 

These difficulties led to the development of a manual dialysis system by the 

Royal Victoria Infirmary in Newcastle 6. This is shown in figure 1.1. It's novel design 

overcomes both the problem of vascular access and of blood priming. It is different 

in principal from conventional dialysis equipment because it does not rely on 

continuous vascular access. Instead, it allows the removal of a fixed quantity of 

blood from the patient, followed by the repeated passing of this blood back and 

forth through a haemofilter until the desired amount of haemodialysis and/or 

ultrafiltration has been achieved. The blood is then returned to the baby. This 

process is repeated until biochemical control has been achieved. 

The total extracorporeal volume of the circuit is very small (as little as 8.5 ml) 

so priming with donated blood is unnecessary. 

The system was tested clinically and the results were very promising. It was 

much easier to achieve control of blood biochemistry than with conventional dialysis 

circuits. A typical patient might have a 3 hour session of ultrafiltration every 12 

hours. Ideally these treatment times should be extended so that swings in blood 

biochemistry are minimised. This is an important factor in very low birthweight 

babies - they are very intolerant of sudden changes. 

However, this system is not a practical one as it requires the constant 

attendance of a nurse throughout the whole treatment process. This is in addition to 

the intensive care nurse who is already treating the baby on a one to one basis. 

This project arose out of the need to automate this manual system and produce a 

practical clinical device that could provide both haemofiltration and haemodialysis. 

1.2 B~sic Anatomy and Physiology of the Kidney 

This and subsequent sections of this chapter provide some basic 

background knowledge of the subject, which is necessary for the understanding of 

subsequent chapters. 

The kidneys have several different functions: 

2 



1. The main one is to help maintain the body's internal environment at a relatively 

constant state, in the face of a constantly changing external environment. This is 

known as homeostasis. This is done mostly by regulating the volume and 

composition of the blood. Waste products of metabolism are excreted in the form 

of urine to maintain the composition, and excess water is removed to maintain the 

volume. 

2. They contribute to the regulation of blood pressure by secreting the enzyme 

renin. 

3. Synthesis of glucose during periods of fasting. 

4. Participation in the synthesis of vitamin 0, which is important in maintaining 

bone density. 

5. Secretion of erythropoietin, a hormone that stimulates the production of red 

blood cells in the bone marrow. This is why patients with renal failure become 

anaemic and need regular injections of erythropoietin. 

Overall, the main function of the kidneys is best described as one of regulation of 

the internal environment, rather than just the function of excretion. 

A cross section through an adult kidney is shown in figure 1.2. The renal 

capsule forms a protective layer around the kidney. The organ itself is divided into 

3 main regions. Outermost is the cortex, the middle region is the medulla, and the 

innermost is the pelvis. Together the cortex and the medulla constitute the 

parenchyma, which is the functional part of the kidney. The pelvis is the central 

cavity that collects the urine produced by the outer portions of the kidney. It 

projects into the parenchyma by means of extensions called calyces. These 

termi~ate in the papillae, through which flows the urine produced in the 

parenchyma. The pelvis empties into the ureter, which is the vessel that takes the 

urine from the kidney to the bladder. The blood vessels that supply the kidney are 

not shown in the figure. These are the renal artery and the renal vein. 

The parenchyma of each kidney contains approximately 1 million nephrons, 

shown in figure 1.3. This is the functional unit of the kidney. It has two parts, the 

glomerulus and the renal tubule. The glomerulus is shown in more detail in figure 

1.4. A cluster of capillaries is supplied and drained of blood by two arterioles (small 
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blood vessels). It is through this cluster of capillaries that the first stage of filtration 

occurs. A fluid that is essentially of the same composition as blood plasma passes 

from the capillaries into the Bowman's space outside. The Bowman's capsule 

surrounds the capillary cluster and directs the filtrate into the renal tubule. It is 

interesting to note the rate of production of this glomerular filtrate. Both kidneys 

together produce approximately 50 gallons in a 24 hour period. Obviously the vast 

majority of this filtrate must be reabsorbed to maintain fluid balance, and this is the 

function of the renal tubule. 

The tubule itself loops down into the medulla and back up into the cortex 

before joining a larger collecting duct which descends back into the medulla. In this 

way a much longer tubule can fit into a smaller space. As the filtrate passes 

through the tubule, water, salts, proteins and other substances are reabsorbed by 

the blood vessels that supply the tubule. These same blood vessels also secrete 

certain other substances into the filtrate. As the vast majority of the water in the 

filtrate is reabsorbed, the final quantity of urine produced is much less than that of 

the glomerular filtrate, typically 1.5 to 2.5 Iitres per day for a normal adult. The urine 

flows from the collecting ducts into the renal pelvis and leaves the kidney through 

the ureter. 

The concept of clearance is important in the evaluation of kidney function 

and also when assessing the effiCiency of a dialysis system. Clearance is defined 

as the volume of blood plasma (see glossary) that is completely cleared of a given 

solute per unit time. So it is a measure of the rate at which the kidneys can remove 

substances from the blood. Creatinine is often used to measure clearance. It is an 

organic molecule produced as a byproduct of muscle metabolism. The patient's 

urine is collected and measured over a period of 24 hours, so that the urine flow 

rate V (in mllmin) can be calculated. The creatinine concentration in the plasma P 

(in mg/ml) and in the urine, U (also in mg/ml) are determined. Since the rate of 

removal of creatinine from the plasma must be the same as its rate of removal 

from t.he body through the urine, a simple formula gives the plasma clearance for 

creatinine: 

C= UV 
P 

(1.1 ) 

In summary, the kidney is a very complex organ, with many different 

functions that are vital to maintaining the homeostasis of the body. Many of the 
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physiological processes that occur are still not well understood. 

1.3 Disorders of the Kidney 

Disorders of kidney function can be divided into two broad categories -

acute renal failure and chronic renal failure. 

Acute renal failure 7 is characterised by the sudden deterioration of renal 

function and reduction in urine output. It is often reversible if prompt treatment is 

given. It is usually the result of some other systemic disease or trauma rather than 

a disorder of the kidney itself. A common cause is insufficient perfusion (blood 

flow) of the kidneys, which can have a variety of causes (e.g. loss of blood through 

haemorrhage resulting in low blood pressure). In premature babies, acute renal 

failure is the type of disorder most commonly seen. 

The other category is chronic renal failure 7. This is a more gradual loss of 

renal function, and is more often irreversible. It is usually the result of a progressive 

disease of the kidney itself. It is interesting to note the amount of redundancy that 

exists in kidney function. Only when more than 75 % of the functioning nephrons 

are lost through disease do any symptoms of illness appear. Up to this point the 

remaining nephrons enlarge and take over the work of those that have been lost. 

Once more than 75 % of nephrons are lost, then the levels of creatinine and urea 

in the blood will start to rise above normal, and the kidneys lose their ability to 

dilute and concentrate the urine. Only when 90% of the nephrons are lost is the 

patient said to be in end stage renal failure. 

Some of the more common kidney conditions are described below. 

Glomerulonephritis (Bright's Disease) 

This is an inflammatory disease of the glomerulus. It is often caused by an infection 

elsew~ere in the body (e.g. the throat). The immune response triggered by this 

infection starts to attack the glomeruli, making them inflamed and swollen. The 

membrane that filters the blood becomes more permeable and allows red blood 

cells and proteins to enter the glomerular filtrate. The damage to the glomeruli may 

become permanent. 
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Pyeloneph ritis 

An inflammation of one or both kidneys that involves both the nephrons and the 

renal pelvis. Again, this is usually caused by an infection elsewhere in the body; 

Polycystic Disease 

The most common genetic disorder of the kidneys. The nephrons deform and 

dilate, forming fluid filled cysts. These cysts gradually increase in size and number, 

interfering with the normal kidney tissue. The kidneys themselves enlarge greatly, 

up to 60 times their normal size. The disease is progressive, but can be slowed by 

certain drugs and regulation of diet and fluid intake. 

1.4 Dialysis Therapy 

Both acute and chronic renal failure can be treated using dialysis 7. In acute 

failure dialysis can be used as a temporary measure while the kidneys recover 

their normal function. The chronic kidney patient however requires long term 

dialysis until such time as a kidney transplantation can be performed. 

There are two main types of dialysis, haemodialysis and peritoneal dialysis. 

They employ the same basic principle, although they use very different methods to 

put this principle into practice. The principle is that two fluids are separated by a 

semipermeable membrane. This membrane allows the passage of small organic 

molecules and salts between the two fluids, but prevents the passage of large 

molecules, such as proteins. In this way nitrogenous wastes can be removed from 

the blood without the loss of the proteins and formed elements (cells). In this way 

the dialysis machine can replace the excretory function of the kidneys. 

Peritoneal dialysis (often known as continuous ambulatory peritoneal 

dialysis or CAPO) uses the peritoneum as the semipermeable membrane. The 

peritoneum is the membrane that lines the abdominal cavity and the outside of the 

gastrointestinal tract. A sterile mixture of salts dissolved in water is prepared, which 

is known as a dialysis fluid or dialysate. This is then introduced into the peritoneal 

cavity through a catheter inserted into the abdominal wall. This is left for several 

hours to allow the exchange of substances between the blood and the fluid to take 

place. The dialysate is then drained off. Peritoneal dialysis has the big advantag.e 

of being simple to perform. It's big disadvantage is that there is an increased risk of 

infections of the peritoneum (peritonitis). However, these can usually be controlled 

with antibiotics. 
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Haemodialysis uses an artificial semipermeable membrane situated outside 

the body. Figure 1.5 illustrates the principle of haemodialysis. Blood is withdrawn 

from an artery, usually in the arm, and is pumped through a haemofilter which 

provides the semipermeable membrane. The blood path through the haemofilter 

consists of many small hollow tubes made of a semipermeable polymer. The blood 

flows inside the tubes. The return path takes the blood back into the body through 

a vein in the arm. The hollow tubes are surrounded by dialysis fluid, which is 

pumped through the haemofilter in the opposite direction to the flow of blood. The 

hollow tube construction allows a large membrane surface area to be packed into a 

relatively small volume. As well as removing nitrogenous wastes, haemodialysis 

can also control the water content of the blood, which is equally important. Pumps 

can be used to create a pressure gradient between the blood and dialysate 

compartments in the haemofilter, which causes a net movement of water across 

the membrane from the blood to the dialysate. This is known as ultrafiltration. 

As was mentioned above, the dialysis fluid and the blood are pumped 

through the haemofilter in opposite directions. This provides an important increase 

in the efficiency of the haemofilter. It is known as the countercurrent mechanism. 

Figure 1.6 illustrates the principle. The left hand diagram shows an example 

situation when the blood and dialysate flow in the same direction. A solute in the 

blood enters the filter at a concentration of 100 mmolli. Diffusion across the 

semipermeable membrane occurs and at the end of the haemofilter the 

concentration in the blood has dropped to 20 mmolli. At the same time the 

concentration of the same solute in the dialysate has risen from 0 to 20 mmoi/i. So 

although there is a large concentration gradient across the membrane where the 

blood enters the filter, towards the end of the blood pathway the gradient has 

dropped to zero and no diffusion will occur here. However, if the dialysate flow 

direction is reversed (right hand diagram) the average concentration gradient will 

rise. Now, where the blood concentration has dropped to 20 mmolll, the dialysate 

conce:ntration is 0 mmolll as the dialysate has just entered the filter. Therefore 

diffusion will still occur in this region of the filter. 

In this way a favourable concentration gradient can be maintained throughout the 

entire length of the haemofilter. 

The rate at which a haemodialysis system removes solute from the blood 

can be quantified using the concept of clearance in much the same way as is done 

with the kidney. Either the blood circuit or the dialysate circuit can be used. The 

concentration of the chosen solute is measured at the inlet to and the outlet from 
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the haemofilter. The flow rate through the filter is also measured. The clearance of 

the given solute can then be calculated using a formula similar to that used for the 

kidney. If the dialysate is used for the calculation, it is also necessary to measure 

the solute concentration in the blood plasma, to arrive at a final figure for blood 

plasma clearance. For a system used to treat an adult patient, a typical clearance 

value would be 200 mllmin. The clearances needed for the treatment of a neonatal 

patient are very much less, typically 1 or 2 ml/min. 

1.5 The History of Dialysis Therapy 

It is generally agreed 7,8 that the foundations of the science of dialysis were 

laid by Thomas Graham, a 19th century Scottish chemist. He first described the 

differential movement of substances across a semipermeable membrane in 1854. 

His membranes were prepared from ox bladder. The first dialysis of human blood 

(in vitro) was performed by Richardson in 1889. He categorised substances in the 

blood into two groups: 'crystalloid' substances, which would pass through a 

membrane, and 'colloidal' substances, which would not. 

The first in vivo experiments were described by Abel et al. in 1913 9. They 

constructed a vivi-diffusion apparatus from glass and celloidin tubing that was very 

similar in design to today's hollow fibre dialysers (figure 1.7). Each celloidin tube 

was 8 mm in diameter and 400 mm long. The apparatus consisted of 32 such 

pieces of tubing. They demonstrated that dialysis could be safely performed on 

dogs. 

For experimenters at this time, there were two major practical problems

membranes and anticoagulation. Celloidin was a difficult substance to prepare and 

use, but was the only practical material available. The description of its 

preparation 10 reveals just how difficult it was to prepare and work with. It is derived 

from the explosive nitrocellulose (gun cotton). Since it was not commercially 

availa.ble, each researcher had to make their own membranes. On top of this, the 

finished product was very fragile and prone to cracking. Only when cellophane 

(originally used as a sausage casing) became commerCially available in the 1920s 

were these problems solved. 

The other major problem was anticoagulation. Whenever blood comes into 

contact with a foreign surface, it is liable to clotting. This reduces the efficiency of 

the dialyser and also presents a serious risk to the patient if a clot finds its way 

back into the body. Abel and others used hirudin as an anticoagulant 9,11. This was 
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isolated from the saliva of the European leech, found in the swamps of Yugoslavia. 

It was very expensive, and had toxic side effects. As well as this, the supply of 

leeches was curtailed by the outbreak of the first world war. There was no suitable 

alternative for many years, until the introduction of heparin, which is still in use 

today. Although it was first isolated in 1916, heparin was not available in a useful 

clinical form until 1935. 

The first human dialysis was attempted in 1924 by Georg Haas, working in 

Germany. Although the procedure produced no ill effects in the patient, the low 

amount of clearance of toxic substances achieved meant that there was no 

therapeutic benefit. The first successful dialysis was performed by Kolff in 1945. 

He had developed his techniques in occupied Holland during the second world 

war. His apparatus was technically complex, and included a rotating drum that 

carried the blood filled cellophane tubing (figure 1.8). The drum rotated in a bath of 

dialysing fluid. The idea of this was to increase the diffusion gradient across the 

membrane, thereby increasing the clearance that could be achieved. After the war 

Kolff moved to the U.S.A. and there developed the Kolff - Brigham Artificial Kidl1ey, 

which was the first commercial system. This was used to treat wounded soldiers in 

the Korean war 12 under mobile hospital conditions. This represented a major 

breakthrough, and led to a much greater acceptance of the idea of artificial kidney 

systems in the medical community. It is worth noting 13 that the medical profession 

was very slow to take up the idea of dialysis. It was viewed with suspicion by many 

leading medical professionals for much of the 1940s and 50s. 

The next few years saw a number of new designs 14. Some were 

refinements of the rotating drum concept, such as the machine produced by the 

Allis Chalmers company. Over 20 of these machines were produced before the 

project was abandoned due to lack of demand. This machine was still considered 

to be too complex and costly for routine clinical use. Westinghouse attempted to 

produce a more compact machine, employing a vertical rotating drum instead of 

the u~ual horizontal one. 3 of these machines were produced. It was not 

particularly successful for 2 reasons. It took too long to set up and it was of limited 

efficiency because of the small membrane surface area. 

Later designs still used membranes in the form of coiled tubing, but these 

no longer rotated in the dialysis bath. 

Still other designs arranged the membrane as a series of parallel plates stacked on 

top of each other. 

In 1960, a patient with chronic renal failure was maintained on long term 
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dialysis for the first time. 1966 saw the introduction of the hollow fibre dialyser, the 

same basic design that is in use today. 

The first recorded dialysis of a child dates from 1955 15. Of the five patients 

described, the youngest two were 7 years old. The Westinghouse coil machine 

was used. The problems of using equipment designed for adults with children were 

apparent. However, biochemical control was achieved and the principle of treating 

children was established. The lack of availability of suitable paediatric equipment 

continued until the late 1960s 16. The resolution of this and other problems led to a 

greatly increased success rate for treatment of paediatric renal failure 17. 

Since the early 1970s progress has been fairly rapid. Better membranes 

such as polysulphone have been developed. These materials are more 

biocompatible and allow much greater clearance rate for a given surface area, 

allowing dialysers to be much more compact than they were previously. 

The other major area of development has been in the control of ultrafiltration. Early 

machines were unable to control the amount of fluid that was removed by 

convection. Advances in computer technology and control methods allow modern 

machines to carefully control fluid removal, greatly increasing patient tolerance to 

dialysis. 

1.6 Synopsis of the Present Study 

This chapter has provided the background knowledge necessary for the 

understanding of the project. The anatomy and physiology of the kidney was dealt 

with, as well as the common disorders of renal function. The current practice of 

dialysis therapy was then reviewed, followed by a history of the development of 

dialysis. Chapter 2 reviews the relevant literature that is available. An extensive 

literature search was undertaken to establish the unique nature of the current 

project. No other system using the same basic prinCiples was discovered. Two 

syste!11s bearing superficial resemblance were documented. These are reviewed in 

section 2.8. Chapter 3 deals with the specification of the prototype system that was 

the starting point of the system design. This was drawn up at the start of the 

project in consultation with the Royal Victoria Infirmary, Newcastle. Chapter 4 

presents the initial design work that was done to lay the foundation of the system 

design. Chapter 5 concerns the detailed design of the mechanical and 

electromechanical elements of the system. The interface electronics are discussed 

in chapter 6. These provide the connection between the various sensors and 
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transducers and the data acquisition board that provides the interface to the PC. 

Chapter 7 deals with the construction and testing of the prototype, as well as the 

design modifications that were necessary. Chapter 8 addresses the development 

of the software used to control the system. This was a major part of the project and 

this is therefore a long chapter. Chapter 9 discusses system safety. Chapter 10 

deals with the early testing of the system. This testing established the basic 

functioning of the system and led to various design modifications. Chapter 11 

details the extensive clinical testing that was done to establish the operating 

characteristics of the system. It also includes a section on the first clinical use of 

the system. Finally, chapter 12 presents the conclusions that were reached and 

proposals for further work. 

Summary 

This chapter has described the clinical need that was the origin of the 

current project. The background knowledge of the subject that is required has 

been given. This includes the anatomy and physiology of the kidney, as well as the 

more common disorders of renal function. Current practise in dialysis therapy and 

the history of dialysis techniques have been reviewed. 

At the start of the project, an extensive literature review was undertaken. 

This is presented in the next chapter. 
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CHAPTER 2. LITERATURE REVIEW 

Introduction 

A wide ranging literature search was undertaken to obtain references 

relevant to the work being done. This covered both engineering and medical 

literature. The results of this search are presented here. 

2.1 Preterm Birth and Paediatric Renal Failure 

There are many medical problems associated with preterm birth 20. As well 

as those mentioned earlier, the following conditions are also important: 

Patent Ductus Arteriosus. In the womb there is a naturally occurring duct 

between the right and left sides of the heart, which is part of the foetal circulation. 

At birth this duct usually closes to establish the new pattern of circulation with the 

baby breathing through its lungs. If the duct fails to close severe circulatory 

problems result. 

Apnea. This is defined as cessation of breathing for more than 20 seconds. It can 

result in hypoxia and damage to the central nervous system. 

Retinopathy. Damage to the retina can occur due to overexposure to oxygen - this 

can be a side effect of assisted ventilation. 

Hyperbilirubinemia. This condition is defined as higher than normal levels of 

bilirubin in the blood. It is caused by immaturity of liver function. 

Renal function in premature babies is very different from that in adults, and 

even full term babies 21 . Much of the data used to treat babies under 1 kg is 

extrapolated from much heavier subjects, and this extrapolation is not necessarily 

valid. 

A few general papers on acute renal failure in neonates have been 

published 1,2,22. Here the reported incidence in intensive care units ranges 

between 1 and 8 %. Conservative treatment methods are discussed. These are 

usually tried first before more invasive methods of treatment such as dialysis are 

attempted. One conservative measure is known as a fluid challenge. This consists 

of an infusion of normal saline, given intravenously. The resulting increase in the 

volume of blood circulating around the body can increase the blood flow through 

the kidneys, thereby increasing the production of urine. Diuretic drugs such as 
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frusemide are often given. Diuretics are a class of drug that act on the kidney to 

increase the output of urine. These and other methods are usually applied before 

dialysis or haemofiltration are resorted to. 

2.2 The Treatment of Renal Failure 

There are a variety of extracorporeal treatment options for renal failure once 

conservative methods have failed 3. The two main categories are haemodialysis 

and haemofiltration. Haemodialysis removes substances from the blood by 

diffusion across a semipermeable membrane down a concentration gradient. This 

concentration gradient is maintained by the continuous circulation of a specially 

prepared dialysis fluid on one side of the membrane. Haemofiltration however, 

removes substances by convection (or bulk movement) across a semipermeable 

membrane. A pressure difference across the membrane drives the movement - this 

is called the transmembrane pressure (TMP). There is no dialysis fluid circulating 

in the haemofilter - the fluid on the other side of the membrane is the ultrafiltrate 

derived from the blood. 

Another factor in the choice of treatment is the method of access to the 

circulation. The usual route is to take blood from an artery and return it to a vein. 

For a variety of reasons this is not always possible, in which case the blood can be 

withdrawn from a vein and returned to a vein, and a pump assisted circuit can be 

used to provide sufficient blood flow. 

The other main choice is between intermittent and continuous treatment. 

Intermittent treatment can lead to circulatory instability amongst other problems. 

This is a particularly important problem in paediatric treatment. 

These treatment options can be used in a variety of combinations, leading 

to a large number of permutations, which will be explained in more detail below. 

Haemodialysis (HO) 

Haemodialysis is used occasionally to treat small infants 23 - 27, but it is not 

usually the preferred method of treatment, due to its technical complexity. 

Continuous Peritoneal Dialysis (CPO) is more commonly used. The smallest 

patient treated with haemodialysis that is mentioned in the literature weighed 2 kg. 

Both continuous and intermittent treatment have been successful. It is generally 

agreed that control of fluid removal is the biggest problem with haemodialysis in 
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such small patients. Babies are much less tolerant than older patients of errors in 

fluid balance. Bradbury 23 reports the use of linked dialysate pumps to control fluid 

removal. Pumps are attached to the inflow and outflow of the dialysis compartment 

of the filter. The pumps are mechanically linked so that they run at identical rates. 

A separate pump draws off ultrafiltrate at the desired rate. In this way fluid removal 

can be much more precisely controlled. 

It is worth mentioning that haemodialysis is in general more effective than 

haemofiltration at removing small solutes such as urea. Section 1.4 contains an 

explanation of the principles of haemodialysis. 

Haemofiltration 

The principles of haemofiltration have been explained by several authors 28-

30. As in haemodialysis, the patient's blood is passed through a haemofilter. Unlike 

haemodialysis however, no dialysis fluid is circulated through the outer 

compartment of the haemofilter. Solute removal is achieved by simple convection 

across the semipermeable membrane, as opposed to the diffusive process that 

occurs in dialysis. Convection across the membrane is driven by the pressure 

differential between the inside and the outside of the semipermeable tubing. 

It is usually applied as a continuous therapy for acute renal failure as it is 

less effective at clearing small molecules (e.g. urea) than haemodialysis. To 

achieve sufficient rates of ultrafiltration, filters with a high permeability are often 

used. This technique can be employed either as continuous arteriovenous 

haemofiltration (CAVH) or continuous venovenous haemofiltration (CWH). 

CAVH 

The main advantage of CAVH is its simplicity. No pumps or electronic 

equipment are needed. Just a haemofilter connected to an arterial and a venous 

line, and another line to collect the ultrafiltrate. Ronco 31 describes the use of the 

Amicon minifilter, an example of the type of filter used in this method of treatment. 

It has a smaller number of hollow fibres, but each fibre has a large internal 

diameter. The resistance to blood flow is therefore less. This is important as it 

allows a high blood flow rate through the filter without the need for a blood pump. 

He used a long ultrafiltrate line arranged to produce a siphoning action on the filter. 

This creates a negative pressure in the ultrafiltrate compartment, increasing the 
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ultrafiltration rate that can be achieved. The umbilical vessels provided the access 

in some of his patients. This is only possible in new born babies, as after 4 or 5 

days these vessels close up and become unusable. Lieberman 32 has described a 

very similar treatment, although he makes no mention of using the ultrafiltrate line 

to create a siphoning action. 

CWH 

Yorgin 33 describes this technique. It is often used when the patient's blood 

pressure is too low to drive the blood through a CAVH circuit. Blood is withdrawn 

from a vein and returned to a vein. A blood pump is used to drive the blood around 

the circuit. Another advantage of this technique is that it avoids the potential 

complications associated with the cannulation of a limb artery. These include loss 

of limb circulation and subsequent impaired limb growth. 

Mixed Therapies 

Dialysis and filtration can be combined into a single therapy 34 - 36. The basic 

dialysis circuit is modified so that there is a net removal of fluid from the patient. 

This can be achieved by having two pumps on the dialysate lines running at 

different rates, thus producing a negative pressure in the dialysate compartment of 

the filter. A replacement fluid can then be administered to the patient via the 

extracorporeal circuit. This fluid is carefully prepared to provide the right balance of 

solutes needed to achieve biochemical control of the blood composition. It can be 

infused either before or after the haemofilter. If before the haemofilter, it effectively 

dilutes the blood, reducing the haematocrit. This leads to an increase in the 

ultrafiltration rate (see section 2.9). 

Othe~ Therapies 

Peritoneal dialYSis is also used to treat very low birthweight babies 37. It has 

been described in section 1.4. This treatment has the advantage of being 

technically simpler than extracorporeal methods, but there are several associated 

complications which can often prevent its successful use. 

There are a few reports of dialysis being used in conjunction with an 

extracorporeal membrane oxygenation system (ECMO). This system is used to 
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oxygenate the blood outside the body when the patient's own respiratory system is 

unable to supply sufficient oxygen. Summar 38 describes the use of an ECMO 

system and a dialyser in series to treat hyperammonemia in new born babies. This 

is a metabolic disorder which results in elevated levels of ammonia in the blood. 

This and other metabolic disorders are often treated with dialysis therapy. 

2.3 Sensors and Monitoring 

A large amount of work has been done on the monitoring of the dialysis 

process, with a view to improving current treatments as well as designing the next 

generation of dialysis machinery. 

One area of particular interest is that of vascular access monitoring 39 - 41 . 

Various methods have been used to monitor blood access. These include venous 

pressure monitoring, and measurements of dialysate conductivity to calculate the 

blood flow rate into the dialyser. This is relevant to the current project because the 

system uses pressure measurement to determine the adequacy of blood flow. 

Adequate access is an important problem in adult dialysis, and the problem is even 

more acute in paediatric dialysis. 

Until very recently dialysis systems did not monitor the patient directly. 

Clinical monitoring was done using separate equipment and nursing staff. New 

systems are now starting to appear which integrate both aspects of treatment. 

One of the main problems with existing systems is the difficulty of giving the 

correct 'dose' of dialysis. The amount of dialysis to be given is determined at the 

start of the treatment session, based on measurements of patient weight and other 

such simple parameters. Because the progress of the dialysis is not directly 

monitored, it is difficult to give the optimum amount of treatment. A lot of research 

is directed towards the monitoring of patient urea concentrations during the dialysis 

session, with the aim of producing a closed loop system that can optimise the 

amou,nt of dialysis given. Kupcinskas 42 has suggested an optical method that 

measures the urea concentration in the used dialysate, so that the urea 

concentration of the blood can be inferred. The system is based on the analysis of 

infra-red absorption spectra obtained when infra-red light is shone through a 

transparent tube containing the spent dialysate. Different organic molecules have 

characteristic absorption patterns, and this allows the concentration of a molecule 

such as urea to be determined. Canaud 43 has proposed a different method. A 

quantity of spent dialysate is withdrawn from the dialysis system. The urea it 
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contains undergoes a chemical reaction which produces ammonium ions in 

solution (NH4 +). These ions create a potential difference between two electrodes, 

which can be measured, thereby determining the urea concentration in the 

dialysate. 

Dialysis can produce a range of unwanted side effects. One of the most 

serious of these is low blood pressure (hypotension). This is caused by too much 

fluid being removed by ultrafiltration during the dialysis session. Various systems 

have been proposed to continuously monitor the amount of fluid being removed. 

These are based on measurements of haematocrit. This is the percentage by 

volume of the blood that consists of cells. It is a good indication of the state of 

hydration of the patient. A high haematocrit implies that the patient is dehydrated 

(not enough water in the blood), and a low haematocrit means that the patient is 

over hydrated. A simple method of measuring haematocrit has been described 44. 

An infra-red light beam is shone through transparent tubing containing the blood. 

An infra-red detector measures the amount of light that is transmitted through the 

blood. As the haematocrit rises, the amount of transmitted light falls. Another 

method measures the impedance of the blood 45. The blood is passed through a 

test cell which is connected into the arterial line of the dialyser. Impedance 

measurements are taken at a frequency of 5 kHz. The principle of this system is 

that the blood cells themselves have a greater impedance than the plasma that 

surrounds them. Therefore, as the haematocrit rises, the impedance also rises. 

A study by Jaffrin 46 compares the different methods available for the 

measurement of haematocrit. It concluded that optical methods are the most 

accurate and the most convenient to use. 

A system designed by Lurzer 47 measures a range of clinical parameters. A 

PC controlled system can sample blood from the arterial and venous lines, as well 

as fresh and used dialysate. The sampled blood is fed into a commercial analyser 

which can measure a range of parameters, such as sodium and potassium 

concentrations. However, the system is fairly complicated and cumbersome, and it 

is difficult to see how it could be applied in a clinical system. 

2.4 Modelling and Analysis of Renal Replacement Therapy 

The current system is designed to be used as a continuous therapy, the 

treatment continuing for as long as the patient is in acute renal failure. This differs 

from the treatment given for chronic renal failure - intermittent haemodialysis. This 
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type of dialysis usually consists of 3 treatment sessions per week, each one lasting 

several hours. 

A fair amount of literature is devoted to the modelling and analysis of the 

dialysis process. Much of this research is aimed at trying to better understand the 

dialysis process, with a view to more accurately quantifying the outcome of a given 

dialysis prescription. 

Probably the easiest type of treatment to analyse is continuous arterio

venous haemofiltration (CAVH), as there is no dialysate circuit to consider. As has 

been mentioned previously, this type of treatment involves the passing of the blood 

from an artery through a highly permeable haemofilter and back into a vein. The 

patient's own blood pressure drives the blood through the circuit, and the pressure 

inside the haemofilter generates an ultrafiltrate, thereby removing waste products 

from the body. It is important to distinguish between the two different processes 

that can be used to remove toxic substances from the body. In CAVH, metabolites 

are removed purely by convective movement across the semipermeable 

membrane. In this process, there is bulk movement of blood plasma through the 

membrane, driven by a pressure gradient between the inside and the outside of the 

haemofilter fibre. Dissolved metabolites are therefore removed from the blood 

stream by convection across the membrane. In haemodialysis however, waste 

products move across the membrane by diffusion. Here, the pressure gradient is 

irrelevant. It is the concentration gradient between the blood and dialysate that 

drives the movement of dissolved substances across the membrane. The two 

processes are often used in combination, as in continuous haemodiafiltration. 

Pallone 48 has produced a model of the convective process derived from 

principles of basic fluid mechanics which gives good agreement with experimental 

results. This will now be described. The model describes the relationship between 

the pressures and flows in the components of the extracorporeal circuit using 

Poiseuille's relationship: 

-8L. 
~Pi = 4 I ).lbQb 

1t rj 
(2.1) 

where ~Pj is the pressure drop across the ith component, Li its length, an9 n 

its internal radius. ).lb is the viscosity of the blood, and Q b the blood flow rate 

through the circuit. This form of the relationship is suitable for describing the 
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tubular components of the circuit, such as the vascular access catheters, and the 

blood tubing that connects these to the haemofilter. A differential form of the 

equation is used to describe the pressure variation inside the haemofilter itself: . 

dP -8 
dx = N7tr.4 Ilb Q b 

f 

(2.2) 

where N is the number of hollow fibres in the haemofilter, and rf is their 

internal radius. Using these two equations, the pressures in the extracorporeal 

circuit can be calculated. In particular, the pressure variation along the length of 

the haemofilter (which is linear in this model) can be calculated. 

The use of the Poiseuille relationship assumes a constant blood viscosity 

and also that blood is a Newtonian fluid (i.e. that its viscosity does not vary with 

shear rate). Neither of these assumptions are valid under all conditions. However, 

Pallone argues that the assumptions are valid under the flow conditions found in 

CAVH, and other authors of similar studies make the same assumptions. 49,50 

The modelling of blood viscosity is a more difficult problem, as blood is a 

complex fluid made up of many different components. Particular factors that affect 

the viscosity are the haematocrit and the plasma protein concentration. In common 

with other authors, Pallone uses the empirical relationships of Charm and 

Kurland 51 to predict viscosity values. 

Once the pressure variation inside the haemofilter is known, the volume flux 

Jv across the membrane can be calculated: 

Jv = Lp { (p - Pf ) - IIp} (2.3) 

Lp is the hydraulic permeability of the membrane. This is an index of its convective 

properties, and is a function of the membrane material as well as its thickness. P is 

the loCal pressure inside the fibre, and Pf is the local pressure outside the fibre (the 

pressure applied to the ultrafiltrate port of the haemofilter). Tlp is the oncotic 

pressure. This is an osmotic pressure generated by the protein content of the 

blood. It tends to draw ultrafiltrate back into the blood, hence the negative sign in 

equation 2.3. It is a function of the protein concentration in the blood plasma, and 

can be described empirically by the Landis-Pappenheimer 52 equation: 
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I1p = 2.1 Cp + 0.16 C~ + 0.009 C~ (2.4) 

where Cp is the concentration of protein in the plasma. 

Volume conservation for blood plasma flow gives the following equation: 

dQp S 
-=-J -
dx v L

f 

(2.5) 

where Q p is the local plasma flow rate, S is the total membrane surface area and Lf 

is the length of the haemofilter fibres. This expression can be integrated along the 

length of the haemofilter to calculate the total ultrafiltration rate. The relevance of 

models such as this to the current project will be discussed in chapter 10. 

A model of diffusive transport is given by Sargent and Gotch 53. Diffusion is 

governed by Fick's law: 

J = -DA L\c 
L\x 

(2.6) 

J is the flux (mass flow per unit time) of a given solute across a diffusion front of 

area A. ~c is the incremental change in the concentration of the solute over the 

incremental distance ~ x, perpendicular to the diffusion front. D is the constant of 

proportionality. In the case of a dialyser membrane, ~ x is the membrane 

thickness, and can be regarded as constant. Therefore, equation 2.6 can be 

rewritten as: 

J=-KoMC (2.7) 

where Ko is known as the mass transfer coefficient, a property of the dialyser itself. 

In this equation, ~C represents the mean concentration difference across the 

dialyser membrane. Figure 2.1 shows the solute concentrations in both blood and 

dialysate as a function of distance along the haemofilter in countercurrent flow. In 

this model the concentration changes along the haemofilter length are assumed to 

be linear. The blood enters the filter on the right and its solute concentration falls 

during passage through the filter. The dialysate enters on the left and the 

concentration rises from left to right. The centre line represents the difference in 
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concentration between the two fluids. This model uses a logarithmic mean of this 

difference. 

Hence, from equation 2.7, 

[ 
L\C. - L\Co ] 

J = KoA In(L\~i I L\Co) 
(2.8) 

In terms of the inlet and outlet blood and dialysate concentrations, equation 2.8 

becomes: 

[ 
(CBi-COO)-(CBO-COi) ] 

J = KoA In[(CBi - Coo) I (CBO - COi )] 
(2.9) 

Dialysance is a parameter often used to quantify dialysis. It is similar to clearance, 

but takes account of the fact that the solute can appear in the dialysate as well as 

in the blood. So whereas clearance is defined as 

K = solute mass transfer rate 
concentration of solute in plasma 

dialysance is defined as 

D = solute mass transfer rate 
concentration driving force 

(2.10) 

(2.11 ) 

where the concentration driving force is the difference in concentration of the 

solute between the blood and the dialysate. The mass transfer rate is the 

difference between blood solute concentrations at the inlet and outlet of the 

dialyser multiplied by the blood flow rate into the dialyser, so equation 2.11 can be 

written as: 

QBi(CBi -CBo) QOi(COO -COi) D - - --..::.~-=--.=.<.... 
- CBi -COi - CBi -COi 

(2.12) 
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where the mass transfer rate is firstly expressed in terms of flows and 

concentrations on the blood side of the haemofilter, and secondly in terms of 

parameters on the dialysate side. 

Since the mass transfer rate is the same as the solute flux, J, across the dialyser, 

equation 2.11 can be rearranged as: 

J = D(CBi - COi ) (2.13) 

Combining 2.13 and 2.9 gives: 

[ 
(CBi - Coo) - (CBO - COi ) ] 

D( CBi - COi) = KoA In[ (CBi - Coo) I (CBO - COi )] 
(2.14) 

From equation 2.12, expressions for the inlet and outlet concentration differences 

can be obtained in terms of dialysance, concentration driving force and blood and 

dialysate flow rates: 

CB; - CD' = (CB; - CD;)(I- gJ (2.15) 

CB, -CD; = (CB; -CD;(I- gJ (2.16) 

Substitution of these concentration differences into equation 2.14 and 

rearrangement gives: 

. OB (1-D I 0 0 ) 

KoA = 1- OB I 0
0 

In 1-D I OB (2.17) 

This is an expression for the mass transfer coefficient - membrane area product in 

terms of blood and dialysate flows and dialysance. The product KoA is a constant 

for a given dialyser. Once this constant has been determined, equation 2.17 can 

be rearranged to predict dialysance in terms of blood and dialysate flows: 
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ex~KoA(l- Os /00 ) / Os)-l 
D---~~----~~~-

- ex~KoA(1-0s /Oo)/Os) __ 1 
(2.18) 

Os 0 0 

This is a useful way of predicting dialysance (or clearance) from straightforward 

measurements of flow rates of blood and dialysate. The relevance of this model to 

the current project is discussed in chapter 11. 

Diffusive and convective transport are often combined in the same 

treatment. This method of therapy is called continuous arteriovenous 

haemodialysis by some authors 54 , and continuous arterio-venous 

haemodiafiltration by others 55. It is a more complex process due to the interaction 

of the two different transport processes and therefore it is more difficult to model. It 

involves the addition of a low flow rate dialysate circuit to a CAVH system. This 

results in a marked increase in the removal rate (clearance) of middle weight 

molecules such as urea. Pallone 56 has conducted in vitro experiments and 

produced a simple model, in an attempt to quantify the clearances achieved in 

CAVHD. It was shown that at low dialysate flow rates, there is almost complete 

equilibration of urea between the blood and dialysate, so that the dialysate leaves 

the filter with almost the same concentration as the incoming blood. 

Akcahuseyin and Vincent 55,57 - 59 have developed more sophisticated models, 

which again compare well with experimental data. This work shows that there is a 

significant fall off in filter performance after the circuit has been running for several 

days. This is due to the build up of a protein layer on the semipermeable 

membrane. Brunet 60 has conducted clinical experiments to quantify the clearances 

obtained under a range of conditions. 

Olbricht 50 has studied the effects of different types of vascular access and 

filter design on CAVH. He concludes that polyamide filters are more suitable than 

those· made from polysulphone, as they produce a higher filtration flux. 

Davenport 61 has investigated the effect of the direction of dialysate flow in 

CAVHD. It is generally accepted that a countercurrent flow of dialysate is more 

efficient than a concurrent one, as it leads to a greater mean concentration 

gradient across the semipermeable membrane. He showed that countercurrent. 

flow produces roughly a 28 % increase in clearance over concurrent flow, all other 

parameters being equal. The current system alternates between concurrent and 
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countercurrent flow as the blood is moved back and forth between the two 

syringes, since the dialysate flow through the filter is always in the same direction. 

While this is not ideal, the loss of efficiency can be overcome by using dialysate 

flow rates that are significantly higher than the blood flow rate through the filter. 

Research in intermittent haemodialysis aims to increase the efficiency of the 

treatment process and to optimise the available resources. Since such a large 

number of people are on maintenance haemodialysis for many years at a time, 

economic factors are more important than in the care of acute renal failure. Dialysis 

prescription is not yet a precise science - a lot of research is aimed at producing 

better models of how the body reacts to dialysis treatment. 

One of the major problems is that of fluid removal. Since the patient is unable to 

regulate body water themselves, dialysis must do this for them, as well as 

removing waste products. It is difficult to determine the ideal amount of fluid to 

remove during a dialysis session. If too little is removed, the patient will remain fluid 

overloaded. If too much is removed, there is a danger of the blood pressure 

dropping dangerously low. Winnett 62 and Chamney 63 have both worked in this 

area. Chamney describes the use of blood volume monitoring sensors to produce 

a closed loop control system. This is much safer than simply prescribing an amount 

of fluid to be removed at the start of the session. If the patient's total blood volume 

can be continuously monitored during the dialysis session, then any adverse 

reaction to the treatment can be detected much earlier. 

Similar problems exist with regard to urea removal during dialysis 64,65 . 

Stern by describes the single pool model for urea transport. This regards the body 

as a single volume containing a uniform concentration of urea. This is the model 

often used for dialysis prescription. The true physiology is more complex than this. 

Urea exists at several different concentrations in different compartments in the 

body. These include the blood, the intracellular space and the extracellular space. 

Urea concentrations in the blood therefore do not fall off in a simple exponential 

way d,uring dialysis. Better models have been developed to more accurately 

describe the movement of urea during dialysis. 

Vaussenat 66 has investigated the changes that occur in membrane 

permeability during the dialysis session, using a data acquisition system attached 

to the dialysis machine. He showed that higher ultrafiltration rates lead to a bigger 

build up of the protein coat, leading to a loss of membrane permeability. 
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2.5 Control Systems 

The first dialysis machines had very simple control systems. The system of 

machine and patient was an open loop - there was no feedback of data from the 

patient to the machine, so the machine could not respond directly to any changes 

in patient variables. One of the major early problems was control of ultrafiltration. 

The amount of fluid that would be removed during a dialysis session could not be 

accurately predicted. This can lead to major clinical problems. If too much fluid is 

removed the patient's blood pressure can drop dangerously (hypotension). If too 

little is removed the patient will be fluid overloaded (oedema) leading to high blood 

pressure (hypertension) and this also can be very dangerous. For an otherwise 

healthy adult, a normal blood pressure would be in the region of 140/90 mm Hg. A 

reading of 90160 mm Hg or below would be considered dangerously low, and 

160/95 mm Hg or above would be too high. 67 The first figure represents the 

systolic pressure, (the arterial pressure when the heart is contracting) and the 

second figure the diastolic pressure (when the heart is between contractions). 

In the 1980s machines that could accurately control ultrafiltration were 

introduced, and the problems of fluid removal were reduced. The amount of fluid to 

be removed could be entered into the control system at the start of the dialysis 

session. 

However, such systems still employ open loop control, and the machine 

cannot respond directly to physiological changes in the patient. The last decade 

has seen research into much more sophisticated control systems which aim to 

directly monitor and control a range of patient parameters. The advances in control 

systems have gone hand in hand with the rapid increase in the availability of cheap 

and powerful computer technology in the last few years. The work by Bengtsson 68 

demonstrates the rapid increase in sophistication of the software used in 

haemodialysis machines. An example of a commercial controller is given by 

Sternpy 69. He has successfully developed an adaptive control algorithm. This 

controller allows the machine to use a wide range of different dialysers and still 

provide accurate control of ultrafiltration. Both flat plate and hollow fibre filters can 

be used on the same machine. 

Work towards a closed loop system has been done by Giove 70, 71. He 

suggests that the clinical knowledge of the doctor or nurse can be applied to the 

control system by the use of fuzzy logic, turning qualitative knowledge into sets of 

rules that can be used to control patient parameters. A major problem with any 
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dialysis control system is that each patient responds to dialysis in a different way, 

the so-called 'subjective biological response'. The application of fuzzy logic to 

parameters such as blood pressure and fluid status can overcome this problem. 

The work by Giove is directed mainly towards control of ultrafiltration and 

the fluid status of the patient. Other work 72, 73 aims to control a much wider set of 

patient parameters, including acid-base balance and sodium concentration. Such a 

system would dramatically improve patient tolerance to dialysis, minimising 

undesirable side effects. 

2.6 Future Developments 

As well as the progress in the area of control systems described earlier, 

work is being done in a number of other areas, to improve haemodialysis systems. 

One of these has the aim of reducing the size of extracorporeal systems. A degree 

of size reduction can result in a portable system, which makes dialysis in the 

patient's own home more feasible. A further reduction could lead to a wearable 

system that would operate continuously. The ultimate aim of this research would 

be to produce a system small enough to be implanted in the body. 

The kidney is a very complex structure, and any attempt to produce an 

artificial device that replaces its function while being of a similar size has to 

overcome this problem. Each kidney contains approximately 55 km of tubing. 

Models of renal vasculature have been produced, in an attempt to better 

understand the flow of fluids through the kidney. One such model 74 is based on the 

concept that the renal vessels go through six stages of branching and size 

reduction from the level of the renal artery through to the nephrons themselves. 

The arterial radius at each stage is described by: 

rN = roe- O.9N (2.19) 

where ro is the radius of the aorta, N is the number of the branching stage, and rN 

the radius at that branching stage. The blood flow rate, ON, through a vessel is 

given by: 

ON = 2.716 eO.244(N-1) r~ (2.20) 
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The authors do not say how either of these equations were arrived at. They allow 

the flow rates in the various vessels of the kidney to be estimated. However, in the 

absence of any experimental data to compare the results with, it is not possible to 

assess the validity of this model. 

One feasibility study 75 has concluded that an implantable device is 

technically possible. The authors do not explicitly state how they reached this 

conclusion. However, they do concede that many very difficult technical and 

medical problems would need to be overcome. 

On a more practical level, a lot of work has been aimed at reducing the size 

of dialysis equipment, to make the systems more portable. The major obstacle to 

portability is the need for large quantities of treated water (around 600 litres per 

week) for the preparation of dialysis fluid. If the dialysis fluid can be recycled then 

the system can be made portable. Mourad 76 describes a system that does this 

(see figure 2.2). Only 10 litres of dialysate is needed. The fluid is recirculated 

through a cartridge that contains urease and activated carbon amongst other 

things. Urease is an enzyme that catalyses the conversion of urea to ammonia. 

The cartridge reduces the concentration of waste substances in the dialysate so it 

can be recirculated through the dialyser. A similar system has been described by 

Bigsby 77. Here just activated carbon is used to absorb the waste substances. Both 

systems were found to give sufficient clearance to be of practical use. Portable 

systems such as these are already commercially available. However a 'wearable' 

system which allows the patient to remain mobile still seems a long way off. 

2.7 Assessment of Manual System 

The manual system on which this project is based is described by Coulthard 6. 

The configuration of the system is illustrated in figure 1.1 (see chapter 1). It is 

constructed from standard luer locking clinical equipment. The syringes used are of 

a standard plastic disposable type, either 5 ml or 10 ml in size. Two types of 

polysulphone hollow fibre haemofilter have been used. The first was an Amicon 

Minifilter, with a blood priming volume of 6 ml and a membrane surface area of 

0.015 m 2. The second was an Amicon non-clinical product with the same priming 

volume but finer capillary tubing, given a higher membrane surface area of 
2 0.04 m . 

The apparatus operates as follows. Blood is withdrawn from the patient 

using syringe 1 through taps B and A. The amount withdrawn depends on the size 
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of the patient. For the smallest babies this is as little as 3 ml. For the larger babies 

up to 10 ml may be withdrawn. The rate of blood withdrawal also varies depending 

on how good the vascular access is. With good access, the rate of withdrawal· 

would be approximately 10 ml/min. The right hand end of the haemofilter is closed 

off during this operation, as is the heparin infusion line. When the required amount 

of blood has been withdrawn, tap A is turned so that the heparin infusion can 

continue into the venous line, and tap B is turned so that the venous line is cut off 

from the rest of the circuit and the right hand end of the haemofilter is now open. 

Blood filtration can now begin. The plunger of syringe 1 is depressed to push the 

blood through the haemofilter into syringe 2. This is done fairly slowly, aiming for a 

blood flow rate of approximately 10 ml/min. The elastic band attached to syringe 2 

provides the necessary transmembrane pressure to allow ultrafiltration to take 

place. The mean pressure generated by the elastic band is approximately 300 mm 

Hg. When all the blood is in syringe 2, the plunger of syringe 1 is released, 

allowing the blood to flow back into syringe 1. The cycle is repeated until the 

required reduction in blood volume has been achieved. With all the blood in 

syringe1, tap B is turned again to close off the haemofilter and open access to the 

venous line. Tap A is turned to close off the heparin line and open the venous line. 

The filtered blood is then returned to the patient, again aiming for a 10 ml/min flow 

rate. The whole process can then begin again. 

Elastic bands of different strengths can be used to give different 

transmembrane pressures and therefore different filtration rates. The disadvantage 

of this technique is that the pressure generated depends on the extension of the 

elastic band and therefore on the position of the plunger of syringe 2. However this 

is not a serious disadvantage in a system such as this where the amount of 

ultrafiltrate obtained in each operating cycle is being measured manually anyway. 

The possibility of a breakage is also not a serious problem. It would not result in 

any serious harm to the apparatus or to the patient. The elastic band would simply 

have ~o be replaced. 

Heparin is infused into the apparatus via tap C, using a standard infusion 

pump. Other intravenous infusions can also be given via tap C. At the end of the 

treatment session, the blood that remains in the haemofilter can be flushed back 

into the patient by replacing it with saline infused via tap E. 

Three case reports of the system's use are given. The weights of the 

babies treated were 808 g, 630 g and 1140 g. In each case, the system achieved 

sufficient ultrafiltration and biochemical control of the blood plasma. Although each 
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of the babies died, this was not due to the failure of the system. Their renal failure 

was secondary to other more serious conditions. The system worked well in these 

cases. 

In developing the automated system, several improvements to the original 

manual apparatus were made. These are dealt with in chapter 4. 

2.8 Work of a Similar Nature 

The current project represents a totally new approach to the treatment of 

paediatric renal failure. An extensive literature search has failed to find any work 

based on the same principles. However, two systems were found that bear some 

superficial resemblance to the current work. 

In 1985, De Virgiliis 78 designed a dialysis system that used a 30 ml syringe 

as the blood pump (see figure 2.3). It was an otherwise conventional blood circuit 

that replaced the normal peristaltic pump with a syringe pump. The syringe was 

driven by a crank and rod mechanism. The type of motor used is not specified - but 

its speed could be controlled to give different blood flow rates. The blood is 

pumped in one direction around the circuit, with the aid of three tube clamps which 

open and close in time with the syringe pump. Several advantages are claimed for 

this system over a conventional design. The syringe pump allows the blood flow 

rate in the circuit to be more accurately determined than with a peristaltic pump. 

The author also claims that haemolysis of red blood cells is significantly reduced, 

although the data he quotes is rather vague. 

The Ariadne 1 was a new type of single needle dialysis system developed in 

Belgium in the 1980s 79 (see figure 2.4). It is similar to the current project in that 

blood flow in the dialyser is bi-directional. Blood is pumped from the patient through 

the dialyser into a collecting bag that is attached to a weigh scale. When the 

weight of blood in the bag reaches a pre-set level the roller pump reverses 

direction and the blood is pumped back through the dialyser and back into the 

patient. The machine was intended for home dialysis, designed to be compact and 

easy to use. Its use for ultrashort daily dialysis is described by Hombrouckx 80. This 

treatment regime involves dialysis sessions of only 1.5 hours 6 times weekly, as 

opposed to a more conventional regime of 4 hours 3 times weekly. The reasoning 

behind this is explained by the 'double pool' model of urea distribution in the body. 

Urea can be regarded as being contained in two separate pools, the extracellular 

and the intracellular. The extracellular pool is mainly the circulation. The 
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intracellular pool is the urea that is contained inside the cells of the body. During 

dialysis the urea concentration in the blood drops rapidly during the first hour of 

treatment. This results in a concentration gradient between the two pools. Urea 

diffuses from the intracellular space to the extracellular space. However this 

process is slow, and equilibrium is only achieved after several hours. So in the 

meantime the urea concentration in the blood is low and dialysis will be less 

efficient during the latter stages of a 4 hour treatment session. Therefore, better 

urea clearance will be obtained with more frequent but shorter dialysis sessions. 

2.9 Miscellaneous Literature 

Continuous haemodiafiltration is one of many different methods of renal 

replacement therapy in common use. In essence it involves the removal of fluid 

from the patient by ultrafiltration and the substitution of this fluid by the infusion of a 

suitable replacement fluid into the dialysis circuit, either before or after the 

haemofilter. The advantage of this treatment is that much larger clearances can be 

achieved than with conventional ultrafiltration and/or dialysis techniques. Patient 

access can be via an artery and a vein (CAVHD) or just a vein (CWHD). The use 

of this technique had been suggested in connection with the current project, and 

the feasibility of this was investigated. There are two major problems. The first is 

the accuracy needed in the preparation of the substitution fluid. Very small errors in 

the concentration of the various components of the fluid can lead to very large 

swings in patient biochemistry, causing the patient to become ill very quickly. The 

other problem is that of fluid delivery. The fluid has to be delivered at very precise 

volume flow rates, and the intravenous pumps currently available are not capable 

of this kind of accuracy 81,82 . Both piston type and peristaltic pumps are subject to 

the same problem. The inaccuracies reported are as high as 10 %. This would be 

completely unacceptable in a preterm baby. Another relevant observation has been 

made.by Kameneva 83. He reports that dilution of blood with substitution fluid leads 

to a significant increase in haemolysis. It appears that plasma proteins have a 

protective effect on red blood cells, and when the protein concentration is reduced 

the blood cell damage increases noticeably. In view of these problems it was 

decided not to pursue the idea of haemodiafiltration. 

A typical patient may need haemodialysis for up to one week. It is known 

that the performance of the haemofilter membrane degrades over time. In 

particular, protein builds up on the membrane surface, leading to a decrease in 
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permeability. The loss of efficiency has to be balanced against the inconvenience 

and increased risk of infection associated with a change of haemofilter. Schaeffer 

84 investigated this problem. His study showed no significant loss of performance in 

the first 72 hours of treatment. This would imply that only one change of filter would 

be necessary for a total treatment time of one week. 

Summary 

The relevant medical literature was presented in sections 2.1 and 2.2. This 

concentrated on paediatric renal failure and its treatment. Relevant engineering 

literature was reviewed in sections 2.3 to 2.6. The manual system that was the 

basis for the current project was reviewed in section 2.7. The literature search 

failed to find any evidence of similar systems to the one being developed. Systems 

bearing a superficial resemblance were described in section 2.8. Finally, section 

2.9 reviewed some miscellaneous literature that was considered relevant. 

Once the literature review was complete, the project could proceed to the 

specification stage. This is described in the next chapter. 
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Figure 2.1 Solute Concentration vs. Distance along Haemofilter 
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CHAPTER 3. SPECIFICATION OF PROTOTYPE SYSTEM 

Introduction 

At the start of the project, a specification for the automated system was 

drawn up in consultation with the clinical staff of the paediatric nephrology 

department at the Royal Victoria Infirmary in Newcastle. This is presented in detail 

here, with explanations where necessary. 

3.1 Extracorporeal Apparatus 

This must be designed so that the total blood containing volume (excluding 

syringes) is kept to an absolute minimum. 

The recirculation fraction of the apparatus must also be kept to a minimum. 

This is the percentage of the extracorporeal blood volume that passes through the 

haemofilter more than once. The higher the recirculation fraction is, the lower is the 

efficiency of the dialysis system. 

The apparatus must allow for the controlled delivery of other fluids such as 

heparin. Access must also be available to allow flushing of the apparatus with 

saline at the end of each treatment session, so that as much blood as possible is 

returned to the patient. 

3.2 Mechanical Apparatus 

It must be straightforward and quick to attach and remove the extracorporeal 

apparatus to/from the machine. 

The apparatus must be able to accommodate different sizes of haemofilter. 

The physical layout of the apparatus should be such that the venous line 

connecting the patient to the haemofiltration system can be as short as possible, to 

minimise the recirculation fraction and the total volume of the extracorporeal 

apparatus. 
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Noise emitted during normal operation should be kept to a minimum. 

The apparatus must be easy to clean to minimize the risk of infection to the patient. 

3.3 Blood Withdrawal and Return 

The system must be able to withdraw and return safely a measured volume of 

blood from the patient, to an accuracy of 0.1 ml. The minimum volume required is 

3 ml, and the maximum is 10 ml. 

The blood withdrawal and return system must mimic the procedure used by a 

clinician to access the patient's blood. The system must be able to sense 

blockages in the venous catheter and act accordingly. If 0.5 ml of plunger 

movement results in no blood being withdrawn, then the plunger should stop to 

allow time for the blockage to clear. If the blockage does not clear, then eventually 

the blood flow should be reversed, but no more than 0.5 ml of blood should be 

pushed back down the venous line. The system should be able to respond to 

blockages by withdrawing blood at a slower rate. 

Pressures generated in the venous line must be carefully monitored to prevent any 

injury to the patient. 

The venous line must be monitored to prevent the possibly of an air embolism 

occurring. 

The system should aim to withdraw and return blood at a rate of 10 ml/min. The 

upper limit for blood return rate is based on the assumption that a 50 % increase in 

total cardiac blood flow is acceptable. For a 1 kg baby, the total cardiac output is 

appro?,imately 60 mllmin. So a safe rate of blood return would be 30 mllmin. 

Therefore a specified rate of 10 mllmin is well below the safety limit. 

3.4 Ultrafiltration 

The system must be able to supply a range of ultrafiltration rates from 3 mllh up to 

15 mllh, at an accuracy of ±5 %. 
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The blood flow rate through the haemofilter should be 10 ml/min during 

haemofiltration. 

Each volume of blood withdrawn from the patient should be haemofiltered for 

approximately 4 minutes before being returned to the patient. 

Back filtration (i.e. the movement of filtrate back into the blood) must be prevented 

from occurring at all times. 

System pressure should be monitored during ultrafiltration so that any blockages in 

the haemofilter can be detected and dealt with. 

3.5 User Interface and Control System 

The user interface should be easy to operate. 

The main control parameters will be working blood volume and ultrafiltration rate. 

Working blood volume can be set at the beginning of each treatment session and 

does not need to be changed during the session. However it should be possible to 

change the ultrafiltration rate easily during the treatment session. 

The user interface should perform a standard calculation of working blood volume 

based on the weight of the baby entered by the operator. This calculation is based 

on the assumption that it is safe to withdraw 6 % of the baby's total blood volume. 

The total blood volume is calculated from the body weight using a figure of 85 

ml/kg for the blood volume to body weight ratio. 

The user interface should provide information on the current treatment session. 

This includes the elapsed time since the session began, as well as a running total 

of the amount of filtrate removed. 

It should also provide the same information about previous treatment sessions. 

3.6 Safety Requirements 

Detection of an air bubble in the venous line must result in the immediate halting of 

the system and the sounding of an audible alarm. 
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All system faults must be reported by an audible alarm. 

All faults must result in the system stopping in a 'fail safe' condition. 

3.7 Other Requirements 

The system should be able to operate continuously for periods of up to one week. 

Continuous haemofiltration is preferable because this minimises variations in the 

blood biochemistry of the patient. 

The system should produce no electromagnetic interference that could affect other 

equipment being used to treat the patient. 

Summary 

The clinical requirements of the patient with acute renal failure define much 

of the specification presented above, in particular the sections dealing with the 

extracorporeal apparatus, blood withdrawal/return and ultrafiltration. Most of the 

requirements in the mechanical apparatus section arise from the needs of the 

clinical staff who would operate the system. This also applies to the user interface 

and control system section. 

Once the specification had been firmly established, initial design work could 

begin, based on this specification. This is the subject of the next chapter. 
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CHAPTER 4. INITIAL DESIGN WORK 

Introduction 

This chapter deals with the major design decisions that were made at the 

start of the design process. These fell into three main categories, and are detailed 

below. 

4.1 Design of Extracorporeal Apparatus 

The design of the clinical apparatus was considered in detail, to see if any 

fundamental changes could be made to improve it. However, it was decided that 

the basic arrangement of a haemofilter with a syringe at each end could not be 

improved upon. Any other arrangement inevitably leads to an increase in the total 

blood volume of the system, and this has to be avoided at all costs, as required by 

the specification. 

It would be possible to dispense with the 3 way taps that control the flow of 

blood, and replace these with a solenoid driven tube clamp system. Figure 4.1 

illustrates a suitable layout, indicating the positions where the solenoid clamps 

would need to be placed. One advantage of this system is that the disposable 

element is simply a piece of tubing, rather than a 3 way tap, thereby reducing the 

cost of the disposable apparatus. However, a big disadvantage of this arrangement 

is that the system would be more difficult to operate manually. As detailed in the 

specification, manual operation is required at the beginning and end of a treatment 

session. Also, it proved difficult to obtain suitable solenoids commercially. Because 

of these two problems it was decided to keep the 3 way taps. 

The original apparatus functioned well in the clinical tests, but it was 

decided that several improvements could still be made. The haemofilter used was 

an Amicon Minifilter with a blood priming volume of 6 ml. A filter with a much 

smaller priming volume (3.5 ml) became available (Hospal Miniflow 10), so it was 

decided to use this in preference to the Amicon product. The blood priming volume 

of the extracorporeal apparatus is probably the single most important parameter of 

the whole system, so any reduction in this is a significant improvement in the 

system. The volume of the 3 way taps and lines is 0.34 ml, so the new filter 
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represents a 40 % reduction in the priming volume (ignoring the volume contained 

in the syringes). 

The two syringes were positioned on the same side of the haemofilter to 

reduce the overall size of the machine. The original configuration of the three 

moving taps A, Band C (see figure 1.1) was reduced to two with no loss of 

functionality, and a reduction in circuit volume. This reduces the mechanical 

actuation requirements significantly. A pressure transducer was added to allow 

pressure monitoring within the apparatus. The final configuration shown in figure 

4.2 was arrived at. 

4.2 Mechanical Actuation of Syringes 

Several methods of driving the syringes were considered. There are two 

main alternatives - a crank and connecting rod or a lead screw system. Either 

method is feasible but the lead screw is less complex mechanically and is the 

obvious choice for this application. The lead screw would be driven through a 

gearbox with an appropriate reduction ratio - the ratio would obviously be chosen in 

combination with the choice of the pitch of the lead screw. 

Figure 4.3 shows one possible design employing a lead screw system. Here 

the syringes are mounted on opposite sides of the haemofilter in a 'horizontally 

opposed' configuration. Since the motion required during the filtration phase is 

reciprocal, this configuration allows both syringes to be driven by a single motor. 

However, at certain times during the operating cycle the syringes need to be driven 

independently, so this is not a practical solution. 

Figure 4.4 illustrates another possible design. The right hand syringe is 

driven by a lead screw and motor. The elastic band on the left hand syringe of the 

original system is replaced by a spring. 

The transmembrane pressure (i.e. the pressure difference between the 

blood .and the filtrate in the haemofilter) might be fairly hard to control with this 

design. This is because the spring will not exert a constant force on the syringe 

plunger - so as the blood enters the left hand syringe the pressure in that syringe 

will increase linearly (force proportional to extension in a spring) so the absolute 

pressure of the blood will not be constant throughout the passage of the stroke 

volume through the haemofilter. As transmembrane pressure is a critical 

parameter in the filtering process this is a serious disadvantage. 
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It might be possible to overcome this problem by using a spring that is a lot 

longer than the stroke length of the syringe. Then the force exerted by the spring 

would be approximately constant throughout the travel of the syringe plunger. 

Figure 4.5 shows a more advanced design. Here the spring/elastic band 

idea on the left hand syringe has been dispensed with altogether. Here a lead 

screw/motor combination drives both syringes. 

Replacing the spring driven plunger with a motor driven one allows for 

greater flexibility in the control of the blood flow and pressure. 

The pressure in the blood circuit, and therefore the ultrafiltration rate, could 

be directly controlled by the two syringe drivers (see Figure 4.6 ). At the beginning 

of the filtration phase, syringe A drives down while plunger B remains stationary 

until the required TMP has been reached. The two plungers then follow each other 

precisely as the blood is pumped through the haemofilter, thereby maintaining a 

constant TMP. This pressure would need to be constantly monitored and small 

adjustments made to the relative motion of the two syringes to maintain a constant 

pressure. The control algorithm would be fairly straightforward as at the end of 

each pumping cycle the plungers would swap 'logical places' and plunger A would 

then follow plunger B. 

After much consideration this was the configuration that was settled upon. 

4.3 Control System 

Various control strategies were considered. The main choice was between 

PC based control and a more dedicated system, e.g. a programmable logic 

controller. Eventually PC control using a data acquisition card was chosen. This 

has two main advantages over a PLC based system. 

A PC system is flexible and powerful, as a high level programming language can 

be used to provide control. Also, a graphical user interface can be used to control 

the m~chine, greatly increasing the ease of operation. 

4.3.1 Control Hardware 

Once the PC had been chosen as the platform for the control system, it was 

necessary to select a suitable data acquisition board to provide the interface 

between the machine and the computer. Boards are specified mainly in terms of 

the number of digital and analogue data lines that they provide. 
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The requirements of the board were as follows: 

Digital Output Lines Number of lines 

2 Stepper Motors (each motor has 1 clock and 1 direction line) 4 

2 3 Way Tap Drivers (2 lines for each motor - forward and reverse) 4 

Total: 8 

Digital Input Lines 

2 Stepper Motor position microswitches 2 

4ph~od~ectoffi 4 

Total: 6 

Analogue Input Lines 

Pressure Transducer 1 

Analogue Output Lines 

None 

So, the total requirement was for 8 digital output lines, 6 digital input lines and 1 

analogue input line. Boards from Keithley and National Instruments were 

considered. The National Instruments Lab-PC-1200AI was chosen as the lowest 

cost board that could fulfil the requirements. This is a relatively slow ISA device. 

Howe,ver, it is easily fast enough for this application, as there is no need for high 

rates of data transfer. It has 24 digital lines that can be configured as either input or 

output, so there are 10 spare lines. It has 8 analogue input lines. There is no 

analogue output capability, which makes it less expensive than the standard 1200 

card. 

When the project began, a Pentium 233 MHz PC with 32Mb RAM was 

already available. The data acquisition card was installed in this computer. It was 

used throughout the development of the prototype, and was found to have 
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sufficient performance for the application. In the final prototype system, a different 

PC was used, with very similar specification, apart from a slightly slower processor 

speed of 200 MHz. 

4.3.2 Control Software 

The National Instruments card comes complete with its own driver software, 

NI-OAQ. This software controls all the low level functions of the card. Another level 

of software is needed above this, so that a control system and user interface can 

be written. Two National Instruments products were suitable candidates, LabView 

and LabWindows/CVI. LabView has a more graphical approach to programming, 

whereas LabWindows is based on C. Labwindows/CVI was preferred because of 

the flexibility and degree of control that programming in C gives. 

It is a Windows based programming package that contains several function 

libraries that help to speed up program development. A graphical user interface 

can be easily constructed using a menu based editor. This interface can then be 

linked to underlying code using 'callback' functions, which can be attached to each 

object on the interface. The underlying code (the control software) is programmed 

in C. The package is primarily designed for the production of virtual instrumentation 

systems. 

Summary 

The design alternatives that were considered are summarised in tables 4.1, 

4.2 and 4.3. Each table is a decision matrix that attempts to quantify the design 

options that were considered. The first row contains relevant design criteria, 

together with a number between 1 and 10 to indicate their relative importance in 

the decision making process. Each design alternative is then assigned a number 

(also petween 1 and 10) to indicate how well it satisfies a particular criterion. This 

number is then multiplied by the relative importance of the criterion, and the results 

are summed across the columns to give the totals in the right hand column. This 

final figure gives an indication of the relative merits of each design alternative. 

Once the major design decisions had been made, the detailed design of the 

system could begin. This commenced with the mechanical and electromechanical 

systems, which is the subject of chapter 5. 

51 



Ease of Commercial Simplicity Quietness of Size of Cost saving for TOTAL 
manual availability of design operation device disposable 
operation items 

(8) (8) (5) (5) (4) (2) 

-

Solenoid 
driven tube 2 1 7 3 7 6 114 
clamp 

Servomotor 
3 way tap 8 7 3 6 4 4 189 
driver 

, 
- - -- ...... - -- - _ ... -

Table 4.1 Blood Flow Control 

Inherent Reliability Simplicity Cost Development Simplicity TOTAL 
accuracy of control saving time of design 

algorithm 
(8) (8) (6) (4) (4) (4) 

Lead screw 6 5 6 6 6 8 204 

Crank & rod 4 4 4 2 2 4 120 

- ..... _ .... _- - .. --~ 

Table 4.2 Syringe Actuation 

Functionality Accuracy Control Reliability Simplicity Cost TOTAL 
ofTMP of design Saving 

(8) (8) (8) (6) (5) (5) 

1 Motor 2 7 2 7 8 8 210 

1 Motor 
5 4 5 5 6 8 212 + spring 

2 Motors 7 7 8 4 4 5 245 

-----

Table 4.3 Syringe Driver Design 
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CHAPTER 5. DESIGN OF MECHANICAL AND 

ELECTROMECHANICAL COMPONENTS 

Introduction 

This chapter addresses two main areas of design. the syringe drivers and 

the three way tap drivers. These are both very important parts of the system. and 

their design is considered in detail below. 

5.1 Syringe Actuation 

The first step in the design process for syringe actuation was to decide on 

the type of motor to be used. The choice for this is between a stepper motor. a 

conventional d.c. motor and a brushless d.c. motor. One potential advantage of a 

stepper motor is the possibility that a position feedback system could be dispensed 

with. so the control system could be less complex. This is discussed further in 

section 5.1.5. However. this type of design can lead to problems if the motor is 

expected to drive large loads - the motor can miss a step. so positional accuracy is 

lost. A d.c. motor with position sensing feedback does not suffer from this problem. 

A brush less d.c. motor has further advantages. It requires less maintenance. as 

there are no brushes to wear out. Its operation will be cleaner as no brush debris 

will be produced. 

However. the stepper motor has the overwhelming advantage of requiring 

a simpler control system than the other two. Being in some respects a 'digital' 

device. it lends itself very well to computer control. 

Having decided on the type of motor to be used. the next step was to 

calculate the specification needed from the motor/gearbox/lead screw 

combination. The requirements must be calculated for the 2 main phases of 

operation of the system. 

5.1.1 Filtration Phase Calculations 

Referring to the specification in chapter 3. the blood flow rate through the· 

haemofilter is fixed at 10 mllmin under all operating conditions. The maximum 

required ultrafiltration rate is 15 mllh. or 0.25 mllmin. Figure 5.1 (reproduced from 
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the data sheet for the Hospal Miniflow 10 haemofilter) can now be used to 

estimate the transmembrane pressure required. Extrapolating from this graph, a 

figure of 36 mm Hg is obtained. The data sheet also gives values for the blood 

pressure drop (~P) along the haemofilter. A figure of 61 mm Hg is quoted for a 

TMP of 50 mm Hg and a blood flow rate (as) of 15 mllmin. As the variation in ~P 

with TMP is very small it can be ignored for these purposes. The Pouseille 

formula for laminar flow in a pipe (see section 5.1.2) implies a linear relationship 

between ~P and as. Therefore, ~P at a blood flow rate of 10 mllmin can be 

calculated: 

10 
~P=61x-~41 mm Hg 

15 

Transmembrane pressure is defined as follows: 

TMP = P1+P2 
2 +Pn (5.1) 

Where P1 and P2 are the pressures at each end of the haemofilter, and Pn is the 

pressure applied to the ultrafiltration outlet. In this case Pn can be assumed to be 

zero. So, since ~P = P1 - P2, the values of P1 and P2 can be calculated. 

P1 = 15.5 mm Hg 

P2 = 56.5 mm Hg 

So, the maximum pressure that the motor needs to be able to exert during the 

filtration phase is 56.5 mm Hg. 

5.1.2 Blood Withdrawal and Return Phase Calculations 

The design calculations were based on a typical catheter that might be 

used with the system. This is a Broviac 6.6 Fr Single Lumen Venous Catheter. 

The pressure needed to access the blood through this catheter can be roughly 

calculated using the Pouseille formula for laminar flow in a pipe: 
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~P = 128Jl.LQ 
nd 

where Jl = viscosity of the fluid 

L = length of pipe 

Q = volume flow rate 

d = diameter of pipe 

(5.2) 

It should be noted that the pressure varies as the fourth power of the diameter of 

the tube. This equation applies to Newtonian fluids, i.e. those fluids where the 

viscosity does not vary with shear rate. Blood is not a Newtonian fluid - it is shear 

thinning. This means that the viscosity goes down as the shear rate goes up. So a 

value calculated by the Pouseille formula should be an overestimate. For these 

calculations it is better to arrive at a figure that is too high rather than one that is 

too low. The variation in the viscosity of blood with shear rate is not that high, so 

the Pouseille formula will provide a useful first approximation to the pressure 

needed. Blood viscosity is a very important parameter in the pressure 

calculations. It has a large influence on the power needed from the stepper 

motors. In blood it is a fairly complex function of many different parameters - e.g. 

rate of shear, temperature and haematocrit. These calculations assume a 

constant dynamic viscosity of 5.46 x 10-3 Pa s. 86 This is the highest value quoted 

in this work, being the value measured at a shear rate of 1 S-1. 

The Broviac Catheter has an internal diameter of 1 mm. Assuming a 

0.1 m length of tubing is placed inside the patient. the overall length of the 

catheter is 45 cm. The blood flow rate required is 10 ml/min (the same as in the 

filtration phase). 

Therefore, 

Jl = 5.46 x 10-3 Pa s 

L = 0.45 m 

Q = 10 ml/min :::;: 0.17 mils = 0.17 x 10-6 m3/s 

d = 1 x 10 -3 m 
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So, 

ilP = 128J.!LQ 
7t d4 = 

128 x5.46x10-
3 

x0.45xO.17x10-O = 1.7 x104N/m2 

3. 14 x ( 1 x 1 0 -3 r 

Converting to mm Hg, the pressure required is 130 mm Hg. This is over twice as 

much as that required during the filtration phase. So, the maximum pressure that 

needs to be generated inside the syringe by the linear actuator is approximately 

130 mm Hg. 

The force generated on the syringe plunger can now be calculated: 

For a 10 ml syringe: 

-3 
radius of plunger = 7.0 mm = 7.0 x 10 m 

Pressure = 1.7 x 104 N/m2 

~ Force = pA = P x 7t~ = 2.62 N (5.3) 

The force needed to overcome friction between the plunger and the syringe must 

be added to this figure. This was found by experiment to be approximately 1 N for 

a 10 ml syringe. So the total force required is roughly 3.6 N. It must be 

remembered that these pressure calculations do not take into account any 

blockages in the vascular access line - extra force will be needed to overcome 

these blockages. 

The speed of the plunger can also be calculated for a flow rate of 10 ml/min: 

Q = x x 7tr2 

where Q = volume flow rate = 0.17 x 10-6 m3/s 

X = speed of plunger 

r = radius of syringe = 7.0 x 10-3 m 

(5.4) 

x = ~ _ 0.17 x 10-0 
7tr2 - 3.14x(7.0x10-3f =1.1x10-

3

m/s (5.5) 
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So the speed of the plunger is 1.1 mm/s. 

The parameters for the lead screw system have thus been established. It must 

deliver at least a force of 3.6 N at a speed of 1.1 mm/s. 

Formulae can be easily derived to relate force and linear velocity to torque 

and angular velocity in a lead screw system. 

For angular velocity: 

. 2nx e = -
L 

where L = lead screw pitch (in mm) 

x = linear velocity (in mm/s) 

e = angular velocity (in rad/s) 

Also, I 
. I· 60x 

Angu ar speed In rev min = L 

An energy method can be used to relate force and torque: 

(5.6) 

(5.7) 

work done on piston of syringe = work done by torque on lead screw 

=> Fx = Te 

Considering a single revolution of the lead screw, 

e = 2n 

and x = L (pitch of lead screw) 

FL 
=> T = 2n 

Therefore a lead screw pitch of 1 mm would give a speed of 

60 x 1.1 . . . 
1 = 66 rev I min for a linear velocIty of 1.1 mm/s 
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3.6 x 0.001 
and the torque would be 2n = 0.58 mN m for a force of 3.6 N. 

The efficiency of the gearbox and lead screw combination needs to be taken into 

account - once this has been done a final figure for the torque required from the 

motor can be arrived at. 

5.1.3 Motor, Gearbox and Lead Screw Selection 

The above calculations are based on the final specification that was 

reached for the prototype system. Selection of the linear actuator components was 

based on a different initial specification. The main difference was the internal 

diameter of the catheter - this was 0.5 mm, not 1 mm. The figures originally used 

were 42.1 Nand 3.25 mm/s. 

Initially the lead screw, motor and gearbox were considered separately. 

A selection of anti-backlash lead screw nuts were looked at. Positional accuracy is 

important in the syringe driver, so an anti-backlash nut seemed an obvious choice. 

After considering products from HPC drives and the PIC corporation, the choice 

was narrowed down to a PIC PK6000 type. This has a maximum load of 10 kg. A 

disadvantage of this product is its size (50 mm long). Several suitable motors and 

gearboxes were available. However, the cost of buying separate components and 

assembling them was considerably greater than the cost of a ready made unit. 

The choice of ready made units was narrowed down to two - the Portescap 

P310 - L 10 combination and the RS standard linear actuator. The Portescap 

product was in many ways preferable, but the delivery time was too long, so it was 

decided to use the RS product. This has a maximum starting force of 125 N, a top 

speed of 9.5 mm/s, and an increment of 0.025 mm. The price (£79) was also far 

better than anything else considered. 

5.1.4 Linear Actuator Mechanism 

A system was now needed that would hold the syringe rigidly in place and 

transmit the force from the actuator to the syringe plunger effectively, bearing in 

mind that sideways forces on the actuator lead screw were to be kept to a 

minimum. Figures 5.2 to 5.4 illustrate 3 possible designs. 

The first diagram illustrates the use of two sets of bearings and guide rods, 
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and an end to end arrangement of the syringe and lead screw. This arrangement 

provides the minimum of lateral forces on the lead screw and stepper motor. 

However, this arrangement takes up a lot of space, increasing the overall size of 

the machine. Figures 5.3 and 5.4 show two possible arrangements where the lead 

screw, syringe and guide rod are all placed side by side, thus reducing the size of 

the mechanism. An analysis of the lateral forces in the mechanism shows that the 

arrangement of figure 5.4 produces the least strain on the stepper motor and lead 

screw. So this was the configuration that was chosen. 

The final design is shown in figure 5.5. The basis of the design is a linear 

bearing running along a track rod. This minimises the lateral forces on the lead 

screw. The syringe plunger is gripped by a holding device which consists of three 

steel rods that slide over the top flange of the plunger. This device slides back and 

forth on a V shaped runner so that the syringe can be easily removed from the 

machine. 

The stepper motor produces a substantial maximum force - 125 N. This is 

enough to cause serious damage to the mechanism if a control failure led to the 

mechanism being driven beyond its limits of travel. This problem was solved by 

placing microswitches at each of the limits of travel. The two switches were wired 

in series with the power supply to the stepper motors, in a normally closed 

configuration. So if the travel limits are exceeded in either direction the power to 

the stepper motor is cut off, preventing any mechanical damage. The switch at the 

bottom end of the plunger travel is positioned so that it does not affect the 

operation of the control microswitch. 

5.1.5 Positional Feedback 

The selection of the RS linear actuator limited the choice of transducers that 

could be used with the motor. Rotary encoders cannot be attached to this type of 

motor. So the choice was limited to linear encoders. Various linear sensors were 

considered, but all were found to be unsuitable. The plunger moves back and forth 

over a distance of approximately 6 cm - no commercially available sensor could be 

found that could operate over this length of travel. 

The problem was solved by adopting a partially open loop approach to the 

positional control of the syringe driver mechanism. The control software counts 

each individual clock pulse that is sent to the stepper motor. So the control system 

can determine the plunger position to an accuracy of 0.025 mm. This of course 
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assumes that the stepper motor does not miss any steps. This problem is dealt 

with by placing a microswitch at the bottom end of the plunger travel. So if any 

steps are missed, the control software can reset itself each time the plunger 

reaches the bottom of the barrel and regain correct positional data. This 

'intermittent' positional feedback was found to work very well in practise. By 

monitoring the number of clock pulses sent out and the microswitch states coming 

back the software can keep very reliable control of the stepper motors and deal 

with any possible failure mode. It also has the advantages of being cheap and easy 

to implement. 

5.1.6 Syringe Barrel Holders 

A mechanism was needed that would hold the syringe barrels firmly in 

place, but allow them to be removed quickly as needed. Initially this was made 

from plastic pipe fittings. 16 mm retaining clips were used to hold the barrel in 

place on either side of the barrel flange. A spring loaded retaining clip was also 

made from a piece of pipe fitting. The pipe fittings were mounted on an aluminium 

block to provide the correct height for the syringe relative to the linear actuator 

mechanism. 

Although this design was sufficient for the testing stage of the prototype, its 

'home made' appearance was considered unsuitable for clinical use. The holder 

was later redesigned and made entirely from aluminium (see chapter 7). 

5.2 Three Way Tap Drivers 

5.2.1 Actuation 

Originally it was proposed to do away with the 3 way taps altogether, and 

use solenoid tube clamps instead to control the flow of blood. However, suitable 

solenoids were not readily available, so it was decided to pursue direct driving of 

the existing 3 way taps. 

Several makes of 3 way tap were available, any of which could be used in 

the system. The Connecta TH type was chosen (see fig 5.6), as it had the smallest 

plastic to plastic bearing surface area, minimising the torque required to turn it. 

The original specification called for the driver to be able to position the tap in 
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3 discrete positions spaced at 90° intervals, to an accuracy of a few degrees. 

Given this requirement, a DC servo motor was the obvious choice of actuator. 

Rotary solenoids were briefly considered as well, but found to be not feasible, as a 

suitable type of device was not commercially available. A reduction gearbox with a 

fairly high ratio was also an obvious choice. This was for two reasons. The first 

was that there was no need for fast movement between tap positions. The second 

was that a high reduction ratio reduces the problems associated with overshoot of 

the target position. 

Servo motors of the type used in radio control models provided a suitable 

ready made motor and gearbox combination. They were found to produce 

sufficient torque to easily turn the 3 way tap (Futaba model S3001 was the type 

initially used). The PWM circuitry inside the servo motor was bypassed - the motor 

was connected directly to the external control circuitry. 

5.2.2. Detection 

Microswitches were considered for providing positional feedback. They have 

the advantage of simplicity, but the disadvantage of lack of reliability. It was 

decided to use solid state detectors, namely infrared transmitters and 

photodetectors. A device was chosen that has an infrared diode and a 

phototransistor mounted in the same plastic moulding, with a 3 mm gap between 

the devices (see fig 5.7). This device can detect a slot cut in the edge of an 

aluminium disc that is rotating in the gap between the diode and the transistor. 

The initial design for the position detection system is shown in figure 5.8. 

The photodetectors are positioned 90° apart, and there are two slots cut in the 

edge of the aluminium disc, also 90° apart. This arrangement allows 3 discrete 

positions to be detected, at 90° intervals. However, when the control programming 

was done, it was found that the system was very unreliable. The problem was that 

the detectors do not change state simultaneously when both slots are rotating 

underneath them (position 2 in figure 5.8). The detector state at position 2 could be 

momentarily the same as that at positions 1 or 3. So a simple control program 

cannot be used to provide reliable control. 

The problem was solved by changing the specification. It was discovered. 

that 3 distinct tap positions were not in fact needed. 2 would be sufficient with no 

loss of functionality in the blood flow control. The number of slots in the disc was 
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reduced to one, so that 2 positions 90° apart could be reliably detected. 

5.2.3 Connection between Driver and Tap 

It was important that the connection was inflexible but also easy to engage 

and disengage. This is so that the clinical apparatus can be easily attached and 

removed, as required by the specification. This was achieved using a 3 mm thick 

steel disc. The exact shape of the turning handles on the 3 way tap (see figure 5.6) 

were cut into the disc using a CAM wire eroder machine. The handles of the 3 way 

tap could then be push fitted into the steel disc. 

5.2.4 Initial Design of System 

The initial design for the tap driver system is shown in figure 5.9. The tap 

driving disc is mounted on top of the optical sensor disc. The photodetectors are 

mounted on matrix board. 

5.2.5 Three Way Tap Retainers 

The clinical apparatus is not particularly rigid, and it would be fairly easy for 

the 3 way taps to work loose from the driving discs during operation. This had to 

be avoided at all costs, as this would be extremely unsafe. A device was needed to 

hold the taps securely in place during operation, but also that would still allow the 

clinical apparatus to be easily removed. The design is shown in figure 5.10. It 

consists of a spring loaded aluminium block that can be tightened down onto 

another base block. The shape of the body of the 3 way tap is milled into the 

underside of the block, so that it fits neatly over the tap. The tap body is also 

prevented from rotating, thus increasing the accuracy of the tap target positions 

and reducing the mechanical strain on the clinical apparatus. 

Summary 

The requirements of the syringe drivers were analysed for both the filtration 

and blood withdrawal/return phases of the operating cycle. This allowed a suitable 

linear actuator to be selected. The mechanism for driving the syringes was then 
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designed. 

The specification for the 3 way tap drivers was more straightforward. This 

was based on a measurement of the torque required to turn the 3 way tap, the 

need for accuracy in positional control, and the physical connection between driver 

and tap. 

The design of the electronics that provide the interface between the 

electromechanical components and the computer system is the subject of the next 

chapter. 
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CHAPTER 6. DESIGN OF THE INTERFACE ELECTRONICS 

Introduction 

The electronic circuitry needed to interface the various sensors and 

transducers to the control system is the subject of this chapter. The power supply 

is also dealt with in section 6.5. 

6.1 Syringe Drivers 

6.1.1 Stepper Motor Drive Boards 

The torque required from the stepper motors is quite high. However, the 

speed needed is quite low. In chapter 5 it was shown that the linear velocity 

needed from the actuator is 1.1 mm/s. Each step is 0.025 mm long so this speed 

corresponds to 44 steps/so 

There is no need for good dynamic performance (rapid acceleration or 

deceleration). In view of all this it was decided that sophisticated (and therefore 

expensive) drive electronics were unnecessary. An RS unipolar drive board (stock 

no. 217-3611) was chosen. There was no need for controller or oscillator circuitry 

as the clock pulses were to be produced in the software. 

6.1.2 Stepper Motor Series Resistors 

The dynamic performance of a stepper motor being driven from this type of 

board is greatly increased by the addition of resistance in series with the motor 

coils. This is because series resistance reduces the time constant (L/R) of the coil 

circuit, thereby reducing the current rise time and increasing the available torque. 

The series resistance needed can be calculated using this ohm's law formula: 

R = VS-VM 
1M 

where Vs = Supply voltage 

VM = Rated motor winding voltage 

1M = Rated motor winding current 
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The motor and drive board were to be run from a 15 V supply. The rated voltage 

was 12 V and the resistance per phase 25 n. This gives a current per phase of 

0.48 A. 

So, 

15-12 =6.25 n 
R = 0.48 

And the power dissipated in each resistance = 3 V X 0.48 A = 1.44 W. 

The 6.25 n resistance was made up of 4 smaller preferred value high power 

resistors in series. Figure 6.1 shows how the resistors are connected to the motor 

coils. 

6.1.3 5 V - 12 V Conversion Circuitry 

The clock and direction inputs to the stepper motor drive board require a 

12 V logic signal. The outputs from the data acquisition board use the normal TTL 

5 V system. It was necessary to provide some sort of interface between these two 

systems. A simple transistor switch was used. The circuit diagram is shown in 

figure 6.2. The base bias resistor was chosen as the highest value that would still 

saturate the transistor, to minimize the load on the DAQ board output. R2 was 

chosen to provide the optimum voltage swing between the on and off states. The 

circuit acts as an inverter - a 5 V input signal produces a 0 V output, and a 0 V 

input produces a 12 V output. 4 such circuits were needed, to drive the clock and 

direction inputs on the two stepper motor drive boards. 

6.1.4 Position Feedback Microswitch Circuits 

At the initial design stage it was thought necessary to provide some signal 

conditioning for the syringe driver microswitches. A standard schmitt trigger circuit 

was used, shown in figure 6.3. This circuit eliminates the effect of contact bounce in 

the microswitch, providing a smooth transition between logic levels. However, the 

algorithm that was eventually used (see chapter 8) to control the movement of the 

syringe plungers made this circuit redundant. It is included here for completeness. 
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6.1.5 Power Cut Off Microswitches 

These were discussed in chapter 5. Figure 6.1 shows how the 

microswitches were wired into the power supply lead from the stepper motor drive 

board to the motor itself. 

6.2 Three Way Tap Drivers 

6.2.1 Motor Drive Circuit 

It would be possible to drive the 3 way taps with a motor that only turned in 

one direction, since there are no limit stops on the taps. The taps must turn 

between 2 positions 900 apart. So movement between the 2 positions would 

involve either a 900 movement or a 2700 movement, depending on the starting 

position. The speed of rotation is fairly slow because of the high ratio of the 

gearbox, so a 2700 movement represents several seconds' delay in obtaining the 

target position. While this is not of critical importance, it does represent a slight 

reduction in the efficiency of the machine. Balanced against this is the much 

simpler circuit that can be used to drive the motor. A high power transistor switch 

can be used, the transistor being turned on and off by the TTL logic signal from 

the DAQ card connected to the base. 

Eventually it was decided to use bidirectional control. This was partly for the 

reasons outlined above, and partly because the servos that were used had limit 

stops built into the casing. 

Several different circuit ideas were considered. The first is illustrated in 

figure 6.4. The 2 inputs from the DAQ card would carry the logic codes for the 

desired servo positions, e.g. 10 for one position and 01 for the other. Positional 

feedback would then be provided by a combinational logic circuit which would send 

out the appropriate on/off and direction signals to the motor. Such a circuit would 

take control of position away from software and put it into hardware. A Karnaugh 

map was drawn up to see what logic would be needed to implement this circuit. 

This proved to be quite complex, making the idea impractical. 

The decision was made to control position through the computer program, 

to make the circuitry simpler. This separates the actuator and sensor parts of the 

system. 

77 



Another idea is shown in figure 6.S. Here a TTL signal switches the motor 

on and off via TR2. A direction signal is applied to TR1, which switches the relay. 

The relay controls a set of double pole, double throw contacts, which reverse the 

direction of the voltage applied to the motor. This circuit has the advantage of 

simplicity, but the disadvantage of reduced reliability. This is because the relay 

introduces a mechanical element to the system. 

A more reliable circuit is shown in figure 6.6. Here 4 power transistors are 

connected in a bridge arrangement. When TR 1 and TR4 are switched on and TR2 

and TR3 are switched off, current will flow through the motor from left to right. 

When TR2 and TR3 are switched on, the current will flow from right to left, 

providing directional control. 

An even better circuit is shown in figure 6.7, based on the same idea as the 

previous circuit. This is the circuit that was chosen for the application. It gives 

antiC\ockwise and clockwise movement at constant speed under the control of the 

two digital signal lines A and B. The L272M is a power operational amplifier which 

is capable of driving a small DC motor directly, having a maximum output current of 

1A. The circuit works on an open loop principle, and since there is no feedback the 

gain of the amplifiers is very high. The inverting inputs of both op amps are held at 

a constant 2.S V by the potential dividers. A logic 1 (S V) signal at the non inverting 

input will result in the output going fully positive (Le. to the supply voltage). A logic 

o at the same input will make the output go to 0 V. So if the inputs are both at the 

same logic level, the motor will be switched off. If input A goes high, and input B 

goes low, then S V will appear on the left hand side of the motor, and 0 V on the 

right hand side, so the motor will run. If the logic levels are reversed, Le. input A 

goes low and input B goes high, the direction of the voltage across the motor will 

be reversed, so it will run in the opposite direction. The diodes protect the outputs 

of the op amps from any back e.m.f. effects generated by the motor. 

6.2.2 Infrared Detectors 

The interface circuits for the infrared detectors were straightforward to 

design. The circuit diagrams are shown in figure 6.B. Again the output from the 

detector is a TTL compatible logic signal. The circuit has an inverting action. The 

output is low when the infrared beam is shining on the phototransistor and high 

when the beam is interrupted. The series resistor for the infrared diodes was 

calculated as follows. Each diode passes a current of 60 mA when forward biased 
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and the voltage drop across it is 1.5 V. With a 5 V supply the voltage drop across 

the resistor is therefore 3.5 V and the resistor value is given by: 

V R =__ 3.5 
I - 60 x 1 0-" ~ 58 0 (6.2) 

The nearest preferred value to this is 66 O. Combining all 4 diodes in parallel 

requires a resistance of 66/4 = 16.5 O. The total current is 240 mA, so the power 

requirement is: 

P = 12R = (0.240)2 x 16.5 = 0.95 W (6.3) 

This requirement was met by using 2 330 0.5 W resistors in parallel. 

The value of the series resistor for the phototransistor was found by 

experiment. A value of 3.3 kO was found to give the best combination of voltage 

output levels for logic 0 and logic 1. 

6.3 Pressure Transducer Amplifier 

A standard clinical pressure transducer was selected for pressure sensing 

inside the apparatus - an Abbott Transpac IV monitoring kit. This is luer terminated 

so it can be easily incorporated into the existing apparatus. It has an operating 

pressure range of -50 to 300 mm Hg, which is more than sufficient for this 

application. It is a piezoresistive device, connected as part of a bridge, so there are 

4 electrical connections to the transducer. The output voltage is very small, 5 

'tlVNlmm Hg, so some amplification of the signal is needed before it can be fed to 

the analogue input of the DAQ card. This is provided by the differential amplifier 

circuit shown in figure 6.9. This configuration is particularly suitable for a bridge 

transducer because the circuit amplifies the difference between the two voltages, 

Va and Vb. 

A precision instrumentation operational amplifier type OP184 was chosen 

for the circuit. This is one of the few precision devices that can operate from a 

single voltage power supply. This is a big advantage, as it simplifies the overall' 

power supply requirements of the machine. 

The gain of the circuit had to be determined with reference to the input 
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requirements of the DAQ card. The analogue inputs can be configured to be 

bipolar (reading both positive and negative voltages) or unipolar (reading just 

positive voltages). With a single voltage power supply, clearly a unipolar 

configuration is needed. The gain of the analogue input can be adjusted in 

software to produce different signal input ranges. The maximum range is 0 - 10 V 

and the minimum is 0 - 100 mV. The actual range chosen is not that important, as 

the resolution is the same for all ranges. However, the range must obviously match 

well with the output range from the differential amplifier. 

Simple circuit theory gives a formula for the gain of the differential amplifier 

circuit: 

Vout = :2 (Va - Vb) 
1 

(6.4) 

With a 5 V power supply, the output from the transducer is 5 x 5 = 25 /J.V/mm Hg. 

In chapter 5, the pressure rise on blood return was calculated to be approximately 

128 mm Hg, and this was the maximum pressure expected to be generated in the 

extracorporeal circuit. A similar drop is expected on blood withdrawal, so the 

pressure range over which measurements must be taken is 2 x 128 = 256 mm Hg. 

This is equivalent to a change in output from the transducer of 

256 x 25 /J.V = 6.4 mV. A gain of 100 was chosen to give an output range of 

640 mV from the amplifier. This fits quite well into the 0 -1000 mV range obtained 

with a gain setting of 10 on the DAQ board. Using the formula above, a gain of 100 

can be achieved by making R2 = 100 kn and R1 = 1 kn. 

While utilising as much as possible of the DAQ board input range, to obtain 

maximum resolution, it is very important that the output signal does not exceed the 

DAQ board range. Problems arose in this respect during testing. These will be 

dealt with in chapter 7. 

Both pressure rises and pressure falls must be measured. Since the circuit 

is being driven from a single rail power supply, ambient pressure must produce an 

output that is in the middle of the range of possible output voltages. This was 

achieved by attaching a potentiometer to the offset null pins of the operational 

amplifier as shown in figure 6.9. With this arrangement, Va -Vb is set to zero, and 

the potentiometer is adjusted until Vout is mid-range. 
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6.4 DAQ Board Interface 

The connections between the interface electronics and the data acquisition 

board are shown in figure 6.10. It was decided that it would be useful to have a 

visual indication of the states of the digital lines. This is useful for monitoring of 

system function and also to speed up fault finding. The circuit shown in figure 6.11 

was designed for this purpose. Each digital line is fed into a TTL inverting buffer, 

provided by a 74LS04 integrated circuit. This buffer limits the current drain from the 

DAQ board. The output of the buffer drives a light emitting diode. The circuit 

provides a 'double inverting' action, so when the LED is on, the line is at state 1. 

14 of these circuits were required. 

6.5 Power Supply 

Once all the electronics had been designed, constructed and tested, the 

power supply requirements could be calculated. The stepper motors run on a 15 V 

supply, as do their drive boards. The McClellan servo motors that were used in the 

final design require a 12 V supply. The 5 V/12 V converter circuits and the inputs to 

the stepper motor drive boards run at 12 V. Everything else uses a 5 V supply. The 

total power requirements at each voltage were calculated, and the calculation was 

confirmed using the Farnell bench power supply. The requirements were: 

5 V at 1 A 

12 Vat 0.5 A 

15 Vat 2 A 

The total requirements were reduced by the fact that the stepper motors and the 

tap drivers are not required to run at the same time. A suitable triple output supply 

could.not be found, so it was decided to use a dual output supply instead, and 

obtain the 12 V supply by using a DC-DC converter. A switched mode unit was 

preferred to a conventional linear one, as they are more efficient. 

The unit chosen was an Astec LPT63. This was the cheapest power supply 

that could deliver the current needed at both 5 V and 15 V. Its specifications are 

7 A at 5 V and 2.8 A at 15 V. 

A DC-DC converter is necessary for the 12 V supply because of the current 

needed. Cheaper voltage regulator chips would not be able to supply such high 
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currents. A Computer Products type BXA15-12S12-F was chosen. This can supply 

1.25 A at 12 V from a supply ranging from 9 V to 18 V. 

One disadvantage of switched mode power supplies is that they require a 

minimum loading to function correctly. Without this loading the output voltages are 

very unpredictable. It was necessary to add shunt resistors to both the 15 V and 

the 5 V lines to achieve these minimum loads. The calculations for this follow. 

With all systems connected to the Farnell power supply, the minimum 

current drawn by the system at any time was measured. For the 5 V line, this was 

0.28 A. The minimum load needed by the power supply is 0.7 A. So the current 

needed in the shunt resistance, Is, is given by : 

Is = 0.7 - 0.28 = 0.42 A 

V _5_=11.90 
So, Rs ="1 = 0.42 

s 

(6.5) 

This can be made up from the preferred values 6.8 0 and 4.7 0 in series. 

The power dissipated in each resistor is as follows: 

For the 6.8 0 resistor, 

P=12R=(0.42)2 x6.8 = 1.2W (6.6) 

For the 4.7 0 resistor 

P = (0.42)2 x 4.7 = 0.83 W 

3 watt ceramic wirewound resistors were used. 

For the 15 V line, the minimum current flows when neither stepper motors nor 3 

way tap drivers are running. This was measured and found to be 0.23 A. 

The minimum load needed by the power supply is 0.3 A. 

So, 

Is= 0.3 - 0.23 = 0.07 A 
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V 15 
=> R =-=--=2140 

s Is 0.07 
(6.7) 

This was made up of the preferred values of 180 0 and 33 n. A check of the 

power dissipated gives: 

For the 180 n resistor: 

p = (0.07)2 x 180 = 0.88 W 

For the 33 n resistor: 

p= (0.07)2 X33 =0.16W 

Again, 3 W ceramic wirewound resistors were used. 

A schematic diagram of the power supply system is shown in figure 6.12. 

Summary 

The design of the electronics fell into five major areas. The syringe driver 

circuitry involved both actuation and position sensing, as did the circuitry for the 3 

way tap drivers. The pressure transducer amplifier provides an interface between 

the pressure sensor and the analogue input of the data acquisition board. The 

DAQ board interface circuit provides a general interface between the DAQ board 

and the other digital interface electronics. The last area is that of the power supply. 

The requirements here were complicated by the need for three different supply 

voltages. 

This chapter has dealt with the last major area of design. The next chapter 

deals with the construction and testing of the prototype system, as well as the 

design modifications that were necessary. 
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CHAPTER 7. CONSTRUCTION, TESTING AND DESIGN 

MODIFICATIONS 

I ntrod uction 

The construction and testing of the prototype system revealed the need for 

several design modifications. This phase of the project is discussed below. 

7.1 Construction and Testing of System Elements 

Once the initial design work was complete, the construction and testing of 

the prototype was begun. This was split up into separate subsystems. Each was 

built and tested separately before being integrated into the system as a whole. 

The syringe driver mechanisms were mounted on two 4 mm thick aluminium 

base plates for testing. The haemofiltration apparatus was held in place using 

plastic pipe fittings. The tap driver mechanisms were built onto a separate 

aluminium framework which was then attached to the base plates. 

A prototyping plugboard was used to test the electronic circuits. These were 

powered with a Farnell dual bench power supply. Once the circuits had been 

successfully tested they were transferred to matrix board. The plugboard was then 

used to provide a temporary interface between the computer and the machine. 

This interface allowed the machine's systems to be controlled both automatically 

and manually, that is by the computer and by hand. This was particularly important 

while the computer software was being developed. The interface itself consisted of 

microswitches and logic gates that allowed dual control of each system. 

7.2 Design Modifications 

7.2.1 Syringe Drivers 

The initial design for the syringe driver mechanism worked fairly well 

in initial testing. The V shaped slider mechanism did not work very well, for 2 

reasons. Firstly, both sliding surfaces were aluminium, so they did not slide easify 

over each other. This problem could be solved by making one surface brass. A 

more serious problem was that the plunger gripper was too loose a fit on its track. 
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This is important because it would lead to inaccuracies in volumetric measurement 

during the filtration phase. The problem was solved by adding a hand tightening 

bolt which could be screwed down when the gripper was in place, holding the two 

sliding surfaces securely together. 

The control and safety microswitches at the bottom end of the syringe 

plunger travel were mounted side by side. The existing layout did not contain 

enough space for both switches to be triggered by the connecting plate as it moved 

down. So an aluminium extension plate was added. 

An even more serious problem was encountered when the machine was 

first tested using blood. After several hours of operation, there was a very large 

increase in the frictional force between the plunger and the inside of the syringe 

barrel. This was caused by something being deposited out of the blood onto the 

inside of the barrel. This increase in friction caused the rubber bung to gradually 

peel off the end of the syringe plunger during the upward movement of the plunger. 

Eventually the seal between plunger and barrel was lost and blood leaked by. The 

problem was solved by squirting a small amount of normal saline into the top of 

each syringe barrel, which provided lubrication between the 2 surfaces. This 

prevented the inside of the barrel from drying and so stopped the build up of 

friction. In clinical operation any fluid that was placed inside the top of the syringe 

barrels would have to be sterile. 

7.2.2 Three Way Tap Drivers 

The original design for the 3 way tap drivers worked well when the testing 

fluid was water. Unfortunately a similar problem occurred in the taps as did with the 

syringes, when the testing fluid was blood. Figure 5.6 shows the construction of a 3 

way tap. The white plastic barrel inside rotates inside the clear plastic cylinder. 

There is a large plastic to plastic bearing surface area. When blood flows through 

the tap problems occur. The blood seeps into the bearing and dries out, creating a 

very large increase in the friction between the 2 surfaces, resulting in a higher 

torque being needed to turn the tap. This torque was measured using a simple 

lever and weight method, and was found to be approximately 3.8 kg cm. 

A more powerful Futaba servo, model S9204, was tried in an effort to solve 

this problem. Although it had a specified torque of 9.5 kg cm, this servo was still 

not capable of conSistently driving the taps once they had become contaminated 

with blood. 
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It was decided to solve the problem by using a much more powerful motor 

and gearbox combination. More calculations were done to determine the 

requirements of the motor and gearbox. A suitable source of motors and 

gearboxes was found from McLennan Servo Supplies Ltd. 

The torque required to turn the tap had been determined as 0.4 N m. This 

was multiplied by a factor of 5 to give a very large safety margin, so the design 

figure was 2 N m. A reasonable speed of movement was fixed at 4 seconds for a 

% turn, which is 3.75 rev/min. Assuming a typical no load speed of 3000 rev/min 

for a small DC motor, the maximum allowable gearbox ratio can be calculated: 

3000 _ 800 
is 3.75 -

The 120 series of gearboxes were the cheapest available that had sufficient rated 

torque, at 3 N m. The highest available ratio (500:1) was chosen to minimise the 

motor requirements. These were then calculated: 

The motor torque is given by 

M
j 
= ~ = -=--_2_~_ 

I x 11 500 x 0.5 = 8 mN m 

where Mo:Output torque: 2 N m 

i : gearbox ratio: 500 

11 :gearbox efficiency: 0.5 (assumed to be 50 %) 

The motor speed is given by 

nj = no xi: 3.75 x 500 : 1875 rev /min 

where no: output speed 

(7.1) 

(7.2) 

Motor type 16 111 was found to be the smallest motor that would satisfy these 

requirements, having a rated torque of 15 mN m at 2500 rev/min. 

The voltage required to produce this torque and speed can be found from 

the following formula: 
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V1 _ V2 

R1 - R2 

R2 2.5 5 
=>-----R1 - 9.5 - 19 

(7.5) 

If a value for R1 of 10 kQ is chosen to keep the current small, then 

R2 = 2.63 kQ 

Using preferred values, this can be approximated by two 4.7 kQ resistors in 

parallel in series with a 330 Q resistor (gives 2.68 kQ). The operation of the circuit 

does not require the reference voltage to be exactly 2.5 V. 

7.2.3 Pressure Sensing System 

During the early stages of testing with blood, a problem arose in the system 

- an increased range of pressures became apparent in the circuit during the 

filtration phase. This was caused by the partial coagulation of blood within the 

fibres of the haemofilter. This in turn was caused by too little heparin being added 

to the blood before the testing was begun. The amounts needed to prevent 

coagulation inside the circuit are relatively high, at 5 units/ml of blood. 

The pressure changes became so great that the system was no longer able 

to measure them. The output from the transducer amplifier reached either supply 

or ground voltage. This is worth looking at in more detail. 

As was mentioned in chapter 6, the output from the pressure transducer is 

25 J,.tV/mm Hg. The gain of the amplifier is 100, so the output from the amplifier is 

2.5 mV/mm Hg. The gain of the DAQ card is set to read input voltages in the range 

0- 5 V. The null offset potentiometer is adjusted to give an output of 2.5 Vat 

ambient pressure, so that both pressure rises and falls can be measured. So, the 

maximum pressure change that can be measured in this configuration is 

2.5V 
2.5 mV = 1000 mm Hg 

either above or below ambient pressure. 

The problem was overcome by the addition of a multi pole switch and extra 

gain resistors, so that the gain of the amplifier was adjustable - there are three 
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settings: 51, 75, 100. This gives more flexibility during the development and 

testing process. With a gain of 75, the measurable pressure change becomes 

1333 mm Hg, and with a gain of 51 it is 1960 mm Hg. Figure 7.3 is a partial circuit 

diagram showing the changes that were made. In clinical use, any pressure 

change above 500 mm Hg is considered unsafe due to the red cell haemolysis that 

it can induce. Therefore, once the problems of heparinisation had been solved 

these extra pressure ranges were no longer needed. 

7.2.4 Syringe Barrel Holders 

As was mentioned in chapter 5, the original design for the syringe barrel 

holders needed improvement. The design for the improved holder is shown in 

figure 7.4. Part A is mounted on the same base block as the plastic holder was. It 

has a 16 mm diameter half cylinder channel into which the syringe barrel fits. The 

flange at the top of the barrel is a push fit into the 2 mm slot that is cut vertically 

into the block. This prevents any longitudinal movement. Part 8 is another half 

cylinder piece that fits over the top of the barrel, holding it firmly in place. It is 

screwed down with a hand tightened M4 bolt. A compression spring is positioned 

between the two halves to make syringe removal easier. 

Summary 

The design modifications that were made are summarised in table 7.1 

below. 

Design Modification Problem Solution 

Syringe driver Slider mechanism too Fitting of hand tightening 

mechanism loose bolt to slider mechanism 

Layout of microswitches 80th switches not being Addition of extension 

triggered by syringe plate to syringe driving 

driver mechanism 

Operational procedure Rubber bung peeling off Addition of sterile normal 

syringe plunger saline to inside of 

syringe barrel 
_ ........ _.- .. _._-
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Motor for 3 way tap Tap drivers stall when Fitting of more powerful 

drivers taps are contaminated motor 

with blood 

Redesign of 3 way tap Interference from ambient New design relocates 

drivers infrared light infrared sensors inside 

casing 

Pressure transducer Insufficient pressure Redesign of amplifier 

amplifier measurement range electronics to increase 

range of measurement 

Syringe barrel holders DeSign unacceptable for New design that is 

clinical use clinically acceptable 

Table 7.1 Design Modifications 

At this stage of the project, the system hardware was complete. The development 

of the control software could therefore begin. This is the subject of chapter 8. 
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Figure 7.1 New 3 Way Tap Driver 
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Figure 7.2 Calculation of Potential Divider for Tap Driver Circuit 
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Figure 7.3 Modification to Pressure Transducer Amplifier 
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CHAPTER 8. SOFTWARE DEVELOPMENT 

Introduction 

The programming task was divided as far as possible into self contained 

units for ease of development. Each unit was developed as its own project in the 

LabWindows/CVI environment. The main individual projects were as follows: 

Filtration (code to manage the filtration phase) 

Servos (code to control the three way taps) 

Withdraw and Return (control of blood withdrawal and return) 

Graphical User Interface 

A LabWindows project is a self contained unit with its own source code and header 

files, usually stored in a separate Windows directory. Where necessary, temporary 

interface code was written to test the control code. Once the 4 main elements had 

been developed and tested, they were integrated using 2 further projects. The first 

stage of integration was the whole control system minus the graphical user 

interface. The second stage added in the user interface. 

The file listing of the 'whole system' project (the final stage of integration) 

illustrates the overall structure of the application. This is shown below. 

haem01.c 
initialise.c 
runsystem.c 
serv02.c 
withret.c 
pump4.c 
updtimer.c 
round.c 
error.c 
haem01.uir 
haem01.h 
header.h 

The program code is divided up into seven separate source code files. This allows 

each source code file to be kept to a manageable size. Haem01.c contains the . 

mainO function and the callback functions that are attached to the control buttons 

on the user interface. Initialise.c contains the code that performs the system testing 
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and initialisation that is done when the machine is first switched on. Runsystem.c is 

the main algorithm that controls the operating cycle of the system. The code that 

controls the 3 way tap drivers is in serv02.c. Withret.c controls the blood 

withdrawal and return processes, and pump4.c performs the blood filtering phase 

of the operating cycle. Updtimer.c contains a small function that updates the timer 

display on the user interface. Round.c consists of a rounding function that rounds a 

float argument to the nearest integer. It is used by the blood withdrawal and 

filtering algorithms. Error processing and reporting is dealt with by the code in 

Error.c. The haem01.uir file is the user interface resource file. This file contains the 

user interface that has been constructed with the User Interface Editor. This editor 

also automatically generates the file haem01.h. This header file connects the user 

interface to the source code. The other file, header.h, is the header file for the 

source code itself. 

The LabWindows Data Acquisition Library provides the connection between 

the source code and the machine itself, via the data acquisition card. 

8.1 Data Acquisition Library Functions 

Four data acquisition functions are used to communicate with the hardware. 

The following explains how they work. 

DIG_prt_Config(Board, Port, Handshaking, Direction) 

This function takes four arguments. The first is a board number, which 

allows the software to access more than one 1/0 board. Since there is only one 

board in this application, this argument is always set to 1. 

The 24 digital lines of the DAQ board are arranged into three 8 bit ports, A, 

Band C (see figure 7.10). Each port can be configured as either input, output or a 

mixture of both. In this application port A (or port 0) is set to output, and port B 

(port 1) is set to input. A direction value of 1 configures the port as output, and 0 

configures it as input. Handshaking is disabled. 

DIG_OuCLine(Board, Port, Line, Line State) 

This function changes the state of individual digital output lines. Again the 

board argument is always set to 1. Since all the output lines are port 0, the port 
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argument is always set to 0 for this function. The arguments for Line and Line 

State are defined by preprocessor commands contained in the file Header.h, to 

make programming easier. So, for instance, DIRN_A refers to the direction line for 

syringe driver A (the left hand syringe), and this is line number O. A value of 1 on 

this line will drive the syringe upwards, so this is defined as UP. 

DIG_ln_Line(Board, Port, Line, Line State) 

This function reads the state of digital input lines. This time the Port 

argument is always set to 1, as port 1 is the input port. Again the line numbers are 

preprocessor defined, so SWITCH_A is defined as 4 and this is the microswitch for 

syringe A. The line state variable is referenced by a pointer. 

AI_VRead(Board, Channel, Gain, Voltage) 

This function reads the voltage input from the pressure transducer. The 

channel argument is always 0 as only one analogue channel is being used. The 

gain is set to 2 so the DAQ board can read voltages in the range 0 - 5 V. Again the 

input variable is referenced with a pointer. 

8.2 Blood Filtration Phase - Control of Ultrafiltration Rate 

Overview 

Before the ultrafiltration rate control can be programmed, the basic 

reciprocating motion of the filtration phase has to be implemented. In the early 

design work it was decided that transducers which could sense the exact position 

of the stepper motors were unnecessary - all that was needed was a microswitch 

on ea,ch stepper motor that could sense when the syringe plunger had reached the 

bottom of the barrel. 

The filtration phase begins with syringe B at the top of its travel, and syringe 

A at the bottom. The direction lines are set so that plunger B is travelling 

downwards, and plunger A is travelling upwards. Clock pulses are then issued to 

both stepper motors, at 0.025 second intervals, to give the required overall blood 

flow rate through the haemofilter of 10 ml/min. The clock pulses are issued in a 
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loop that also tests the state of the microswitch on the downward travelling syringe. 

When this microswitch changes state the direction of travel of each syringe is 

simply reversed, and the clock pulses continue as before. The state monitoring is 

transferred to the other microswitch on plunger A. When this microswitch changes 

state one cycle of the reciprocating motion is complete, and the cycle can begin 

again. 

The ultrafiltration rate is the most important parameter in the machine's 

operation. It is the volume rate at which fluid is removed from the blood through the 

fibres of the haemofilter. It is a function of the blood flow rate through the 

haemofilter, the haematocrit of the blood and the transmembrane pressure across 

the fibres, i.e. the mean pressure difference across the wall of the fibre. 

Two different control algorithms were written and tested, and their 

performance compared. Firstly a closed loop method was tried. The blood flow rate 

was fixed at 10 ml/min. The manufacturer's data was extrapolated to obtain an 

approximately linear relationship between transmembrane pressure and 

ultrafiltration rate. The underlying reciprocating motion of the syringes was 

programmed first (see above). This gave a basic rate of 40 steps/second, the 

syringes obviously travelling in opposite directions. A proportional control loop was 

superimposed on this motion. The system pressure was measured continuously, 

and extra steps were added to keep the transmembrane pressure constant. If the 

pressure was too low, extra steps were made by the pushing syringe. If the 

pressure was too high, they were added to the pulling syringe. Various constants of 

proportionality were tried to find the most effective algorithm. Good stable control 

was achieved. 

The major drawback with this control method is that it does not take account 

of variations in haematocrit. So if the blood being used has a high haematocrit, the 

ultrafiltration rate will be too low, and vice versa. Therefore this was not a practical 

control system. 

The ideal control system would have a transducer that could directly 

measure the filtrate volume output from the haemofilter. This method was 

considered. However, a suitable flow transducer was not available commercially, 

so a different design had to be used instead. 

It was decided to control the blood volume in the circuit directly. Although 

this is an open loop method, it has a much better accuracy in practice than the 

closed loop method above. The method is as follows. 
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The blood return and withdrawal phases are timed. This is necessary 

because the blood withdrawal time can vary depending on how good the vascular 

access to the baby is. The reset time (the time taken for plunger A to travel to the 

bottom of its barrel and plunger B to travel to the top of its barrel at the end of the 4 

minutes of filtration) is also measured and added to the total. The filtration time is 

fixed at 4 minutes, so an actual filtration rate can be calculated which will give the 

mean filtration rate required. An example of this calculation is shown in appendix B. 

This subject will be dealt with in more detail in section 8.5. 

The reciprocating motion is the same as before. The reduction in overall 

circuit volume is achieved by adding extra steps in the pushing syringe at regular 

intervals throughout the 4 minute filtration phase. So, for example, if the filtrate 

volume required is 1 ml, the circuit volume is simply reduced by 1 ml during the 4 

minutes of the filtration phase, by adding extra push steps. This is still not an ideal 

method, but it has the big advantage of almost completely compensating for 

variations in haematocrit. A high haematocrit will result in a higher back pressure 

inside the fibres, increasing the TMP and therefore the filtration rate. 

Pressure monitoring is no longer part of the control method, but is still used 

as part of the safety system. The pressure inside the blood circuit is continuously 

monitored, and if it falls outside pre-set limits the machine is stopped. 

Detail 

The code for the filtration phase is contained in the file pump4.c. This file 

contains 2 functions. The function Filter_BloodO is the function that performs the 

filtration. Return_ To_Start_PosnO resets the syringes to their starting point at the 

end of the filtration phase. 

Filter_Blood(f_rate, volume_filtered) 

This function takes 2 arguments. The first is the actual filtration rate, as 

explained above. The second is the actual volume filtered out during the 4 minutes. 

This is passed by reference back to the calling function. 

This code makes extensive use of the LabWindows Utility Library timing 

functions. The first of these is at line 30. TimerO returns the time elapsed since the 

first call to any of the timing functions, so this line effectively 'starts the clock', to 

allow the function to be timed to run for 4 minutes. To simplify the code for plunger 
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movement 2 states are defined, CLOCK and ANTI. In the CLOCK state, plunger A 

is moving up, and plunger 8 is moving down, and vice versa for ANTI. Line 32 sets 

the starting direction as CLOCK. Lines 36 - 38 are an initial safety check. The 

constants FIL TER_LP _LIMIT and FIL TER_HP _LIMIT (defined in Header.h) set 

upper and lower safe limits for the pressure during the filtration phase. If these are 

exceeded, an error is returned and the program is halted. 

Line 44 calculates the interval between filtration steps (see above). Firstly 

the blood flow rate is calculated in ml/h. STEP_RATE is the number of steps made 

per second by the stepper motors. NUM_STEPS_PER_ML is the number of steps 

taken to sweep out a volume of 1 ml. So the former divided by the latter gives the 

blood flow rate in mils. Multiplying by 3600 gives the flow rate in ml/h. This is then 

divided by the filtration rate required to give the interval (in numbers of steps) 

needed between filtration steps. This is then rounded to the nearest whole step. 

The main algorithm consists of 2 nested while loops, the outer one starting 

at line 58. The outer loop provides the reciprocating motion of the syringes, while 

the inner loop provides the stepping sequence. 80th these loops terminate when 

the function execution time has exceeded 240 seconds. 

Lines 66 - 74 set up the syringe drivers to drive in a clockwise direction. 

Lines 80 - 88 set up for anticlockwise motion. Line 100 records the step count at 

the start of a syringe stroke. This is for failure testing. 

The step sequencing loop starts at line 105. Line 112 provides the timing of 

the step sequence. The function SyncWait(beginTime,interval) is basically a delay 

function. It waits until the time given by the argument 'interval' has elapsed from 

the time given by beginTime. So in this case beginTime is the variable mark, which 

is the time when the outer loop starts. Since the required interval between steps is 

0.025 seconds, 0.025 * step_counter will give successive marks that the motor 

steps can be synchronized with. Providing the code contained in the inner loop 

does not take more than 0.025 seconds to execute, synchronization of motor steps 

will b~ maintained. Lines 115 -117 allow the machine to be stopped by the user 

while this loop is being executed. This type of code will be discussed in section 8.6. 

Lines 121 and 122 check the syringe driver. It takes 2500 steps to sweep a 

10 ml volume of the syringe. So if this number is exceeded a fault will have 

occurred. This can happen in one of two ways. The first is if the stepper motor or 

drive board fails. Clock pulses will be issued but no movement will occur. The 

second way is if the microswitch on the pushing plunger fails. In this case the end 

of the stroke will not be detected and the step count will exceed the 2500 limit. 
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Lines 124 - 126 check for errors in the pulling syringe microswitch. 25 steps 

after the start of the stroke the state of the pulling microswitch is tested. By this 

stage of the stroke it should have changed state from 1 to O. If this hasn't 

happened then an error is reported. 

Lines 128 - 130 check the pressure inside the circuit. The current pressure 

is compared to the reference pressure measured at the beginning of the function. If 

the pressure drops or rises outside the limits defined in header.h then an error is 

reported. 

Lines 135 - 157 are the core of the whole function. The if statement at line 

135 tests if both syringes should be stepped or just the push syringe. Each time a 

clock pulse is issued the intervaLcounter variable is incremented. When this 

reaches the number stored in stepjnterval a push step is issued, and the interval 

counter is reset to zero. 

The clock pulse code works as follows. The syringe_push line starts at state 

1. Line139 switches it to state O. The delay of 0.1 ms is necessary because this is 

the minimum pulse width that the stepper motor drive board can detect. The line is 

then switched back to state 1. The intervaLcounter variable is reset to zero. Both 

the step_counter and filter_step_counter variables are incremented. The latter 

variable is used to calculate the total volume filtered at the end of the function. 

The code following the else statement on line 147 steps both syringes. This 

works in the same way as the previous code. 

Finally, at the end of the inner loop, the state of both microswitches is read. 

The loop terminates normally when the pushing plunger reaches the bottom of its 

barrel. So the direction variable is changed such that the syringe directions are 

reversed and the outer loop begins again. 

Once the outer loop has terminated, the uncorrected filtrate volume is 

calculated. This is done by dividing the total number of filtering steps by the 

number of steps that sweep out a 1 ml volume. This gives the volume filtered in 

millilit~es. This subject will be dealt with in more detail in section 8.5. 

Finally a synchronization check is done. This makes sure that the clock 

pulses have remained synchronized at a rate of 40 per second. At this rate, there 

should be 9600 pulses in the 4 minutes of the filtration phase. If the number of 

pulses has been substantially less than this then an error is called. This error 

check is important. Normally the code inside the inner loop will easily execute 

within the 0.025 seconds that is allowed. However, if the computer is set up 

incorrectly the time taken can easily exceed this limit. An example of this would be 
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incorrect settings in the Windows display driver. This can result in slow screen 

updates, leading to a loss of synchronization. 

Return_ To_StarCPosnO 

This simple function is needed to reset the system at the end of the filtration 

phase. The filtration function runs for exactly 4 minutes. When it stops the 

syringes can be at any position in their stroke. So it is necessary to reset them to 

the starting position, that is with the left hand syringe (syringe A) at the bottom of 

its stroke and syringe B at the top, ready for the blood to be returned to the patient. 

Line 206 makes the microswitch on syringe A the one that is monitored to 

detect the end of the stroke. Lines 209 and 211 set the desired syringe travel 

directions. A reference pressure is then read to use for safety monitoring inside the 

clock pulse loop. The same timing method is then used as in the previous function. 

A while loop provides the main body of the function. This executes as long as 

push_switch_state is zero, that is until syringe A reaches the bottom of its travel. 

Lines 226-228 allow the user to stop the system while it is executing the while loop. 

Lines 233-239 use the same code as in the previous function to step both syringes. 

Error checking is then done within the stepping loop. The number of steps 

executed is checked. If this is greater than 2500 an error is called, as this number 

is more than sufficient to sweep a 10 ml volume. The circuit pressure is then 

checked. The loop then repeats. 

8.3 Blood Withdrawal and Return 

Overview 

The code needed for blood return is fairly straightforward, but that needed 

for blood withdrawal is much more complex. This is because the venous line to the 

baby can easily become partially or totally blocked, reducing or preventing blood 

withdrawal. This can happen for two main reasons - either the line becomes 

occluded because of blood coagulation, or the end of the line can move against the 

wall of the vein. It becomes blocked by attaching itself to the wall with suction. In 

the manual procedure, the doctor or nurse performing the blood access can feel 

this blockage as increased resistance in the syringe plunger. The problem can 
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often be overcome by reducing the rate of blood withdrawal. If this does not work, 

a small amount of blood can be pushed back down the line in an attempt to clear 

the blockage. 

The algorithm for blood withdrawal had to reflect the procedure used by the 

clinician as closely as possible. An attempt was made in consultation with the RVI 

to quantify this procedure as far as possible. As a starting point for the 

programming, the following parameters were decided on : 

if 0.5 ml of plunger movement results in no blood being withdrawn, then the 

plunger should stop to allow time for the blockage to clear. If the blockage does not 

clear, then eventually the blood flow should be reversed, but no more than 0.5 ml 

of blood should be pushed back down the venous line. 

The pressure drop obtained with 0.5 ml of plunger movement (with the 

venous line clamped obviously) was measured. This was found to be equivalent to 

a 1.3 V change in the output from the pressure transducer amplifier. This 

represents a pressure drop of 520 mm Hg The initial withdrawal algorithm was 

based on this pressure drop limit. 

The number of steps needed to withdraw the syringe 10 ml was determined, 

so that the volume swept by each step could be calculated. This was done by first 

measuring the length between the 0 ml and 10 ml marks on the syringe being 

used. This was found to be 61.5 mm. So a 1 ml volume is swept by a movement of 

6.15 mm. Each step of the stepper motor produces a linear movement of 0.025 

mm. Therefore the number of steps to sweep 1 ml is: 

6.15 
0.025 = 246 steps 

So each step is equivalent to 1/246 ml. The blood volume to be withdrawn 

from the patient is entered into the graphical user interface (this is known as the 

Working Blood Volume). This figure is then divided by 1/246 to obtain a figure for 

the total number of motor steps required for the given volume of blood to be 

withdrawn. 

At the start of the withdrawal procedure, the pressure inside the circuit is 

measured, to obtain a reference pressure. The plunger is then moved upward, at a 

rate equivalent to a blood withdrawal of 10ml/min. If the pressure in the syringe 

drops by more than 520 mm Hg, the stepper motor is stopped, initially for 1 

second. If the pressure rises by more than 20 mm Hg in this time, then blood 
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withdrawal starts again. If the pressure does not rise, then there is a further delay 

of 1 second. If 4 seconds go by without a rise in pressure, a more serious blockage 

is implied. In this case the flow in the venous line is reversed, and a volume of 0.5 

ml is pushed back down the line. Blood withdrawal then begins again. 

Initially 2 different modes of blood withdrawal were programmed. The above 

procedure is one. The other is a variation on it. The delay and reverse flow code is 

the same. Here though, every time 2 reverse flows have been triggered, the blood 

withdrawal rate is halved. So after 4 reverse flow function calls, the blood 

withdrawal rate will be reduced to 2.5 ml/min. 

There is an overall time limit on blood withdrawal that is proportional to the 

blood volume being withdrawn. If this time limit is exceeded, it is assumed that the 

venous line is irreversibly blocked. The machine will be stopped and the alarm set 

off. 

Detail 

The code for blood withdrawal and return is contained in the file withret.c. 

As well as the 2 main functions, there is also a function to reverse the flow of blood 

during the withdrawal procedure. These 3 functions will be dealt with in turn. 

Withdraw_Blood(blood_volume) 

This function takes just one argument, the volume of blood to be withdrawn 

- this is picked up from the user interface. Line 30 gets the access mode from the 

user interface. This is just an integer which indicates which of the alternative 

access algorithms is to be used. A reference pressure is then read. Lines 38 - 40 

check that syringe B is at the bottom of its travel. If the microswitch is at state 0 an 

error is reported. Syringe B is then set to travel upwards. The number of steps 

needed to withdraw the required amount of blood is then calculated. A time limit is 

set for blood withdrawal. 30 seconds is allowed for each ml of blood to be 

withdrawn. A starting time for the function is then put into the variable mark. The 

main loop for the function begins at line 64. The loop tests that the required volume 

hasn't been reached yet and that the withdrawal process hasn't exceeded the time 

limit. As before, lines 69 - 71 allow the user to stop the system while this loop is 

being executed. Lines 77 to 80 check that the syringe microswitch is working 
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properly. The pressure in the circuit is then checked against the overall pressure 

limits allowed, stored in WITH RET P DROP and WITH RET PRISE. - - - -
The if statement at line 94 deserves some explanation. It pairs with the else 

statement at 124, so the code in between is that executed if the conditions aren't 

right to continue blood withdrawal. The if statement is complicated because of the 

physical compliance inherent in the system. When the pressure exceeds the 520 

mm Hg limit the plunger is stopped for 2 seconds. Even if the venous line is totally 

blocked, there will tend to be a slight pressure rise during the first 2 second delay. 

So when the pressure is tested again, it must have increased by more than 20 mm 

Hg from the previous value for blood withdrawal to begin again. This is achieved by 

the two statements on either side of the OR operator. The delay_counter variable 

allows the if statement to differentiate between the two situations. 

So if a blockage is detected, the code from line 98 onwards is executed. 

Initially the code following the else statement on line 106 will be executed. A wait of 

1 second is introduced. The delay_counter variable is then incremented. If a wait of 

4 seconds has not allowed the blockage to clear, then the Reverse_FlowO function 

is called. The number of times this function has been called is recorded in the 

reverse_flow_count variable, and the delay_counter variable is reset to zero. 

Access mode 1 does not change the withdrawal rate. Access mode 2 does. 

This is achieved by the code segment from line 98. If reverse flow has been 

triggered more than once, then the speed_factor variable (which starts off as 1) is 

multiplied by 2. This halves the rate at which blood is withdrawn. 

Once any blockage has been cleared blood withdrawal can continue 

normally. This is achieved by the else statement at line 124. This is the standard 

code to issue a clock pulse to the stepper motor, apart from the addition of the 

speed_factor. The delay times are multiplied by the speed factor to lengthen the 

clock pulses and slow the motor down. The if statement at line 142 returns an error 

if blood withdrawal has exceeded the time limit set for it. 

Return_Blood() 

This is a simple function that returns the blood to the baby after the 

Return_ To_Start_PosnO function has executed. Line 168 reads the syringe B 

microswitch to make sure the while loop doesn't execute if the plunger is already at 

the bottom of the barrel. The direction of plunger travel is set to downwards. A 
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reference pressure is then read for safety monitoring. The subsequent code is the 

same as that used in previous functions to perform syringe stepping. Only syringe 

B is being moved. The total number of clock pulses issued is checked at line 194 

to make sure it hasn't exceeded the usual 2500 limit. The pressure inside the 

circuit is also checked every time the loop executes. 

Reverse_Flow(step_counter, v_ref) 

This function is called from inside Withdraw_BloodO. It pumps 0.5 ml of 

blood back up the venous line when a blockage is detected. It takes two 

arguments. The first is the variable step_counter, passed as a pointer. The 

Withdraw_BloodO function needs to keep track of the exact number of steps that 

have been made during the withdrawal procedure. This is done using the 

step_counter variable. It is decremented every time a reverse step is made, and 

the final value is passed back to the calling function. The second argument is 

v_ref. This is the reference pressure that was read at the start of the 

Withdraw_BloodO function. This is needed because the Reverse_FlowO function 

will not be called at ambient pressure so it would not be possible to obtain a 

reference pressure while inside the function. 

Line 228 sets syringe B to move downwards. The B microswitch is read as 

usual before the main loop starts. There are 2 conditions for the while loop. The 

first one tests the number of steps that have been made. Since a 1 ml volume is 

swept by 246 steps (see earlier) 0.5 ml corresponds to 123 steps. The microswitch 

state is also tested, so that the loop does not try to move the plunger beyond the 

lowest point of its travel. The usual code for stepping follows, with 2 additions. The 

step_counter variable is decremented as explained above, and the 

reverse_counter, the variable that is used in the while loop test, is incremented. 

When loop execution has finished, the syringe direction is set back to UP, so that 

the system leaves the function in the same state that it entered it. 
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8.4 Three Way Tap Driver Control 

Overview 

As was mentioned in chapter 5, the original design called for 3 target 

positions at 90° intervals. The problems with intermediate codes caused by edge 

detection made the programming very complicated. Although a workable program 

was produced, it was not reliable enough. So the specification was changed to just 

2 target positions 90° apart. 

The connection between the hardware and the software is provided by 4 

control lines for each tap driver, 2 input and 2 output. The 2 input lines are 

connected to the 2 photodetectors. They are at state 0 when the slot in the 

aluminium disc is underneath the detector, and at state 1 otherwise. The 2 output 

lines give clockwise and anticlockwise movement of the driving disc. They are 

active high. 

The first step in the control algorithm is to read the photodetectors to 

determine the current state of the tap driver. This can be one of three states. The 

disc slot can be under either one of the detectors (designated states 1 and 2), or 

under neither of them (state 3). The direction of rotation needed for the shortest 

route to the desired position is then calculated. The motor is driven in the desired 

direction by a series of short pulses (0.02 seconds long). After each pulse the 

photodetectors are read to see if the driver has reached the target position. When 

the position is reached the pulses are stopped. Because of the high gear ratio 

(500: 1) and the frictional resistance in the 3 way taps, there is very little overshoot 

of the target position, and this simple method provides sufficient positional control. 

Detail 

. The code for tap driver control is contained in the file serv02.c. Because of 

the repetitive nature of the algorithm, it was divided up into 4 separate functions to 

make the code more efficient. 
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MoveServo(Servo_Num, TargeCPosn) 

This function takes two integer arguments. The first identifies which tap . 

driver is to be moved, 1 or 2. The second argument gives the position to be moved 

to, also 1 or 2. 

The switch statement from line 36 uses the servo number as its case 

variable. The case statement starts by assigning the input line numbers for the 

servo to be moved to the variables Uine1 and Uine2. The line numbers are 

defined in the header file header.h. The difference between the current position 

and the target position is then calculated, to find out which direction of movement 

will supply the shortest path to the required position. The output line to be driven is 

then assigned to the variable outputJine. If the target position and the current 

position are the same the anticlockwise drive line is assigned. This is arbitrary, as 

either line could be chosen. An output line is assigned so that a no movement 

position check can be performed (see later). The current position is worked out by 

a separate function that will be dealt with later. The function returns the current 

position of the servo, that is 1 or 2. 

A variable state_11 is used as an error checking device. It checks that the detector 

input lines haven't failed to a zero state. The variable itself is a logical one - it is 

given the value 1 if both input lines reach the value of 1 during servo movement. 

Before movement begins it is assigned the value zero (line 80). Another logical 

variable, no_movement, is also used for error checking. If the current position is 

the same as the target position then it is set to TRUE to indicate that no movement 

will take place. 

The main code consists of two nested while loops. The inner loop (from line 

87) executes while the servo is looking for the target position. It starts with a 1 

being written to the drive line, starting the servo motor. There is then a wait of 

0.019 seconds, and then the motor drive is switched off. The if statement from line 

94 te~ts the detector input lines. The Current_PosnO function returns a value of 3 

when both detector lines are at state 1. If this happens then the state_11 variable 

is assigned the value of 1. The outer if statement prevents this code being 

executed needlessly every time through the loop. The pulse_counter variable is 

then incremented. If it exceeds 1000, execution of the loop is terminated, as it is 

assumed that a fault has occurred. 

The outer while loop allows for a change of direction of rotation while the 

target position is being sought. This is useful in the unlikely event that the servo 
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overshoots the target position. The pulse counter is reset to zero, and the function 

Change_DirectionO is called. This function changes the active output line from 

clockwise to anticlockwise and vice versa. A cycle_counter variable monitors how 

many changes of direction occur. If this exceeds 8 the loop is terminated. 

Lines 109 -112 report errors. If the servo has searched back and forth for 

the required position more than 8 times an error is reported. If there has been 

servo movement but no intermediate state where both input lines were at logic 1, 

an error is also reported. 

The code from line 117 deals with the situation where the target position is 

the same as the current position. It is necessary in this case to check that the 

servo really is at the position that the detectors report, because detector failure 

would give a false position indication. This is done by the function 

Check_Servo_PosnO (see below). 

Current_Posn(i_line1, i_line2) 

This function takes the 2 current detector input lines as its arguments. The 

state of the lines is read into the variables state1 and state2. A series of if 

statements then assign codes to the variable Current_Pos, corresponding to the 

three possible states of the input lines. This code is then returned to the calling 

function. 

Change_Direction(*o_line) 

This function takes the active output line as its argument. It is passed by 

reference so that the function can change the value and pass the new value back 

to the calling function. The value is changed by a switch statement. If the value 

passed in is a clockwise line, it is changed to an anticlockwise line and viceversa. 

Check_Servo_Posn(i_line1, i_line2, output_line) 

This function takes three arguments. The first two are the currently active 

detector input lines, and the third is the currently active output line. It works by 

moving the tap driver a small distance away from its current position. The detector 
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inputs are then checked to make sure that they are both at state 1. If this condition 

is satisfied the tap driver is then moved back to its previous position. 

Line 174 puts the initial position into the variable start_posn. The first while 

loop moves the servo until position 3 is reached, i.e. both detectors at state 1. 

Again a pulse counter variable is used here. However the error limit is much lower 

as the state change should occur with very little movement. 

After the first loop has executed, the direction of rotation is changed and the 

second while loop executes. This drives the servo until it returns to its original 

starting position. 

8.5 Software Integration 

Overview 

The functions described up to now control the different elements of the 

system's operating cycle. The code that integrates these different elements is 

contained in the function run_systemO. 

The elemental functions are called in sequence to produce the basic cycle 

of blood withdrawal, blood filtration and blood return. The other major task of the 

integrating function is to calculate the actual filtration rate that needs to be passed 

to the Filter_BloodO function to give the mean filtration rate entered at the user 

interface. Various user interface screen updates are also performed. 

Detail 

The code for the run_systemO function is contained in the file RunSystem.c. 

run_system(blood_ volume, mean_Crate) 

This function takes 2 arguments. The first one passes in the working blood 

volume, that is the volume of blood that will be withdrawn from the patient during 

the withdrawal phase. The second passes in the mean filtration rate, that is the 

filtration rate that is entered at the user interface. 

The function starts with the globaLstop variable being set to zero. This is 

necessary in the circumstance where the system has been stopped and restarted. 
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This variable will be explained fully in section 8.6. The system timer on the user 

interface is reset to zero by the Reset_ TimerO function on line 24. This function will 

be covered in section 8.9. 

The following explanation of the control code can be followed with reference 

to figure 4.2. 

The first two calls to MoveServoO move the 3 way taps into the positions 

needed to allow the syringes to be reset. This is tap 2 open and tap 4 closed. All 

the main function calls in this file are followed by a check on the return code to 

make sure an error has not occurred inside the called function. 

The main control loop starts at line 40. The while condition is TRUE 

because this loop only terminates when the stop button on the interface is pressed 

or an error occurs. The time at the start of the loop is put into the variable 

off_time_start. The 'off time' is the time spent in the loop not filtering blood. Lines 

48 and 49 terminate the loop if the stop button was pressed during the previous 

execution of the Filter_BloodO function. The Update_ TimerO function refreshes the 

Treatment Time display on the user interface. This function will also be covered in 

section 8.9. The cumulative filtrate volume display is then updated. This display 

gives the total volume of filtrate that has been separated from the blood in the 

current treatment session. Its value is stored in the variable cum_Cvolume. This 

variable is incremented by line 57. The volume filtered by the last execution of the 

Filter_BloodO function is added to the running total, after being divided by the filter 

correction factor. This factor needs some explanation. The volume of filtrate 

passing out of the haemofilter is in fact less than the reduction in volume of the 

circuit during the filtration phase. The reasons for this will be explored in chapter 

10. So to achieve the required filtration rate, the filtration rate entered into the user 

interface is multiplied by a correction factor, worked out by experiment to be 1.104. 

So, to achieve a reasonably accurate figure for the filtrate volume as displayed on 

the user interface, the volume_filtered variable passed back from Filter_BloodO 

must be divided by this same factor. 

The SetCtrlValO function performs the actual screen update. The function 

ProcessSystemEventsO on line 60 is a User Interface Library function that makes 

sure that screen updates keep time with program execution. 

The Return_ To_Start_PosnO function is then called. This moves syringe A 

down and syringe B up ready for blood return. A 5 second delay is then called. This 

allows any pressure gradient that may have built up during filtration (on the 

previous pass through the while loop) to equalize. The tap drivers then move into 
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position to allow blood return. This is tap 2 closed and tap 4 open. The 

Return_BloodO function is then called. Line 102 gives a 3 second delay, again to 

allow for pressure equalization. Blood is then withdrawn from the patient, followed 

by another delay, this time of 4 seconds. 

The taps are moved into the filtering positions - tap 2 open and tap 4 closed. 

The actual filtration rate needed is then calculated, as was discussed in 

section 8.2. Line 129 calculates the total time spent in the while loop up to this 

point, by subtracting the variable off_time_start from the current time. So the value 

of off_time is the total time spent not filtering blood in one operating cycle. Since 

the time spent filtering blood is always 240 seconds, the actual filtration rate 

needed can be calculated by multiplying the mean filtration rate by 

240 + off time Th· . d . I· 132 Th· I ltd I . h d ---~-- . IS IS one In Ine . IS ca cu a e va ue IS t en passe to 

the Filter_BloodO function on line 140. 

The Filter_BloodO call is the last line of the main while loop. The remaining 

lines, 154 to 159, perform final screen updates when the system is stopped. 

8.6 User Interface and Callback Functions 

Overview 

The graphical user interface was constructed using the Labwindows/CVI 

user interface editor. The finished article is shown in figure 8.1. Objects are 

chosen from the interface library and placed on the main panel as required. They 

are linked to the C code via callback functions. Each object can have a callback 

function name assigned to it. When the object is activated (e.g. a button is 

pressed) that function is called and the code it contains is executed. A large library 

of user interface functions is available to perform various operations on the user 

interface. The interface itself is contained in the user interface resource file, 

haem01.uir. The interface editor automatically generates a header file, haem01.h, 

that links the interface to the rest of the source code. The callback functions are 

contained in the file haem01.c. 

The main control buttons are at the top left of the interface. Initialise System 

performs the setting up and testing of the system when it is first switched on. 

Start/Restart Treatment is self explanatory. The Change Filtration Rate button 

allows the filtration rate to be changed without having to reinitialise the machine. 
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Below this are the Stop Treatment and Quit buttons. Below these are some display 

boxes which give the elapsed treatment time at current settings, and the total 

volume of ultrafiltrate that has been produced at the current settings. The large· 

white panel at the top of the screen displays messages from the system. At the 

bottom of the screen are three numeric panels into which the main parameters for 

the treatment session are entered. The weight of the baby to be treated is entered 

into the leftmost box. A standard clinical calculation is then done to arrive at the 

working blood volume to be used. The user then has the choice to use this figure 

or enter their own figure. Finally the ultrafiltration rate required is entered into the 

right-hand box. 

The panel at top right gives treatment history. Every time different treatment 

settings are entered a new entry will appear in this box, giving start and stop time, 

ultrafiltration rate and total filtrate volume. 

Pop Up dialogue boxes are also employed to interact with the user. There is 

a red alarm Pop Up box which appears when an alarm goes off - an audible alarm 

coincides with the appearance of this box. 

Modifications made to User Interface 

As clinical testing proceeded, various improvements were made to the user 

interface (refer to figure 8.1). A display of the system pressure was added (centre 

of screen). This is in the form of a continuous strip chart. This has proved 

extremely useful in practice, as it displays the pressure in real time, allowing a 

close eye to be kept on system operation. Various pressure controls were added, 

as it became apparent that it would be necessary to change the values of these 

controls while the system was in use. They are on the right hand side of the 

screen. The withdrawal trigger pressure is the venous line pressure at which the 

blood withdrawal rate is reduced. Below this are the overall pressure limits that are 

in op~ration during the withdraw and return phases of the operating cycle. If these 

limits are exceeded an alarm will go off and the system will stop. Finally, there are 

the pressure limits for the filtration phase. At the bottom right of the screen is the 

withdrawal rate display. This is an indicator only, values are not entered into this 

box. It displays the current blood withdrawal rate. 
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Detail 

mainO 

This is contained in the file haem01.c. Lines 15 to 20 before mainO include 

the header files for all the Labwindows libraries that need to be accessed. MainO 

starts with the DAQ board ports being configured for output and input as 

necessary. Softwarejnit and hardwarejnit are two flags that are used in the 

system_initO function. The main parent panel and two child panels, RESPONSE 

and ALARM are then loaded into memory. The RESPONSE panel is a popup 

panel that is used to get yes or no answers from the user. The ALARM panel is 

also a popup panel that appears when an error occurs. 

Each LoadPanelO call returns a handle so that each panel can be identified 

in subsequent Ullibrary function calls. An initial message is then displayed using 

the series of InsertTextBoxLineO calls. This function displays a line of text onto the 

selected control, in this case the message display panel. 

Line 58 displays the main panel on the screen. Lines 59 to 64 then initialise the 

panel by dimming controls that should not be operable at this point. The 

SetCtrlAttributeO function is a typical UI function that takes four arguments. The 

first is the panel handle, which identifies the panel to be operated on. The second 

identifies which control on that panel is to be operated. The third is the attribute of 

the control to be changed, and the fourth is the new value of the attribute. In this 

case 1 will grey out the button, and 0 will make it active. Lines 69 to 74 get the 

system date and time and convert it into a suitable format to be displayed on the 

first line of the treatment history box. The function SetCtrlValO displays the string 

on the user interface. The final line of main() runs the user interface and sends 

interface events to the relevant callback functions. 

Callback Functions 

Every callback function has a standard format and argument list. The 

arguments allow information to be passed from the user interface into the function. 

When a button is pressed, several events are generated, not just one. These 

correspond to such things as the button being pressed down, as well as the button 

being released. To prevent the callback code being executed more than once, all 
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the code is contained within an if statement, the condition of which is that the event 

must be an EVENT_COMMIT. This corresponds to the control button being 

released after a single mouse click. 

System_lnitO 

Lines 99 to 103 dim all the control buttons so they cannot be operated while 

this function is executing. The if statement from line 108 allows some flexibility in 

the initialisation process. If the system hardware has already been initialised the 

user can choose just to reenter the treatment parameters. The library function 

GenericMessagePopupO is used to ask the question. Lines 119 - 120 call the 

init_hardwareO function if the hardwarejnit flag is FALSE. This function will be 

dealt with in section 8.7. If the return code from this function is non zero then an 

error is called. A return code of zero indicates successful initialisation and the 

hardwarejnit flag is set to TRUE. 

The init_softwareO function is called inside a do-while loop. This allows it to 

be called repeatedly if the user is not happy with the entered parameters. The 

library function ConfirmPopupO displays the text message together with yes and no 

buttons. A value of 1 is returned if yes is pressed, and 0 if no is pressed. Once the 

software has been successfully initialised the software_init flag is set. 

When initialisation is complete, a final text message is displayed. All the 

control buttons apart from Stop are undimmed ready for use. Finally the Start 

button is made the active control ready for treatment to begin. 

System_StartO 

When the start button is pressed, the Change Rate and Stop buttons are 

undimmed as they must be active. Quit, Start and Initialise are all dimmed so that 

they are inactive. SetCtrlValO is used to toggle the indicator controls on the left 

hand side of the screen to indicate that the system is running. This is confirmed by 

a text message on the main display. 

The software parameters are obtained from the user interface and loaded 

into the variables blood_volume and filter_rate. The current time is loaded into 

start_time to be used later on the treatment history display. The filtration rate 

entered into the user interface is then multiplied by the filter correction factor 
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discussed earlier. The function run_systemO is called. If this returns with a code 

greater than zero an error is called. Lines 214 and 215 record the finishing time 

and load this and the start time into a string. This is then displayed in the treatment 

history box. Lines 216 to 221 get the session data from the interface, format it into 

a string and then display it. 

Change_Filter_RateO 

This function allows the filtration rate to be changed without having to 

reinitialise the system. 

Firstly the indicator panel is toggled by lines 242 and 243 to indicate that the 

system has been stopped. The current filtration rate is then obtained from the user 

interface by GetCtrlValO. The variable globaLstop is set to 1. This is necessary to 

make sure that the Run_SystemO function terminates when the Change Filtration 

Rate button is pressed. Lines 254 to 258 dim all control buttons so they cannot be 

operated while this function is executing. Text lines are then displayed to prompt 

the user to enter the new ultrafiltration rate. Line 270 changes the filter rate display 

box from indicator mode to validate mode. This allows a new value for the rate to 

be entered into the box. The actual entering of the new rate is done inside a do

while loop, to make sure a new value is entered. Line 273 makes filter rate the 

active control. GetUserEventO waits until a value has been entered and the return 

key has been pressed. GetCtrlValO loads this new value into new_filter_rate. The 

filter rate control is then set back to indicator mode so it cannot be altered. Line 

285 clears the message box. The new filtration rate is then displayed and the user 

is asked to confirm that they want to use the new rate. If the change is confirmed 

then the display reflects this. If the change is not confirmed the user is informed 

that the rate remains at the old value. The user is then prompted to restart the 

system. The control buttons (apart from Stop) are undimmed, and the Start button 

is mage the active control. 

System_stopO 

This function stops the system. The globaLstop variable is set to 1. Again 

this is important to make sure that whatever function is being executed at the time 

the Stop button is pressed, that function terminates properly. The message box is 

cleared, and a message confirming the stop is displayed. The left hand indicator 
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panel is toggled as usual. The Stop button is dimmed. All other control buttons are 

undimmed. 

QuiCsystemO 

This function terminates the user interface. A call to QuitUserlnterfaceO 

causes the RunUserlnterfaceO function to return, and the application terminates, 

returning control to the computer's operating system. 

8.7 System Initialisation 

Overview 

When the system is first switched on a thorough test must take place to 

make sure everything is working correctly. The stepper motors and tap drivers 

need to be moved to the correct positions to allow the blood circuit to be attached 

to the machine. Everything is then retested with the blood circuit in place. The 

software initialisation involves the user entering the treatment parameters for the 

session. These are the working blood volume and the ultrafiltration rate. 

Detail 

The code for initialisation is contained in the file initialise.c. The two main 

functions that are called from systemjnitO are init_hardwareO and init_softwareO. 

Init_hardwareO in turn calls three more functions: tesChardwareO, 

test_stepper _ motorO and test_transducer _ and_lineO. 

IniChardwareO 

This function starts by clearing the message box and prompting the user to 

remove the blood circuit from the machine if it is still attached. There are many 

calls to ProcessSystemEventsO in this function. This UI library function makes sure 

that screen updates are synchronised with code execution. If these calls are not 

included screen updates tend to lag behind. A popup box then asks the user to 

confirm that the circuit has been removed. A prompt is then issued to switch the 

123 



machine on, followed by the usual confirmation popup box. A message then 

confirms that the system check has begun. The first call to test_hardwareO is then 

made (more details below). This function has one argument. The value is either 

CIRCUIT_IN or, in the first call, CIRCUIT_OUT. This allows two slightly different 

testing routines to be performed. If the first call to this function returns with no 

errors, a message confirms that the system is working properly. The user is then 

prompted to attach the blood circuit to the machine, again followed by a popup 

confirmation box. The test_hardwareO function is called again, this time with the 

CIRCUIT_IN argument. If this function returns normally the 

test_transducer_andJineO function is called. This function is covered later on in 

this section. 

test_hardware(circuit_status) 

The two tap drivers are tested in turn by moving them back and forth 

between their two target positions. If the blood circuit is not attached, the two 

stepper motors are tested. Both 3 way taps are set to the open position before this 

is done. This is a precaution just in case the blood circuit has been left attached to 

the machine. The taps being open prevents a dangerous pressure build up that 

would happen if the circuit were still in place. The stepper testing is done by two 

calls to test_stepper_motorO (detailed below). After this the 3 way taps are moved 

back to their previous positions. The output voltage from the pressure transducer 

amplifier is then read. A series of if statements check this voltage against limits 

that are stored in header.h. If the voltage with the transducer unplugged is greater 

than 0.8 Van error is returned. With the transducer plugged in, the acceptable 

range of output voltage is 2.8 V to 3.2 V. 

tesCtransducer_and_line() 

The taps are moved into position to allow blood withdrawal from the patient, 

that is tap 2 closed and tap 4 open. The Withdraw_BloodO function is then called 

with an argument of 1.0, so that just 1 ml of blood is withdrawn. This tests that the 

venous line is clear. Tap 4 is then closed, and a reference pressure reading taken. 

The syringe B plunger is moved down 20 steps, using the standard code for this. 

Another pressure reading is taken. The pressure change is compared with the 

ONEML_P _CHNGE constant. If the change is less than this, an error is returned. 
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The plunger is then moved up 40 steps, to produce a pressure drop equivalent to 

the pressure rise previously obtained. The pressure drop is again compared to 

ONEML_P _CHNGE. In this way the functioning of the pressure transducer is 

thoroughly tested. Finally the plunger is moved down 20 steps back to its starting 

position. Tap 4 is opened and the blood is returned to the patient. Both taps are 

then returned to the positions they were in at the start of the function. 

tesCstepper_motor(motor_num) 

This function is passed one argument, the number of the stepper motor to 

be tested. The initial if-else statement assigns the appropriate digital line numbers 

to the 3 variables switchJine, clockJine and dirnJine. The current TimerO value is 

then loaded into the mark variable in the usual way, and the direction line is set to 

move the stepper motor downwards. The stepper motor microswitch state is read, 

and then the while loop from line 232 moves the stepper motor to the bottom of its 

travel. Line 246 checks that the step count hasn't exceeded the limit of 2500. This 

checks both the stepper motor and the microswitch. The direction of travel is then 

reversed and the motor moves upwards 25 steps. This should be sufficient to open 

the contacts of the microswitch, and lines 268 to 270 check that this has 

happened. The direction of travel is then reversed again and the motor is moved 

back to the bottom limit of its travel. Again the number of steps that have been 

executed is checked. 

iniCsoftwareO 

This function allows the user to enter the treatment parameters for the 

session. 

The message box is cleared and the user is prompted to enter the weight of 

the bqby to be treated. The birth weight control is then set to validate mode so that 

a number can be entered. The number is entered under the control of the do-while 

loop from line 449 to 455. Line 458 sets the control back to indicator mode so it 

can't be altered again. A standard clinical calculation for the safe blood volume to 

be withdrawn is then done and the result is assigned to the variable blood_volume. 

The calculation is done as follows: it is assumed that a typical baby has a blood 

volume of 85 ml per kg of body weight. So this figure is multiplied by the entered 

birth weight (after dividing by 1000) to give an estimate of the total blood volume. It 
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is assumed that it is safe to withdraw 6 % of the total blood volume. So the 

previous result is multiplied by 0.06 to arrive at a final value. This value is then 

displayed on the working blood volume control. The user is prompted to decide 

whether they want to use the calculated figure or enter their own figure. Lines 472 

to 491 deal with these two options in the usual way. Line 494 sets the working 

blood volume control back to indicator mode. 

Next the user is prompted to enter the ultrafiltration rate required. This code 

is very similar to that used above and needs no explanation. 

8.8 Error Processing 

Overview 

Error checks are distributed throughout the control program. All possible 

failure states of each piece of circuitry and hardware have been accounted for in 

the error programming (this is discussed in more detail in chapter 9). If an error is 

encountered, an error processing function is called. The machine is stopped, the 

pop-up alarm panel appears and a continuous audible alarm is sounded. A short 

description of the error appears in the message box on the user interface. 

Detail 

All the error processing is dealt with by a single function, process_errorO. This is 

contained in the file error.c. 

process_error(error_code) 

This function has one argument, the number code of the error to be 

reported. 

The function starts by toggling the indicator panel on the left of the screen to 

indicate that the system is stopped. Appropriate control buttons are then dimmed 

or undimmed depending on whether treatment parameters have been entered or 

not. The message box is then cleared. 

The main body of the function consists of a switch statement which uses the 

error code passed in as the control expression. There are 21 error codes 
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altogether. The code for each case is the same. A line of text is inserted into the 

message box reporting the error code number and giving a short description of the 

fault. This is followed by a break command to ensure only one case statement is 

executed. Line 200 then displays another line of text confirming that the system 

has been stopped. The red alarm pop up panel is then displayed. This panel 

contains a button which can be pressed to turn off the alarm. This works via the do 

- while loop from line 210. The loop contains a GetUserEventO function which 

checks to see if the reset button has been pressed. The BeepO function issues a 

short pulse to the PC speaker. This loop will continue to execute until the reset 

button has been pressed, so the alarm sound will be continuous. 

After the alarm is reset the alarm pop up panel is removed, after a short 

delay. 

8.9 Miscellaneous Functions 

Update_ Timer(starCtime) 

This function is contained in the file UpdTimer.c. It updates the user 

interface at the end of each filtration cycle, giving the elapsed time since the start 

of the current treatment session. The time at the start of the current treatment 

session is passed in as the argument start_time. Line 25 then calculates the 

elapsed time in seconds with a call to the TimerO function to find out the current 

time. The value in seconds is then converted into minutes and hours. Calls to 

SetCtrlValO then display the calculated values on the user interface. 

Reset_ TimerO 

This function is also in UpdTimer.c. It resets the elapsed time display every 

time the system is restarted. This is done with 2 calls to the SetCtrlValO function. 

Round(number) 

The source file for this function is Round.c. It is called from Filter_BloodO, 

and is used to round the variable float_stepjnterval up or down to the nearest 
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integer. It uses the maths library functions floorO and ceilO. The function is a 

general one that will return correct values for either positive or negative numbers. 

8.10 Header Files 

Haemo1.h 

This header file is generated by the Labwindows user interface editor and 

cannot be altered by the user. It has 2 main sections. The first is a series of define 

statements that define constants for each of the user interface panels and controls. 

The second section contains the function prototypes for the callback functions. 

Header.h 

This starts with include commands for all the library header files that are 

needed. Lines 13 to 22 define constants that are used in the filtration functions. 

The CIRCUIT_IN and CIRCUIT_OUT constants are used in the initialisation 

functions. Lines 33 to 44 give constants for the servo functions, defining the output 

and input digital line numbers. Lines 49 to 70 are the function prototypes. A few 

global variables are then defined. The machine parameters are a series of 

constants which define the operation of the machine itself. Gathering them 

together here makes programming changes much easier when any machine 

redesign or improvement is made. 

Summary 

This chapter has dealt with the development of the software used to control 

the system. In summary, figure 8.2 graphically illustrates how the main functions 

relate· to each other, so that the overall structure of the program can be seen. The 

completion of the software development meant that the system was now ready to 

be tested as a whole for the first time. The initial testing that took place is detailed 

later, after a review of system safety, which is the subject of the next chapter. 
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CHAPTER 9. SYSTEM SAFETY 

I ntrod uction 

The dialysis system is classified as class I equipment by IEC 60601 89, the 

requirements for safety of medical equipment. This is because it has a safety earth 

and does not rely on double insulation to provide protection against electric shock. 

The system has a direct electrical connection to the patient (the venous 

line). Furthermore, depending on the site of vascular access, the tip of the catheter 

can be positioned near or actually inside the heart. The patient is therefore 

susceptible to microshock hazards. A microshock is a very small current flowing 

through the heart. As little as 1 0 ~ can be sufficient to cause ventricular 

fibrillation. Because of this, electrical safety requirements are much more exacting 

than if the system had no direct connection to the patient. In particular, leakage 

currents flowing between the live and earth terminals of the power supply must be 

considered, as these are a common source of microshocks. 

The electrical safety of the system is discussed in section 9.1. A single fault 

analysis of the system was undertaken in accordance with the requirements of IEC 

60601 parts 1 and 2 90. Part 2 addresses the particular requirements for the safety 

of dialysis machines. This, together with the safety features of the system design, 

are the subject of the subsequent sections of this chapter. 

9.1 Electrical Safety 

The entire system (dialysis machine and PC) is connected to the mains 

electrical supply via a medical grade isolation transformer. Figure E.1 in appendix 

E illustrates this. The live terminal of the mains supply is at high voltage relative to 

the earth, which can supply a return current path in the event of an electrical fault. 

An isolation transformer removes this return current path - the live terminal is only 

at high voltage with respect to the neutral terminal, not the earth. This greatly 

reduces the risk of an electric shock to both the patient and the staff operating the 

system. 

The isolation transformer also reduces earth leakage currents. This is 

particularly important in systems that use a PC. They are usually fitted with power 

supply suppression circuits, to protect the computer system from fluctuations in the 
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mains voltage. These include capacitors connecting the live and earth terminals, 

which allow a large leakage current to flow. An isolation transformer eliminates this 

source of leakage current. 

The system in its current state does not entirely meet the requirements of 

lEG 60601. Some modifications would be necessary for complete compliance. The 

switched mode power supply in the dialysis machine should be replaced with a 

linear supply. This provides a higher degree of isolation. An isolation amplifier 

should be fitted between the pressure transducer and its interface electronics. This 

would also improve patient isolation. 

9.2 Syringe Drivers 

The hardware elements of the syringe driver system are the stepper motors 

(and their associated electronics) and the microswitch circuits that provide position 

feedback. The circuit diagrams for these elements were given in figures 6.1, 6.2 

and 6.3. The possible failure modes for each element were considered in turn, and 

an appropriate system response devised so that each fault would result in a safe 

condition. 

9.2.1 Stepper Motors 

The possible failure modes of the stepper motors are: 

• no drive 

• continuous drive 

• intermittent drive 

Obviously, since there are 2 syringe drivers, these failure modes can occur in one 

or both stepper motors simultaneously. There are several potential hazards 

associated with syringe driver failure. If one driver fails while the other continues to 

operate normally, the pressure inside the circuit could rise or fall very rapidly. A 

pressure rise would lead to haemolysis of red cells and possibly leakage of blood 

from the circuit. A pressure fall also causes haemolysis and increases the 

likelihood of air entering the blood circuit. If the syringe drivers travel beyond their 

limits, the stepper motors are powerful enough to cause permanent damage to the 

mechanical elements of the system. 
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There is a degree of protection provided by the design of the stepper motor 

hardware. Firstly, the clock pulses that are delivered to the motor drive board are 

generated by the control software, rather than a hardware based pulse generator. 

This is an inherently safer design. A computer malfunction is very unlikely to result 

in the motors continuing to operate. If clock pulses are generated in hardware, 

motor operation independent of computer control is more likely to occur. 

Secondly, the power cutoff microswitches (figure 6.1) prevent the syringe driver 

moving beyond preset extremes of travel. If movement occurs beyond the preset 

limits, the power to the stepper motors is cut, preventing further movement. 

Possible failure modes are addressed in the control software. The syringe 

drivers operate under the control of 5 different functions. These will be dealt with 

in turn. 

Filter_BloodO 

As mentioned above, if one or other stepper motor stops running, a rapid 

rise or fall in pressure will result. The pressure inside the circuit is therefore 

monitored throughout this function. An initial check is done by lines 36 and 37 

(refer to appendix D). Lines 128 and 129 perform a pressure check every time a 

stepping loop is executed. The pressure in the system is therefore checked 40 

times every second. If both stepper motors stop running simultaneously, (e.g. as a 

result of a power supply failure) this will be detected by line 121 (see page 106 for 

details). In the event of a failure, program execution is halted, and the function 

process_errorO is called. This sounds an alarm, and displays the details of the 

error that has occurred on the user interface. 

As mentioned earlier, because of the method of clock pulse generation, it is 

difficult to conceive of a situation where one or both drivers could fail to a state of 

continuous motion. However, if this did occur it would be detected by the pressure 

chec~ing algorithm. Intermittent drive to one or both syringes is detected in one of 

two ways. If only one syringe driver is affected, this will be detected by the rapid 

rise or fall in pressure that will result. If both drivers are affected equally, this will be 

detected by line 121 in a similar way to the detection of complete loss of drive - Le. 

a step count of 2500 will be reached before the syringe arrives at the end of its 

stroke. 
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Return_ To_Start_PosnO 

This function is very similar to the previous one in terms of failure analysis. 

The pressure check of lines 248 and 249 detects failure of drive to one or other of 

the syringes. Line 243 detects the failure of both drivers. 

Withdraw_BloodO 

This function only controls one syringe driver, so failure modes that involve 

both drivers simultaneously are not relevant. Failure of the drive is checked initially 

by lines 77 to 80. Once 20 clock pulses have been issued, the syringe driver 

should have moved sufficiently for the microswitch to change from closed to open. 

Obviously this will not happen if the stepper motor has failed. If the stepper motor 

fails after this point in the function the failure will not be detected. However, this 

does not represent a hazard. Less blood will be withdrawn than programmed, 

which is not a dangerous condition. The stepper motor failure will be detected by 

the subsequent call to the Filter_BloodO function. 

Reverse_FlowO 

Stepper motor failure is not checked in this function. It is not necessary 

because this failure mode would not result in a hazardous condition. 

Return_BloodO 

As with the Withdraw_BloodO function, only one syringe driver is operated 

by this function. Line 194 checks that the syringe driver is working by monitoring 

the number of clock pulses that have been issued. 

9.2.2 Microswitches 

The microswitch interface circuit is shown in figure 6.3. There are only 2 

possible failure modes here, either logic 1 or logic O. These are addressed, as 

before, for each function in turn. 
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Filter_BloodO 

Here the same code at line 121 can theoretically detect failure of both the 

microswitch (to zero) and the stepper motor, as the logical result of both failures is 

the same. The number of clock pulses that have been issued is monitored. If this 

goes above the preset limit the program is terminated. This would happen when 

the end of the syringe stroke was not detected. In practise, this fault would be 

caught first by the power cutoff microswitches and pressure checking algorithm. 

Failure to the 1 state is detected by lines 124 to 126. Every time there is a change 

of direction of syringe travel, the state of the microswitch on the pulling syringe is 

tested after 25 steps. This should be at state zero. If it is not, an error is called. 

Return_ To_Start_PosnO 

Failure to zero is checked by line 243. As before, this fault would in practice 

be dealt with first by other safeguards. A check of failure to the 1 state is not 

necessary because this cannot result in a hazardous condition. 

Withdraw_BloodO 

Failure to zero is checked by lines 38 to 40. This function starts with the 

syringe barrel at the bottom of its travel, so the microswitch should be in state 1. 

Failure to the 1 state is checked by lines 77 to 80. After 20 steps have been 

executed, the microswitch should have changed state from 1 to O. 

Reverse_FlowO 

There is no explicit code for detecting microswitch failure inside this 

function, as it is not necessary. A failure to the 1 state will simply result in the 

stepping loop exiting without a hazardous condition arising. If a failure to the 0 

state occurs while the syringe is not near the bottom of its travel the function will 

execute as normal with no hazard arising. If the syringe is near the bottom of its 

travel the power cutoff microswitch will operate, resulting in a safe condition. 
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Return_BloodO 

Lines 194 and 195 detect failure to the 0 state. Failure to the 1 state results 

in the stepping loop terminating so a hazard cannot arise. 

9.3 Three Way Tap Drivers 

The circuit diagrams for the tap driver system are shown in figures 6.7 and 

6.8. Possible modes of failure can be looked at in 2 ways - at the system level and 

at the level of individual elements of the system. At the system level, the following 

applies. Each tap can be in one of two positions, either open or shut (see figure 

4.2). So there are 2 possible failure modes. When a given tap fails, the other tap 

can be either open or shut, giving a total of 4 failure permutations. There are 4 

basic phases of the operating cycle that are relevant to tap failure - filtration, 

returning to the start position, blood return and blood withdrawal. This gives a total 

of 16 failure permutations that need to be addressed. An analysis of these 

permutations reveals that only 3 represent a potentially hazardous condition. They 

are: 

• tap 2 open, tap 4 shut during withdrawal phase 

• tap 2 open, tap 4 shut during return phase 

• tap 2 open, tap 4 open during withdrawal phase 

Conditions 1 and 3 can result in dialysate being drawn into the blood circuit, and 

condition 2 would result in an unacceptably high ultrafiltration rate. 

These failure modes can also be addressed by looking at the system 

elements individually. These are the motor drive circuit (figure 6.7), the infrared 

transmitter circuit and the infrared receiver circuit (figure 6.8). These will be dealt 

with in turn. The tap driver system is operated by one main function, 

Move~ServoO. This calls 3 other functions - Current_PosnO, Change_DirectionO 

and Check_Servo_PosnO. The line numbers in the subsequent descriptions refer 

to the file SERV02.C in appendix D. 

As before, in the event of a failure the following sequence of events takes 

place. Program execution is halted, process_errorO is called, an alarm is sounded 

and details of the fault are displayed on the user interface. 
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9.3.1 Motor Drive Circuit 

An examination of figure 6.7 shows the possible modes of failure here. They are: 

• No drive in either direction 

• No drive in one direction 

• Continuous drive in either direction 

• Intermittent drive 

No drive in either or both directions is dealt with in the same way. The code in 

Move_Servo{) selects the optimum direction of rotation when searching for the 

target position. If this has not been found after 1000 pulses have been executed, 

the motor direction is reversed and the target position is sought in the other 

direction. If the number of direction changes exceeds 8, an error is called (line 

109). So if the motor drive has failed in both directions this error will be called. If 

only one direction is affected, this error will not be called. The target position will be 

found, so a hazardous condition will not arise. Depending on the initial position of 

the tap, the only effect of this fault would be to increase the time taken to find the 

target position. 

There is no specific code to detect an error of continuous drive in either 

direction. This is not needed because an error such as this would be detected by 

the pressure checking algorithms inside other functions that are called after the call 

to the Move_ServoO function. If a 3 way tap is continuously rotating, it would spend 

the majority of the rotation in a closed position, which would result in an undue 

build up of pressure, triggering an alarm. 

An intermittent loss of drive would be dealt with by the same code that 

addresses complete loss of drive. Again, either the target position would be 

achieved (taking a longer time), or the cycle counter would exceed 8 and an error 

would be called. 

9.3.2 Infrared Transmitters 

These are shown in figure 6.8. This circuit is designed to operate 

continuously, so the only possible failure mode is a loss of light emission (either. 

complete or partial) by the diodes. This is logically equivalent to a permanent 

output state of 1 from the phototransistor and also to a loss of drive from the 
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motors. This is therefore detected and dealt with in the same way as loss of drive, 

as described in the previous section. 

9.3.3 Infrared Detectors 

Figure 6.8 shows that there are 2 possible modes of failure - to output state 

1 or O. Output state 1 is dealt with as described in section 9.3.1. A failure to 0 is 

dealt with in 2 different ways, depending on the initial circumstances. Lines 94 to 

96 inside the main control loop check that both detector lines go to state 1 during 

the movement from the initial to the target position. If they do not, lines 111 and 

112 call an error indicating a failure. The no_movement flag is needed for the 

circumstance in which the target position is the same as the current position. In this 

situation, the state_11 flag will not be set inside the control loop, so another way of 

testing for failure to 0 is needed. This is provided by lines 117 - 120 and the 

function Check_Servo_PosnO. The servo is moved a short distance away from the 

target position until the relevant detector line goes high. It is then moved back to 

the target position. If the line does not go high an error is called. 

9.4 Pressure Transducer Amplifier 

The circuit diagram of the amplifier is shown in figure 6.9. The potential 

failure modes considered were: 

• output fails to 0 V 

• output fails to 5 V 

• output fails to 2.5 V (e.g. pressure transducer diaphragm breakage) 

A failure of this system is potentially hazardous. An uncontrolled pressure rise can 

result in damage to the blood by haemolysis, and blood leakage from the 

extracorporeal circuit. A pressure drop can result in air entering the circuit with the 

associated risk of air embolism to the patient. High or low pressures in the venous 

line can result in damage to the blood vessels of the patient. 

Pressure checks are present throughout the control software (see chapter 8 

for more details). When the syringe drivers are moving, the pressure inside the. 

circuit is checked on average 40 times every second. Lines 36 and 129 in 

Filter_BloodO provide an example of the code used. At the start of the function a 
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reference pressure is read. Each time the control loop executes the current 

pressure is compared with this reference pressure. Failure of the amplifier output 

to either 0 V or 5 V would be detected by this code. However, failure due to 

diaphragm breakage would not be detected. This problem needs to be addressed 

in future work. A dual system could be implemented with a second pressure 

detection system providing redundancy. Alternatively, code could be written to 

monitor the small scale changes in pressure read out to ensure correct pressure 

transducer function. At present this monitoring is only present in the system 

initialisation procedure, which will be described in section 9.7. 

9.5 Computer System 

Ensuring software reliability is a very difficult problem in medical 

engineering. There is no generally accepted method for assessing and dealing 

with the risks associated with a system that operates under computer control. This 

problem will be addressed in the second prototype system by introducing hardware 

interlocks which provide single fault condition safety independent of the computer 

control system. The current system provides a degree of protection against 

software faults. Since the syringe drivers can only move under computer control, a 

computer crash will always result in a loss of drive to the syringes. 

A specific failure mode that is addressed is that of loss of timing control. The 

filtration phase of operation works on a step cycle that lasts 0.025 seconds. The 

SyncWaitO function (line 112 in Filter_Blood()) provides this timing control. Of itself 

this function can only ensure that a stepping cycle takes a minimum of 0.025 

seconds. If for any reason the code that is executed between 2 calls to this 

function takes longer than this time, synchronisation will be lost and an inaccurate 

ultrafiltration rate will be given. This is checked by lines 179 and 180. The total 

number of steps that have been executed at the end of the filtration phase is 

chec~ed. If this is less than 9595 then an error is called. Obviously, the software is 

designed so that the code that has to be executed in the stepping cycle takes less 

than 0.025 seconds. However, certain errors in the operating system set up can 

result in the stepping cycle taking longer, so this check is necessary. An example 

of such an error would arise if the operator had inadvertently changed the display 

driver settings so that screen updates took longer. 
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9.6 Extracorporeal Circuit 

The extracorporeal circuit is mostly constructed from standard clinical 

equipment (see figure 4.2). The standard items are obviously already safe for 

clinical use and as such need no particular safety analysis. The exception is the 

syringes. The problems that have arisen with these and their safety implications 

are addressed elsewhere (sections 7.2.1 and 12.2). 

The main risk associated with the extracorporeal circuit is failure of one or 

more of the luer locking joints. This could be as a result of incorrect assembly or 

the joints working loose during operation. Blood could then leak out or air get into 

the circuit. The risk of this can be minimised in two ways. The circuit should only be 

assembled by experienced clinical staff who are familiar with the operating 

instructions (appendix E). It should also be inspected at regular intervals during 

operation to make sure all circuit joints are still intact. 

9.7 System Initialisation 

When the machine is first switched on, it is subject to a thorough test of all 

systems to make sure they are functioning correctly. This is provided by the 

software that has already been described in section 8.7. One point is worth 

reiterating. As part of this testing procedure, the pressure transducer amplifier is 

checked to make sure it responds to a pressure rise and a pressure drop. So a 

failure due to a diaphragm breakage (see section 9.4) would be detected by this 

procedure. 

9.8 Safety in Normal Operation 

When all elements of the system are functioning correctly, hazardous 

conditions can still arise which the system needs to be able to deal with. These are 

detailed below. 

Venous Line Occlusion 

During the blood return phase the pressure in the extracorporeal circuit is 

measured continuously. This is done by lines 199 and 200 in the Return_BloodO 
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function. If the venous line becomes blocked the pressure will rise and trigger the 

alarm. 

The situation during blood withdrawal is complicated by the algorithm used. 

If the venous line becomes blocked, the syringe will pump back and forth in an 

attempt to clear the blockage. Therefore, pressure sensing is an inappropriate way 

to check for a blockage. Line 52 in Withdraw_BloodO sets a time limit on blood 

withdrawal that is proportional to the volume of blood to be withdrawn. If this time 

limit is exceeded, as it will be if the line is blocked, lines 142 to 144 will trigger an 

alarm. 

Haemofilter occlusion 

Haemofilter occlusion can occur in two ways. There can be a gradual build 

up of deposits on the inside of the haemofilter fibres, which results in a narrowing 

of the channels through which blood can flow. The pressure gradient along the 

haemofilter will therefore increase. This will be reflected in a rising and falling 

pressure readout from the transducer in time with the reciprocating action of the 

syringes. If the occlusion becomes bad enough, the pressure changes can 

increase enough to fall outside the limits set by lines 128 to 130. An alarm will then 

be triggered. 

The other type of occlusion is that caused by thrombus (blood clot) 

formation in the extracorporeal circuit. This can be caused by insufficient 

heparinisation of the circuit. The clot will usually lodge at one end of the 

haemofilter, at the point where the blood flow enters the fibres. The thrombus 

forms a plug in the fibre ends, as its physical properties prevent the thrombus 

material from flowing through the fibres. This results in a sudden large change in 

the pressure readout from the transducer, which will trigger an alarm. 

Summary 

This chapter has dealt with the important topic of system safety. Although 

the current system does not meet entirely the requirements of IEC 60601, the work 

that has been described here goes a long way towards this. The safety 

shortcomings of the current system will be rectified in the second prototype system. 

The next chapter discusses the initial testing of the system. 
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CHAPTER 10. TESTING THE PROTOTYPE SYSTEM 

Introduction 

Initial testing was undertaken to establish the proper functioning of the 

various parts of the system. There was particular emphasis on assessing the 

accuracy of control of ultrafiltration rate. Testing was performed with both water 

and blood as a working fluid. 

10.1 Testing with Water 

Once construction was finished, testing could begin. Initial tests were 

performed using water as the working fluid. The water was held in the barrel of a 

60 ml syringe and fed to the circuit. The outflow line from the haemofilter was 

attached to a 10 ml burette so the output from the system could be accurately 

measured. The system was run for 1 hour at a time, with various combinations of 

working fluid volume and ultrafiltration rate. The aim of these tests was to see how 

accurate the system was with respect to ultrafiltration rate. The results of the tests 

are given in table 10.1. The differences between the target volumes and the actual 

volumes achieved are given as percentage errors in the last column. The mean 

errors and standard errors of the mean for various subcategories of the data and 

for the data as a whole are given in table 10.2. These figures show that the 

accuracy achieved was well within the ± 5 % given in the original specification, 

apart from test 6 in the first test sequence. These results were good enough to 

allow testing with blood to proceed. 

10.2 Testing with Blood 

10.2.1 Redesign of Three Way Tap Drivers 

The initial volume tests using blood as the working fluid were unsuccessful. 

Contamination with blood increased greatly the torque needed to turn the three 

way taps, and the servos driving them stalled. This problem was solved as detailed 

in section 7.2.2. 
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10.2.2 Blood Stirrer 

During the testing the donated blood is supplied from a reservoir consisting 

of the barrel of a 60 ml syringe. Over a period of time the formed elements in the 

blood settle to the bottom of the reservoir, forming a thick sludge. This results in 

blood of a very high haematocrit being supplied to the system, giving false test 

results and increasing the chance of a blockage in the haemofilter. This problem 

was solved by the introduction of a blood stirring system. The circuit diagram for 

this is shown in figure 10.1. It is a simple power transistor switch. The aluminium 

stirrer is placed into the top of the syringe barrel. It is controlled by line 30 of the 

DAQ board so that the motor can be switched on only during the blood return 

phase of the operating cycle. This minimises the breakdown of blood cells that 

inevitably occurs with any sort of mechanical stirring. The digital line is connected 

through 2 switches. S1 allows the stirrer to be completely disconnected from the 

DAQ card. S2 allows a short period of stirring to be done manually. A 7404 inverter 

delivers the logic signal to the base of the transistor via a 500 Q current limiting 

resistor. Originally the motors were driven directly by the power transistor. 

However this proved to be unreliable, as the motors would sometimes stall when 

switched on, due to the slow rise time in the voltage delivered by the transistor. 

This problem was solved by driving the motors via a relay and contacts S3. The 

7.8 Q resistance limits the current delivered to the motors, thereby reducing their 

speed. The motors themselves are 3 V model types, and the gear ratio used is 

1: 16. The slow rotation of the stirrer reduces haemolysis (cell breakdown) of the 

blood. 

The mechanical components can be seen in figure 10.2. 2 motors are needed to 

provide a control for the clinical testing (see chapter 11). 

10.2.3 Method 

A series of tests were undertaken using donated blood. 200 ml was 

available for the tests. The blood was heparinised as soon as it was taken, at a 

concentration of 10 units of heparin per ml of blood. It was stored in a refrigerator 

until needed. Adding heparin prevents the blood coagulating, and refrigeration . 

slows the breakdown of the cells. Typically 40 ml would be used for each test, held 

in the barrel of a 60 ml syringe. This syringe was connected to the machine using 
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three way taps and luer ended tubing. The filtrate was collected in a 10 ml burette 

so that the volumes obtained could be accurately measured. It is important to keep 

the haematocrit of the blood constant during a test run. As filtrate is extracted, the 

overall volume of the blood is reduced, while the volume of the formed elements 

(the cells) remains constant. This results in an increase in the haematocrit and 

therefore a reduction in the ultrafiltration rate. So as filtrate is withdrawn from the 

blood, it is replaced by heparinised normal saline to keep the total volume of the 

sample constant. 

Most test runs lasted for 1 hour. Different combinations of working blood 

volume and filtration rate were tested. In all 18 successful test runs were made. 

The ultrafiltration rates achieved were recorded. 

10.2.4 Results 

The results are shown in table 10.3 . It was found that the rates were all 

consistently lower than the rates obtained with water, as expected. The analysis of 

the errors is shown in table 10.4. The error was not a function of the target filtration 

rate (see figure 10.3), so it was possible to calculate a correction factor that could 

be applied to the filtration rate algorithm to bring the volumes back within the 

specification. This was done as follows. A mean percentage error was calculated 

for all the tests that had a working blood volume of 5 ml. The result of test 26 was 

ignored as the error here was nearly 10 % greater than for any other test. 

The mean error was found to be -9.05 %. So the correction factor could be 

calculated: 

C . F 100 
orrectlon actor = 100 _ 9.4 = 1.104 

Once this correction factor is included in the program, the filtration rate 

accuracy becomes, at ± 4.5 %, better than the ± 5 % required by the specification. 

These figures compare well with the accuracy obtained in conventional 

haemodialysis circuits. The volumetric pumps used to control ultrafiltration flow can 

have an error of as much as 10 % between the set flow rate and the actual flow 

rate delivered. Roberts and Winney 81 report overall errors of as much as 5.8 %, 

and Jenkins et al. 82 report a maximum error of 12.5 %. 
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It is worth noting that most methods of haemodialysis in small babies do not 

allow direct control over ultrafiltration rate. An extracorporeal circuit that relies on 

the patient's blood pressure to supply the transmembrane pressure for 

ultrafiltration will be limited in the amount of ultrafiltration that it can achieve. The 

syringe driven system however, can control the ultrafiltration rate directly and does 

not rely on the patient's mean arterial blood pressure to supply the driving force for 

ultrafiltration. This is a significant advantage over conventional methods of 

treatment. The maximum ultrafiltration rate that can be achieved for a given weight 

of baby can be estimated as follows: 

Assume that each volume of blood that is withdrawn into the system can be 

safely reduced to 60 % of its original volume by ultrafiltration. Any further reduction 

would result in a very large increase in haematocrit and therefore increase the risk 

of the blood clotting in the circuit. 

So, LlQF = 0.4 VB 

where .::\QF = amount of ultrafiltrate produced in one operating cycle 

and VB = working blood volume 

The time taken for 1 operating cycle can be worked out assuming a blood flow rate 

of 10 mil min: 

cycle time, .::\t = filtration time + withdrawal time + return time 

VB (1-0.4)VB 
= 4 +10+ 10 (10.1) 

. . .::\Q 4'-l 
So, maximum ultrafiltration rate, QF = Ll/ = 40 + 1 ~6VB mil min (10.2) 

The working blood volume can be related to the weight of the baby using the 

standard formula that was employed in the user interface (see section 8.7). 

This assumes a blood volume of 85 ml per kg of body weight, and that it is safe to 

remove 10 % of this. 

So, VB =0.1 x(85 x W)=8.5Wml 

where W = weight of baby in kg 

Substituting this in equation 10.2 gives 

34W 
QF= . 40+13.6 W ml/min 

(10.3) 

(10.4) 
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The performance of the syringe driven system can now be compared with other 

methods of treatment. Zobel et al. 27 describe 6 treatments using continuous 

arteriovenous haemodialysis. They quote average values of ultrafiltration rates of 

2.1 ml/min/m2 for CAVH and 1.7 ml/min/m2 for CAVHD. These figures are given as 

ultrafiltration rate per unit surface area of the baby, which is a common practise in 

paediatric nephrology. The mean patient weight is quoted as 3.2 kg, so the figures 

can be converted using the usual methods that relate body weight to surface 

area 21. This gives values of 0.47 ml/min and 0.38 ml/min. Using the value 3.2 kg 

in equation 10.4 gives a maximum filtration rate of 1.3 ml/min, which is nearly 3 

times higher than the value quoted for CAVH. Lieberman 32 reports a UF rate of 

only 2.4 mllh for 1.3 kg baby using CAVH. 

The relevance of models of ultrafiltration such as those described by 

Pallone 48 was considered. These models were discussed in section 2.4. This type 

of analysis applies to extracorporeal circuits employing continuous arteriovenous 

haemofiltration. The volume flow rate of ultrafiltrate is usually the dependent 

variable, and is a function of parameters such as transmembrane pressure and 

haematocrit etc. In some circuits a volumetric pump is attached to the ultrafiltrate 

line, so ultrafiltrate flow rate becomes the independent variable and 

transmembrane pressure the dependent variable. This is analogous to the syringe 

driven system. Direct control over the volume of the extracorporeal circuit means 

that ultrafiltration is an independent variable, and any model of this sort would 

predict the transmembrane pressure inside the haemofilter. However, this variable 

is not in itself of much interest if the ultrafiltration rate is already determined. This 

assumes that the transmembrane pressure remains well inside the safety limits for 

the haemofilter, which it does in normal operation. The upper limit quoted for the 

Miniflow 10 is 450 mm Hg 87. The safety systems built into the machine would halt 

operation long before the pressure got this high. 

The other obvious problem with these models is that they apply to steady 

state ~onditions in the extracorporeal circuit, such as are found in continuous 

arteriovenous haemofiltration. This is clearly not the case for the syringe driven 

system. Not only are there 3 distinct phases during the cycle of operation (blood 

withdrawal, filtration and return), but also the direction of blood flow through the 

haemofilter reverses several times during the filtration phase. It would therefore 

seem that steady state models would not provide useful predictions of the 

performance of the syringe driven system. 
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Summary 

The early testing confirmed that the system was operating satisfactorily from 

a technical point of view. In particular, the ultrafiltration rate control was within 

± 5 %, a major requirement of the specification. Once these facts had been 

established, it was necessary to move on to the clinical testing of the system. This 

is the subject of the next chapter. 
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Date Test UF Working Time Calculated Actual Percentage 
No. Rate Fluid min Volume Volume Error 

mllh Volume ml ml ml 
29/04/98 1 15 10 62.97 15.57 15.5 -0.45 

2 10 10 63.16 10.53 10.5 -0.28 
3 3 10 64.12 3.18 3.3 3.77 
4 15 3 62.96 15.58 15.7 0.77 
5 10 3 64.51 10.74 11 2.42 
6 3 3 64.66 3.19 3.4 6.58 
7 15 5 61.3 15.32 15.2 -0.78 
8 10 5 65.22 10.82 10.6 -2.03 
9 3 5 64.41 3.18 3.2 0.63 

10 3 5 65.12 3.22 3.2 -0.62 

07/09/98 1 10 5 60.56 10.11 10 -1.09 
2 3 5 64.91 3.23 3.2 -0.93 
3 15 5 56 14.17 13.95 -1.55 

15/01/99 1 5 5 33 2.81 2.8 -0.36 
2 3 5 59 2.98 3.1 4.03 
3 10 5 61.4 10.17 10 -1.67 
4 15 5 45 11.45 11.25 -1.75 
5 15 5 62.12 15.62 15.5 -0.77 

Table 10.1 Water Test Results 

Category Mean Error SEM , 

3 ml/h, 5 ml 0.776 1.135 
10 ml/h, 5 ml -1.60 0.275 

I 

15 ml/h, 5 ml -1.21 0.255 
All Data -0.04 0.444 

---_ ... -

Table 10.2 Analysis of Water Test Data 
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date test UF working time min calculated actual percentage 
no. rate fluid volume ml volume ml error 

mllh volume 
ml 

07/09/98 4 3 5 60 3.03 2.95 -2.64 
5 10 5 62.72 10.39 9.5 -8.57 
8 3 5 123.33 6.13 5.6 -8.65 
9 15 5 61.76 15.29 13.9 -9.09 

10 15 10 66.47 16.49 15.75 -4.49 
11 3 5 60.96 3.03 2.8 -7.59 
12 5 5 61.37 5.06 4.75 -6.13 
13 7 5 65.37 7.59 6.8 -10.41 
14 9 5 63.13 9.46 8.7 -8.03 
15 11 5 63.04 11.48 10.15 -11.59 
16 13 5 58.03 11.7 10.5 -10.26 
17 3 5 60.14 3 2.6 -13.33 
18 5 5 61.65 5.1 4.35 -14.71 
19 7 5 62.19 7.18 6.5 -9.47 
22 5 3 60.85 5.07 4.4 -13.21 
23 5 6 60.76 5.06 4.65 -8.10 
24 5 8 62.15 5.18 4.85 -6.37 
25 5 10 61.51 5.12 4.75 -7.23 
26 9 5 63.54 9.48 7.7 -18.78 
27 11 5 64.7 10.79 9.65 -10.57 
28 15 5 60.15 11.52 10.5 -8.85 
29 13 5 65.19 9.81 8.75 -10.81 

Table 10.3 Ultrafiltration with Blood as Test Fluid 

Category Mean Error SEM 
3 mllh -8.05 2.19 
5 mllh -9.29 1.52 
15 mllh -7.48 1.50 
All Data -9.05 0.63 

Table 10.4 Analysis of Blood Test Data 
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CHAPTER 11. CLINICAL TESTING 

Introduction 

Once the basic functions of the system had been tested and found to work 

satisfactorily, the clinical testing could begin. Initially two aspects of the system's 

operation were examined. The first of these was a study of the clearances that 

could be achieved by adding dialysis to the system. This is important because 

dialysis is often preferred over ultrafiltration as the choice of treatment. Sometimes 

both are used in combination. Dialysis can provide greater effective clearances. 

The second was an investigation of the amount of haemolysis (cell 

breakdown) that occurs inside the system. Haemolysis results from mechanical 

damage to the blood cells. This will occur particularly at the point where the syringe 

plunger contacts the inside of the barrel. 

Most of the tests were performed twice, once for the 10 ml syringe system 

and once for the redesigned 25 ml syringe system. 

11.1 Addition of Dialysis to the System 

The system was modified to provide dialysis as well as ultrafiltration with the 

addition of a few pieces of standard clinical equipment. A 5 litre bag of Hospal 

Hemosol dialysate fluid was used. This system is ideal for paediatric use as it is 

much simpler to prepare than the fluids used for adult dialysis. The relatively small 

amount of fluid in each preparation is not a drawback as the fluid flow rates needed 

to dialyse a premature baby are very small, of the order of 70 ml/h. The dialysate is 

delivered to the haemofilter via a cartridge type intravenous pump. Such a pump 

can deliver an accurately monitored flow rate through the haemofilter. The pump is 

connected to the inflow dialysate port of the haemofilter, and a waste tube is 

connected to the outflow port. 

11.2 Dialysis Testing 

Testing was done on both the 10 ml syringe system and the 25 ml syringe 

system. Very similar procedures were used for both systems. 

There were 2 main parts to the investigation when the 10 ml syringe system 
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was tested. The first was to look at the filtration time. The original specification 

called for 4 minutes of blood filtering for each operating cycle. This was based on 

clinical experience. However, it was not known if this was the optimum filtration· 

time, so it was decided to test different times and compare the results. The times 

used were 1 minute, 2 minutes and 4 minutes. Other parameters (i.e. blood 

withdrawal and return times) were kept the same between the 3 tests. The working 

blood volume was set at 3 ml and the dialysate flow rate at 100 ml/h. 

The second part was to measure clearance rates, to make sure the system 

could achieve the clearances that are necessary in clinical practice. 2 parameters 

were varied in this investigation, the working blood volume and the dialysate flow 

rate. It was hoped to estimate the optimum dialysate flow rates. A balance needs to 

be struck between maximising clearances and minimising the dialysate flow rate, 

so as not to be wasteful in the use of dialysis fluid. 

8 tests were done in all, with the parameters shown in table 11.1 below. 

Working Blood Dialysate 

Volume (ml) flow rate (ml/h) 

3 30 

3 60 
I 

5 50 
! 

I 

5 100 I 

5 600 

7 70 

7 140 I 
I 

10 100 
I 

10 200 
'-----~ 

Table 11.1 Test Parameters 

The dialysate flow rates were chosen by first calculating the effective blood flow 

rate from the reservoir (or the patient in the clinical situation). This is much lower 

than the blood flow rate through the haemofilter itself, which is 10 ml/min. This is 

because the same blood flows through the haemofilter several times in each 

operating cycle. An example calculation follows: 
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If the working blood volume is 5 ml, and the operating cycle takes 333 seconds, 

then the effective blood flow rate from the patient is: 

5 
flow rate = 333 = 0.015 mil s = 54 mil h 

So the first dialysate flow rate was chosen to be roughly the same as the effective 

blood flow rate, and the second to be double this rate. Additionally, for a working 

blood volume of 5 ml, a 600 mllh rate was included. This is the same as the actual 

blood flow rate through the haemofilter. It was hoped to test if a greatly increased 

dialysate flow rate had a significant effect on the clearance rate. 

The above tests (not including the filtration time experiment) were repeated 

for the 25 ml syringe system. The only difference was in the range of working blood 

volumes used. Since the syringes were bigger a maximum working blood volume 

of 20 ml was used. 

11.2.1 Method 

The clinical apparatus was modified as shown in figure 11.1 to allow 

sampling of blood and dialysis fluid to take place. At the start of each test the IV 

pump is switched on to start the dialysate pumping through the haemofilter. Tap C 

is in position 1 so that the outflow from the haemofilter can flow into the waste 

reservoir. Tap A is in position 1 to allow undialysed blood to be drawn into the 

circuit from the reservoir. As in previous tests, the blood reservoir is stirred 

regularly to prevent the formed elements settling to the bottom. At the end of the 

filtration phase tap A is turned to position 2 to divert the dialysed blood into a waste 

blood collector via tap B which is in position 1. This cycle of operation is repeated 3 

times to allow the biochemistry of the fluids to settle to a steady concentration. At 

the end of the third cycle, tap B is turned to position 2 so that the dialysed blood 

can be sampled, being collected in the 10 ml syringe attached to tap B. Tap C is 

turned to position 2 at the beginning of the third cycle so that the waste dialysis 

fluid is sampled over one complete operating cycle. 

To increase the accuracy of the biochemical assays, it is necessary to 

artificially increase the levels of creatinine and urea in the donated blood, taking 

them up to typical values that would be found in a patient with acute renal failure. 

For creatinine, the normal adult concentration range is 45 - 120 /J.molli. It was 
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decided to increase the concentration by 320 Ilmoi/i. The total volume of blood 

available for the tests was 200 ml. So the mass of creatinine that must be added 

can be calculated: 

Creatinine does not enter the blood cells, so for the calculation only the plasma 

volume needs to be considered. Assuming a haematocrit of 50 %, the plasma 

volume is 100 ml. 

No. of moles of creatinine = concentration x volume 

= 320 Ilmol/l x 100 m I 

= 321lmol 

=> Mass of creatinine = no. of moles x molecular weight 

= 0.032 mmol x 113 

= 3.6 mg 

(11.1) 

(11.2) 

For urea, the normal adult range is 3.3 - 6.7 mmoi/i. This was to be increased by 

18 mmoi/i. Urea does enter the blood cells, so the whole volume of 200 ml needs 

to be considered for the calculation: 

No. of moles of urea = concentration x volume 

= 18 mmol/l x 200 ml 

= 3.6 mmol 

=> Mass of urea = no. of moles x molecular weight 

= 3.6 mmol x 40 

= 144 mg 

(11.3) 

(11.4) 

So, 3.,6 mg of creatinine and 144 mg of urea were added to the blood sample and 

mixed in well. The blood was left to stand for an hour before testing began, to allow 

the urea to be absorbed into the cells. 

As in previous tests, the blood was heparinised at a concentration of 10 

units/ml. 

One 2.5 ml blood sample was taken at the start to allow a full blood count to 

be performed, This was necessary so that the packed cell volume of the blood 

sample could be determined. This is needed for the clearance calculations (see 
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section 11.2.2). 

Two control samples were also taken, one from the blood and one from the 

dialysis fluid. 

The testing could then begin. 12 blood samples and 12 fluid samples were 

taken according to the regime outlined above. They were collected in standard 

clinical 2.5 ml sample tubes. Since the test was designed to determine the 

clearances that could be achieved by dialysis alone, the system ultrafiltration rate 

was set to zero. 

11.2.2 Results and Conclusions 

Results 

The blood and fluid samples for the 10 ml syringe system tests were 

assayed to determine the concentrations of potassium, urea and creatinine. One 

sample underwent a full blood count to determine the PCV (packed cell volume). 

The control results were as follows: 

Blood Control 

PCV: 0.439 

Potassium: 3.8 mmol/l 

Urea: 22.1 mmol/l 

Creatinine: 223 ~mol/l 

Fluid Control 

Potassium: 0.1 mmol/l 

Urea: 0.0 mmol/l 

Creatinine: 0 ~mol/l 

The test sample results are given in columns 5 to 10 of table 11.2. For each test, 

the clearance can be calculated for each of the concentrations tested, so 6 values 

for clearance can be obtained. Clearances are calculated as follows. 

As was explained earlier, plasma clearance is defined as the volume of 

plasma that is completely cleared of a given solute per unit time. So, the formula 

for clearance in terms of plasma concentrations is: 
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C = Q p x(\~O) 
where clearance is in mil min and 

Q p :: plasma flow rate (mil min) 

PI :: plasma concentration in (mmol/l or f,lmol/l) 

Po :: plasma concentration out (mmol/l or f,lmol/l) 

(11.5) 

The effective blood flow rate through the system is found by dividing the working 

blood volume by the operating cycle time (columns 2 and 4). However, since it is 

the plasma clearances that must be calculated, the effective plasma flow rate is 

needed. This is the blood flow rate multiplied by the volume fraction of plasma in 

the blood. So the formula for Q p is: 

Vws x (1- PCV) 
Q p :: ---'-"'''------

tc 

where Vws :: working blood volume (ml) 

PCV:: packed cell volume (III) 

tc :: cycle time (min) 

(11.6) 

Combining the two formulae gives a single formula that can be used in the 

spreadsheet to calculate clearances: 

C = (\'Po) X (Vwa x \: - PCV)) (11.7) 

The relevant control blood concentration is used for PI, and values are taken from 

columns 5,6 and 7 for Po. VWB is taken from column 2 and tc is taken from column 

4. The value for PCV is 0.439. 

A similar formula is used to calculate clearances based on dialysate fluid 

concentrations. It is based on the principle that the rate of addition of a given solute 

to the fluid must equal its rate of removal from the plasma. So, the formula is: 
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C=(Fa -FI) x.9L 
PI 60 

where Fa = fluid concentration out (mmolll or /-lmol/l) 

FI = fluid concentration in (mmol/l or /-lmol/l) 

PI = plasma concentration in (mmol/l or /-lmol/l) 

OF = dialysate fluid flow rate (mil h) 

(11.8) 

Fo is taken from columns 8, 9 and 10. FI is the relevant fluid control concentration. 

PI is again the relevant blood control concentration. OF is taken from column 3. 

With these two formulae the clearances in columns 11 to 16 can be 

calculated. Finally, the means of all 6 clearances were calculated (column 17). 

The same procedure was followed in the 25 ml syringe system tests. The 

control results were as follows: 

Blood Control 

PCV: 0.305 

Potassium: 17.6 mmol/l 

Urea: 15.4 mmol/l 

Creatinine: 240 /-lmol/l 

Fluid Control 

Potassium: 0.5 mmol/l 

Urea: < 0.2 mmol/l 

Creatinine: 1 /-lmol/l 

It is interesting to note that the potassium levels here were much higher than in the 

first set of tests (3.8 mmolll for the 10 ml syringe tests). This is because bank blood 

was used for these tests whereas fresh donor blood was used for the first set of 

tests. A certain amount of haemolysis inevitably occurs in bank blood that has 

been stored for any length of time. Haemolysis results in potassium being released 

from inside the red blood cells into the plasma, thus raising the concentration 

present in the plasma. 

The test sample results for the 25 ml system are shown in table 11.3. 
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Conclusions 

The clearances for the 10 ml syringe tests are shown graphically in figures 

11.2, 11.3, 11.4 and 11.5. Those for the 25 ml syringe tests are shown in figures 

11.6, 11.7 and 11.8. Theoretically, the clearances calculated using plasma 

concentrations should be the same as those calculated using dialysate 

concentrations (for a given solute). The results clearly show that this is not the 

case for these tests. It is hard to say whether this is as a result of inaccuracies in 

the test procedure itself or in the assays that were performed. However, the results 

were sufficient to show that the clearances are high enough for the system to be of 

practical use clinically. It is clear from the graphs that clearance is approximately a 

linear function of effective blood flow rate over the range of flow rates that were 

tested. The variation within the test sequences was as expected, with 2 exceptions 

in the 10 ml series. The plasma creatinine clearances for tests 1 to 3 were 

inconsistent, as were the fluid potassium clearances for tests 6 to 8. 

The filtration time tests (figure 11.5) showed that there is a significant 

increase in clearance as the filtration time is reduced. A 2 minute filtration phase 

gives a 20 % increase in clearance over a 4 minute phase. And a 1 minute phase 

gives a 37 % increase. However, this test does not take into account the problem 

of blood access. These tests were all done with the same blood withdrawal rate of 

10 ml/min. If blood access to the patient is good and a high withdrawal rate can be 

achieved, it makes sense to reduce the filtration time. However, if blood access is 

bad, the blood withdrawal phase may take a great deal longer, significantly 

reducing the mean blood flow rate from the patient. In this case, it is preferable to 

increase the filtration phase time, to achieve a beUer clearance. It should be 

possible to arrive at an optimum filtration time for a given blood withdrawal rate that 

maximises clearance values. 

As expected, the dialysate flow rate tests showed that an increase in flow 

rate d.oes produce an increase in clearance. Tests 6 to 8 in the 10 ml series 

provide an example. A dialysate flow rate of 50 ml/h produces a clearance of 0.268 

ml/min. Here the dialysate flow rate is similar to the blood flow rate, which in this 

case is 60 ml/h. Doubling the dialysate rate produces a 20 % increase in 

clearance. Increasing it to 600 mllh gives a 36 % increase. While these increases 

are significant, they are not large enough to justify the increased rate of use of 

dialysate. 

The results for the 25 ml syringe tests were very similar to those obtained 
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for the tests of the 10 ml syringe system. Obviously, higher clearances were 

obtained for the higher working blood volumes, as was expected. 

It is interesting to compare the test results with clearance figures obtained 

with conventional methods of dialysis. Zobel, Kuttnig and Ring 27 report obtaining a 

urea clearance of 6.6 ml/min/m2 for a body weight of 3.2 kg (values are the mean 

over 6 treatments) using CAVHD. By the same method as was used in section 

10.2.4 this figure can be converted to units of ml/min. A figure of 1.48 ml/min is 

obtained. For the syringe driven system, a baby with a body weight of 3.2 kg could 

have an effective blood flow rate through the system of 2.5 ml/min. Extrapolating 

from figure 11.7, the urea clearance is predicted to be 1.04 ml/min. This is 

approximately 70 % of the figure obtained by Zobel et al.. At first sight the syringe 

driven system might be expected to deliver considerably lower clearances than a 

CAVHD system. This is because the latter utilises a continuous countercurrent flow 

of dialysate, whereas the syringe driven system alternates between countercurrent 

and concurrent flow. However, the relatively large dialysate flow rates as compared 

to the flow rate of blood through the system can be expected to reduce this 

disadvantage to a minimum. So the clearances obtainable should approach those 

obtained with CAVHD. 

Clinical continuous haemodialysis aims to achieve a clearance between 10 

and 20 % of the glomerular filtration rate that the healthy kidneys would achieve. 

So in assessing the performance of the syringe driven system it is necessary to 

compare the clearances obtained with the GFR that a healthy baby of the same 

body weight would be producing. Empirical relationships are available which allow 

the GFR to be estimated 91. Using these relationships, the GFR for a 3.2 kg baby 

can be estimated to be 3.9 ml/min. The figure of 1.04 ml/min obtained above is 

therefore 27 % of the GFR of a healthy baby of this weight, which is considerably 

better than the performance needed for the system to be clinically useful. The 

estimated GFRs for a range of birthweights are compared to the clearances 

obtai~able by syringe driven haemodialysis with the 25 ml syringe in figure 11.9 

(dialysate flow rates are 20 times the blood flow rate). It is interesting to note that 

at weights of 0.8 kg and below the GFR and the clearance are very similar. Above 

this weight, the GFR increases more rapidly than the available clearance. 

However, at the maximum weight of 2.35 kg, the clearance is still 46 % of the 

GFR, which is much higher than the clinically acceptable level. 

Various models of clearance (see section 2.4) were considered to see if 

they were relevant to the experimental data obtained from the syringe driven 
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haemodialysis system. These models predict clearance under conditions of steady 

state countercurrent flow - this is the flow regime that is found in conventional 

haemodialysis systems. The syringe driven system alternates between 

countercurrent and concurrent flow during the filtration phase of its cycle, therefore 

flow conditions are unsteady. Because of this, steady state models cannot provide 

accurate predictions of clearance. Nevertheless, it is still instructive to compare the 

experimental data with the predictions of such models. 

The model of Sargent and Gotch 53 predicts clearance as a function of blood 

and dialysate flow rates, membrane surface area and mass transfer coefficient Ko, 

(see section 2.4). It assumes a linear change in solute concentration along the 

haemofilter on both the blood and the dialysate side. The membrane surface area 

for the Miniflow 10 87 is 0.042 m2
. Data for blood and dialysate flow rates was taken 

from the 25 ml syringe tests (the first 6 rows of data in table 11.3 were used). Ko 

cannot be determined directly 54_ its value is obtained by curve fitting of the 

predicted clearances to the experimental data. Pallone 56 has obtained a value of 

0.015 cm/min for the AN69 membrane, which is the membrane used in the Miniflow 

10. Sargent assumes that the value of Ko is constant, whereas other authors 59 

conclude that it varies with dialysate flow rate. These values were put into equation 

2.18 to obtain the graph shown in figure 11.10 (blue line). The predicted clearance 

is approximately twice the experimentally obtained clearance. The syringe driven 

system alternates between countercurrent and concurrent flow, whereas the model 

assumes a continuous countercurrent flow of dialysate. Therefore it is to be 

expected that the model would predict higher clearances than those actually 

obtained. 

The model of Pallone et al. 56 derives an exponential relationship between 

solute concentration and distance along the haemofilter. This model addresses 

haemodialysis specifically, assuming that no ultrafiltration takes place. It includes 

another variable - the fractional volume of blood into which urea can distribute. 

This i~ turn is a function of protein concentration (Cp) and haematocrit (H) : 

f = (1- H)(1- 0.01 07Cp ) + 0.86 H (11.9) 

For the purposes of this comparison, the protein concentration was assumed to ,be 

zero. This is a reasonable assumption because the blood used in the experiment 

was derived from packed red cells that had been diluted with normal saline. The 
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haematocrit in this experiment was 0.305. This figure in equation 11.9 gives a 

value of 0.957 for f. Using the same value of Ko (0.015 cm/min) as previously, the 

predicted clearances are as shown in figure 11.10 (red line). Again, the predicted 

values are higher than the experimental ones. Since this model also assumes a 

continuous countercurrent flow, the explanation for the discrepancy is the same as 

for the Sargent model. 

An analysis by Akcahuseyin et al. 55 was also considered. This is a model of 

continuous arterio-venous haemodiafiltration (CAVHD), which involves both 

convective and diffusive transfer of solute. The analysis does not extend to 

conditions of zero ultrafiltration, so it could not be applied to this experimental data. 

Another analysis by Jaffrin et al. 92 contained too many errors to be useful for 

comparison purposes. 

An unsteady model of the syringe driven system is needed to provide more 

accurate predictions of clearance. The data obtained from the initial testing of the 

system is insufficient to produce such a model. Further instrumentation of the 

extracorporeal circuit and more complicated methods of fluid sampling are needed 

to provide comprehensive experimental data on which the model could be based. 

11.3 Haemolysis Testing 

11.3.1 Method 

The purpose of this test was to determine the amount of cell breakdown 

being caused by the action of the dialysis machine itself, over a 12 hour period. 

With the experimental set up being used, there are three main sources of 

haemolysis. The first is the action of the machine itself. The second is due to the 

blood in the test reservoir being agitated by a mechanical stirrer. The third comes 

from the natural breakdown of red cells in the blood sample. To eliminate the last 

two f~ctors it was necessary to set up a controlled experiment. This was done as 

follows. 

A sample of 100 ml of donated fresh blood was heparinised at 5 units/ml. 

This was then divided equally between two 60 ml syringe barrels, giving one 

control sample and one test sample. As before, the barrel which was supplying 

blood to the machine had to be stirred periodically to prevent the formed elements 

in the blood from settling to the bottom of the reservoir. However, this time two 
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stirrers were used, one in the test reservoir, and the other in the control reservoir. 

They were wired in parallel to the same drive circuit. As before, the stirrers would 

only be switched on during the blood return phase of the operating cycle. In this 

way, the control blood and the experimental blood would receive exactly the same 

amount of agitation from the stirrers, and therefore the same amount of haemolysis 

from this source. 

The machine was run continuously for 12 hours at a zero ultrafiltration rate. 

Every hour a 2.5 ml sample was taken from the top of each of the reservoirs. This 

was stored in an EDT A sample bottle. EDT A is an anticoagulant that prevents the 

blood from clotting. The control and test samples were kept at the same 

temperature so that the same amount of natural haemolysis would occur in each. 

11.3.2 Results and Conclusions 

The 24 samples were tested for free haemoglobin. The results for the 10 ml 

syringe system are shown in table 11.4, and in graphical form in figure 11.11. The 

graph shows that the free haemoglobin in the control sample rose steadily, in a 

reasonably linear fashion, throughout the 12 hours of the test. The test sample 

shows a steeper slope, as expected, but the data points are much less consistent, 

which was not expected. This plot was expected to show a steady rise in free 

haemoglobin levels over and above the control levels. However the values show 

marked rises and falls, especially after 6 hours. It is unlikely that there were any 

errors introduced in the sampling technique, so it is more likely that these 

variations are due to errors in the free haemoglobin measurement. For both the 

control and test samples, it is not possible for the free haemoglobin levels to 

actually fall during the experiment, as the data seems to suggest. 

Nevertheless, the data does illustrate some basic points. The action of the 

machine itself obviously does damage the blood to an extent, as the test free Hb 

levels. are conSistently higher than the control ones. At least for the first 10 hours, 

this damage is within acceptable limits for clinical use. However, the test levels at 

11 and 12 hours (111.3 and 115) are unacceptably high. The rubber bung had 

become partially detached from the syringe plunger by this point in the test, and 

this could explain the sudden increase in free Haemoglobin. In all types of test the 

bung detached after approximately 12 hours of use. This was found to be caused 

by a large increase in friction between the bung and the inside of the syringe 

barrel. This is thought to be caused by some kind of physical or chemical process 
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occurring at the interface between the blood and the material of the syringe. Some 

component of the blood could be absorbed by either the plastic or the rubber, 

resulting in an increase in friction. Replacement of the syringe always reduces the 

friction straight away, so the problem is not a result of some sort of degradation in 

the blood itself. The increase in friction could well be connected to the increased 

rate of destruction of the red blood cells. 

These problems were one of the factors that led to the redesign of the 

system to use a different type of syringe (see chapter 7). It was decided to repeat 

the haemolysis test once the redesign had been completed. An identical method 

was used. The results of this test are shown in table 11.5 and figure 11.12. There 

are several differences between the two tests that are worth noting. The control 

sample shows very little increase in free haemoglobin over 12 hours, and the levels 

themselves are consistently lower than in the first test. The value at 7 hours is 

much higher than the other values - it can be assumed that this reading is in error. 

The data for the test sample is more consistent than in the first test. It shows a 

slower, steady rise in haemoglobin levels over 12 hours. The final values are 

better, being below 100 mg/dl. The sudden increase seen in the final 2 hours of the 

first test does not appear here. This would lend weight to the theory that this rise 

was caused by the separation of the bung from the plunger leading to accelerated 

blood damage. 

A simple calculation from these results shows how Significant these levels of 

blood damage would be in a clinical situation. For example, an 800 g baby would 

have approximately 60 ml of blood, containing 7.8 g of haemoglobin in total. 

Assuming a haematocrit of 50 %, there would be 30 ml of plasma in total. 

Take the 12 hour figure from the second test: 92.3 mg/dl. So 30 ml of 

plasma would give: 

30 
Free Hb = 92.3 x 100 = 27.7 mg 

So, after 12 hours the percentage of the total haemoglobin that has been lost can 

be calculated: 

I 
27.7 

percentage oss = 7800 x 100 % = 0.36 % 
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This is a very small proportion of the total haemoglobin, and is well within safe 

limits. 

11.4 Blood Access Testing 

Further modifications were made to the algorithm for blood withdrawal. It 

was decided that halving the withdrawal rate every time there was resistance to 

flow was too much of a reduction in flow rate. The code was changed so that every 

time the pressure fell below a pre-set limit, the rate was reduced by 1 mllmin, 

starting from 10 mllmin. The delay before restarting blood withdrawal was kept. A 

recycling feature was added. Every 15 minutes the blood withdrawal rate is reset 

back to 10 mllmin, regardless of its current rate. The reason for this is as follows. 

Temporary occlusion of the line can occur for a variety of reasons. One example is 

movement of the baby. A small change of position can restrict the flow through the 

line. But then the baby could move again, opening up the line. If the recycling 

feature was not included, the withdrawal rate would remain unnecessarily low. 

In vivo tests were done to see how the algorithm performed in practice. Two 

parameters were varied. The trigger pressure was varied between 100 mm Hg and 

500 mm Hg. The delay time was varied between 2 seconds and 10 seconds. Blood 

withdrawal can fail simply because the vein has been 'sucked dry' of blood, 

allowing the venous walls to collapse. The delay allows time for vascular refilling to 

occur. It was hoped to find out the minimum time that still allows refilling to occur. 

The system was tested using adult volunteers. Superficial veins in the wrist 

were chosen for blood access, as these approximate to the size of the major veins 

found in a premature baby. The veins were cannulated using 22 gauge catheters. 

These were then connected to the machine using luer locking tubing. A special 

program and user interface was prepared for these experiments. This recorded the 

venous pressure readings in stripchart fashion, and allowed the behaviour of the 

syster:n to be monitored as the experiment was proceeding. 

A total of four venous access sites were tested, with varying degrees of 

success. One site occluded too quickly for any testing to be done. The system 

withdrew blood successfully from the other three sites. Unfortunately the veins 

used were too large to provide a stringent test of the program. The rate of 10 

mllmin was easily achieved, and the flow of blood had to be artificially reduced by 

applying pressure to the site of cannulation. However, some useful information was 

obtained and the practicality of the system was established. 
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11.5 Clinical Use of System 

The first clinical use of the system involved a patient suffering from a 

mitochondrial cystopathy, a genetic metabolic disorder of the mitochondria. 

Mitochondria are the sites of energy production within the cell. This particular 

genetic defect disrupts the respiratory pathway and results in excessive production 

of lactate molecules. High levels of lactate result in a variety of serious medical 

problems, and if the lactate level is not controlled it is usually a fatal condition. 

Although the system was designed for the treatment of acute renal failure, it 

is equally applicable to metabolic disorders of this type. The principle of operation 

is the same. In acute renal failure, metabolites that are normally removed by the 

kidney are removed by dialysis. In the same way, unwanted metabolites that result 

from metabolic disorders can also be removed. 

11.5.1 Modifications to System 

Some modification of the operating system was necessary. The baby was 

not particularly premature (8 months) and it was important to reduce the lactate 

levels as quickly as possible. In view of these factors it was decided to change the 

parameters of both blood withdrawal and filtration, to increase the clearance of 

lactate. The maximum rate of blood withdrawal was increased from 10 ml/min to 30 

ml/min. The same rate reduction was used, i.e. in steps of 1 ml/min. Blood return 

was also changed. Before, it was set to always return at 10 ml/min, regardless of 

the rate of withdrawal. This was changed so that the return rate is always the same 

as the withdrawal rate. The rate of blood flow through the filter was changed from 

10 ml/min to 20 ml/min, and the filtration time was reduced from 4 minutes to 2 

minutes. It was thought that since blood access would be good, a reduction in 

filtration time would result in an overall increase in clearance, because of the 

increase in effective blood flow rate from the patient. 

11.5.2 Treatment 

The baby was delivered by caesarean section at 30 weeks gestation. As. 

treatment commenced she was suffering from a degree of heart failure, as a result 

of the metabolic disorder. Two catheters were inserted soon after birth, one into an 
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umbilical vein and one into an umbilical artery. The access is shown in figure 

11.13. The umbilical vein catheter was used for access. The baby weighed 1.7 kg. 

A safe working blood volume was calculated from this figure. Assuming a total 

blood volume of 85 ml/kg, there was 144.5 ml of blood in total. If it is safe to 

remove 10 % of this at anyone time, then the upper limit for the working blood 

volume is 14.5 ml. It was decided to start at 5 ml and then increase to 10 ml, 

allowing a wide margin for error. The ultrafiltration rate was set to zero. No 

ultrafiltration was necessary as the patient's kidneys were assumed to be 

functioning normally. The dialysate flow rate was set to 400 ml/h. With some 

difficulty the circuit was primed and treatment began. Due to an error in the 

heparinisation calculations, the circuit clotted very quickly. This was detected 

successfully by the operating system - the alarm went off and the machine 

stopped. The circuit was replaced, and treatment recommenced. The initial 

working blood volume of 5 ml caused no adverse effects, so it was increased to 10 

ml. This value was also well tolerated. Figures 11.14 and 11.15 show the system in 

operation. 

Treatment continued for 8 hours without any problems occurring. At this 

point the umbilical venous catheter became partially occluded, due to a change in 

its position within the vein. Several attempts were made to open it up again. The 

pressure display proved very useful during this procedure, as it gave a continuous 

readout of the pressure in the line while it was being adjusted. It was decided that 

the venous line had become too unreliable, so the access was switched over to the 

umbilical arterial catheter. The system ran for a further 12 hours without incident. 

After 20 hours of dialysis, the patient's lactate levels had been successfully 

reduced. However, the heart failure that she had been born with proved to be 

untreatable, and the patient died. 

11.5.3 Results and Conclusions 

The new effective blood flow rate obtained from the system modifications 

can be calculated and compared with the old value: 
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Assume a working blood volume of 10 ml 

and a 20 mil min withdrawal rate. 

For the old system: 

withdrawal rate = 10 mil min 

~ tw = 10/10 = 1 min. 

return rate = 10 mil min 

~ tr = 1 min. 

filtration time, tf = 4 min. 

Reset time is zero, so 

effective blood flow rate, Os' is given by 

blood volume 10 . 
Os= t t t =1 1 4=1.66ml/mln. 

w+r+f ++ 

For the new system: 

withdrawal rate = 20 mil min 

~ tw = 10/20 = 0.5 min. 

return rate = 20 mil min 

~ tr = 0.5 min. 

filtration time, tf = 2 min. 

Reset time is zero, so 

effective blood flow rate, Os, is given by 

blood volume 10 . 
Os= tw+tr+tf =0.5+0.5+2=3.33ml/mln. 

(11.10) 

(11.11) 

So, the blood flow rate has been doubled. Lactate measurements were taken 

during dialysis so that clearances could be calculated: 
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Plasma concentrations: 

lactate concentration pre - filter, Cpre = 6.8 mmol/l 

lactate concentration post - filter, Cpost = 4.7 mmol/l 

lactate concentration in dialysate, Cdial = 3.2 mmolll 

Clearance, 0 
_ Q (Cpre - Cdial ) - (Cpost - Cdial ) 

- B X ( ) Cpre - Cdial 

= 3.333 
(6.8 - 3.2)-(4.7 - 3.2) 

x 
(6.8 - 3.2) 

= 1.94 ml/min 

(11.12) 

This calculation is based on concentration values that are over and above the 

concentration of lactate contained in the dialysis fluid. This value of clearance is 

almost double the best that was achieved before the modifications were made. 

With this amount of clearance, the patient's lactate levels were very quickly 

brought under control. The time taken to reduce the lactate level to half of its initial 

value can be calculated: 

Mr = VB X Cp1as 

where 

Mr = total lactate mass in bloodstream, 

VB = Total blood volume = 144.5 ml, 

and C
p1as 

= Plasma lactate concentration 

(11.13) 

The rate of change of total mass is equal to the rate of removal 

by dialysis (assuming no lactate is generated). So, by the definition 

of clearance: 

dMr dt'= -0 X Cp1as 
(11.14) 
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Substituting from (11.12), 

d(Va x C Plas) 
dt = - D x C plas 

dCplas = 
=> dt 

D 
--xC Va plas 

t D t 

=> J dCplas = - v, J Cplasdt 
o a 0 

Integration by standard methods gives: 
D 

--t 
Ct = Cae VB 

where Co = initial plasma lactate concentration 

C t = plasma lactate concentration at time t 

Substituting ~t = 0.5 into this equation gives 
a 

Va 144.5 . 
ta.s = In 2 x 0= 0.693 x 1.94 = 52 min 

(11.15) 

(11.16) 

(11.17) 

(11.18) 

(11.19) 

Although it is difficult to draw definite conclusions from just one treatment, these 

results compare very favourably with other published results. For instance, 

Schaefer 93 reports a 50 % reduction time of 7.1 hours (± 4.1 hours) in neonates 

being treated by continuous venovenous haemodialysis. 

The blood access algorithm proved to be very successful in practice. The 

access rate settled to around 22 mllmin for both the venous and the arterial 

catheters. Observation of the pressure trace during the delay times while the 

withdrawal rate was being reduced revealed that the delay of 5 seconds was 

unnecessarily large. Vascular refilling was taking place well within this time. The 

delay time was therefore reduced to 2.5 seconds. 

Other refinements were added as a result of the experience gained in the 

first use of the machine. Circuit priming was made an integral part of the 

initialisation procedure. A simple manual control interface was written to allow the 

user to turn both 3 way tap drivers to any desired combination of positions. The 

main use of this would be to allow the blood remaining in the circuit to be flushed 

back into the patient at the end of a treatment session, without having to take the 

circuit off the machine first. 
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Summary 

The testing of the system functioning as a haemodialyser established the 

clearances that could be obtained in this mode of operation. They were found to 

meet and exceed the clinical requirements for the system. Haemolysis testing 

established the amount of damage being caused to the patient's blood. This was 

found to be within acceptable limits. The blood access algorithm was tested using 

the small superficial wrist veins of adult volunteers. Finally, the system was used 

successfully to dialyse a baby suffering from an in born genetic metabolic disorder. 
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test working dialysate cycle plasma plasma plasma fluid fluid fluid clearance clearance clearance clearance clearance clearance mean 
no. blood flow rate time K+ urea creat. K+ urea creat. plasma plasma plasma fluid K+ fluid urea fluid creat. clearance 

volume mllh min mmolll mmol/l Ilmol/l mmolll mmol/l Ilmolll K+ urea creat. 
ml 

1 3 100 2.23 2.4 14.1 180 0.8 5.3 49 0.278 0.273 0.146 0.307 0.400 0.366 0.295 
2 3 100 3.17 2 11.7 153 0.7 4.4 39 0.251 0.250 0.167 0.263 0.332 0.291 0.259 
3 3 100 5.3 1.5 8.2 118 0.6 3.8 33 0.192 0.200 0.150 0.219 0.287 0.247 0.216 
4 3 30 5.3 1.7 10.2 137 1 7.4 73 0.175 0.171 0.122 0.118 0.167 0.164 0.153 
5 3 60 5.3 1.6 9.6 123 0.8 5.6 51 0.184 0.180 0.142 0.184 0.253 0.229 0.195 
6 5 50 5.55 1.7 10.2 136 1.2 8.3 82 0.279 0.272 0.197 0.241 0.313 0.306 0.268 
7 5 100 5.55 1.6 8.9 125 0.8 5.6 51 0.293 0.302 0.222 0.307 0.422 0.381 0.321 
8 5 600 5.55 1.2 6.2 107 0.2 1.2 9 0.346 0.364 0.263 0.263 0.543 0.404 0.364 
9 7 70 6.18 1.7 10.6 126 1.1 8.1 77 0.351 0.331 0.276 0.307 0.428 0.403 0.349 

10 7 140 6.18 1.4 7.9 112 0.8 5.6 47 0.401 0.408 0.316 0.430 0.591 0.492 0.440 
11 10 100 6.63 1.8 11 128 1.1 7.7 70 0.445 0.425 0.360 0.439 0.581 0.523 0.462 
12 10 200 6.63 1.5 8.7 111 0.7 4.9 40 0.512 0.513 0.425 0.526 0.739 0.598 0.552 

Table 11.2 Dialysis Test Results for 10 ml Syringe 



Working dialysate cycle Blood plasma plasma plasma fluid fluid fluid clearance clearance clearance clearance clearance clearance means 
blood flow rate time Flow K+ urea creat. K+ urea creat plasma plasma plasma fluid fluid fluid 
volume ml/h min Rate mmol/l mmolll f..1.mol/l mmol/l mmol/l f..1.mol/l K+ urea creat K+ urea creat 
ml I(ml/min) 

3 30 5.3 0.57 10.6 10.3 153 8.8 9.4 140 0.156 0.130 0.143 0.236 0.305 0.292 0.210 
5 50 5.55 0.90 8.2 8.1 125 6 6.7 92 0.334 0.297 0.300 0.260 0.363 0.319 0.312 
7 70 6.18 1.13 8.4 8.2 134 6.2 6.7 91 0.411 0.368 0.348 0.378 0.508 0.442 0.409 

10 100 6.63 1.51 8.7 8.3 131 5.5 6.2 81 0.530 0.483 0.476 0.473 0.671 0.563 0.533 
15 150 8 1.88 8.4 7.8 129 4.7 5.4 67 0.681 0.643 0.603 0.597 0.877 0.698 0.683 
20 200 8 2.50 8.5 8 129 4.6 5 64 0.898 0.835 0.804 0.777 1.082 0.889 0.881 

3 60 5.3 0.57 7.7 7.6 121 4.8 4.9 67 0.221 0.199 0.195 0.244 0.318 0.279 0.243 
5 100 5.55 0.90 7.1 6.8 118 3.3 3.5 45 0.374 0.350 0.318 0.265 0.379 0.313 0.333 
7 140 6.18 1.13 8.5 8.4 135 3.8 4.3 50 0.407 0.358 0.344 0.438 0.652 0.486 0.447 

10 200 6.63 1.51 6.8 6.4 109 3.6 4.1 55 0.643 0.613 0.572 0.587 0.887 0.764 0.678 
15 300 8 1.88 6.4 5.8 105 2.9 3.4 40 0.829 0.812 0.733 0.682 1.104 0.833 0.832 
20 400 8 2.50 6.1 6.2 109 3 3.2 40 1.135 1.038 0.948 0.947 1.385 1.111 1.094 

Table 11.3 Dialysis Test Results for 25 ml Syringe 
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imein 0 1 2 3 4 5 6 7 8 9 10 11 12 
hours 
control free 17.3 13.5 19 22 21.5 21.8 27 27.9 24.9 25.7 42.9 33.3 35.1 
Hb mg/dl 
est free 17.3 16.3 16.2 17.3 29.2 44 60.6 36.4 71.3 65.3 51.8 111.3 115 
Hb mg/dl 

Table 11.4 Haemolysis Test Results for 10 ml syringe 

Haemolysis 1st Test Results 
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~ime in 0 1 2 3 4 5 6 7 8 9 10 11 12 ! 

hours 
control 4.3 3.3 2.3 5.6 7.7 4.4 5 24.1 5.7 5.4 5.9 6 14.2· 
!Free Hb 
mg/dl 
est free 4.3 22.3 41.9 45.4 47.4 55.4 57.4 64.3 66.3 70.3 77.8 83.1 92.3 

Hb mg/dl 

Table 11.5 Haemolysis Test Results for 25 ml Syringe 
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Figure 11.13 Umbilical Access 

Figure 11.14 Close Up of System in Operation 
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CHAPTER 12. CONCLUSIONS AND PROPOSALS 

FOR FURTHER WORK 

I ntrod uction 

This final chapter presents the conclusions that have been reached as a 

result of the work done, and a discussion of these. Proposals for future work are 

also given. 

12.1 Conclusions 

• It has been shown that it is feasible to automate syringe driven haemodialysis. 

A novel prototype system has been developed, extensively tested and proven to 

perform to the specification originally drawn up for the project. 

• To date it has been used successfully to treat one patient suffering from a 

genetic metabolic disorder. 

• The original aims of the project have been expanded. Initially it was intended 

only for use in treating premature babies suffering from acute renal failure. The 

system has performed better than expected, so the scope of its potential 

application has increased. This now includes heavier babies (up to 5 kg), and 

babies suffering from a variety of metabolic disorders. 

• A comprehensive literature review was undertaken. This failed to find any work 

of a similar nature that had been undertaken before. The current project 

represents a unique contribution to the subject of dialysis in neonates. 

• The mechanical, electromechanical and electronic components of the system 

were designed, constructed and tested successfully. These were then 

integrated into the system as a whole. 

• A comprehensive control and safety system was developed using C and 

Labwindows/CVI software. The safety system was developed using a single 

fault analysis of the entire machine. 
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• The testing of the system concerned three major aspects of its operation. 

Control of ultrafiltration rate was assessed to ascertain that it fell within the ± 5% 

accuracy demanded by the specification. The clearance rates that could be 

achieved were established with in vitro testing, and found to be more than 

adequate for clinical purposes. The haemolysis produced by the system was 

tested and found to be well within safe limits. 

• The system directly controls ultrafiltration rate. This represents a significant 

advantage over most conventional circuits, which can only indirectly control 

ultrafiltration rate, with a consequent loss of accuracy. 

• The ultrafiltration rates that can be obtained are significantly higher than those 

that can be achieved with conventional circuits. 

• The clearances that can be achieved are very similar to those that can be 

obtained with conventional circuits. 

• The total cost of the prototype system was approximately £5,400. This was well 

within the available budget of £15,000. 

• The system that has been produced is a prototype. A second, more clinically 

acceptable version is planned. This would include a variety of improvements 

that are detailed in section 12.2. 

• In summary, a system has been produced that is superior to any other method 

of treatment that is currently available for babies suffering from acute renal 

failure and metabolic disorders . 

. The speCification was met or exceeded in all but one area. Some work was 

done to attempt to accommodate different sizes of haemofilter in the extracorporeal 

circuit. This would still be possible with some modification of the existing system. It 

would be necessary to redesign the top cover of the casing so that the system was 

splash proof when haemofilters of a smaller length were fitted. 

The clinical data obtained from the patient that was treated for mitochondrial 

cystopathy confirmed the performance figures that were obtained from the in vitro 

185 



studies. Lactate clearances of 1.94 ml/min were achieved. The lactate levels in the 

blood were reduced by 50 % in approximately 1 hour. This is a significant 

improvement on other published data 93. 

The clearance studies showed that the performance of the system was 

sufficient to be able to dialyse babies up to a weight of 5 kg. Using the same 

empirical relationships 91 as in chapter 11, the glomerular filtration rate of a 5 kg 

baby would be approximately 8.25 mllmin. A baby of this size would have a total 

blood volume of 425 ml, so 42.5 ml could be safely withdrawn for dialysis. The 

maximum that can be withdrawn by the system is 25 ml, and this could therefore 

be safely used with a baby of this size. Extrapolation from the clearance studies in 

chapter 11 shows that a working blood volume of 25 ml could be expected to 

produce a clearance of roughly 1.3 ml/min - this is 16 % of the GFR. Therefore the 

system can produce sufficient clearance to dialysis a baby of this size. 

The literature search that was undertaken failed to find any evidence of . 

similar work having been undertaken before. Two systems have been described 78, 

79 which bear only a very superficial resemblance to the syringe driven dialysis 

system described here. 

Direct control of ultrafiltration rate is a significant advance over existing 

methods of dialysis for premature babies. In CAVH and CWH, it can be very 

difficult to obtain sufficient ultrafiltration, because of low systemic blood pressure 

and difficulties of vascular access. It can also be very difficult to control the 

ultrafiltration rate. The syringe driven system completely circumvents these 

problems. The ultrafiltration rate that is needed by the clinician can be simply 

entered into the user interface, and obtained to an accuracy of ± 5%. The 

maximum ultrafiltration rate is limited by two different factors from those above. 

The first is the amount of blood that can be safely withdrawn from the baby. The 

second is the haematocrit of the blood in the extracorporeal circuit. If too much 

filtrate is withdrawn from a sample of blood, the haematocrit can become high 

enough to cause a significant risk of clotting in the extracorporeal circuit. However, 

these factors are less limiting than the factors at work in CAVH and CWH. As was 

shown in chapter 10, the syringe driven system can achieve approximately 3 times 

the ultrafiltration rate of conventional circuits. 

The clearance data showed a similar performance to conventional circuits. 

This was expected. The alternating countercurrent and concurrent flow of blood 

that occurs during the dialysis phase of the operating cycle could potentially reduce 

186 



clearance by reducing the mean concentration gradient across the haemofilter 

membrane. However, this effect is eliminated by using a high dialysate flow rate, 

which maintains a favourable concentration gradient. The flow rate needed is still 

viable from a clinical point of view. Under typical treatment conditions, a 5 litre bag 

of dialysate solution can be expected to last 12 hours. 

12.2 Proposals for Further Work 

Second Prototype System 

A second prototype machine is currently being developed by the Medical 

Physics department of the Royal Victoria Infirmary. It will implement several 

improvements on the existing design. Closer adherence to IEC 60601, the safety 

requirements for medical electrical equipment is needed, with particular attention to 

part 290, the requirements for haemodialysis equipment. The improvements that 

are proposed are detailed below. The first few are relevant to safety, the later ones 

address other aspects of the system design. 

It is very difficult to guarantee the safety of computer systems and their 

software. This problem can be avoided by providing hardware interlocks on the 

machine that prevent any malfunction in the computer system resulting in a 

dangerous condition. Any fault arising would result in the machine being set to a 

fail safe condition independently of the computer control system. 

The design of the casing and overall layout of the machine needs to be 

improved. As far as possible, all components should be inside the casing (e.g. the 

stepper motors), so that the extracorporeal circuit attaches to a surface with a 

minimum of protruding components. This makes the machine easier to clean and 

disinfect. The orientation of the machine should be changed so that the circuit 

attaches to a vertical surface instead of a horizontal one. This would make splash 

proofing of the casing a lot easier to achieve. The overall size of the machine could 

be reduced by changing the orientation of the syringe drivers, so that they lie along 

the haemofilter (one above and one below) instead of at right angles to it. This 

would provide a significant size reduction. 

It was decided not to include an air bubble detection system in the prototype 

device. Commercially available air bubble detection devices are available, but the 

smallest of these can only be used on 3 mm diameter lines. It was not feasible to 
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modify them to be used on the 1 mm lines employed by the syringe driven 

haemodialysis system. However, the second prototype machine should have such 

a safeguard. This would monitor the venous line, and would shut down the whole 

system if an air embolism was detected. A device would have to be custom built for 

the system. 

An isolation amplifier should be added between the pressure transducer and 

its amplifier. Although the transducer is already an isolated component, the 

addition of a further stage of isolation is customary in medical equipment. A more 

accurate amplifier that is less susceptible to electrical noise would be a worthwhile 

improvement. 

Although the Hamilton syringes are gas tight, they do not perform well when 

subjected to negative pressure. At about 400 mm Hg, air starts to leak by the seal. 

Although this is acceptable in the prototype system, a higher negative pressure 

limit would improve safety. 

The syringes currently used have several drawbacks. Because they are not 

disposable, they have to be specially sterilised before each use. This is expensive 

and time consuming. The syringes themselves are costly, at £ 85 each. A cheaper, 

preferably disposable syringe that can be used for periods of time as long as one 

week needs to be found. 

The stepper motor microswitches should be changed to a solid state 

photodetection system, similar to that used with the three way tap drivers. A solid 

state system would be more reliable than one that uses mechanical switches. 

Improvement to the volumetric control of ultrafiltration should be considered. 

While the current system is accurate to within ±5 %, more accuracy would have 

clinical benefits. Very accurate volumetric sensors are available. It should be 

possible to mount two of these on the dialysate inflow and outflow lines, and design 

a closed loop system to control the rate of ultrafiltration very closely. 

Replacing the current minitower PC with a laptop would result in a 

signifi.cant size reduction in the whole system. Data acquisition cards that can be 

fitted to the expansion buses of laptop computers are readily available. This, 

together with the reduction in size of the machine itself would bring practical clinical 

benefits. Space is limited in a special care baby unit, and the cot is already 

surrounded by a large array of bulky equipment. So, the smaller the system is, the 

easier it is to set up and use. 
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Further in Vitro Studies and System Modelling 

The syringe driven haemodialysis system is more difficult to model than 

conventional haemodialysis circuits because of the unsteady nature of the flow of 

blood within the system. The development of an unsteady state model could 

provide very useful information about the system, leading to optimisation of its 

performance. This would require further in vitro studies using the prototype system. 

The extracorporeal circuit would have to be fitted with further pressure measuring 

instrumentation to provide more detailed information about its behaviour. A 

sampling system would have to be developed that would allow local sampling of 

blood and dialysate at various points in the circuit, so that the model could be 

compared with experimental data. 

Further Clinical Studies 

The prototype system is currently only available for use within the Newcastle 

upon Tyne NHS hospitals trust. With this restriction, a suitable patient will only 

become available on average once every 6 months. As more patients are treated, 

more clinical data will become available, leading to a more accurate assessment of 

the system's performance. The second prototype system will be available to other 

trusts outside the Newcastle area. This will result in the system being used much 

more frequently, so patient data will be gathered at a much greater rate. 

Commercialisation of System 

A patent application protecting the system is currently being planned. If this 

is successful commercialisation of the system should follow. A thorough study of 

commercial viability is needed. At present there are 10 regional centres in the UK 

that provide treatment for renal failure in neonates. The provision of 10 systems is 

unlikely to be commercially viable, so the system would have to be marketed world 

wide. 
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Summary 

This final chapter has described the conclusions that have been drawn from 

the research that has been undertaken, emphasising the successful completion of 

the development of the prototype syringe driven haemodialysis system. 

Suggestions for further work have been given. These include details of the second 

prototype machine, further in vitro and in vivo studies, system modelling, and the 

possible commercialisation of the system. 
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APPENDIX A Final Construction of Prototype 

A.1 Construction of Electronic Circuitry 

The electronic components were assembled on four single height Eurocard 

size matrix boards. Board 1 contains the pressure amplifier circuit, the stepper 

motor microswitch circuits and the 5 V - 12 V converters (figure A1). Board 2 

accommodates the circuitry for the 3 way tap drivers - the servo motor drivers and 

the photodetectors (figure A2). Board 3 consists of the DAQ board interface circuit 

(figure A3). And finally, board 4 is the DC - DC converter circuit (figure A4). 

Standard 5 mm PCB mounted plugs and sockets were used to provide electrical 

connection to each board. 

Matrix board was also used to mount the series resistors for the stepper 

motor coils. These were attached to the underside of the left and right base plates 

(figures A5 and A6). A further piece of matrix board was used to provide the 

wiring and interconnection for the photodetectors (figure A5). 

A.2 Photodetector Mountings 

The photodetectors had to be mounted accurately and rigidly in position on 

the slotted disc. Matrix board was again used for this. Two small pieces were 

mounted at right angles on an aluminium pillar. The matrix board provides 

electrical connection as well as physical support. The pillar is attached to the servo 

motor studding by means of an aluminium plate. The whole assembly is shown in 

figure A7. 

A.3 Final Assembly of Electronics 

. All the circuit boards (apart from the DAQ interface board) were mounted in 

a half height Eurocard subrack (see figure A8). This is bolted to the bottom of the 

case. The power supply is bolted to one of the end pfates of the subrack. The DAQ 

interface board is attached to the front of the casing. The DAQ card ribbon cable 

socket is attached to the side of the casing and the mains power supply socket is 

at the rear. All interconnections between the various components are made with 

either 5 mm plugs and sockets or Molex microfit 3.0 connectors. The wiring is 

A.1 



designed so that any component can be easily unplugged and removed for fault 

finding and repair. 

A.4 Casing 

The casing was built using parts from the MB Building Kit System. This 

system allows the case to be built from preformed parts. The framework of the 

case was constructed from a 20 mm x 20 mm aluminium profile. Once the profiles 

had been cut to size they were simply bolted together using the MB fastening 

system. The overall dimensions of the case were 849 x 330 x 195 mm. The 

panelling was 2 mm aluminium sheet. 

The lid was also constructed from 20 mm x 20 mm profile, and finished with 

5 mm acrylic glass. The hinges used to connect the lid to the case were fitted with 

stops so that the lid could be held open in a stable position to allow easy access to 

the dialysis circuit (see figure A9). 

The dimensions of the case were determined by the size of the dialysis 

circuit. The haemofilter is relatively long at 30 cm, and this results in a large gap 

between the left and right aluminium base plates. This gap was covered with a 2 

mm thick aluminium plate. It was necessary to provide an overlap between this 

plate and the base plates, to provide a degree of splash resistance to protect the 

electronics inside. The overlap was achieved by raising the base plates by 2 mm -

a 2 mm frame was added to the underside of each base plate (see figures A5 and 

A 6). The centre plate could now be slid forward to gain access to the inside of the 

case. The left, right and centre plates are all bolted to the top of the casing and can 

easily be removed for maintenance. 
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Figure A.3 DAQ Board Interface Circuit 

Figure A.4 DC - DC Converter Board 
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APPENDIX B Example of Filtration Rate Calculation 

~ 1 Operating Cycle • 

.-- 132 seconds ----. 4 240 seconds 

Reset Return Withdrawal Filtration time 
I time I time I time 

If mean filtration rate over 1 operating cycle = 5 ml/h 

. (132+240) 
then actual filtration rate needed = 5 x 240 = 7.75 ml/h 
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APPENDIX C Complete Costing of Project 

Haemodialysis Project - Complete Costing 

Item Cost (£) 

200 MHz pentium PC - Gateway 1,838.00 

DAQ card, cable, connector block - National Instruments 530.00 

linear actuators - RS 157.73 

stepper motor drive boards - RS 50.71 

oscilloscope and power supply - John's Radio 420.00 

Labwindows Upgrade - National Instruments 245.00 

DC servo motors - Futaba 160.00 

DC servo motors and gearboxes - McClellan 177.45 

machining work 260.00 

electronic components 800.37 

mechanical components 615.89 

miscellaneous items 105.26 

Total = 5,360.41 
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APPENDIX D Program Listings 

PUMP4.C 

1 #include <header.h> 
2 
31* PUMP4.C 
4 FUNCTIONS IN THIS FILE: 
5 Filter_Blood(double Crate,double* volume_filtered) 
6 Return_ To_Start_PosnO 
7 
8 this function controls ultrafiltration rate by moving the 
9 plungers at different speeds, rather than setting a TMP level and keeping 
10 it constant - remember this is open loop control 
11 
12 FUNCTION SHOULD START WITH PLUNGER A DOWN AND PLUNGER B UP */ 
13 
14 I~·A ••• 'A"""""""""""*""""""""'"I 
15 
16 int Filter_Blood(double Crate, double* volume_filtered) 
17 
18 /* rem order is board,port,line,input line state */ 
19 
20 { 
21 short push_switch_state,pull_switch_state,push_switch_line; 
22 short pull_switch_line,error_status,direction; 
23 int step_interval,syringe_pull,syringe_push,step_counter; 
24 int start_stroke_count, interval_counter = O,filter_step_counter = 0; 
25 double,init_time,final_time,prev_Cstep,current_Cstep; 
26 double v_curr,v_ref,float_stepjnterval,mark,mark1; 
27 1* Set plunger movement directions 
28 order is: board,port,line,line state */ 
29 
30 init_time = TimerO; 
31 
32 direction = CLOCK; 
33 
34 
35/* NB this is not being used at the moment */ 
36 error_status = ALVRead(1,O,2,&v_ref); 
37 /* if(v_curr < FIL TER_LP _LIMIT II v_curr > FIL TER_HP _LIMIT) 
38 return(10); */ 
39 
40 /*work out the interval between filtering steps - work out the underlying 
41 flow rate in mllhour and divide this by the filtration rate you want 
42 (also in ml/hour)*/ 
43 
44 float_step_interval = (3600 * STEP _RATE/NUM_STEPS_PER_ML)/Crate; 
45 
46 st~p_interval = Round(float_step_interval); 
47 
48 printf("step interval is %i\n",stepjnterval); 
49 
50 printf("actual filtration rate: %6.21f\n",Crate); 
51 
52 I*this outside loop cycles through the direction changes */ 
53 
54 
55 step_counter = 0; 
56 mark = TimerO; 
57 
58 while(TimerO < iniUime + 240.0) 
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59 
60 { 
61 
62 I*printf("elapsed filtering time: %4.2If secs\r",Timer()); this is only temporary*/ 
63 if(direction == CLOCK) 
64 
65 {I*set syringe A */ 
66 DIG_Out_Line (1, 0, DIRN_A, UP); 
67 I*set syringe B*/ 
68 DIG_Out_Line (1, 0, DIRN_B, DOWN); 
69 
70 syringe_pull = CLOCK_A; 
71 syringe_push = CLOCK_B; 
72 
73 push_switch_line = SWITCH_B; 
74 pull_switch_line = SWITCH_A; 
75 
76 } 
77 
78 else 
79 {/*set syringe A */ 
80 DIG_Out_Line (1, 0, DIRN_A, DOWN); 
81 I*set syringe B*/ 
82 DIG_Out_Line (1,0, DIRN_B, UP); 
83 
84 syringe_pull = CLOCK_B; 
85 syringe_push = CLOCK_A; 
86 
87 push_switchJine = SWITCH_A; 
88 pull_switch_line = SWITCH_B; 
89 
90 } 
91 
92 

/* ie anticlockwise */ 

93 DIG_ln_Line(1, 1, push_switchJine, &push_switch_state); 
94 I*read push plunger switch before main loop starts*/ 
95 
96 1* record step counter value at start of stroke - this enables the number of steps in */ 
97 /* each stroke to be monitored so failure testing can be done - remember the step counter */ 
98 1* variable is not reset except at the very start of this function *1 
99 -
100 start_stroke _count = step_counter; 
101 
102 1* Now enter the MAIN LOOP - this continues until plunger switch operates *1 
103 
104 
105 while(push_switch_state == 0 && TimerO < init_time + 240.0) 
106 { 
107 
108 1* printf("%If\n", TimerO - mark1 );*1 
109 1'If mark1 = TimerO; *1 
110 
111 
112 SyncWait(mark,O.025 * step_counter); 
113 

1* these 2 lines print out the time taken*/ 
1* by the basic step loop - if this goes above*1 

1* 0.025 sec then sync will be lost*/ 

114 
115 
116 
117 
118 

GetUserEvent(O,&paneLevent,&control_event); 
if(globaLstop == 1) 

return(-1); 

119 1* check for failure here */ 
120 
121 if(step_counter - start_stroke_count > 2500) 

0.2 



122 return(8); 
123 
124 
125 
126 
127 

if(step_counter - start_stroke_count == 25) 
if(pulI_switch_state == 1) 

return(9); 

128 AL VRead(1,O,2,&v_curr); 
129 if(v_ref - v_curr > FILT_P _DROP II v_curr - v_ref> FILT _P _RISE) 
130 return(10); 
131 
132 
133 
134 
135 if(interval_counter == stepjnterval - 1) 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 

1* this section steps just the push syringe *1 
{ 
DIG_Out_Line(1,O,syringe_push,O); 
Delay(.0001 ); 
DIG_Out_Line(1,O,syringe_push,1 ); 
interval_counter = 0; 
step_counter++; 
filter_step _ counter++; 
} 

else 
1* this section steps both plungers *1 
{ 
DIG_Out_Line(1,O,syringe_push,O); 
DIG_Out_Line(1,O,syringe_pull,O); 
Delay(.0001 ); 
DIG_Out_Line(1,O,syringe_push,1 ); 
DIG_Out_Line(1,O,syringe_pull,1 ); 
intervaLcounter++; 
step _ counter++; 
} 

160 
161 DIG_ln_Line(1, 1, push_switch_line, &push_switch_state); I*read push plunger switch*1 
162 DIG_ln_Line(1, 1, pull_switch_line, &pull_switch~state); 
163 } 
164 
1651* if(no_oCstep > then return *1 
166 
167 direction = !direction; 
168 
169 } 
170 
171 
172 *volume_filtered =(double)filter _step_counter/NUM_STEPS_PER_ML; 
173/*calculates the volume filtered in ml- each step is 1/246 ml (with a SD 10ml syringe)*1 
174 
175 
176 printf("step counter = %i\n",step_counter); 
177 . 
178 1* allow 5 steps for errors at the end - should be 9600 strictly*1 
179 if(step_counter < 9595) 
180 return(21); 
181 
182 return(O); 
183 
184} 
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185 
186 
187 
188 /'*''' ................ " ................. " ... " Ie ......... ""''' A"' ....... Ie"'.'''''' ............ *'*'* .......... A"'A ........ ",.." It ... ", ............ aIi,*," Ie ......... It ... " " ......... *,.." " .......... " ....... " "leI 

189 
190 
191 
192 
1931* note that if plunger A is already down then nothing will happen - so plunger B can be 
194 in any position - so starting with both down is OK */ 
195 
196 
197 int Return_ To_Start_PosnO 
198 
199 { 
200 short push_switch_line,push_switch_state; 
201 int step_counter = 0; 
202 double mark, v_ref, v _ curr; 
203 
204 
205 
206 push_switch_line = SWITCH_A; 
207 
2081*set syringe A*/ 
209 DIG_Out_Line (1,0, DIRN_A, DOWN); 1* ie anticlockwise */ 
210 I*set syringe B*/ 
211 DIG_Out_Line (1, 0, DIRN_B, UP); 
212 
213 
214 AL VRead(1 ,0,2,&v_ref); 
215 
216 mark = TimerO; 
217 
218 DIG_ln_Line(1, 1, push_switch_line, &push_switch_state); I*read plunger switch*/ 
219 
220 while(push_switch_state == 0) 
221 
222 { 
223 SyncWait(mark,0.025 * step_counter); 
224 
225 
226 
227 
228 
229 
230 
231 
232 

GetUserEvent(O,&paneLevent,&controLevent); 
if(globaLstop == 1) 

return( -1 ); 

233 DIG_Out_Line(1,0,CLOCK_A,0); 
234 DIG_Out_Line(1,0,CLOCK_B,0); 
235 Delay(.0001); 
236 DIG_Out_Line(1 ,O,CLOCK_A, 1); 
237 DIG_Out_Line(1 ,O,CLOCK_B, 1); 
238 step_counter++; 
239 DIG_ln_Line(1, 1, push_switch_line, &push_switch_state); I*read plunger switch*/ 
240 
241 /* this bit checks that the plunger hasn't gone too far - i.e. checks that 
242 steppers are working and also the microswitches */ 
243 if(step_counter> NO_OF _STEPS_LIMIT) 
244 return(4); 
245 
246 1* check pressure and trigger alarm if it's outside the safety limits - these limits 
247 are the same as in Filter_BloodO */ 
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248 AL VRead(1,0,2,&v_curr); 
249 if(v_ref - v_curr > FIL T _P _DROP II v_curr - v_ref> FIL T _P _RISE) 

250 return(11); 
251 } 
252 return(O); 
253 } 

WITHRET.C 

1 
21* WITHRET.C ---- this file contains two functions - one for 
3 withdrawing blood and one for returning it */ 

4 
5 I*FUNCTIONS IN THIS FILE: */ 
6 /* Withdraw_BloodO 
7 Return_BloodO 
8 Reverse_FlowO 
9 ~ 
10 
11 
12 #include <Header.h> 
13 
14 
15/****************·····················***************************/ 
16 int Withdraw_Blood(double blood_volume) 
17 
18 { 
19 
20 short switch_state,reverse_flow_count = O,access_mode; 
21 int delaLcounter=O, step_counter=O, num_steps,return_code; 
22 double mark, start_time,v_ref, v_curr,timeJimit,speed_factor = 1.0; 

23 
24/* note: stepper delay is multiplied by speed factor - so the larger the speed factor, the slower 

25 the motor goes */ 
26 
27 
28 1* get access mode from the user interface */ 

29 
30 GetCtrIVal(handle1, PANEL_ACCESS_MODE, &access_mode); 

31 
32 
33 AL VRead(1,0,2,&v_ref); 
34 
35 /* this code tests that plunger is at bottom of syringe and also that microswitch 
36 hasn't failed to the zero state */ 
37 
38 DIG_ln_Line(1, 1, SWITCH_B, &switch_state); I*read plunger switch*/ 

39 if(switch_state == 0) 
40 return(6); 
41 
42 
43 I*set syringe B to travel upwards*/ 
44 
45 DIG_Out_Line (1,0,DIRN_B, UP); 
46 
47 
48 num_steps = Round(blood_volume * NUM_STEPS_PER_ML); 

49 
50 1* this line sets a time limit on blood withdrawal proportional to the volume to be withdrawn*/ 

51 
52 time_limit = blood_volume *VOL_TIME_FACTOR; 
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53 
54 
55 mark = TimerO; 1* this is the first call to the timer *' 
56 
57 1* this loop tests to see if the right volume has been reached yet 
58 and also if the whole process has taken too long*' 
59 
60 
61 
62 1* BEGINNING OF MAIN LOOP *' 
63 
64 while(step_counter < num_steps && TimerO < mark + timeJimit) 
65 { 
66 
67 '* test to see if button has been pressed *' 
68 
69 GetUserEvent(O, &paneL event, &controL event); 
70 if(global_stop == 1) 
71 return(-1); 
72 
73 1* test here to make sure microswitch B hasn't failed to 1 state *' 
74 1* the value of 20 is fairly arbitrary - just needs to be enough *' 
75 '* to make the switch change state *' 
76 
77 
78 
79 
80 
81 
82 
83 

if(step_counter == 20) 
{DIG_ln_Line(1, 1, SWITCH_B, &switch_state); I*read plunger switch*' 
if(switch_state == 1) 

return(7); 
} 

84 ALVRead(1,O,2,&v_curr); 
85 if(v_ref - v...,:curr > WITHRET_P _DROP II v_curr - v_ref> WITHRET_P _RISE) 
86 return(13); 
87 
88 1* figure of 1.3 v based on voltage drop with 0.5 ml volume change with tube clamped 10cm 
89 along thin section*' 
90 1* 0.05 added to allow for 'relaxation' once the 1 st 1 second delay has been triggered -
91 even if pressure has risen a bit delay will still be triggered again - value 0.05 is fairly 
92 arbitrary - it can be changed if another value works better·' 
93 -
94 if((v_ref - v_curr > WITH_DELAY_LlMIT && delay-counter == 0) II 
95 (v_ref - v_curr > WITH_DELAY_LlMIT - 0.05 && delay-counter> 0)) 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 

if(reverse_flow_count >1 && access_mode == 2) 
{ 

Delay(2.0); 
speed_factor = speed_factor * 2.0; 
printf(" speed factor = %2.1f\n",speed_factor); 
reverse_flow_count = 0; 
Delay(5.0); 

} 
else 

{ 
Delay(1.0); 
delay-counter++; 
printf("delay counter = %i\n",delay-counter); 
if(delay-counter> 4) 
{ 

return_code = Reverse _Flow( &step _ counter, v_ref); 
reverse_flow _ count++; 
printf("finished reverse flow\n"); 
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116 
117 
118 
119 
120 
121 
122 
123 

Delay(2.0); 
if(return_code != 0) 

return(return_code); 
delay-counter = 0; 

1* not sure whether to keep this or not */ 

} 
} 

124 else 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 } 
139 
140 
141 

{ /* this section steps the B syringe */ 
DIG_Out_Line(1,O,CLOCK_B,O); 
Delay(.0001 * speed_factor); 
DIG_ Out_Line(1 ,O,CLOCK_B, 1); 
Delay(.0249 * speed_factor); 
step _ counter++; 
delay_counter = 0; 

} 

1* END OF MAIN LOOP */ 

142 if(TimerO - mark> time_limit) 
143 {printf("time limit = %1f\n",timeJimit); 
144 return(2); 
145 } 
146 else 
147 return(O); 
148 
149 } 
150 
151 
152 
153 
154 
155 
156 
157 
158 /*****--**********-***********************************/ 

159 
160 int Return_BloodO 
161 
162{ 
163 
164 short switch_state; 
165 int step_counter=O; 
166 double mark, v_ref,v_curr; 
167 
168 DIG_ln_Line(1, 1, SWITCH_B, &switch_state); /*read plunger switch*/ 

-169 DIG_Out_Line (1 ,O,DIRN_B, DOWN); /*set syringe B to move down*/ 

170 
171 ALVRead(1,O,2,&v_ref); 
172 
173 mark = TimerO; 1* this is the first call to the timer */ 
174 while(switch_state == 0) 
175 { 
176 
177 GetUserEvent(O,&panel_ event,&control_ event); 
178 if(global_stop == 1) 
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179 return(-1); 
180 
181 
182 SyncWait(mark,O.025 * step_counter); 
183 
184 1* this section steps the B syringe */ 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 
203 
204 
205 
206 
207 } 

DIG_Out_Line(1,O,CLOCK_B,O); 
Delay(.0001 ); 
DIG_Out_Line(1,O,CLOCK_B,1 ); 
step_counter++; 
DIG_ln_Line(1, 1, SWITCH_B, &switch_state); I*read plunger switch*/ 

/* this bit checks that the plunger hasn't gone too far - i.e. checks that 
steppers are working and also the microswitches */ 
if(step_counter> NO_OF _STEPS_LIMIT) 
return(5); 

1* check pressure and trigger alarm if outside safety limits */ 

AL VRead(1,O,2,&v_curr); 
if(v_ref - v_curr > WITH RET _P _DROP II v_curr - v_ref> WITH RET _P _RISE) 

return( 12); 

208 /*temporary bit to count steps*/ 
209 printf("no. of steps(return): %i \n", step_counter); 
210 
211 return(O); 
212 } 
213 
214 /******************-----*************-******/ 
215 
216 
217 I*note that value of v_ref is passed in from withdraw_bloodO, not read 
218 inside this function, as function is not called at ambient pressure */ 
219 . 
220 int Reverse_Flow(int *step_counter,double v_ref) 
221 
222 { 
223 
224 short reverse_counter=O, switch_state; 
225 double v_curr; 
226 
227 
228 DIG_Out_Line (1,O,DIRN_B, DOWN); I*set syringe B to move down*/ 
229 DIG_ln_Line(1, 1, SWITCH_B, &switch_state); I*read plunger switch*/ 
230 
231 printf("reversing flow .... \n"); 
232 I*this is set to 123 steps at the moment - this is 0.5 ml·/ 
233 
234 while(reverse_counter < 123 && switch_state == 0) 
235 
236 
237 
238 
239 
240 
241 

{ 
DIG_Out_Line(1,O,CLOCK_B,O); 

Delay(.0125); 
DIG_Out_Line(1,O,CLOCK_B,1 ); 
Delay(.0125); 

(*step_counter)--; 

0.8 



242 
243 
244 
245 
246 
247 
248 
249 

reverse _ counter++; 
DIG_ln_Line(1, 1, SWITCH_B, &switch_state); I*read plunger switch*/ 

/* test pressure */ 

ALVRead(1,0,2,&v_curr); 
if(v_ref - v_curr > WITHRET_P _DROP II v_curr - v_ref> WITHRET_P _RISE) 

return(14); 
250 } 
251 DIG_Out_Line (1,0,DIRN_B, UP); I*set syringe B to move up again*/ 

252 return(O); 
253 } 

SERV02.C 

1 1* 
2 

***-SERV02. C******* 

3 FUNCTIONS IN THIS FILE: 
4 
5 
6 
7 
8 
9 
10 

MoveServoO 
Current_PosnO 
Change_DirectionO 
Check_Servo_PosnO 

11 
12 
13 
14 
15 
16 
17 
18 

THIS IS THE NEW VERSION OF THE SERVO DRIVING PROGRAM. 
BECAUSE OF PROBLEMS WITH THE OLD VERSION DETECTING SLOT 
EDGES THE HARDWARE HAS BEEN CHANGED - NOW THERE IS ONE 
SLOT AND TWO DETECTORS - ONE FOR EACH POSITION. SO ONLY 
TWO POSITIONS CAN BE MOVED TO INSTEAD OF THE PREVIOUS 

THREE. 

19 */ 
20 
21 #include <header.h> 
22 
23 /******** •• *****************************************/ 

24 
25 int MoveServo(int Servo_Num,int Target_Posn) 
26 
27 { 
28 int difference,Uine1,Uine2,pulse_counter=0,cycle_counter=0; 
29 int no_movement = 0,state_11 ,return_code; 
30 short output_line; 
31 
32 
33 1* first find current position of servo 
34 arid therefore calculate which direction servo needs to move */ 

35 
36 switch(Servo_Num) 
37 
38 {case 1: 
39 
40 
41 
42 

Uine1 =A1; 
i Iine2 = A2' - ' 

43 
44 1* Now calculate direction that you need to move to get from the current 
45 position to the target position */ 
46 
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47 
48 
49 
50 
51 
52 
53 
54 
55 

difference = Target_Posn - Current_Posn(Uine1 Lline2); 
if(difference> 0) outpuUine = CLOCK_1; 
if(difference < 0) output_line = ANTL1; 

,. this is needed for no movement position check */ 
if(difference == O)outpuUine = ANTL1; 

break; 
56 case 2: 
57 Uine1 = 81; 

Uine2 = 82; 58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72} 
73 
74 

difference = Target_Posn - Current_Posn(Uine1 ,Uine2); 
if(difference > 0) output_line = CLOCK_2; 
if(difference < 0) output_line = ANTL2; 

/* as above, needed for no movement position check */ 
if(difference == O)outpuUine =: ANTL2; 

break; 

75 
76 ,. Now move the servo in the direction worked out above to get to the 
77 target position. 
78 remember argument order is board,port,line,port width,configure,line state*/ 

79 
80 state_11 =: 0; 
81 
82 if(Current_Posn(Uine1 ,Uine2) == Target_Posn) 
83 no_movement = TRUE; 
84 
85 
86 while(Current_Posn(Uine1 ,Uine2) != Target_Posn ) 
87 {while(Current_Posn(Uine1 ,Uine2) != Target_Posn ) 
88 { 
89 DIG_Out_Line (1,0, outpuUine,1); 
90 Delay(.019); 
91 DIG_Out_Line (1, 0, outpuUine,O); 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 

/* this bit is to catch any line failing to zero */ 
if(state_11 == 0) 

if(Current_Posn(Uine1 Lline2) == 3) 
state_11 = 1; 

/* end of this bit */ 
pulse _ counter++; 
if(pulse_counter> 1000) /* was 150 */ 

break; 
} 

. pulse_counter = 0; 
Change _Direction( &output_line); 
cycle _ counter++; 
if(cycle_counter> 8) /* was 5 */ 

break; 
} 

109 if(cycle_counter > 8) 
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110 return(1); 
111 if(state_11 == 0 && no_movement == FALSE) 
112 return(3); 
113 
1141* now check servo position if there's been no movement so far */ 

115 
116 
117 if(no_movement) 
118 {return_code = Check_Servo_posn(Uine1,Uine2,outpuUine); 

119 if(return_code) 
120 return(return_code); 
121 } 
122 
123 return(O); I*normal return with no errors*/ 

124 } 
125 
126 
1 27 /, .... Ie ...... Ie ........ '" It..,,, at .... "'" "...,"' ... ,.*"* Ii""" Ie""" *"* *_Ie •• """"" ...... """""""" ... ,, ... ,, *******1 

128 
129 int Current_Posn(int Uine1,int Uine2) 
130 
131 { 
132 int Current_Pos = 0; 
133 short state1,state2; 
134 
135 DIG_ln_Line (1, 1, Uine1, &state1); 
136 DIG_ln_Line (1, 1, Uine2, &state2); 
137 if(state1 ==0 && state2==1) Current_Pos = 1; 
138 if(state1 ==1 && state2==0) Current_Pos = 2; 
139 if(state1 ==1 && state2==1) Current_Pos = 3; I*intermediate state*/ 

140 
141 return(Current_Pos); 
142 } 
143 
144 
145 1***********"""" "A"1e ... "********,, •• A.'" "".***""""".""'."""."! 
146 
147 int Change_Direction(short *o_line) 
148 { 
149 switch(*oJine) 
150 { case 4: *o_line = 5; 
151 break; 

case 5: *oJine = 4; 
break; 

case 6: *o_line = 7; 
break; 

case 7: *oJine = 6; 
break; 

} 
return(O); 
} 

152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 /****************" •••• leleA" ********************"*Ic"iII." " •• ***/ 

167 
168 
169 int Check_Servo_Posn(int Uine1,int Uine2,short outpuUine) 

170 { 
171 
172 int pUlse_counter = O,start_posn; 
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173 
174 start_posn = Current_Posn(Uine1, Uine2); 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 

while(Current_Posn(Uine1,Lline2) != 3 ) 
{ 

} 

DIG_Out_Line (1, 0, output_line,1); 
Delay(.02); 
DIG_Out_Line (1, 0, outpuUine,O); 
pulse_counter++; 
if(pulse_counter> 150) 

return(3); 

188 Change_Direction(&outpuUine); 
189 pulse_counter = 0; 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 

while(Current_Posn(Uine1,Uine2) != start_posn ) 
{ 

DIG_Out_Line (1,0, outpuUine,1); 
l*WriteToDigitalLine (1, "0", outpuUine, 8, 0, 1); *1 
Delay(.02); 
DIG_Out_Line (1, 0, outpuUine,O); 
l*WriteToDigitalLine (1, "0", output_line, 8, 0, 0);*1 
pulse_counter++; 
if(pulse_counter> 150) 

return(3); 
} 

203 return(O); 
204 } 

RUNSYSTEM.C 

1 /* ••••••••• U -************Run System. c _u .............. k******* 1 

2 
3/* FUNCTION LIST: 
4 
5 run_systemO *1 
6 
7 #include <Header.h> 
8 
9 
10 
11 int run_system(double blood_volume,double mean_Crate) 
12 
13 { 
14 
15 int return_code; 
16 
17 double Crate,with_time, res_time, ret_time,filter_time,ofCtime_st art,ofCtime; 
18 double volume_filtered = 0, cum_Cvolume = 0; 
19 double start_time; 
20 
21 global_stop = 0; 
22 
23 /* reset the screen timer every time the system is restarted *1 
24 start_time = Reset_ TimerO; 
25 
26 /* move taps into reset position for first pass through the loop *1 
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27 
28 return code = MoveServo(1,2); 
29 if(return_code!= 0) 
30 return(return_code); 
31 
32 
33 return_code = MoveServo(2,1); 
34 if(return_code!= 0) 
35 return(return_code); 
36 
37 
381* MAIN LOOP STARTS HERE */ 
39 
40 while(TRUE) 
41 
42 { 
43 
44 /* take time at start of cycle */ 
45 off_time_start = TimerO; 
46 
47 I*this returns if the stop button has been pressed while inside Filter_BloodO*/ 
48 if(return_code!= 0) 
49 return(return_code); 
50 
51 /* update timer display at this point - it doesn't really matter at what point 
52 in the cycle this is done */ 
53 Update_ Timer(start_time); 
54 
55 1* now update cumulative filtrate display */ 
56 
57 cum_Cvolume = cum_Cvolume + (volume_filtered/FILT_CORRECTION_FACTOR); 

58 
59 SetCtrlVal(handle1, PANEL_ CUM_ VOLUME,cum_C volume); 
60 ProcessSystemEventsO; /*added 19/1/99 */ 
61 
62 
63 /* RESET SYRINGES - move syringes to A down and B up - NB this will do 
64 nothing on first pass */ 
65 
66 printf("resetting .... \n"); 
67 return_code = Return_ To_Start_PosnO; 
68 if(return_code!= 0) 
69 return(return_code); 
70 
71 
72 
73 /* delay in here to allow pressure gradient in filter to smooth out at end of reset */ 

74 
75 Delay(5); 
76 
77 
78 
79 /* MOVE SERVOS TO WITHDRAW AND RETURN POSITION */ 
80 
81 return_code = MoveServo(1,1); 
82 if(r~turn_code!= 0) 
83 return(return_code); 
84 
85 return_code = MoveServo(2,2); 
86 if(return_code!= 0) 
87 return(return_code); 
88 
89 
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90 
91 1* RETURN BLOOD - again this will do nothing on first pass */ 

92 
93 printf("returning blood ... \n"); 
94 return_code = Return_BloodO; 
95 if(return_code!= 0) 
96 return(return_code); 
97 
98 
99 
100 1* put in a delay to allow pressure to rise to ambient */ 

101 
102 Delay(3.0); 
103 
104 1* WITHDRAW BLOOD */ 
105 
106 return_code = Withdraw_Blood(blood_volume); 
107 if(return_code!= 0) 
108 return(return_code); 
109 
110 printf("withdraw time: %6.21f\n",with_time); 
111 
112 I*another delay for pressure equalization */ 
113 
114 Delay(4.0); 
115 
116 1* MOVE TAPS TO FILTERING POSITION */ 
117 return_code = MoveServo(2,1); 
118 if(return_code!= 0) 
119 return(return_code); 
120 
121 return_code = MoveServo(1,2); 
122 if(return_code!= 0) 
123 return(return_code); 
124 
125 
126 
127 1* CALCULATE FILTRATION RATE NEEDED */ 
128 
129 off_time = TimerO - off_time_start; 
130 printf("total off time: %6.21f\n",off_time); 
131 
132 Crate = (mean_Crate/240)*(240.0 + off_time); 
133 
134 
135 
136 /* BEGIN FILTRATION */ 
137 
138 
139 
140 return_code = Filter_Blood(Crate,&volume_filtered); 
141 /* see top of loop for return_code bit */ 
142 
143 1* end filtration */ 
144 
145 I*printf("filtration time: %6.21f\n",filter_time); */ 
146 
147 
148} I*END OF MAIN LOOP HERE*/ 
149 
150 
151 
152 1* now do final update of cumulative filtrate display */ 
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153 
154 cum_Cvolume = cum_Cvolume + (volume_filtered/FILT_CORRECTION_FACTOR); 
155 1* correcting volume back again so screen reflects actual target 
156 volume not corrected target volume*1 
157 SetCtrIVal(handle1, PANEL_ CUM_ VOLUME,cum_C volume); 
158 Update_ Timer(start_time); 
159 ProcessSystemEventsO; 
160 
161 return(O); 
162 } 

HAEM01.C 

11* HAEM01.C *1 
2 
31* FUNCTIONS IN THIS FILE: *1 
4 
5 
61* mainO 
7 systemjnitO 
8 system_startO 
9 change_filter_rateO 
10 system_stopO 
11 quit_systemO *1 
12 
13 
14 
15 #include <userint.h> 
16 #include <ansi_c.h> 
17 #include <analysis.h> 
18 #include <utility.h> 
19 #include <Haem01.h> 
20 #include <header.h> 
21 
22 
23 
24 
25 
26 
27 mainO 

int month,daY,year; 
char date_string[9); 
char* time_string; 
char string[1 00); 
char year_string[3); 
char whole_year_string[5); 

28 { 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

. OIG_Prt_Config (1,0,0, 1); 1* Configures port 0 for output *1 

OIG_Prt_Config (1, 1, 0, 0); 1* Configures port 1 for input *1 

41 1*. set the init parameters to zero *1 
42 
43 software_init = 0; 
44 hardware_init = 0; 
45 
46 
47 
48 

handle1 = LoadPanel (0, "haem01.uir", PANEL); 
handle2 = LoadPanel (handle1, "haem01.uir", RESPONSE); 
handle3 = LoadPanel (handle1, "haem01.uir", ALARM); 
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49 InsertTextBoxLine (handle1,PANEL_MESSAGE_BOX,O,"H); 
50 InsertTextBoxLine (handle1 ,PANEL_MESSAGE_BOX, 1 ,"FOLLOW ALL THE 
51 INSTRUCTIONS GIVEN EXACTLY. H); 
52 InsertTextBoxLine (handle1,PANEL_MESSAGE_BOX,2,""); 
531nsertTextBoxLine (handle1, PANEL_MESSAGE_BOX, 3,"Before you can start 
54 the treatment session"); 
55 InsertTextBoxLine (handle1, PANEL_MESSAGE_BOX, 4,"you must initialise the system. 
56 Press theH); 
57 InsertTextBoxLine (handle1,PANEL_MESSAGE_BOX, 5,"button at the top left of the screen."); 
58 DisplayPanel (handle1); 
59 SetCtrlAttribute (handle1, PANEL_START,ATTR_DIMMED, 1); 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

SetCtrlAttribute (handle1,PANEL_CHANGE_RATE,ATTR_DIMMED,1); 
SetCtrlAttribute (handle1, PANEL_STOP ,A TTR_DIMMED, 1); 

SetCtrlAttribute (handle1,PANEL_BIRTH_ WEIGHT,A TTR_DIMMED,1); 

1* initialise the treatment history box *' 
GetSystemDate( &month, &day, &year); 
F mt(whole _year _ string,"%s<%i", year); 
Fmt(year_string,"%s[i2l",whole-year_string); 
Fmt(date_string,"%i%s%i%s%s",daY,"r,month,HI",year_string); 
time_string = TimeStrO; 
Fmt(string,"%s%s%s%s[w5]%s","Start: ",date_string," ",time_string,''\n\n''); 
SetCtrlVal(handle1, PANEL_HISTORY,string); 

78 RunUserlnterfaceO; 
79 
80 
81 
82 
83 } 
84 
85 /*** ••• 4444***** ••••• ****4 •• *** ................. ***************************/ 

86 
87 int CVICALLBACK system_init(int panel, int control, int event, void *calibackData, 
88 int eventData1, int eventData2) 
89 { -
90 int return_code; 
91 
92 
93 
94 
95 
96 if(event==EVENT_COMMIT) 
97 { 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 

SetCtrlAttribute (handle1, PANEL_INITIAL,A TTR_DIMMED, 1); 
SetCtrlAttribute (handle1,PANEL_START,A TTR_DIMMED,1); 
SetCtrlAttribute (handle1,PANEL_STOP,ATTR_DIMMED,1); 
SetCtrlAttribute (handle1,PANEL_CHANGE_RATE,ATTR_DIMMED,1); 
SetCtrlAttribute (handle1,PANEL_QUIT,ATTR_DIMMED,1); 

if(hardwarejnit == TRUE) 
{return_code = GenericMessagePopup("I,"Do you want to reinitialise everything or just the 
treatment parameters?","Just reenter the treatment parameters", "Reinitialise everything", 
O,O,1,VAL_GENERIC_POPUP _BTN1,VAL_GENERIC_POPUP _NO_CTRL, 
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112 
113 
114 

VAL_ GENERIC_POPUP _NO _ CTRL,O); 
if(return_code == 2) 

hardware_init = FALSE; 
115 } 
116 1* initialise hardware here */ 
117 
118 
119 
120 
121 
122 
123 
124 
125 
126 
127 

if(hardware_init == FALSE) 
{ return_code = init_hardwareO; 

if(return_code > 0) 
{process _ error( return_code); 
return(1 ); 

} 
if(return_code == 0) 
hardwarejnit = TRUE; 

128 } 
129 
130 
131 
132 
133 

1* this return means that software isn't initialised if hardware fails */ 

134 do 
135 init_sofiwareO; 
136 while(!ConfirmPopup("Confirm Parameters","Do you want 
137 to proceed with these parameters?")); 
138 software_init = TRUE; 
139 
140 
141 /*now parameters have been set, update the screen to be ready to start the system */ 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 } 

ResetTextBox(handle1, PANEL_MESSAGE_BOX, ""); 
InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"The system is now initialised with 

the parameters "); 
InsertTextBoxLine(handle1 ,PANEL_MESSAGE_BOX, 1 ," shown in the boxes below."); 
InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,2," Press the 'start treatment' button 

when you are ready."); 

SetCtrlAttribute (handle1, PANEL_INITIAL, ATIR_DIMMED, 0); 
SetCtrlAttribute (handle1, PANEL_START, ATIR_DIMMED, 0); 
SetCtrlAttribute (handle1, PAN EL_C HANGE_RA TE,ATTR_DIMMED,O); 
SetCtrlAttribute (handle1, PANEL_QUIT, ATTR_DIMMED, 0); 

1* take the focus away from the filtration rate control */ 
SetActiveCtrl(handle1,PANEL_START); 

162 return(O); 
163 } 
164 
165 
166 /*********************************." It A" It ... " "''' I« *********** ...... «" '" II '* .... " II ,. It. It .. "" *' 
167 
168 
169 int system_start(int panel, int control, int event, void *callbackData, 
170 int eventData1, int eventData2){ 
171 
172 double blood_volume,filter_rate, corrected_filter_rate; 
173 char start_time[6],finish_time[6],string[50]; 
174 int hours, minutes, return_code; 
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175 double cum_volume; 
176 
177 
178 
179 if (event==EVENT_COMMIT) 
180 { 
181 SetCtrlAttribute (handle1,PANEL_CHANGE_RATE,ATTR_DIMMED,O); 
182 SetCtrlAttribute (handle1, PANEL_STOP, ATTR_DIMMED, 0); 
183 SetCtrlAttribute (handle1, PANEL_QUIT, ATTR_DIMMED, 1); 
184 SetCtrlAttribute (handle1,PANEL_START,ATTR_DIMMED,1); 
185 SetCtrlAttribute (handle1,PANEL_INITIAL,ATTR_DIMMED,1); 
186 
187 SetCtrIVal(handle1,PANEL_RUNNING,1); 
188 SetCtrlVal(handle1, PANEL_STOPPED, 0); 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 

ResetTextBox(handle1, PANEL_MESSAGE_BOX, ""); 
InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O," The system is running."); 

'* better to get the values 'straight off the screen' rather than have 
globals containing them *' 

GetCtrlVal(handle1, PANEL_ WB _ VOLUME,&blood_ volume); 
GetCtrlVal(handle1, PANEL_FIL TER_RA TE,&filter _rate); 

199 Fmt(start_time,"%s[w5]",TimeStrO); 
200 
201 
202 
203 
204 
205 
206 
207 
208 
209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 -} 

I*PUT IN CORRECTION FACTOR HERE (18'1'99)*' 

corrected_filter_rate = FILT_CORRECTION_FACTOR * filter_rate; 

return_code = run_system(blood_ volume,corrected_filter_rate); 
1* this function is in RunSystem.c *' 

1* only process an error if code is greater than zero - if stop button 
is pressed the return code is -1. Then the code just drops through which 

is OK *' 
if(return_code > 0) 

process _ error( return_code); 

Fmt(finish_time,"%s[w5]",TimeStrO); 
Fmt( string, "%s%s%s%s",start_time," to ",finisfUime, "\n"); 
SetCtrlVal(handle1, PANEL_HISTORY,string); 
GetCtrIVal(handle1,PANEL_HOURS,&hours); 
GetCtrIVal(handle1,PANEL_MINS,&minutes); 
GetCtrlVal(handle1, PANEL_ CUM_ VOLUME,&cum_ volume); 
Fmt(string,"%f[p2]%s%i%s%i%s%f%s",cum_volume," ml ",hours," h ",minutes, 

" min (",filter_rate,"mllhr)\n\n"); 
SetCtrlVal(handle1, PANEL_HISTORY, string); 

226 return(O); 
227 } 
228 
229 /*****************************" *" Ie Ie II Ie It .**********" Ie Ie" It Ie Ie ... "'" It Ale Ie A************** I 
230 
231 int change_filter_rate(int panel, int control, int event, void *calibackData, 
232 int eventData1, int eventData2){ 
233 int return_code; 
234 double new_filter _rate, filter_rate, blood_volume; 
235 char string[1 00]; 
236 
237 if(event==EVENT_COMMIT) 
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/* switch system status lights to OFF*/ 

238 {. 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 

SetCtrIVal(handle1,PANEL_RUNNING,O); 
SetCtrIVal(handle1,PANEL_STOPPED,1 ); 

/* get existing value of filter rate from screen as no longer doing this as a global */ 
GetCtrlVal(handle1, PANEL_FIL TER_RA TE,&filter_rate); 

globaLstop = 1; 1* this makes sure the run_systemO function returns*/ 

/* dim all controls while the filtration rate is being changed */ 

SetCtrlAttribute (handle1, PANEL_INITIAL,ATTR_DIMMED, 1); 
SetCtrlAttribute (handle1, PANEL_START, ATTR_DIMMED, 1); 
SetCtrlAttribute (handle1, PANEL_CHANGE_RATE, ATTR_DIMMED, 1); 
SetCtrlAttribute (handle1, PANEL_STOP ,A TTR _DIMMED,1); 
SetCtrlAttribute (handle1,PANEL_QUIT,ATTR_DIMMED,1); 

ResetTextBox(handle1, PANEL_MESSAGE_BOX, 1111); 
InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O," Enter the new ultrafiltration rate 

that you require"); 
InsertTextBoxLine(handle1 ,PANEL_MESSAGE_BOX, 1 ," in the box below. "); 

267 /* stay in this loop until a new value for the ultrafiltration rate is entered */ 
268 
269 /* set filter_rate to validate from indicator mode so a value can be entered */ 
270 SetCtrIAttribute(handle1,PANEL_FILTER_RATE,ATTR_CTRL_MODE,VAL_VALIDATE); 
271 do 
272 { 
273 SetActiveCtrl(handle1,PANEL_FIL TER_RATE); 
274 GetUserEvent(1,&panel_event,&control_event); 
275 GetCtrIVal(handle1,PANEL_FILTER_RATE,&new_filter_rate); 
276 } 
277 while(new_filter_rate == filter_rate); 
278 
279 /* set filter_rate back to indicator */ 
280 SetCtrIAttribute(handle1,PANEL_FILTER_RATE,ATTR_CTRL_MODE,VAL_VALIDATE); 
281 
282 
283 1* get confirmation that new rate is to be used */ 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 

ResetTextBox(handle1, PANEL_MESSAGE_BOX, 1111); 
Fmt(string,l%s%f[p2]%sl,"The ultrafiltration rate has been changed to ", 

new_filtecrate," ml/hr.\n"); 
SetCtrIVal(handle1,PANEL_MESSAGE_BOX,string); 
InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,1, 
" Do you want to use this new rate?"); 

return_code = ConfirmPopup("II,"Do you want to use the new filtration rate?"); 

296 1* act on responses from pop up panel */ 
297 
298 
299 
300 

if(return_ code == 1) 
{filter_rate = new_filter_rate; 
ResetTextBox(handle1, PANEL_MESSAGE_BOX, ""); 
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301 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 

} 

InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O," The filtration rate has been"); 
InsertTextBoxLine(handle1 ,PANEL_MESSAGE_BOX, 1 ," changed to the new value."); 
InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,2, 

"You must now restart the system."); 

if(return_code == 0) 
{ResetTextBox(handle1, PANEL_MESSAGE_BOX, 'III); 
SetCtrIVal(handle1,PANEL_FIL TER_RATE,filter_rate); 
InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O," The filtration rate"); 
InsertTextBoxLine(handle1 ,PANEL_MESSAGE_BOX, 1 ," is unchanged."); 
InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX,2, 

"You must now restart the system."); 
313 } 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 

/* set controls back mostly to undimmed as you come out of this function */ 

SetCtrlAttribute (handle1,PANEL_INITIAL,ATIR_DIMMED,O); 
SetCtrlAttribute (handle1, PANEL_START, ATIR_DIMMED, 0); 
SetCtrlAttribute (handle1, PANEL_CHANGE_RATE, ATIR_DIMMED, 0); 
SetCtrlAttribute (handle1,PANEL_STOP,ATIR_DIMMED,1); 
SetCtrlAttribute (handle1,PANEL_QUIT,ATIR_DIMMED,O); 

324 1* take focus away from filtration rate control */ 
325 SetActiveCtrl(handle1,PANEL_START); 
326 
327 } 
328 
329 return(O); 
330 } 
331 
332 
333 /***************************""" It"" ""Ie" It A*****""" Ie" 1\ Ie" Ie" It*********************************** I 
334 
335 
336 int system_stop(int panel, int control, int event, void *calibackData, 
337 int eventData1, int eventData2){ 
338 if( event==EVENT _COMMIT) 
339 { 
340 
341 
342 
343 
344 
345 
346 

global_stop = 1; 

ResetTextBox(handle1, PANEL_MESSAGE_BOX, ""); 

InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O," The system is now stopped."); 

347 SetCtrIVal(handle1,PANEL_RUNNING,O); 
348 SetCtrlVal(handle1, PANEL_STOPPED, 1); 
349 
350 
351 
352 
353 
354 
355 
356 
357 
358 } 

SetCtrlAttribute (handle1,PANEL_INITIAL,ATIR_DIMMED,O); 
SetCtrlAttribute (handle1, PANEL_START, ATIR_DIMMED, 0); 
SetCtrlAttribute (handle1, PANEL_CHANGE_RATE, ATIR_DIMMED, 0); 
SetCtrlAttribute (handle1,PANEL_STOP,ATIR_DIMMED,1); 
SetCtrlAttribute (handle1,PANEL_QUIT,ATIR_DIMMED,O); 

359 return(O); 
360 } 
361 
362 
363 /**********************************************************************************1 
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364 
365 int quit_system(int panel, int control, int event, void *callbackOata, 
366 int eventData1, int eventData2){ 
367 if(event==EVENT_COMMIT) 
368 QuitUserlnterface(O); 
369 return(O); 
370 } 
371 

INITIALlSE.C 

1 #include <header.h> 
2 
3 
4 
5 

1* INITIALlSE.C */ 

6 1* FUNCTIONS IN THIS FILE: 

7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

INIT _HAROWAREO 
TEST _HAROWAREO 
TEST _ STEPPER_MOTORO 
TEST _ TRANSOUCER_ANO_LlNEO 
INIT _SOFTWAREO 

17 /******** ••• ** ••••• **** •••••••••• ********************************** ••••••••• , 

18 
19 int init_hardwareO 
20 
21 { 
22 int return_code; 
23 
24 
25 ResetTextBox (handle1, PANEL_MESSAGE_BOX, ""); 
26 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"lf the blood circuit is 
27 attached to the machine, remove it now."); 

28 
29 ProcessSystemEventsO; 
30 Oelay(2); 
31 
32 MessagePopup("","Confirm that the blood circuit is not attached by pressing OK."); 

33 
34 ResetTextBox (handle1, PANEL_MESSAGE_BOX, ""); 
35 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"lf the machine is switched off, 

36 switch it on now."); 
37 ProcessSystemEventsO; 
38 Oelay(2); 
39 MessagePopup("","Confirm that the machine is switched on by pressing OK."); 

40 
41 
42 ResetTextBox (handle1, PANEL_MESSAGE_BOX, ""); 
43 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"The system is now being checked ... "); 

44 ProcessSystemEventsO; 
45 
46 return_code = test_hardware(CIRCUIT _OUT); 
47 if(return_code != 0) 
48 return(return_code); 
49 
50 InsertTextBoxLine(handle1 ,PANEL_MESSAGE_BOX, 1 ,"The system is working properly."); 
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51 ProcessSystemEventsO; 
52 Delay(2); 
53 
54 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,2, 
55 "Now attach the blood circuit to the machine."); 
56 InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX,3, 
57 "Do not forget to plug in the pressure transducer."); 
58 ProcessSystemEventsO; 
59 Delay(2); 
60 
61 MessagePopup("","Confirm that the blood circuit is in place by pressing OK."); 
62 1* this repeats the above tests except for steppers */ 

63 
64 ResetTextBox (handle1, PANEL_MESSAGE_BOX, ''''); 
65 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O, 
66 ''The system is now being checked again .... "); 
67 ProcessSystemEventsO; 
68 return_code = test_hardware(CIRCUIT _IN); 
69 if(return_code != 0) 
70 return(return_code); 
71 
72 
73 1* finally, test pressure transducer */ 
74 
75 
76 return_code = test_transducer_and_lineO; 
77 if(return_code != 0) 
78 return(return_code); 
79 
80 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,1,"The system is working properly."); 

81 ProcessSystemEventsO; 
82 Delay(4); 
83 /* normal return */ 
84 
85 return(O); 
86 } 
87 
88 /""" Ie Ie" It" '" 11.********************"·" AIeA"'" II A****************************************** I 

89 
90 
91 int test_hardware(short circuit_status) 

92 
93 { 
94 short error_status,return_code; 
95 double v_ref; 
96 . 

97 1* TEST SERVOS */ 
98 
99 1* servo A */ 
100 
101 return_code = MoveServo(1,1); 
102 if(return_code != 0) 
103 return(return_code); 
104 
105 
106 
107 return_code = MoveServo(1,2); 
108 if(return_code != 0) 
109 return(return_code); 
110 
111 
112 
113 return_code = MoveServo( 1, 1 ); 

D.22 



114 if(return_code != 0) 
115 return(return_code); 
116 
117/* servo B */ 
118 
119 return_code = MoveServo(2,1); 
120 if(return_code != 0) 
121 return(return_code); 
122 
123 
124 
125 return_code = MoveServo(2,2); 
126 if(return_code != 0) 
127 return(return_code); 
128 
129 
130 
131 return_code = MoveServo(2,1); 
132 if(return_code != 0) 
133 return(return_code); 
134 
135 
136 
137 
138 
139 /* now test stepper motors if blood circuit is not attached */ 
140 
141 if(circuit_status == CIRCUIT_OUT) 
142 { 
143 
144 1* open taps first - this is to prevent pressure buildup if circuit has 
145 been left in accidently*/ 
146 return_code = MoveServo(1,2); 
147 if(return_code!= 0) 
148 return(return_code); 
149 
150 return_code = MoveServo(2,2); 
151 if(return_code!= 0) 
152 return(return_code); 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 

return_code = test_stepper_motor(1); 
if(return_code != 0) 
return(return_code); 

return_code = test_stepper_motor(2); 
if(return_code != 0) 
return(return_ code); 

164 /*. close taps again */ 
165 
166 
167 return_code = MoveServo(1,1); 
168 if(return_code!= 0) 
169 r~turn(return_code); 
170 
171 return_code = MoveServo(2,1); 
172 if(return_code!= 0) 
173 return(return_code); 
174 
175 
176 
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177 
178 } 
179 
180 
181 1* test pressure transducer */ 
182 
183 
184 
185 error_status = ALVRead(1,O,2,&v_ref); 
186/* if(circuit_status == CIRCUIT_OUT) 
187 if(v_ref> UNPLUGGED_LIMIT) 
188 return(17); */ 
189 if(circuit_status == CIRCUIT_IN) 
190 if(v_ref> AMB_HLLlMIT II v_ref < AMB_LO_LlMIT) 
191 return( 18); 
192 
193 return(O); 
194 } 
195 
196 
197 
198 
199 1 .. ··rln •• ~AA~ .... Arln** .. *·************.**.A.***** •• ***.****** ••• ** •• *** ••• ********** ••• *******/ 

200 
201 int test_stepper_motor(short motor_num) 
202 
203 { 
204 short switchJine,switch_state,dirnJine,clock_line; 
205 int step_counter = 0; 
206 double mark; 
207 
208 /* test stepper motor */ 
209 
210 if(motor_num == 1) 
211 
212 {switch_line = SWITCH_A; 
213 clockJine = CLOCK_A; 
214 dirn_line = DIRN_A; 
215 } 
216 
217else 
218 
219 {switch_line = SWITCH_B; 
220 clockJine = CLOCK_B; 
221 dirnJine = DIRN_B; 
222 } 
223 
224 mark = TimerO; 
225 DIG_Out_Line (1,0, dirnJine, DOWN); 
226 
227 . 
228 I*move plunger to bottom of syringe*/ 
229 
230 DIG_ln_Line(1, 1, switch_line, &switch_state); I*read plunger switch*/ 
231 
232 w~ile(switch_state == 0) 
233 
234 { 
235 SyncWait(mark,O.025 * step_counter); 
236 
237 DIG_Out_Line(1,O,clock_line,O); 
238 Delay(.0001); 
239 DIG_Out_Line(1,O,clockJine,1); 
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240 step_counter++; 
241 DIG_ln_Line(1, 1, switchJine, &switch_state); I*read plunger switch*1 

242 
243 1* this bit checks that the plunger hasn't gone too far - Le. checks that 
244 stepper is working and also the microswitch *1 
245 
246 
247 
248 
249 } 

if(step_counter> NO_OF _STEPS_LIMIT) 
return(15); 

250 
251/* Now move up a few steps to check microswitch hasn't failed to 1 state *1 

252 
253 mark = TimerO; 
254 DIG_Out_Line (1, 0, dirnJine, UP); 
255 step_counter = 0; 
256 
257 
258 while(step_counter < 25) 
259 
260 {SyncWait(mark,0.025 * step_counter); 
261 
262 DIG_Out_Line(1,0,clock_line,0); 
263 Delay(.0001); 
264 DIG_Out_Line(1 ,O,clock_line, 1); 
265 step_counter++; 
266 } 
267 
268 DIG_ln_Line(1, 1, switch_line, &switch_state); I*read plunger switch"'l 
269 if(switch_state == 1) 
270 return(16); 
271 
272 1* Now move the plunger back down again-these 2 segments could be made into a function *1 

273 mark = TimerO; 
274 DIG_Out_Line (1, 0, dirn_line, DOWN); 
275 step_counter = 0; 
276 
277 DIG_ln_Line(1, 1, switchJine, &switch_state); I*read plunger switch*1 

278 
279 while(switch_state == 0) 
280 
281 { 
282 SyncWait(mark,O.025 * step_counter); 
283 
284 DIG_Out_Line(1,O,clock_line,O); 
285 Delay(.0001); 
286 DIG_Out_Line(1,O,clock_line,1); 
287 step_counter++; 
288 DIG_ln_Line(1, 1, switch_line, &switch_state); I*read plunger switch*1 

289 
290 1* this bit checks that the plunger hasn't gone too far - Le. checks that 
291 stepper is working and also the microswitch *1 
292 
293 if(step_counter> NO_OF _STEPS_LIMIT) 
294 return(15); 
295} . 
296 
297 return(O); 
298 } 
299 
300 ,."" Ie Ie Ie ...... A**************************************************************** I 
301 
302 1* this function withdraws 1 ml of blood to test line and then puts it back *1 
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303 
304 int tesUransducer_and_lineO 
305 
306 { 
307 short error_status; 
308 int return_code,step_counter; 
309 double mark,v_ref,v_upper,v_lower; 
310 
311 
312 I" move taps to A closed and B open *' 
313 
314 return_code = MoveServo( 1, 1 ); 
315 if(return_code!= 0) 
316 return(return_code); 
317 
318 return_code = MoveServo(2,2); 
319 if(return_code!= 0) 
320 return(return_code); 
321 
322 I" withdraw 1 ml of blood *' 
323 
324 return_code = Withdraw_Blood(1.0); 
325 if(return_code!= 0) 
326 return(return_code); 
327 
328 Delay(2); I" not essential *' 
329 

330 '* close tap B *' 
331 
332 return_code = MoveServo(2,1); 
333 if(return_code!= 0) 
334 return(return_code); 
335 
336 I" read voltage for reference *' 
337 
338 error_status = A'-VRead(1,O,2,&v_ref); 
339 
340 I" move plunger B down *' 
341 
342 mark = TimerO; 
343 DIG_Out_Line (1, 0, DIRN_B, DOWN); 
344 step_counter = 0; 
345 
346 while(step_counter < 20) 
347 
348 {SyncWait(mark,O.025 * step_counter); 
349 
350 DIG_Out_Line(1,O,CLOCK_B,O); 
351 Delay(.0001); 
352 DIG_Out_Line(1,O,CLOCK_B,1); 
353 step_counter++; 
354 } 
355 
356 error_status = A'-VRead(1,O,2,&v_upper); 
357 
358 if(Lupper - v_ref < ONEML_P _CHNGE) 
359 return(19); 
360 
361 Delay(2); I" not essential *' 
362 
363 '* now move plunger B up *' 
364 
365 mark = TimerO; 
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366 DIG_out_Line (1, 0, DIRN_B, UP); 
367 step_counter = 0; 
368 
369 while(step_counter < 40) 
370 
371 {SyncWait(mark,O.025 * step_counter); 

372 
373 DIG_Out_Line(1,O,CLOCK_B,O); 
374 Delay(.0001); 
375 DIG_Out_Line(1,O,CLOCK_B,1); 
376 step_counter++; 
377 } 
378 
379 error_status = AI_ VRead(1,O,2,&vJower); 

380 
381 if(v_ref - vJower < ONEML_P _CHNGE) 
382 return(20); 
383 
384 Delay(2); 
385 
386 1* now move plunger back to neutral position */ 

387 
388 mark = TimerO; 
389 DIG_out_Line (1, 0, DIRN_B, DOWN); 
390 step_counter = 0; 
391 
392 while(step_counter < 20) 
393 
394 {SyncWait(mark,O.025 * step_counter); 
395 
396 DIG_Out_Line(1,O,CLOCK_B,O); 
397 Delay(.0001); 
398 DIG_Out_Line(1,O,CLOCK_B,1); 
399 step_counter++; 
400 } 
401 
402 
403 1* open tap B */ 
404 
405 return_code = MoveServo(2,2); 
406 if(return_code!= 0) 
407 return(return_code); 
408 
409 
410 1* return blood */ 
411 
412 return_code = Return_BloodO; 
413 if(return_code!= 0) 
414 return(return_code); 
415 
4161*.return taps to original position - i.e. tap A open and tap B closed */ 

417 
418 return_code = MoveServo( 1,2); 
419 if(return_code!= 0) 
420 return(return_code); 
421 . 
422 return_code = MoveServo(2,1); 
423 if(return_code!= 0) 
424 return(return_code); 
425 
426 
427 return(O); 
428 
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429 } 
430 
431 
432 , •••••••••••••••••••••••••• *** ••• ** •••• *** ••••••• ** ••••••••••••••••• ** ••••••• , 

433 
434 
435 int init_softwareO 
436 
437 { 
438 int box_status,return_code; 
439 double birth_weight, blood_volume, fi Iter_rate; 
440 
441 
442 
443 
444 
445 

ResetTextBox (handle1, PANEL_MESSAGE_BOX, ""); 
box_status = InsertTextBoxLine (handle1, PANEL_MESSAGE_BOX, 0, 
" Enter the weight of the baby (in grammes)."); 

446 1* set birth weight to validate from indicator mode so a value can be entered */ 
447 SetCtrIAttribute(handle1,PANEL_BIRTH_WEIGHT,ATTR_CTRL_MODE,VAL_VALIDATE); 
448 
449 
450 
451 
452 
453 
454 
455 
456 

do 
{ 
SetActiveCtrl(handle1, PANEL_BIRTH_ WEIGHT); 
GetUserEvent( 1,&panel_ event,&control_ event); 
GetCtrlVal(handle1, PANEL_BIRTH_ WEIGHT,&birth_weight); 

} 
while(birth_weight == 0.0); 

457 1* put birth weight back to indicator so it can't be changed */ 
458 SetCtrlAttribute(handle1, PANEL_BIRTH_ WEIGHT,A TTR_ CTRL_MODE, VAL_INDICATOR); 
459 
460 blood_volume = (85.0*birth_weightl1000)*0.06; 
461 SetCtrlVal(handle1, PANEL_ WB_ VOLUME, blood_volume); 
462 
463 box_status = DeleteTextBoxLine (handle1, PANEL_MESSAGE_BOX,O); 
464 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O, 
465 "The working blood volume shown below has been"); 
466 InsertTextBoxLine(handle1 ,PANEL_MESSAGE_BOX, 1 ,"calculated from the body weight"); 
467 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,2,"you entered(6% of total blood vol."); 
468 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,3,", assuming a volume of 85ml/kg.)"); 
469 InsertTextBoxLine(handle1,PANEL_MESSAGEj30X,4, 
470 "Do you want to use this calculated figure?"); 
471 
472 
473 
474 
475 

return_code = ConfirmPopup("","Do you want to use the calculated figure?"); 

476 if(return_code == 1) 
477 ResetTextBox (handle1, PANEL_MESSAGE_BOX, ""); 
478 if(return_code == 0) 
479 . {ResetTextBox (handle1, PANEL_MESSAGE_BOX, ""); 
480 InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX, 0, 
481 "Enter your own value for the working"); 
482 InsertTextBoxLine(handle1 ,PANEL_MESSAGE_BOX, 1 ," blood volume in the box below."); 
482 
483 
484 
485 
486 
487 
488 
489 
490 

1* set wb_volume to validate so a value can be entered */ 
SetCtrIAttribute(handle1,PANEL_WB_VOLUME,ATTR_CTRL_MODE,VAL_VALIDATE); 

do 
{SetActiveCtrl(handle1, PANEL_ WB_ VOLUME); 
GetUserEvent(1,&panel_event,&control_event); 
GetCtrlVal(handle1, PANEL_ WB_ VOLUME,&blood_ volume); 

} 
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while(control_event != PANEL_WB_VOLUME); 

/* set wb_volume back to indicator */ 
SetCtrlAttribute(handle1, PANEL_ WB_ VOLUME,A TIR_ CTRL_MODE,VAL_INDICATOR); 

ResetTextBox(handle1, PANEL_MESSAGE_BOX, ""); 

} 

491 
492 
493 
494 
495 
496 
497 
498 
499 
500 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O," Now enter the ultrafiltration rate"); 
501 InsertTextBoxLine(handle1 ,PANEL_MESSAGE_BOX, 1 ," that you require (in mllhour)."); 

502 
503 
504 
505 
506 
507 
508 
509 
510 
511 
512 
513 
514 
515 
516 
517 

1* set filter_rate to validate so a value can be entered */ 
SetCtrIAttribute(handle1,PANEL_FILTER_RATE,ATIR_CTRL_MODE,VAL_VALIDATE); 

do 
{ 
SetActiveCtrl(handle1,PANEL_FILTER_RATE); 
GetUserEvent( 1, &panel_ event,&controL event); 
GetCtrIVal(handle1,PANEL_FILTER_RATE,&filter_rate); 

} 
while(filter_rate == 0.0); 

1* set filter_rate back to indicator */ 
SetCtrIAttribute(handle1,PANEL_FILTER_RATE,ATIR_CTRL_MODE,VAL_INDICATOR); 

518 
519 return(O); 
520 } 

ERROR.e 

1 
2 
3/********************** ERROR.C **********-**************/ 

4 
5 
6/* FUNCTION LIST: 
7 
8 process_errorO */ 
9 
10 
11 
12 #include <Header.h> 
13 
14 
15 
16 
17 
18 
19 int process_error(int error_code) 
20 
21 
22 { 
23 1* switch system status lights to OFF*/ 
24 
25 SetCtrIVal(handle1,PANEL_RUNNING,O); 
26 SetCtrlVal(handle1, PANEL_STOPPED,1); 
27 
28 if(software_init == TRUE) 
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29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

{SetCtrlAttribute (handle1,PANEL_INITIAL,ATTR_DIMMED,O); 
SetCtrlAttribute (handle1, PANEL_START, ATTR_DIMMED, 0); 
SetCtrlAttribute (handle1, PANEL_CHANGE_RATE, ATTR_DIMMED, 0); 

SetCtrlAttribute (handle1,PANEL_STOP,ATTR_DIMMED,1); 
SetCtrlAttribute (handle1,PANEL_QUIT,ATTR_DIMMED,O); 

} 

if(softwarejnit == FALSE) 

{SetCtrlAttribute (handle1,PANEL_INITIAL,ATTR_DIMMED,O); 
SetCtrlAttribute (handle1, PANEL_START, ATTR_DIMMED, 1); 
SetCtrlAttribute (handle1, PANEL_CHANGE_RATE, ATTR_DIMMED, 
1 ); 
SetCtrlAttribute (handle1,PANEL_STOP,ATTR_DIMMED,1); 
SetCtrlAttribute (handle1,PANEL_QUIT,ATTR_DIMMED,O); 

} 

50 ResetTextBox(handle1,PANEL_MESSAGE_BOX,""); 
51 
52 
53 switch(error_code) 
54 { 
55 case 1: 
56 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 1: tap 
57 drivers could not find required position."); 
58 break; 
59 
60 
61 

case 2: 

62 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 2: 
63 blood withdrawal has taken longer than 120 seconds - check venous line 
64 for blockages. "); 
65 
66 
67 
68 

case 3: 

break; 

69 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 3: 
70 Servo detector failure to zero state."); 
71 break; 
72 
73 case 4: 
74 
75 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 4: 
76 Failure in Return_ To_Start_PosnO·"); 
77 break; 
78 
79 case 5: 
80 
81 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 5: 
82 Step limit exceeded in return_bloodO· "); 
83 break; 
84 
85 case 6: 
86 
87 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 6: 
88 Error in Withdraw_BloodO. Plunger not at bottom"); 
89 
90 InsertTextBoxLine(handle1 ,PANEL_MESSAGE_BOX, 1 ,"of syringe or 
91 microswitch failed to zero state."); 
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92 break; 
93 
94 case 7: 
95 
96 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 7: 
97 Error in Withdraw_BloodO. Suspect failure switch B"); 
98 
99 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,1,"to 1 state or loss 
1 00 of drive to stepper motors. "); 
101 break; 
102 
103 case 8: 
104 
1 05 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 8: 
106 Error in Filter_BloodO. Suspect failure push plunger"); 
107 
108 InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX, 1, "microswitch to 0 
1 09 state or loss of drive to push stepper motor. "); 
110 break; 
111 case 9: 
112 
113 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O, "Error code 9: 
114 Error in Filter_BloodO. Suspect failure in"); 
115 
116 InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX, 1, "pull microswitch 
117 to 1 state. "); 
118 break; 
119 
120 case 10: 
121 
122 InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX,O, "Error code 10: 
123 Pressure limits exceeded in Filter_BloodO."); 
124 break; 
125 
126 case 11: 
127 
128 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 11: 
129 Pressure limits exceeded in Return_ To_Start_PosnO."); 
130 break; 
131 
132 
133 case 12: 
134 
135 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 12: 
136 Pressure limits exceeded in Return_BloodO."); 
137 break; 
138 
139 
140 case 13: 
141 
142 InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX,O, "Error code 13: 
143 Pressure limits exceeded in Withdraw_BloodO."); 
144 break; 
145 
146 
147 case 14: 
148 
149 InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX, 0, "Error code 14: 
150 Pressure limits exceeded in Reverse_FlowO."); 
151 break; 
152 
153 case 15: 
154 
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155 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Error code 15: 
156 Stepper or microswitch failure in init_machineO."); 
157 break; 
158 
159 case 16: 
160 
161 InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX,O, "Error code 16: 
162 Microswitch failure to 1 state in init_machineO·"); 
163 break; 
164 
165 case 17: 
166 
167 InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX, 0, "Error code 17: 
168 Pressure amplifier circuit failure in init_machineO· "); 
169 break; 

170 
171 case 18: 
172 
173 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Code 18: 
174 Pressure transducer/amplifier failure in init_machineO. "); 
175 break; 
176 
177 case 19: 
178 
179 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Code 19:Error in 
180 init_machine.Transducer not responding to pressure rise."); 
181 break; 
182 
183 case 20: 
184 
185 InsertTextBoxLine(handle1,PANEL_MESSAGE_BOX,O,"Code 20:Error in 
186 init_machineO. Transducer not responding to pressure drop"); 
187 break; 
188 
189 case 21: 
190 
191 InsertTextBoxLine(handle1, PANEL_MESSAGE_BOX,O,"Code 21: 
192 Computer fault: loss of timing control - check computer setup. "); 

193 brea~ 
194 
195 } 
196 
197 r this message is the same for all error codes */ 

198 
199 
200 InsertTextBoxLine(handle1 ,PANEL_MESSAGE_BOX, 1 ,"The system 

201 has been stopped."); 
202 
203 /* put this back in later */ 
204 
205 . 
206 r use a child panel as a pop up to reset the alarm */ 

207 
208 DisplayPanel(handle3); 
209 
210 
211 
212 
213 
214 
215 

do 
{GetUserEvent(O,&pane,-event,&control_event); 

BeepO; 
} 

while(!(panel_event == handle3 && control_event == ALARM_OK)); 

216 Delay(0.5); 
217 HidePanel(handle3); 
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218 
219 
220 return(O); 
221 } 

UPDTIMER.C 

1 /* UpdTimer.c -- this function takes the output from TimerO, and converts 
2 it into hours and minutes, and then displays it. */ 

3 
4 
5 1* FUNCTION LIST: 
6 
7 
8 
9 
10 */ 
11 
12 

Update_ TimerO 
Reset_ TimerO 

13 #include <Header.h> 
14 
15 
16 
17 int Update_ Timer(double start_time) 
18 
19 { 
20 
21 double tot_seconds,seconds; 
22 int minutes, hours; 
23 
24 
25 tot_seconds = TimerO - start_time; 
26 
27 hours = floor(tot_seconds/3600); 
28 tot_seconds = tot_seconds - (hours * 3600); 
29 minutes = floor(tot_seconds/60); 
30 seconds = tot_seconds -(minutes * 60); 
31 
32 
33 SetCtrIVal(handle1,PANEL_HOURS,hours); 
34 SetCtrIVal(handle1,PANEL_MINS,minutes); 

35 
36 
37 
38 return(O); 
39 } 
40 
41 
42 ,.*************".IcIc"''''''''''''''''''''''''''''********''''''·'''''''''' ...... ''''**************1 

43 
44 I*this function simply resets the screen 'total treatment time' to zero each time the system 

45 is restarted */ 
46 
47 double Reset_ TimerO 
48 
49 
50 
51 
52 

{ SetCtrIVal(handle1,PANEL_HOURS,O); 
SetCtrIVal(handle1,PANEL_MINS,O); 
return(TimerO ); 

} 

0.33 



ROUND.C 

1 f*ROUNO.C*' 
2 
3 
4 f*FUNCTION LIST: 
5 
6 RoundO 
7 ~ 
8 
9 #include <header.h> 
10 
11 
12 /****************** •••••••••••••• **"' ••••••••••• ***************/ 

13 
14 int Round(double number) 
15 
16 { 
17 if (ceil(number) - number> number - floor(number)) 
18 
19 return(floor(number)); 
20 
21 else 
22 
23 {if((ceil(number) - number == number - floor(number)) 
24 && number < 0.0) 
25 
26 return(floor(number)); 
27 
28 else return(ceil(number)); 
29 } 
30 
31 } 
32 
33 /**************."'''''*''''''''''''''***********************************/ 

HAEM01.H 

/*******************************************************" ... A'" Ie,,'" •• **********1 

f* LabWindows'CVI User Interface Resource (UIR) Include File *' 
f* Copyright (c) National Instruments 1999. All Rights Reserved. *' 
f* ~ 
f* WARNING: 00 not add to, delete from, or otherwise modify the contents *' 
f* of this include file. *' 
/************"""" Ale ... "" A"" ... ,. ...... Ie **" It Ie" 11:""" Ie" Ie" ......... " ...... Ale" Ie.,,"" Ie ... " Ie. A*********** I 

#include <userint.h> 

#ifdef _. cplusplus 
extern "C" { 

#endif 

f* Panels and Controls: *' 

#define ALARM 1 
#define ALARM_OK 2 
#define ALARM_ TEXTMSG 3 

2 #define PANEL 
#define PANEL_INITIAL 
#define PANEL_START 

2 '* callback function: systemJnit *' 
3 f* callback function: system_start *' 
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#define PANEL_STOP 4 
#define PANEL_BIRTH_WEIGHT 
#define PANEL_WB_VOLUME 
#define PANEL_HOURS 
#define PANEL_FILTER_RATE 
#define PANEL_CHANGE_RATE 
#define PANEL_ CUM_VOLUME 
#define PANEL_MESSAGE_BOX 

/* callback function: system_stop */ 
5 
6 
7 
8 
9 1* callback function: change_filter_rate */ 
10 
11 

#define PANEL_MINS 12 
#define PANEL_QUIT 13 1* callback function: quit_system */ 
#define PANEL_HISTORY 14 
#define PANEL_STOPPED 15 
#define PANEL_RUNNING 16 
#define PANEL_ACCESS_MODE 17 
#define PANEL_GRAMMES 18 
#define PANEL_MILLlLlTRES 19 
#define PANEL_MILLlLlTRES_HOUR 
#define PANEL_DECORATION 
#define PANEL_DECORATION_2 
#define PANEL_TEXTMSG 
#define PANEL_ TEXTMSG_3 
#define PANEL_ TEXTMSG_ 4 
#define PANEL_ TEXTMSG_2 

#define RESPONSE 
#define RESPONSE_YES 
#define RESPONSE_NO 

3 
2 
3 

/* Menu Bars, Menus, and Menu Items: */ 

20 
21 
22 
23 
24 
25 
26 

/* (no menu bars in the resource file) */ 

/* Callback Prototypes: */ 

int CVICALLBACK change_filter_rate(int panel, int control, int event, void *calibackData, int 
eventData1, int eventData2); 
int CVICALLBACK quit_system(int panel, int control, int event, void *calibackData, int eventData1, 
int eventData2); 
int CVICALLBACK system_init(int panel, int control, ini event, void *calibackData, int eventData1, 
int eventData2); 
int CVICALLBACK system_start(int panel, int control, int event, void *calibackData, int 
eventData1, int eventData2); 
int CVICALLBACK system_stop(int panel, int control, int event, void *calibackData, int 
eventData1, int eventData2); 

#ifdef _cplusplus 
} 

#endif. 

HEADER.H 

1 1* HEADER.H */ 
2 
3 #include <utility.h> 
4 #include <dataacq.h> 
5 #include <ansLc.h> 
6 #include <easyio.h> 
7 #include <userint.h> 
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8 #include <haemo1.h> 
9 #include <formatio.h> 
10 
11 '* these are the defines for the pump4.c functions *' 
12 
13 #define ANTI 0 
14 #define CLOCK 1 
15 #define DIRN_A 0 
16 #define DIRN_B 1 
17 #define CLOCK_A 2 
18 #define CLOCK_B 3 
19 #define UP 1 
20 #define DOWN 0 
21 #define SWITCH_A 4 
22 #define SWITCH_B 5 
23 
24 #define TRUE 1 
25 #define FALSE 0 
26 
27 #define CIRCUIT_IN 1 I*these are used in initialise.c *' 
28 #define CIRCUIT_OUT 0 
29 
30 
31 1* these are the defines for the servo functions *' 
32 
33 #define ANTL1 5 1* these define the output drive lines*' 
34 #define CLOCK_1 4 1* to the motors *' 
35 #define ANTL2 7 
36 #define CLOCK_2 6 
37 
38 #define A1 0 '* these define the sensor input lines *' 

39 #define A2 1 
40 #define B1 2 
41 #define B2 3 
42 
43 
44 #define NONE -1 I*this is assigned to be out of range for the output port*' 

45 
46 
47 
48 
49 int run_system(double blood_volume,double Crate); 
50 int Filter_Blood(double Crate,double* volume_filtered); 
51 int Return_ To_Start_Posn(void); 
52 int Withdraw_Blood(double blood_volume); 
53 int Return_Blood(void); 
54 int Reverse_Flow(int *step_counter,double v_ref); 
55 int Round(double number); I*in file round.c*' 
56 int Update_ Timer(double); 
57 double Reset_ Timer(void); 
58 int .process_error(int error_code); 
59 int init_hardware(void); 1* in file initialise.c *' 
60 int test_stepper_motor(short motor_num); 
61 int test_hardware(short circuit_status); 
62 int test_transducer_and_line(void); 
63 int init_software(void); 
64 
651*these functions are in the file servo2.c*' 
66 int MoveServo(int Servo_Num,int Target_Posn); 
67 int Current_Posn(int Uine1 ,int Uine2); 
68 int Move_ To_Home_Posn(int Uine1 ,int Uine2,int outpuUine); 
69 int Change_Direction(short *oJine); 
70 int Check_Servo_Posn(int Uine1 ,int Uine2,short outpuUine); 

D.36 



71 
72 
73 
74 int pane,-event,control_event; 
75 int handle1,handle2,handle3; 
76 int globa'-stop; /* only using this because can't get the return code from 
77 get user event to work *1 
78 
79 int hardware_in it; 
80 int software_init; 
81 
82 
83/* MACHINE PARAMETERS *1 
84 
85 #define NUM_STEPS_PER_ML 246 /* this depends on the diameter of the syringe *1 
86 #define STEP_RATE 40 /*units are steps/sec. - this is the underlying rate for blood pumping*1 
87 #define NO_OF _STEPS_LIMIT 2500 1* this is the max no. of steps *1 
88 1* allowed in a single stroke of the syringe *1 
89 #define VOL_ TIME_FACTOR 30 1* this is the conversion factor used in Withdraw_Blood *1 
90 
91 
92 #define FILT_CORRECTION_FACTOR 1.104 /* this is the correction factor used to 
93 compensate for the differences between blood and water filtration rates *1 
94 
95 
96 
97 
98 I*#define DEF _LP _LIMIT 0.15*1/* these define upper and lower limits for safety monitoring *1 
99/*#define DEF _HP _LIMIT 2.0 *1/* changed from 1.95 they are based on a gain of 5 *1 
100 1* which gives 0 - 2v range*1 
101 /* this gain might need changing later *1 
102 
103 /* the above limits could be used for withdrawal and return etc 
104 below tighter limits are defined for use in the Filter_Blood function, as 
105 the pressures in this function should not vary very much at all *1 
106 
107 I*#define FIL TER_LP _LIMIT 0.5 *1 I*changed from 1.3*1 
1 08/*#define FIL TER_HP _LIMIT 2.0 *1 I*changed from 1.7*1 
109 
110 
111 /* changed all the above 11/9/98 to new system - values below *1 
112 
113 #define UNPLUGGED_LIMIT 0.8 1* this is the alarm limit for the diff.amp with the *1 
114 1* transducer unplugged -normal value should be -0.62 v *1 
115 #define AMB_H'-L1MIT 3.2 /* these limits are for the analogue readout at *1 
116 #define AMB_LO_L1MIT 2.8 /* ambient pressure - the pot should be adjusted to *1 
117 /* give an ambient readout of 3.0 v *1 
118 #define ONEML_P _ CHNGE 0.2 /* this is the min. pressure change required during the 
119 transducer and line test in initialise.c *1 
120 #define FIL T _P _RISE 2.0 1* changed from 1.5 *1 
121 #define FIL T _P _DROP 3.5 I*changed from 1.0*1 
122 #define WITH RET _P _RISE 2.0 1* changed from 1.0*1 
123 #define WITHRET_P _DROP 1.5 
124 #define WITH_DELAY _LIMIT 1.3 1* a pressure drop greater than 1.3v will produce a delay 
125 1* in blood withdrawal *1 
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APPENDIX E Operating Instructions for Haemodialysis System 

SETTING UP THE MACHINE 

1. If this has not already been done, you must wire up the computer, video monitor 
etc. Refer to figure E. 1 for a diagram of how everything connects together. It is 
VERY IMPORTANT that the monitor, computer and dialyser are all connected to 
the mains through the isolation transformer. NEVER connect any of these direct to 
the mains supply. 

Connect everything together as shown in the diagram. The video cable can 
only connect to one socket on the back of the computer, so it is not possible to 
plug it into the wrong place. The keyboard and mouse plug into sockets near the 
top of the back of the computer. These sockets have symbols next to them to tell 
you which is for the keyboard and which for the mouse. 

2. Connect the ribbon cable between the machine and the computer. There is only 
one socket that the cable can connect to on the computer, and the shape of the 
plugs prevents them being connected the wrong way round. Connect the grey RCD 
mains lead into the back of the dialyser. 

3. Switch on the isolation transformer and then the computer. Press in the grey 
button on the top of the grey RCD plug that supplies the dialyser. Check that red 
bars appear in the window on the back of the plug. Do not switch on the 
machine at this stage. 

4. Once Windows 95 has loaded, you will see 3 icons on the right hand side of the 
desktop. The first is the normal dialysis system. The second is the 'fast' dialysis 
system, with increased blood flow rates. The differences between these two will be 
explained later. The third icon is a manual control system, which will also be 
explained later. Choose whichever of the two main systems you want to use, and 
double click on its icon with the mouse. 

5. The user interface for the system will appear on the screen. The various 
components of this interface will be explained later. For now, the only button you 
need is the 'Initialise System' button at the top left of the screen. 

6. Press the 'Initialise System' button. This will take you through a testing and 
setting up procedure. Follow all the instructions given in the message box at the 
top centre of the screen. Respond to questions by clicking on the Yes, No and OK 
buttons (with the mouse) that will appear during the procedure. 

7. Connect the blood circuit (see figure E.2 for how to construct the circuit) to the 
machine when prompted by the user interface. Slot both 3 way taps into their 
recesses and push the syringes into their holders. The 3 way taps are quite difficult 
to fit into their recesses so be patient. If they don't appear to line up make sure that 
the right hand syringe is screwed fairly tight into the 3 way tap and that all other 
luer locks are tightly fitted together. Once the taps are in place, push the clamps 
fully over them and then tighten down the retaining screws. Do the same for the 
syringe clamps - i.e. push the clamps fully down before tightening the retaining 
screws. Don't forget to plug the pressure transducer in. 
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8. If the initialisation procedure fails for any reason, quit the user interface and run 
it again. You don't need to take the blood circuit out if you have already attached it 
- but you must disconnect the pressure transducer before restarting the 
initialisation procedure. Plug it back in when the user interface prompts you to 
attach the blood circuit. 

9. If the machine has already been set up the initialisation procedure can be 
bypassed, but check that the correct parameters are entered in each box on the 
interface, particularly the working blood volume and the ultrafiltration rate. 

10. Once you have connected the blood circuit to the machine, make sure the 
venous line is open and attached to a source of normal saline. This is 
important because the system needs to withdraw a small amount of fluid (approx. 
1 ml) through the venous line for testing purposes. 

11. When the procedure reaches the priming stage, the circuit can be primed as 
follows: attach a 10 ml syringe to the tap at the bottom of the left hand syringe (tap 
1 in figure 2). You may have to add another 3 way tap to tap 1 so that the 10 ml 
syringe does not get in the way of the syringe driver mechanism. Remove the 
saline bag from the venous line and attach the venous line to the patient. Turn tap 
1 so that the syringe is closed off but the filter and the 10 ml syringe are both open. 
The filter can now be primed by withdrawing the syringe barrel so that blood flows 
from the patient into the circuit. Stop when the blood reaches tap 1. Do not forget 
to turn tap 1 back so that the syringe and the haemofilter are both open and 
the left hand port is closed. 

12. Once the filter has been primed, the system is ready for use. You will be 
prompted to press the 'Start Treatment' button to start the machine. 

FINISHING TREATMENT 

When the treatment session is finished, the blood remaining in the filter can be 
flushed back into the patient using the following procedure: 
Press the 'Stop Treatment' button when the machine comes to the end of returning 
blood to the patient. If treatment is stopped at this point then both syringes will be 
empty of blood. Quit from the user interface and run the manual control system by 
double clicking on the icon on the desktop. Open both taps. You can then flush the 
remaining blood back into the patient using a saline filled syringe attached to tap 1. 

DESCRIPTION OF THE USER INTERFACE 

Refer to figure E.3. 
The buttons at the top left are the main controls. 

Initialise System: starts the initialisation procedure. 

Start/Restart Treatment: starts the machine once the initialisation procedure has 
been completed. Restarts the machine if it has been stopped or the ultrafiltration 
rate has been changed. 
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Change Filtration Rate: if you want to change the ultrafiltration rate at any point, 
whether the machine is running or not, press this button. Follow the on screen 
instructions to change the filtration rate. Once this has been done you will be 
prompted to restart the machine by pressing the 'Start/Restart Button'. 

Stop Treatment: stops the machine. In an emergency the machine can always be 
stopped by switching off the mains power to it. 

Quit: this quits out of the user interface and returns the computer to Windows 95. 

The white box at top centre displays system messages and gives instructions to 
the user. 
The white box at top right displays the treatment history. For each period of 
treatment at a given ultrafiltration rate, the following are displayed: 
start time of treatment 
finishing time of treatment 
duration of treatment 
approximate volume of ultrafiltrate produced 

The graph in the middle of the screen displays the pressure inside the circuit. 
o mm Hg represents ambient pressure. 
The five small boxes to the right of the pressure display are the pressure limits for 
the system. New values for these parameters can be entered as required. 

Withdrawal Trigger Pressure: this controls the withdrawal of blood from the 
patient. The system starts at a withdrawal rate of 10 mllmin (30 mllmin if using the 
fast dialysis system). If the pressure in the system falls below the trigger pressure, 
the system pauses for 5 seconds and the withdrawal rate is reduced to 9 ml/min 
before blood withdrawal is restarted. Each time the pressure drops below the 
trigger pressure the withdrawal rate is reduced by a further 1 mllmin. 

With/Ret Limits: these two boxes contain the upper and lower pressure limits in 
force during the blood withdrawal and blood return phases of the operating cycle. If 
these limits are exceeded an alarm is triggered and the system is stopped. 

Filtration Limits: these limits apply to the filtration phase of the operating cycle. 
As above, if they are exceeded an alarm is triggered and the system is stopped. 

At the bottom left of the screen, the time the system has been running for is 
displayed. The approximate total volume of filtrate removed in this time is also 
displayed. 

Along the bottom of the screen treatment parameters are displayed. These are self 
explanatory, apart from: 

Weight of Baby: this can be entered during the initialisation procedure, and a 
calculation is then done to work out the correct blood volume to be withdrawn from 
the baby. It is not necessary to stick to this calculation - the working blood volume 
can be entered directly into the Working Blood Volume control. 

Alarms: if an alarm is triggered, a red box appears in the middle of the screen and 
the alarm sounds. The sound can be switched off by pressing the 'OK' button in 
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the middle of the red box. You must then quit from the user interface, fix the 
problem and then run the user interface again. 

CONSTRUCTION OF BLOOD CIRCUIT 

The blood circuit is shown in figure E.2. Connect together the components in the 
configuration shown. Tap 1 is fitted so that the turning handles point downwards 
as viewed from above. Make sure the top and right hand ports are open and the 
left hand one closed. Taps 2 and 4 are also fitted with the handles pointing 
downwards, but tap 3 must point upwards, and the turning handle positioned so 
that all ports are open. 

FLOW RATES 

Normal Dialysis System 

The blood withdrawal rate starts at 10 mllmin, reducing in increments of 1 mllmin if 
blood access is inadequate. Blood return is always at 10 ml/min. 
The flow rate during the filtration phase is also 10 mllmin. 

Fast Dialysis System 

The blood withdrawal rate starts at 30 mllmin, again reducing in increments of 1 
mllmin. 
Blood return is at the same rate as the current withdrawal rate. 
The flow rate during filtration is 20 mllmin. 
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