

Middlesex University Research Repository:

an open access repository of

Middlesex University research

http://eprints.mdx.ac.uk

Boender, Jaap, 2014. Small world characteristics of FLOSS distributions.

Available from Middlesex University’s Research Repository.

The final publication is available at Springer via:

 http://dx.doi.org/10.1007/978-3-319-05032-4_30

Copyright:

Middlesex University Research Repository makes the University’s research available
electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright
owners. No part of the work may be sold or exploited commercially in any format or medium
without the prior written permission of the copyright holder(s). A copy may be downloaded
for personal, non-commercial, research or study without prior permission and without charge.
Any use of the work for private study or research must be properly acknowledged with
reference to the work’s full bibliographic details.

This work may not be reproduced in any format or medium, or extensive quotations taken

from it, or its content changed in any way, without first obtaining permission in writing from

the copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact

the Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

mailto:eprints@mdx.ac.uk

Small world characteristics of FLOSS
distributions

Jaap Boender1 and Sara Fernandes2

1 Foundations of Computing Group
Department of Computer Science
School of Science and Technology
Middlesex University, London, UK

J.Boender@mdx.ac.uk
2 UNU-IIST, Macao SAR China
sara.fernandes@iist.uni.edu

Abstract. Over the years, Free/Libre Open Source Software (FLOSS)
distributions have become more and more complex and recent versions
contain tens of thousands of packages. This has made it impossible to
do quality control by hand. Instead, distribution editors must look to
automated methods to ensure the quality of their distributions.
In the present paper, we present some insights into the general struc-
ture of FLOSS distributions. We notably show that such distributions
have the characteristics of a small world network: there are only a few
important packages, and many less important packages. Identifying the
important packages can help editors focus their efforts on parts of the
distribution where errors will have important consequences.

1 Introduction

It has long been a standard method in computing science to divide complex
systems into components [10]. System processes are placed into separate compo-
nents so that all of the data and functions inside each component are semantically
related. Because of this principle, it is often said that components are modular
and cohesive.

The modularity of components allows for easy debugging and maintenance,
since components are small and generally focus on only one task. Cohesiveness
allows components to work together towards a greater goal.

Free/Libre Open Source Software (FLOSS) software distributions are very
good examples of component-based systems. They are very large (over 35 000
packages in the latest Debian release), heterogenous (they contain packages writ-
ten by different teams, in different languages, with different release schedules,
etc.).

Since FLOSS distributions are becoming more and more popular and com-
plex, the fact is that to assure quality by hand becomes an impossible task. This
forces the editors to search for automated methods in order to ensure the quality
of their distributions.

The aim of this paper is to present some insights into the general struc-
ture and characteristics of FLOSS distributions. Identifiying these can help dis-
tribution editors in concentrating their resources. For example, well-connected
packages with errors will have a greater impact than packages that have few con-
nections. As another example, if there is a cluster of strongly connected packages,
it might be useful to assign maintenance of these packages to the same person
or team.

We have used the Debian and Mandriva distributions for our experiments.
Debian was chosen because it is a very large distribution (in number of packages).
Also, the semantics of its packaging system are well-defined, which makes it easier
to interpret results. Mandriva was chosen because it is one of the distributions
using the RPM system. The semantics of RPM are different from those of the
Debian packaging system, so it is possible to assess whether characteristics are
general for all FLOSS distributions or artefacts of a specific packaging system.

The rest of the paper is structured as follows. Section 2 introduces some
background and related work. Section 3 presents the methodology. Section 4
presents the results and its analysis. Finally, Section 5 presents some conclusions
pointing to envisaged future work.

2 Background and definitions

FLOSS applications are often distributed in the form of packages, which are
bundles of related components necessary to compile or run an application. For
many FLOSS packages, the source code is freely available and reuse of the code
for derivative works is encouraged.

Because of this, resource reuse is considered to be a natural pillar: a package
is often dependent on resources in some other packages to function properly.
Package dependencies often span between project development teams, and since
there is no central control over which resources from other packages are needed
or in what way, the software system self-organizes in to a collection of discrete,
interconnected components.

The relationships between packages can be used to compute relevant quality
measures, for example in order to identify particularly fragile components [1, 4].

In a distribution, there are two main types of relationships, with totally dif-
ferent significance: dependencies (where one package needs another to function
properly) and conflicts (where packages cannot function together). Also, syntac-
tically, dependencies are directional, while conflicts are not. And finally, there
are two different types of dependencies, conjunctive (the ’normal’ kind, which
can only be satisfied in one way) and disjunctive (where a dependency may be
satisfied by one out of a list of packages). For formal definitions of these concepts,
please refer to [7].

An example can be found in figure 1. If we want to install the package alpha,
we will need to install bravo (a conjunctive dependency) and charlie or delta
(a disjunctive dependency). Furthermore, delta is in conflict with foxtrot, so
it is not possible to install them both together. In this case, the disjunctive

bravo

alpha

charlie delta foxtrot

echo

#

Fig. 1. Simple repository

dependency of echo on delta or foxtrot can be satisfied with either of these
packages, but not both. This is because of the conflict: there is no problem in
installing charlie and delta together.

If we look at a FLOSS distribution (which, after all, is nothing more than a
set of packages with their relationships) as a whole, we can also identify quality
measures. For this purpose, we will look at distributions as networks.

A network is an unweighted graph G = (V,E) where V denotes a vertex
set and E an edge set. Vertices represent discrete objects in a system, such as
social actors, economic agents, computer programs, Internet sites, or biological
producers and consumers. Edges represent interactions among these actors, such
as Internet sites linking to each other.

Many of these networks exhibit a property known as the small world property,
first described by Stanley Milgram in his famous paper about the ’six degrees of
separation’ concept [8]. A small world network is distinguished by the fact that
the number of hops needed to reach one vertex from another is relatively small,
at least compared to a random network.

This property has been observed in many products of human and biological
activity, including the graph of the Internet [5], the graph of the World Wide
Web [3] and other complex networks [2].

Formally, a network is deemed small-world if it satisfies two properties:

– The clustering coefficient, defined as the probability that two neighbours of
the same vertex are connected, is significantly higher than that of random
networks.

– On average, the shortest path length between two vertices is low (on the
same order as that of random networks).

A small world graph has a high clustering coefficient (at least with respect
to random networks), and also a low average shortest path length. Moreover,

in a small world network, these two properties result in a network that con-
sists of clusters, whose central vertices (or nodes) are highly connected, creating
hubs. These have many connections, whereas the other nodes can have very few
connections; thus, the degree distribution conforms to the well-known Pareto
principle, also known as the 80/20 law—a small number of nodes have a high
number of connections.

The application of the small world concept to FLOSS distributions is not
new; it has already been proven that FLOSS distributions have small world
characteristics [6, 9].

However, in both papers, it is not clear which methodology has been used3.
As we shall see in the next section, this can have an important effect on results,
especially since in FLOSS distributions, not all edges are equivalent (dependen-
cies are radically different from conflicts, for example).

In [6], the numbers suggest that all package relations have been treated
equally, without regard for semantics or directionality.

In [9], small world characteristics are shown for both the graph of dependen-
cies and the graph of conflicts. This at least resolves the problem of semantics,
because dependencies and conflicts are treated separately.

The paper, though, contains a puzzling claim: it is stated that the small-world
method does not hold for packages with very few or very many dependencies (the
so-called ‘saturation effect’). This claim is puzzling in that the entire basis of
the small world phenomenon is the distinction between packages with few and
packages with many dependencies. As we shall see, this is especially important in
FLOSS distributions, as it gives us insights into the structure of the distribution.

In the next section, we present the methodology used in our measurements.

3 Methodology

In this section, we present the exact methods we have used to generate the
distribution graphs and the measurements we have executed on them. We shall
also discuss the different significance of these methods.

A distribution can be seen as a graph, where the packages are the vertices
and relationships (dependencies and conflicts) are the edges. However, as we
have seen before, not all edges are the same—the significance of a dependency
is diametrically opposite to that of a conflict, and treating these edges the same
can result in confusing results.

It thus becomes clear that, in order to draw any meaningful conclusions from
a distribution graph, it is important to know how this graph is generated. We
propose three methods, each with their own advantages and disadvantages.

Method 1 involves treating every edge equally, irrespective of their signifi-
cance. We conflate conjunctive dependencies, disjunctive dependencies, conflicts,
and any other relations between packages that are present. This gives us a distri-
bution graph where two packages are connected if and only if they are possibly
involved in some way in determining each other’s installability.

3 Queries to the authors of these papers have gone unanswered.

In general, this is an overapproximation, since not every package that is
mentioned as a dependency is actually used. The main advantage of this method
is that it is easy to compute.

In method 2, we connect two packages p and q if there is a path in the
dependency graph from p to q. Another way of expressing the same concept is
that q must appear in the transitive closure of the dependencies of p. In this
way, a package p is connected to a package q if there is a possibility that q is
installed to satisfy some dependency of p.

This method still is an overapproximation, though less so than the first
method. It is not much more difficult to compute, though it no longer takes
conflicts into account. The main advantage here is that now transitive depen-
dencies are considered.

For method 3 we make use of strong dependencies [1], a concept that sub-
sumes both dependencies and conflicts. Informally, a package p strongly depends
on another package q if and only if it is impossible to install p without also in-
stalling q.

Note that strong dependencies are a property of the entire distribution, not
just of the packages involved: whether p strongly depends on q depends on the
entire distribution, for every installation of p has to include q.

The advantage of using the strong dependency graph is that now we have
a unified graph, where every edge has the same meaning, but which still takes
both conflicts and dependencies into account. It is a slight underapproximation,
since conjunctive dependencies where none of the alternatives is obligatory, but
one will have to be installed nonetheless, do not end up as strong dependencies.

The main disadvantage is that the strong dependency graph is more difficult
to compute, since it involves doing installability checks, e.g. with a SAT solver.
However, it can still be done within reasonabletime (a few minutes for the latest
distributions).

We have used all of these three methods to generate distribution graphs and
measure their characteristics. In the next section we will present the results and
discuss their significance.

4 Results and Discussion

In this section we present the results of measurements on the graphs obtained by
the three different methods described above, for both the Debian and Mandriva
distributions. We also discuss the significance of these measurements and the
conclusions that can be drawn from them.

4.1 Debian

Let us start with the raw data for the latest Debian distribution (version 7) on
the standard AMD64 architecture. Using the three different methods, we have
generated distribution graphs and determined several key indices.

Method V E CC APL Comp CpAvg LComp

1 35 982 85 190 0.38 3.43 2 251 15.98 33 558
2 35 982 2 386 389 0.26 0.91 2 229 16.15 33 582
3 35 982 1 588 322 0.28 0.91 2 280 15.78 33 537

distribution used: debian/amd64 7 stable

In this table, first we have the number of vertices (V) and edges (E) in the
graph. At first glance, it might seem surprising that the method 1 graph has
so few edges compared to the other two, especially since it uses every possible
package relation, but this can be explained by the fact that the method 2 and 3
graphs are transitive.

Then there are the main small world indices, the clustering coefficient (CC)
and average shortest path length (APL). Both these characteristics show a small
world effect in all three graphs, though we must note that the average shortest
path length index is not indicative for graphs 2 and 3: these graphs being tran-
sitive, there is either no path between two vertices or a path of length 1. This
results in the average shortest path length being less than 1.

Note that even though the number of edges is vastly higher in graphs 2 and
3, the clustering coefficient is actually lower. This might seem strange (more
edges should result in more connection, hence a higher probability of vertices
being neighbours) but it is caused by the fact that these graphs are transitive:
the fact that vertices have a higher probability of being connected is balanced
out by the fact that vertices have more neighbours to begin with.

We also show the component structure of the graph; in this case we use
weakly connected components while ignoring direction. We show the number
of components (Comp), average component size (CpAvg) and the size of the
largest component (LComp). We can see from these measures that distributions
consist of one huge connected component, encompassing over 90 percent of the
distribuition, with the rest of the distribution consisting of isolated or near-
isolated packages.

In the rest of this section, we shall limit ourselves to a discussion of the strong
dependency graph (method 3), as it is the most interesting one from a semantic
perspective (every edge has an equal, well-defined meaning). All three graphs,
however, exhibit small world characteristics.

Another characteristic of small world networks, demonstrated in Figure 2, is
that the distribution of degrees of their vertices follows a power law—as men-
tioned before, the Pareto principle. There should be few vertices with many
edges and many vertices with few edges.

We can see this in the figure: the degree distribution forms a straight line in
a double logarithmic plot.

In Figure 3, we show the same plot, but now with in degrees and out degrees
separated. We can see from this that the distribution consists of three main types
of packages:

– Many packages with a small in degree and a small out degree;
– A few packages with a small in degree, but a large out degree;
– A few packages with a large in degree, but a small out degree.

Fig. 2. Distribution of degrees in Debian stable (strong dependencies)

Notably, there are no packages that have both a large in degree and a large
out degree.

Examining these packages can shed some light on why this is the case. Here
is a table with on the left the 10 packages in Debian with the highest in degree,
and on the right the 10 packages with the highest out degree.

Highest in degrees Highest out degrees
Name In degree Out degree Name In degree Out degree
gcc-4.7-base 31 708 0 gnome-desktop-environment 0 945
libc-bin 31 707 2 gnome 1 944
multiarch-support 31 706 4 task-gnome-desktop 0 746
libgcc1 31 706 4 gnome-core-devel 0 710
libc6 31 706 4 gnome-core 3 677
zlib1g 25 514 5 kde-full 0 643
libselinux1 21 695 5 task-kde-desktop 0 560
liblzma5 21 201 5 ontv 0 493
libbz2-1.0 21 108 6 kde-standard 1 473
tar 20 681 5 kde-telepathy 0 382

We see that the packages on the left are mostly libraries and base packages
(libc, for example, or tar), and that on the right there are mostly high-level
packages (metapackages) such as KDE or GNOME.

Figure 4 shows this in a schematic way.
This data can be corroborated in a different way as well: in Debian, most

packages carry tags that identify things like their role, whether they are part of

Fig. 3. In and out degrees in Debian stable (strong dependencies)

a larger software suite, or the programming language they are implemented in.
If we look at the tags that occur more than once in the packages in the top 10
shown above, we get the following table:

High in degrees High out degrees
Tag Count Tag Count
implemented-in::c 7 role::metapackage 6
role::shared-lib 4 interface:x11 5
devel::packaging 2 uitoolkit::gtk 5
interface::commandline 2 suite::gnome 4
role::program 2 suite::kde 2
scope::utility 2
suite::gnu 2
use::storing 2
works-with::archive 2
works-with::file 2

It seems that packages with a high in degrees are often shared libraries and
implemented in C. Both of these characteristics point to system libraries.

Similarly, the packages with a high out degree are mostly metapackages, using
the X window system and part of the GNOME or KDE suites. This also confirms
the structure as shown in Figure 4.

meta-packageslibraries
Fig. 4. Schematic repository structure

4.2 Mandriva

Debian, of course, is not the only distribution available. We have also analysed
another distribution, Mandriva, which is based on RPM, a different but compa-
rable packaging system. Let us see if the conclusions drawn for Debian also hold
for Mandriva. First the raw data:

Method V E CC APL Comp CpAvg LComp

1 7 566 84 855 0.47 7.49 289 26.18 7 273
2 7 566 1 170 721 0.25 0.94 333 22.72 7 230
3 7 566 721 162 0.25 0.94 339 22.32 7 223

distribution used: mandriva/x86 64 2010.1 main

Allowing for the smaller size of the distribution, the values are roughly sim-
ilar. However, if we look at the first graph, we see that it has almost the same
number of edges as its Debian equivalent, for roughly a fifth of the packages.
This can be explained by a difference in semantics between the Debian package
format and RPM: RPM packages and dependencies are more fine-grained, which
makes for more edges in the graph4. We can also see this from the higher aver-
age shortest path length: there are on average more intermediate dependencies
between two packages than in Debian.

We also see that the clustering coefficient of Mandriva is higher than that of
Debian in the first graph, but slightly lower in the second and third. The higher
clustering coefficent in the first graph can be explained by the difference in
semantics mentioned above—there are simply much more dependencies, and the
balancing effect of transitive graphs is not present here. For the difference in the
second and third graphs, we will have to look at the actual degree distribution.

This degree distribution is shown in Figure 5. We see that there is still a
power law distribution, but it is not as clear as for Debian.

4 This might seem at odds with the fact that there are many less packages in Mandriva
than in Debian. The Debian distribution is, hoewever, very extensive and contains
many packages not present in Mandriva.

 1

 10

 100

 1000

 1 10 100 1000 10000

C
ou

nt

Degree

in degree
out degree

Fig. 5. Distribution of degrees in Mandriva 2010.1, strong dependencies

In Figure 6, we have the degree distribution with in and out degrees broken
down. This figure explains best why the clustering coefficient is lower: the figure
looks comparable with its Debian equivalent (Figure 3), but there are several
outlying packages with a high out degree.

This is due to a specificity in Mandriva packaging: there are several packages
that do not install files themselves, but are only there to fulfill a certain task,
such as installing the X window system. These are similar to the meta-packages
mentioned above, but they can have dependencies that are not at all related to
each other. This explains both the lower clustering coefficient (dependencies of
these meta-packages may not depend on each other) and the outlying packages
(these will be like meta-packages in that they have a high out degree, but a low
in degree).

Looking at the top 10 of high degree packages in Mandriva corroborates this:

Highest in degrees Highest out degrees
Name In degree Out degree Name In degree Out degree
dash-static 7 106 0 task-kde4-devel 0 824
glibc 7 105 1 kimono-devel 0 683
lib64termcap2 5 862 2 ruby-kde4-devel 0 682
bash 5 861 3 qyoto-devel 1 681
perl-base 5 274 2 ruby-qt4-devel 1 680
libgcc1 5 206 2 smoke4-devel 4 675
libstdcc++6 5 201 3 kdenetwork4-devel 0 655
lib64pcre0 4 946 4 kipi-plugins-devel 0 651
lib64lzma2 4 836 2 kdepim4-devel 0 645
xz 4 825 5 kdeplasma-addons-devel 0 630

We see the same distribution structure: library packages on the left, with
high in degree andlow out degree, and metapackages (and tasks) on the right,
with high out degree and low in degree.

 0 100 200 300 400 500 600 700 800 900

 0
 1000

 2000
 3000

 4000
 5000

 6000
 7000

 8000
 0

 50

 100

 150

 200

 250

 300

 350
C

ou
nt

mandriva, strong dependencies

Out degree

In degree

C
ou

nt

Fig. 6. In and out degrees in Mandriva 2010.1, strong dependencies

If we look at the list of task packages in Mandriva, they all have a low
in degree and a high out degree. task-kde4-devel is simply the most glaring
example; there are about 30 task packages in the entire Mandriva distribution,
but they all have an out degree of over 100, and an in degree of under 10.

All in all, Mandriva shows much the same structure as Debian, and if we
consider the task packages to be metapackages as well (which, in a sense, they
are), the structure of Mandriva conforms to Figure 4 as well.

4.3 General

We can conclude that there are two kinds of vulnerable packages in a distribution:
the meta-packages that are vulnerable because they pull in a great amount of
other packages, each with its own possible bugs, and libraries that are vulnerable
because if they contain bugs, a large number of other packages will be influenced.

Identifying these packages in a distribution can help distribution editors focus
their efforts.

5 Conclusion and future work

In the previous sections, we have presented a clear and precise method for cre-
ating graphs of FLOSS distributions, using three different methods. The most
interesting of these three involves strong dependencies, where we create a single
graph that incorporates information from both dependencies and conflicts.

We have shown that these graphs have small world characteristics for both
Debian and Mandriva, and that packages can be divided into three distinct

groups: meta-packages (top-level packages with many dependencies), libraries
(base packages that many other packages depend on), and other packages.

Distribution editors can use these data to identify packages that are in need
of extra surveillance, or that must be treated with extra care during upgrades
or repairs.

Meta-packages have many dependencies, and therefore have a high proba-
bility of depending on a faulty package. This makes them excellent yardsticks
for measuring the health of an entire software suite, since they will easily be
influenced by errors in their dependencies.

On the other hand, library packages must be treated with care, since errors
in them can have huge effects on the rest of the distribution. Release policies
for these packages should therefore be more conservative than for less crucial
packages.

The fact that FLOSS distributions have small world characteristics, provided
that the methodology is clear, allows us interesting insights into the structure
of these distributions that, we hope, will be used to make distribution editors’
lives easier.

5.1 Future work

We have so far used Debian and Mandriva for our tests. We do not expect huge
differences in the results for other distributions such as Ubuntu and OpenSUSE,
but it would be good to test these nonetheless—as we have seen from the dis-
cussion of the results for Mandriva, even small differences can be of interest.

It would also be interesting to have these tests run on a daily basis over
a distribution to see how the data changes. This could not only be interesting
for scientists who want to track changes to the structure of a distribution, but
also for distribution editors, who could then identify vulnerable packages daily.
They could also identify the effect of changes in dependencies on the distribution
structure.

6 Acknowledgments

This work is partially supported by the European Community’s 7th Framework
Programme (FP7/2007-2013), grant agreement n◦214898, “Mancoosi” project.
Work developed at IRILL. This work is also supported by Macao Science and
Technology Development Fund (MSTDF), File No. 019 / 2011 / A1.

References

1. Abate, P., Di Cosmo, R., Boender, J., Zacchiroli, S.: Strong dependencies between
software components. In: ESEM ’09: Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering and Measurement. pp. 89–99. IEEE
Computer Society, Washington, DC, USA (2009)

2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod.
Phys. 74(1), 47–97 (Jan 2002)

3. Barabási, A.L., Albert, R.: Emergence of Scaling in
Random Networks. Science 286(5439), 509–512 (1999),
http://www.sciencemag.org/cgi/content/abstract/286/5439/509

4. Boender, J.: Efficient computation of dominance in component systems (short pa-
per). In: Barthe, G., Pardo, A., Schneider, G. (eds.) Software Engineering and For-
mal Methods, Lecture Notes in Computer Science, vol. 7041, pp. 399–406. Springer
Berlin Heidelberg (2011)

5. Caldarelli, G., Marchetti, R., Pietronero, L.: The fractal properties of inter-
net. EPL (Europhysics Letters) 52(4), 386 (2000), http://stacks.iop.org/0295-
5075/52/i=4/a=386

6. LaBelle, N., Wallingford, E.: Inter-package dependency networks in open-source
software. CoRR cs.SE/0411096 (2004)

7. Mancinelli, F., Boender, J., Di Cosmo, R., Vouillon, J., Durak, B., Leroy, X.,
Treinen, R.: Managing the complexity of large free and open source package-bas
ed software distributions. In: ASE. pp. 199–208 (2006)

8. Milgram, S.: The small world problem. Psychology Today 1(1), 60–67 (1967)
9. Nair, R., Nagarjuna, G., Ray, A.K.: Semantic structure and finite-size saturation

in scale-free dependency networks of free software. ArXiv e-prints (Jan 2009)
10. Szyperski, C.: Component Software: Beyond Object-Oriented Programming, sec-

ond edition. Addison Wesley Professional (2002)

