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Abstract 

This paper addresses aggregation in integer autoregressive moving average (INARMA) 

models. Although aggregation in continuous-valued time series has been widely discussed, the 

same is not true for integer-valued time series. Forecast horizon aggregation is addressed in 

this paper. It is shown that the overlapping forecast horizon aggregation of an INARMA 

process results in an INARMA process. The conditional expected value of the aggregated 

process is also derived, for use in forecasting. A simulation experiment is conducted to assess 

the accuracy of the forecasts produced by the aggregation method and to compare it to the 

accuracy of cumulative h-step ahead forecasts over the forecasting horizon. The results of an 

empirical analysis are also provided. 

Key words: Discrete time series, INARMA model, temporal aggregation, cross-sectional 

aggregation, forecast horizon aggregation, Yule-Walker estimation 

 

1. INTRODUCTION 

Time series aggregation is a widely discussed subject for continuous-valued time series. It goes 

back over 50 years [1] and since then many papers have considered different aspects of 
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aggregation for continuous-valued time series (see for example: [2-9]). Three types of 

aggregation have been identified in the literature which can be classified as: cross-sectional 

aggregation, temporal aggregation, and forecast horizon aggregation. The first class of 

aggregation produces forecasts based on aggregated data series and the other two produce 

forecasts based on aggregated periods.   

Cross-sectional or contemporaneous aggregation is conducted across individual series rather 

than time. For example, in demand forecasting of many products with a short demand history, 

similar products are grouped in a product family and the demand forecast is built for the family 

rather than individuals, which may produce more reliable forecasts than the forecasts for 

individual items.  

Temporal aggregation, also called flow scheme, refers to aggregation in which a low frequency 

time series (e.g. annual) is derived from a high frequency time series (e.g. quarterly or 

monthly). The low frequency variable is the sum of 𝑘 consecutive periods of the high frequency 

variable. For example, the annual observations are the sum of the monthly observations every 

twelve periods (𝑘 = 12).  

Finally, forecast horizon aggregation refers to the case in which there is requirement for a 

forecast of the total value over a number of time periods ahead. For example, in demand 

forecasting in a supply chain, when there is a lead time between ordering by a manufacturer 

and receiving the order from a supplier, the demand over that lead time has to be forecasted in 

order to prevent shortage during the lead time period (see for example: [10]).  

With respect to temporal/forecast horizon aggregation, we must distinguish between overlapping 

and non-overlapping cases. In non-overlapping aggregation, the demand series are divided into 

consecutive non-overlapping blocks of equal length. In overlapping aggregation, the blocks are 

of equal lengths but, at each period, the oldest observation is dropped and the newest is included. 



3 

 

This paper focuses on the case of overlapping aggregation. 

Although many papers examine continuous-valued time series, issues related to their 

application [11, 12] and different types of aggregation in them [2-9], the same is not true for 

time series of counts. Brännäs, Hellström and Nordström [13] first studied temporal and 

cross-sectional aggregation of an Integer Auto-Regressive process of order one, INAR(1). 

To our knowledge, forecast horizon aggregation in more general Integer Auto-Regressive 

Moving Average (INARMA) models has not been studied before. This is the motivation for 

this study, to begin to address this issue and present some new results. The paper is structured 

as follows. The forecast horizon aggregation of INARMA(p,q) processes is discussed in 

detail in section 2. A simulation experiment is designed and performed in section 3 to assess 

the accuracy of the aggregated forecasts of section 2. An empirical analysis, based on two 

datasets, is performed in section 4. The conclusions are provided in the final section of the 

paper.  

 

2. FORECAST HORIZON AGGREGATION AND FORECASTING 

In this section, aggregation and forecasting over a forecast horizon is discussed. This has 

applications in many areas. Some application areas require forecasts of the whole distribution 

([14, 15]). However, other application areas need forecasts of the conditional mean ([13, 16]). 

This study concentrates on estimation of the conditional mean, while further research will focus 

on forecasting the whole distribution. This research examines whether there is any benefit to 

be leveraged from INARMA models in forecasting the conditional mean. It is shown that there 

is such a benefit in certain circumstances.  

First, the conditional expected values of the aggregated INAR(1) and INMA(1) processes are 

presented. Then, it is shown that the forecast horizon aggregation of an INARMA process is 
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an INARMA process. The conditional expected value of the aggregated INARMA process is 

also obtained. 

The most common forecasting procedure discussed in the time series literature is using the 

conditional expectation. The main advantage of this method, apart from being simple, is that it 

produces forecasts with minimum mean square error (MMSE). This forecasting procedure is 

adopted in this paper. 

2.1 INAR(1) Models 

A Poisson INAR(1) process, PoINAR(1) is defined by: 

Yt = α ∘ Yt-1 + Zt         (1) 

where 𝛼 ∈ (0,1]  and {𝑍𝑡}  is a sequence of i.i.d. non-negative integer-valued Poisson 

distributed random variables, with mean and finite variance 𝜆. 𝑍𝑡 and 𝑌𝑡−1 are assumed to be 

stochastically independent for all points in time. The thinning operation “ ” of Sueutel and van 

Harn [17] is defined by 𝛼 ∘ 𝑌 = ∑ 𝑋𝑖
𝑌
𝑖=1  where {𝑋𝑖} is a sequence of i.i.d. Bernoulli random 

variables with 𝑃(𝑋𝑖 = 1) = 𝛼 for 𝑖 = 1,… , 𝑌. 

It follows from [14] that the conditional mean of the aggregated process is: 

𝐸(∑ 𝑌𝑡+𝑖
𝑙
𝑖=1 |𝑌𝑡) =

𝛼(1−𝛼𝑙)

1−𝛼
𝑌𝑡 +

𝜆

1−𝛼
(𝑙 − ∑ 𝛼𝑗𝑙

𝑗=1 )     (2) 

As shown in Appendix A, the conditional variance of the aggregated process is as follows: 

var [∑𝑌𝑡+𝑖

𝑙

𝑖=1

|𝑌𝑡] = 𝑌𝑡∑𝛼𝑗(1 − 𝛼𝑗)

𝑙

𝑗=1

+
𝜆

1 − 𝛼
[𝑙 −∑𝛼𝑗

𝑙

𝑗=1

] 

+
2𝜆

1−𝛼
∑ 𝛼2𝑗−1 [(𝑙 − 𝑗) −

𝛼(1−𝛼𝑙−𝑗)

1−𝛼
]𝑙

𝑗=1      (3) 
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For an INAR(1) process of (1), the cumulative value over horizon 𝑙 is given by:  

∑𝑌𝑡+𝑗

𝑙

𝑗=1

= 𝑌𝑡+1 + 𝑌𝑡+2 +⋯+ 𝑌𝑡+𝑙 = (𝛼 ∘ 𝑌𝑡 + 𝑍𝑡+1) + (𝛼
2 ∘ 𝑌𝑡 + 𝛼 ∘ 𝑍𝑡+1 + 𝑍𝑡+2) 

+⋯+ (𝛼𝑙 ∘ 𝑌𝑡 + 𝛼
𝑙−1 ∘ 𝑍𝑡+1 + 𝛼

𝑙−2 ∘ 𝑍𝑡+2 +⋯+ 𝑍𝑡+𝑙)   (4) 

Bearing in mind that 𝛼 ∘ 𝑋 + 𝛽 ∘ 𝑋 ≠ (𝛼 + 𝛽) ∘ 𝑋 (the LHS is the sum of two Binomial 

random variables with the same number of trials and different success probabilities), the above 

equation can be written in the following form: 

∑ 𝑌𝑡+𝑗
𝑙
𝑗=1 = ∑ ∑ 𝜓𝑖𝑗

1 ∘ 𝑌𝑡
𝑛𝑗
1

𝑖=1
𝑙
𝑗=1 + ∑ ∑ 𝜓𝑖𝑗

2 ∘ 𝑍𝑡+𝑘𝑖𝑗
𝑛𝑗
2

𝑖=1
𝑙
𝑗=1     (5) 

where 𝑛𝑗
1  is the number of 𝑌𝑡  terms in each of {𝑌𝑡+𝑗}𝑗=1

𝑙  in (4), 𝜓𝑖𝑗
1  is the corresponding 

coefficient for each 𝑌𝑡, 𝑛𝑗
2 is the number of 𝑍𝑡+𝑘𝑖𝑗 terms in each of {𝑌𝑡+𝑗}𝑗=1

𝑙  in (4), and 𝜓𝑖𝑗
2  is 

the corresponding coefficient for each 𝑍𝑡+𝑘𝑖𝑗. Further details about the coefficients are given 

by [18]. 

It can be seen that, based on (5), the conditional expected value of the aggregated PoINAR(1) 

process is: 

𝐸(∑ 𝑌𝑡+𝑗
𝑙
𝑗=1 |𝑌𝑡) = (∑ ∑ 𝜓𝑖𝑗

1𝑛𝑗
1

𝑖=1
𝑙
𝑗=1 ) 𝑌𝑡 + (∑ ∑ 𝜓𝑖𝑗

2𝑛𝑗
2

𝑖=1
𝑙
𝑗=1 ) 𝜆    (6) 

The above equation is the same as (2). At time 𝑇, when 𝑌𝑇 is observed, the aggregated forecast 

can be obtained from: 

𝐸(∑ 𝑌𝑇+𝑗
𝑙
𝑗=1 |𝑌𝑇) =

𝛼(1−𝛼𝑙)

1−𝛼
𝑌𝑇 +

𝜆

1−𝛼
[𝑙 − ∑ 𝛼𝑗𝑙

𝑗=1 ]     (7) 
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2.2 INMA(1) Models 

For an INMA(1) process of 𝑌𝑡 = 𝛽 ∘ 𝑍𝑡−1 + 𝑍𝑡 , where 𝛽 ∈ (0,1] and {𝑍𝑡} is as before, the 

cumulative value over horizon 𝑙 is given by:  

∑𝑌𝑡+𝑗

𝑙

𝑗=1

= 𝑌𝑡+1 + 𝑌𝑡+2 +⋯+ 𝑌𝑡+𝑙 = (𝛽 ∘ 𝑍𝑡 + 𝑍𝑡+1) + (𝛽 ∘ 𝑍𝑡+1 + 𝑍𝑡+2) 

+⋯+ (𝛽 ∘ 𝑍𝑡+𝑙−1 + 𝑍𝑡+𝑙)   (8) 

The above equation can be written in the following form: 

∑ 𝑌𝑡+𝑗
𝑙
𝑗=1 = ∑ ∑ 𝜓𝑖𝑗 ∘ 𝑍𝑡+𝑘𝑖𝑗

𝑛𝑗
𝑖=1

𝑙
𝑗=1        (9) 

where 𝑛𝑗  is the number of 𝑍𝑡+𝑘𝑖𝑗  terms in each of {𝑌𝑡+𝑗}𝑗=1
𝑙+1  and  is the corresponding 

coefficient for each 𝑍𝑡+𝑘𝑖𝑗. Further details about the coefficients are given by [18]. 

Based on (9), the conditional expected value of the aggregated INMA(1) process is: 

𝐸(∑ 𝑌𝑡+𝑗
𝑙
𝑗=1 |𝑌𝑡) = (∑ ∑ 𝜓𝑖𝑗

2
𝑖=1

𝑙
𝑗=1 )𝜆 = (∑ (1 + 𝛽)𝑙

𝑗=1 )𝜆 = 𝑙(1 + 𝛽)𝜆   (10) 

2.3 INARMA(p,q) Models 

This paper examines aggregation and forecasting of a general INARMA process over a forecast 

horizon. The INARMA(p,q) process is given by: 

𝑌𝑡 = ∑ 𝛼𝑖 ∘ 𝑌𝑡−𝑖
𝑝
𝑖=1 + 𝑍𝑡 + ∑ 𝛽𝑗 ∘ 𝑍𝑡−𝑗

𝑞
𝑗=1       (11) 

where 𝛼1, … , 𝛼𝑝−1 ∈ [0,1], 𝛼𝑝 ∈ (0,1]; 𝛽1, … , 𝛽𝑞−1 ∈ [0,1], 𝛽𝑞 ∈ (0,1] and {𝑍𝑡} is a sequence 

of i.i.d. non-negative integer-valued random variables, independent of 𝑌𝑡  with mean 𝜇𝑍 and 

finite variance 𝜎𝑍
2. The thinning operations are defined as follows: 
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𝛼 ∘ 𝑌 = ∑ 𝑋𝑖
𝑌
𝑖=1          (12) 

where {𝑋𝑖} is a sequence of i.i.d. Bernoulli random variables with 𝑃(𝑋𝑖 = 1) = 𝛼  for 𝑖 =

1, … , 𝑌. This paper follows the approach of Du and Li [19] and McKenzie [20] regarding the 

Binomial thinning mechanisms for INAR(p) and INMA(q), respectively. Therefore, it is 

assumed that the individual thinning operations 𝛼𝑖 ∘ 𝑌𝑡−𝑖 for 𝑖 = 1,… , 𝑝 and 𝛽𝑗 ∘ 𝑍𝑡−𝑗 for 𝑗 =

1, … , 𝑞 are performed independently not only from each other, but also from corresponding 

operations at previous times in (11).  

The stationarity conditions of this process are the same as those of an INAR(p) process. Neal 

and Rao [21] suggest that the invertibility conditions for this process are the same as the those 

of an MA(q) process (∑ 𝛽𝑗
𝑞
𝑗=1 < 1). 

The MMSE one-step-ahead forecast for an INARMA(p,q) process of (11) is: 

�̂�𝑇+1 = 𝛼1𝑌𝑇 +⋯+ 𝛼𝑝𝑌𝑇−𝑝+1 + 𝜆 + 𝛽1𝑍𝑇 +⋯+ 𝛽𝑞𝑍𝑇−𝑞+1   (13) 

The h-step ahead forecast when ℎ ≤ 𝑞 is:  

�̂�𝑇+ℎ = 𝛼1𝑌𝑇+ℎ−1 +⋯+ 𝛼𝑝𝑌𝑇+ℎ−𝑝 + 𝜆 + 𝛽ℎ𝑍𝑇 +⋯+ 𝛽𝑞𝑍𝑇+ℎ−𝑞 + 𝜆(𝛽1 +⋯+ 𝛽ℎ−1) (14) 

where the 𝑌 values on the RHS of (14) may be either actual or forecast values. When ℎ > 𝑞, 

the h-step ahead forecast becomes: 

�̂�𝑇+ℎ = 𝛼1𝑌𝑇+ℎ−1 +⋯+ 𝛼𝑝𝑌𝑇+ℎ−𝑝 + 𝜆∑ 𝛽𝑗
𝑞
𝑗=0      (15) 

where again the 𝑌 values on the RHS of the above equation may be either actual or forecast 

values and 𝛽0 = 1.    

We next present two propositions regarding the aggregation and forecasting of an 
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INARMA(p,q) process.  

Proposition 1. Aggregation of an INARMA(p,q) process over a forecast horizon results in an 

INARMA(p,q) process. 

Proof. 

For an INARMA(p,q) process of (11), the aggregated process over a forecast horizon can be 

written as: 

∑𝑌𝑡+𝑗

𝑙

𝑗=1

=∑{[∑𝛼𝑖 ∘ 𝑌𝑡+𝑗−𝑖

𝑝

𝑖=1

] + 𝑍𝑡+𝑗 + [∑𝛽𝑖 ∘ 𝑍𝑡+𝑗−𝑖

𝑞

𝑖=1

]}

𝑙

𝑗=1

= 

∑ [𝛼𝑖 ∘ ∑ 𝑌𝑡+𝑗−𝑖
𝑙
𝑗=1 ]𝑝

𝑖=1 + ∑ 𝑍𝑡+𝑗
𝑙
𝑗=1 + ∑ [𝛽𝑖 ∘ ∑ 𝑍𝑡+𝑗−𝑖

𝑙
𝑗=1 ]𝑞

𝑖=1   (16) 

Now, if we assume that ∑ 𝑌𝑡+𝑗
𝑙
𝑗=1 = 𝑌𝜏 and ∑ 𝑍𝑡+𝑗

𝑙
𝑗=1 = 𝑍𝜏, (16) can be written as: 

𝑌𝜏 = ∑ 𝛼𝑖 ∘ 𝑌𝜏−𝑖
𝑝
𝑖=1 + 𝑍𝜏 + ∑ 𝛽𝑖 ∘ 𝑍𝜏−𝑖

𝑞
𝑖=1       (17) 

which is also an INARMA(p,q) process. Therefore, aggregation of an INARMA(p,q) process 

over a forecast horizon results in an INARMA(p,q) process with the same INAR and INMA 

parameters but with a different innovation parameter. If 𝑍𝑡~𝑃𝑜(𝜆), 𝑍𝜏will be the sum of 𝑙 

independent Poisson variables; thus, 𝑍𝜏~𝑃𝑜(𝑙𝜆). 

Proposition 2. The forecast horizon aggregated INARMA(p,q) process can be written in terms 

of the last 𝑝 observations as follows: 

∑𝑌𝑡+𝑗

𝑙

𝑗=1

=∑∑𝜓𝑖𝑗
1 ∘ 𝑌𝑡

𝑛𝑗
1

𝑖=1

𝑙

𝑗=1

+∑∑𝜓𝑖𝑗
2 ∘ 𝑌𝑡−1

𝑛𝑗
2

𝑖=1

𝑙

𝑗=1

+⋯ 

+∑ ∑ 𝜓𝑖𝑗
𝑝 ∘ 𝑌𝑡−𝑝+1

𝑛𝑗
𝑝

𝑖=1
𝑙
𝑗=1 + ∑ ∑ 𝜓𝑖𝑗

𝑝+1 ∘ 𝑍𝑡+𝑘𝑖𝑗
𝑛𝑗
𝑝+1

𝑖=1
𝑙
𝑗=1    (18) 
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with the parameters as shown in Table 1 (see Appendix B for the proof).  

The conditional expected value of the aggregated process given the p-previous observations 

can then be obtained from: 

𝐸 (∑𝑌𝑡+𝑗

𝑙

𝑗=1

|𝑌𝑡−𝑝+1, … , 𝑌𝑡−1, 𝑌𝑡) = (∑∑𝜓𝑖𝑗
1

𝑛𝑗
1

𝑖=1

𝑙

𝑗=1

)𝑌𝑡 +(∑∑𝜓𝑖𝑗
2

𝑛𝑗
2

𝑖=1

𝑙

𝑗=1

)𝑌𝑡−1 +⋯ 

+(∑ ∑ 𝜓𝑖𝑗
𝑝𝑛𝑗

𝑝

𝑖=1
𝑙
𝑗=1 )𝑌𝑡−𝑝+1 + (∑ ∑ 𝜓𝑖𝑗

𝑝+1𝑛𝑗
𝑝+1

𝑖=1
𝑙
𝑗=1 )𝜆    (19) 

 

The above equation is then used to forecast the aggregated process. In the next section, the 

accuracy of such aggregated forecasts will be assessed for INAR(1), INMA(1) and 

INARMA(1,1) processes.  

Table 1 Parameters of the forecast horizon aggregated INARMA(p,q) model 

fo
r 
𝑤
=
1
,…
,𝑝

 

𝑛𝑗
𝑤 =

{
 
 

 
 (∑𝑛𝑗−𝑖

𝑤

𝑝

𝑖=1

) + 1 𝑗 ≤ 𝑝 − (𝑤 − 1)

∑𝑛𝑗−𝑖
𝑤

𝑝

𝑖=1

𝑗 > 𝑝 − (𝑤 − 1)

 𝜓𝑖𝑗
𝑤 =

{
 
 
 

 
 
 

[
 
 
 
 
𝛼𝑝𝜓𝑖(𝑗−𝑝)

𝑤 𝑖 = 1,… , 𝑛𝑗−𝑝
𝑤

⋮ ⋮
𝛼1𝜓𝑖(𝑗−1)

𝑤 𝑖 = 𝑛𝑗−2
𝑤 + 1,… , 𝑛𝑗−2

𝑤 + 𝑛𝑗−1
𝑤

𝛼𝑗+(𝑤−1) 𝑖 = 𝑛𝑗−1
𝑤 + 1

𝑗 ≤ 𝑝 − (𝑤 − 1)

[

𝛼𝑝𝜓𝑖(𝑗−𝑝)
𝑤 𝑖 = 1,… , 𝑛𝑗−𝑝

𝑤

⋮ ⋮
𝛼1𝜓𝑖(𝑗−1)

𝑤 𝑖 = 𝑛𝑗−2
𝑤 + 1,… , 𝑛𝑗−2

𝑤 + 𝑛𝑗−1
𝑤

𝑗 > 𝑝 − (𝑤 − 1)

 

 𝑛𝑗
𝑝+1

= (∑𝑛𝑗−𝑖
𝑝+1

𝑝

𝑖=1

)+ (𝑞 + 1) 

𝜓𝑖𝑗
𝑝+1

=

{
 
 

 
 
𝛼𝑝𝜓𝑖(𝑗−𝑝)

𝑝+1
𝑖 = 1,… , 𝑛𝑗−𝑝

𝑝+1

⋮ ⋮

𝛼1𝜓𝑖(𝑗−1)
𝑝+1

𝑖 = 𝑛𝑗−2
𝑝+1

+ 1,… , 𝑛𝑗−2
𝑝+1

+ 𝑛𝑗−1
𝑝+1

𝛽𝑞 , … , 𝛽1, 1 𝑖 = 𝑛𝑗−1
𝑝+1

+ 1,… , 𝑛𝑗−1
𝑝+1

+ 𝑛𝑗
𝑝+1

 

 

𝑘𝑖𝑗 =

{
 
 
 

 
 
 
{𝑘𝑖(𝑗−𝑝)} 𝑖 = 1,… , 𝑛𝑗−𝑝

𝑝+1

⋮ ⋮

{𝑘𝑖(𝑗−1)} 𝑖 = ∑𝑛𝑗−𝑧
𝑝+1

𝑝

𝑧=2

+ 1,… , (∑𝑛𝑗−𝑧
𝑝+1

𝑝

𝑧=2

) + 𝑛𝑗−1
𝑝+1

𝑗 − 𝑞,… , 𝑗 − 1, 𝑗 𝑖 = ∑𝑛𝑗−𝑧
𝑝+1

𝑝

𝑧=1

+ 1,… , 𝑛𝑗
𝑝+1
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3. SIMULATION 

In order to test the benefit of using the INARMA horizon-aggregated forecasts for short 

histories as well as long, Monte Carlo simulations are conducted. The results for the INARMA 

horizon-aggregated forecasts (hereafter abbreviated as INARMA-Agg), have been compared 

to the results of using cumulative h-step ahead forecasts over the horizon (hereafter abbreviated 

as INARMA-h). The latter is given by ∑ �̂�𝑡+𝑖
𝑙
𝑖=1 , where �̂�𝑡+𝑖  is the 𝑖-step ahead forecast. It 

should be emphasized that there are two approaches in the literature regarding -step ahead 

forecasting. The first approach used by Brännäs and Hellström [22], is based on repeated 

substitution of the INARMA process. For example, the -step ahead forecast of an INAR(1) 

process can be obtained from: 

𝑌𝑇+ℎ = 𝛼ℎ ∘ 𝑌𝑇 + ∑ 𝛼ℎ−𝑖 ∘ 𝑍𝑇+𝑖
ℎ
𝑖=1                   (20) 

It can be easily shown that aggregation of (20) over a horizon results in (7). Therefore, this 

approach results in the same aggregated forecast as that proposed by this study. 

In the second approach, the 𝑌 value on the right hand side of the equation �̂�𝑇+ℎ = 𝛼�̂�𝑇+ℎ−1 +

𝜆, is a forecast [19, 23]. The -step ahead forecasts in this section are calculated based on this 

approach. For simulation purposes, it is assumed that the innovations, {𝑍𝑡}, have a Poisson 

distribution with parameter 𝜆. Although this assumption is restrictive, a large number of data 

series of the empirical datasets used in this study met the above condition (see section 4). This 

is consistent with the larger empirical study by Eaves [24] discussed in section 4. The theoretical 

findings in this paper, however, are not based on any distributional assumptions and can be used as 

a framework for future studies based on other marginal distributions.      

Three INARMA process are considered in the simulation experiment: INAR(1), INMA(1) and 

INARMA(1,1). The aggregated forecasts for these models can be derived from section 2. For 
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an INAR(1) process the aggregated forecast is provided by (2). For the INMA(1) and 

INARMA(1,1) processes, these are given by: 

𝐸[∑ 𝑌𝑇+𝑖
𝑙
𝑖=1 |𝑌𝑇] = 𝑙(1 + 𝛽)𝜆       (21) 

𝐸[∑ 𝑌𝑇+𝑖
𝑙
𝑖=1 |𝑌𝑇] =

𝛼(1−𝛼𝑙)

1−𝛼
𝑌𝑇 +

𝜆(1+𝛽)

1−𝛼
[𝑙 − ∑ 𝛼𝑗𝑙

𝑗=1 ]    (22) 

The control parameters to be varied are 𝛼, 𝛽, 𝜆 and 𝑛 (number of historical observations). The 

range of these parameters is given in Table 2. Different lengths of series are considered in the 

Monte Carlo simulations to test the sensitivity of the results to the length of history. In real 

cases, we are often restricted by short lengths of history (as will be seen in the empirical 

analysis). Hence, we use 𝑛 = 24, 36, 48, 96, 500 to encompass short data histories as well as 

long. The forecast horizons considered are three, six and nine periods. The number of 

replications is set to 1000. This is consistent with other studies of INARMA processes which 

used the same or fewer replications (eg. [22, 25-27]) and have been found to give reliable 

results when compared with findings known from theory. 

The data series are divided into two periods: estimation period and performance period. 

Initialization and estimation of parameters are conducted in the estimation period and the 

forecasting accuracy is assessed in the performance period. If at least two non-zero values are 

observed in the estimation period, the first half of the observations is assigned for the estimation 

period and the other half for the performance period. However, if fewer than two non-zero 

values are observed in the estimation period, this period will be extended until the second non-

zero value is observed. 

As an example consider the case of 𝑛 = 24 and 𝑙 = 3. Under this experimental scenario the 

length of the estimation period is 12 (if at least two non-zero values are observed, else it is 

extended until two such values are available). The forecast errors are then calculated in the 



12 

 

performance block of periods from period 𝑡 = 13 (for periods 13, 14 and 15) to period 𝑡 = 22 

(for periods 22, 23 and 24). 

Table 2 The range of control parameters 

Number of observations 𝑛 = 24, 36, 48, 96, 500 

INAR(1) 
𝛼 = 0.1, 𝜆 = 0.5 

𝛼 = 0.5, 𝜆 = 0.5 

𝛼 = 0.1, 𝜆 = 1 

𝛼 = 0.5, 𝜆 = 1 

𝛼 = 0.1, 𝜆 = 3 

𝛼 = 0.5, 𝜆 = 3 

𝛼 = 0.1, 𝜆 = 5 

𝛼 = 0.5, 𝜆 = 5 

INMA(1) 

𝛽 = 0.1, 𝜆 = 0.5 
𝛽 = 0.5, 𝜆 = 0.5 

𝛽 = 0.9, 𝜆 = 0.5 

𝛽 = 0.1, 𝜆 = 1 
𝛽 = 0.5, 𝜆 = 1 

𝛽 = 0.9, 𝜆 = 1 

𝛽 = 0.1, 𝜆 = 3 
𝛽 = 0.5, 𝜆 = 3 

𝛽 = 0.9, 𝜆 = 3 

𝛽 = 0.1, 𝜆 = 5 
𝛽 = 0.5, 𝜆 = 5 

𝛽 = 0.9, 𝜆 = 5 

INARMA(1,1) 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 0.5 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 0.5 
𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 0.5 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 1 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 1 
𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 1 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 5 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 5 
𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 5 

 

All coding is in MATLAB and random numbers are generated by the poissrnd function for the 

Poisson distribution and binornd function for the Binomial thinning operations. 

The autoregressive, moving average and innovation parameters are estimated using the Yule-

Walker (YW) estimation method and the estimates are updated in each period. This is a simple 

estimation method and it has been shown that the YW estimators are asymptotically equivalent 

to the Conditional Least Squares (CLS) estimators for an INAR(1) process [28]. Also, for 

INMA(1) and INARMA(1,1) processes, the forecasts produced by the two methods are close 

in terms of Mean Square Error [18].   

The forecast accuracy of the two aggregated forecasting methods (INARMA-Agg and 

INARMA-h) is compared in terms of Mean Square Error (MSE). MSE is a widely used 

measure in the forecasting literature, is mathematically easy to handle and is a sensible measure 

for evaluating an individual time series. For methods that produce unbiased forecasts, the MSE 

coincides with the forecast error variance. In the empirical analysis presented in section 4, the 

empirical bias properties of the INARMA methods are checked.  
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 Table 3 compares the MSE of the two methods for an INAR(1) process when 𝑙 = 3. The 

results for the cases where 𝑙 = 6, 9 are presented in Appendix C.  

Table 3 MSE𝐴𝑔𝑔/MSEℎof aggregated forecasts for INAR(1) series when 𝑙 = 3 

Parameters 𝒏 = 𝟐𝟒 𝒏 = 𝟑𝟔 𝒏 = 𝟒𝟖 𝒏 = 𝟗𝟔 𝒏 = 𝟓𝟎𝟎 

𝛼 = 0.1, 𝜆 = 0.5 0.9929 0.9937 0.9950 0.9938 0.9960 

𝛼 = 0.5, 𝜆 = 0.5 0.8398 0.8527 0.8367 0.8201 0.7885 

𝛼 = 0.1, 𝜆 = 1 0.9785 0.9887 0.9924 0.9935 0.9921 

𝛼 = 0.5, 𝜆 = 1 0.8278 0.7953 0.7906 0.7410 0.7216 

𝛼 = 0.1, 𝜆 = 3 0.9631 0.9604 0.9727 0.9757 0.9835 

𝛼 = 0.5, 𝜆 = 3 0.7015 0.6536 0.6328 0.5862 0.5395 

𝛼 = 0.1, 𝜆 = 5 0.9231 0.9311 0.9473 0.9614 0.9734 

𝛼 = 0.5, 𝜆 = 5 0.5954 0.5512 0.5184 0.4768 0.4397 

 

The results of Table 3 show that for an INAR(1) process, the INARMA-Agg method 

outperforms the INARMA-h method for all parameter ranges. The improvement increases with 

the value of 𝜆  and the length of history. Also, the improvement is higher when the 

autoregressive parameter is higher because of the nonlinearity of the model. For large values 

of , the INARMA-h forecasts converge to the unconditional mean of the INAR(1) process: 

�̂�𝑇+ℎ →
𝜆

1 − 𝛼
 

The larger the value of 𝛼, the more variable the data, which makes this convergence less 

desirable. Some authors have suggested using different models for different horizons to 

improve forecast accuracy [29-31].  

Next, the INARMA-Agg and INARMA-h methods are compared for an INMA(1) process 

when 𝑙 = 3 (See Appendix C for the cases of 𝑙 = 6, 9). It can be seen from Table 4 that for an 

INMA(1) process, INARMA-Agg method has very slightly better forecasts in terms of MSE 

than the INARMA-h method. The former is based on (21) and the latter has the following 

expression:  
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∑ �̂�𝑇+𝑖
𝑙
𝑖=1 = ∑ �̂�𝑇+𝑖�̂�𝑇+𝑖 + �̂�𝑇+𝑖

𝑙
𝑖=1        (23) 

Comparing (21) and (23) reveals that the only difference between the two forecasting methods 

is that the INARMA-h method uses the forecast of the innovation term (�̂�𝑇+𝑖), while the 

INARMA-Agg method uses �̂� as an estimate for the innovation term. This difference remains 

for large samples, because �̂� will converge to a constant (the true ), but �̂�𝑇+1, say, would 

remain a random variable. However, it is expected that the two methods should be very close 

and the results of Table 4 confirm this.  

Table 4 MSE𝐴𝑔𝑔/MSEℎof aggregated forecasts for INMA(1) series when 𝑙 = 3 

Parameters 𝒏 = 𝟐𝟒 𝒏 = 𝟑𝟔 𝒏 = 𝟒𝟖 𝒏 = 𝟗𝟔 𝒏 = 𝟓𝟎𝟎 

𝛽 = 0.1, 𝜆 = 0.5 0.9995 0.9996 0.9998 0.9999 1.0000 

𝛽 = 0.5, 𝜆 = 0.5 0.9969 0.9981 0.9985 0.9991 0.9998 

𝛽 = 0.9, 𝜆 = 0.5 0.9944 0.9961 0.9968 0.9982 0.9996 

𝛽 = 0.1, 𝜆 = 1 0.9992 0.9997 0.9998 0.9999 1.0000 

𝛽 = 0.5, 𝜆 = 1 0.9971 0.9979 0.9982 0.9991 0.9998 

𝛽 = 0.9, 𝜆 = 1 0.9937 0.9958 0.9967 0.9982 0.9996 

𝛽 = 0.1, 𝜆 = 3 0.9988 0.9994 0.9998 0.9999 1.0000 

𝛽 = 0.5, 𝜆 = 3 0.9961 0.9981 0.9982 0.9991 0.9998 

𝛽 = 0.9, 𝜆 = 3 0.9932 0.9947 0.9966 0.9981 0.9996 

𝛽 = 0.1, 𝜆 = 5 0.9996 0.9993 0.9997 0.9999 1.0000 

𝛽 = 0.5, 𝜆 = 5 0.9953 0.9975 0.9984 0.9989 0.9998 

𝛽 = 0.9, 𝜆 = 5 0.9929 0.9950 0.9964 0.9979 0.9996 

 

It can also be seen from Table 4 that with an increase in 𝛽, the MSE of the INARMA-Agg 

method slightly improves compared to that of an INARMA-h method. This could also be 

attributed to the fact that, for large values of , the INARMA-h forecasts converge to the 

unconditional mean of the INMA(1) process 𝜆(1 + 𝛽). Again, larger values of 𝛽 produce more 

variable data; therefore, this convergence would result in less accurate forecasts. 

Finally, Table 5 compares the MSE of INARMA-Agg and INARMA-h methods for an 

INARMA(1,1) process when 𝑙 = 3. The results confirm the above arguments that when the 
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autoregressive parameter is high, the INARMA-Agg method has smaller MSE than the 

INARMA-h method and the improvement increases with the length of horizon. However, for 

small autoregressive and moving average parameters, the INARMA-h method is better than 

the INARMA-Agg. Again, when the number of observation increases the difference decreases.  

Table 5 MSE𝐴𝑔𝑔/MSEℎof aggregated forecasts for INARMA(1,1) series when 𝑙 = 3 

Parameters 𝒏 = 𝟐𝟒 𝒏 = 𝟑𝟔 𝒏 = 𝟒𝟖 𝒏 = 𝟗𝟔 𝒏 = 𝟓𝟎𝟎 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 0.5 1.1288 1.0764 1.0565 1.0159 0.9976 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 0.5 1.0045 0.9895 0.9661 0.9551 0.9718 

𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 0.5 0.8688 0.8342 0.8209 0.8145 0.8129 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 1 1.0946 1.0590 1.0474 1.0144 0.9969 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 1 1.0402 0.9692 0.9641 0.9611 0.9735 

𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 1 0.8646 0.8623 0.8402 0.8285 0.8134 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 5 1.0425 1.0258 1.0292 1.0042 0.9959 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 5 0.9790 0.9680 0.9514 0.9561 0.9639 

𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 5 0.8652 0.8525 0.8481 0.8252 0.8013 

 

The above results along with the results of Appendix C suggest that for an INAR(1)  process, 

the INARMA-Agg method outperforms the INARMA-h method in terms of MSE. The 

difference between two methods is high when the autoregressive parameter is high. However, 

for an INMA(1) process, the two methods produce very close forecasts. With an increase in 

the moving average parameter the improvement of the INARMA-Agg method over the 

INARMA-h method slightly increases. 

For an INARMA(1,1) process, when the length of horizon is short and the autoregressive and 

moving average parameters are small, the INARMA-h forecasts have smaller MSEs than 

INARMA-Agg forecasts. For all the other cases, the latter method beats the former method 

using MSE.  
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4. EMPIRICAL ANALYSIS 

In this section, an empirical analysis is conducted to validate the findings on real data. The real 

demand data series for this research consists of the Royal Air Force (RAF) individual demand 

histories of 16,000 Stock Keeping Units (SKUs) over a period of 6 years (monthly 

observations). We have also used another dataset which consists of 3,000 real intermittent 

demand data series from the automotive industry1 (from [32]) which, unlike the previous one, 

has more occurrences of positive demand than zeros. This data series consists of demand 

histories of 3,000 SKUs over a period of 2 years (24 months). These two datasets are called 

Dataset 1 and Dataset 2 from now on. 

As previously mentioned, this paper has focused on INARMA processes with Poisson 

innovations. Although some of the theoretical results are not based on a distributional 

assumption, whenever a specific distribution was needed, such as for estimation of parameters, 

a Poisson distribution was assumed. 

Out of the four INARMA processes of this study (INARMA(0,0), INAR(1), INMA(1), and 

INARMA(1,1)), three of them have a Poisson distribution when the innovation terms are 

Poisson. The only exception is the INARMA(1,1) process where: 

var(𝑌𝑡)

𝐸(𝑌𝑡)
=

1+𝛼+𝛽+3𝛼𝛽

1+𝛼+𝛽+𝛼𝛽
≤ 1.5        for 0 ≤ 𝛼 ≤ 1, 0 ≤ 𝛽 ≤ 1    (24) 

In order to remove the data series with highly variable demands, a Poisson dispersion test (also 

called the variance test) is needed for all processes except INARMA(1,1). Under the null 

hypothesis that 𝑋1, … , 𝑋𝑛 are Poisson distributed, the test statistic: 

                                                 
1 This dataset is available from: http://www.forecasters.org/ijf/data/Empirical%20Data.xls 
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𝑇𝐶𝐶 = ∑
(𝑋𝑖−�̅�)

2

�̅�

𝑛
𝑖=1          (25) 

has a chi-square distribution with (𝑛 − 1) degrees of freedom. Therefore, 𝐻0 is rejected if 

𝑇𝐶𝐶 > 𝜒𝑛−1;1−𝛢
2 .  

where 𝛢 is the significance level. A revised statistic is used to allow for the difference between 

the mean and variance of an INARMA(1,1) process. The new test statistic is given by: 

𝑇𝐶𝐶𝑅 =
𝑇𝐶𝐶

1.5
          (26) 

The new statistic also has a chi-square distribution with (𝑛 − 1) degrees of freedom.  

The above filtering, with 𝛢 = 0.05, results in the exclusion of some data series. Out of the 

16,000 series, 12,800 series remained and out the 3,000 series, 1,943 series remained. As 

mentioned in section 3, a high percentage of series used in this study can be modelled using 

the Poisson assumption. This is consistent with the study by Eaves [24], in which over 80% of 

series had lead-time demand fitting the Poisson distribution at the 5% significance level. 

Further filtering of data was performed for series with fewer than two nonzero demands. Out 

of the 16,000 series, 5,168 series met the above criteria and therefore are used for empirical 

analysis. The filtering of the 3,000 series results in 1,943 series. It can be seen that although a 

substantial number of series has the potential to benefit from PoINARMA models, for a large 

number of series these models are not appropriate. Other distributional assumptions would 

obviously result in different number of filtered series, which can be pursued as a further study. 

Relevant characteristics of the filtered datasets are summarized in Table 6. 

Table 6 Information about filtered 16,000 and 3,000 datasets 

 Min Mean Max 
Percentage of 

zeros 

Dataset 1: 16,000 series  

(5,168 filtered series) 
0 0.2177 14 85.62 



18 

 

Dataset 2: 3,000  series  

(1,943 filtered series) 
0 2.0194 2 22.77 

 

The design of the empirical analysis follows the detailed simulation design of section 3. The 

Yule-Walker estimation method has been used to estimate the parameters of the INARMA 

models. Two values for forecast horizon have been considered: 𝑙 = 3, 6. 

The appropriate INARMA model needs to be identified among the four possible candidates. 

This is done using a two-stage identification procedure [18]. The first stage distinguishes 

between the INARMA(0,0) and the other INARMA models. The Ljung-Box statistic of: 

𝑄∗ = 𝑛(𝑛 + 2)∑
�̂�𝑗
2

𝑛−𝑗

𝑘
𝑗=1         (27) 

is used for this reason. This is a standard test used for conventional ARMA models that is 

included in most software packages (including MATLAB which is used in this paper) and, 

based on the argument by Latour [33], it can be used for INARMA models as well. The AIC, 

as calculated by the formula AIC ≈ 𝑁log�̂�𝑎
2 + 2𝑚 is then used for identification among the 

other INARMA models. This is again based on the argument of Latour [33] to use the standard 

programmes for ARMA models for INARMA models. It should also be mentioned that the 

AIC of ARMA models has been used in the INARMA literature (e.g. [16]). 

This identification procedure is applied on our empirical data and the results in terms of the 

percentage of each of four INARMA models for each dataset are presented in Table 7. 

Table 7 Identification results* for Dataset 1 and Dataset 2 

Models  INARMA(0,0) INAR(1) INMA(1) INARMA(1,1) 

Dataset 1 98.12 0.66 1.04 0.17 

Dataset 2 54.55 23.88 17.96 3.60 

*in terms of percentage of series 
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As shown in Table 7, the great majority of series in  Dataset 1 are identified as INARMA(0,0) 

which was expected due to high number of zeros. The INARMA-Agg and INARMA-h methods 

produce the same result for INARMA(0,0) series; therefore, these methods are only compared 

for the other three INARMA models (INAR(1), INMA(1) and INARMA(1,1)). The MSE results 

are compared in Table 8 and Table 9 for 𝑙 = 3 and 𝑙 = 6, respectively. The bias, in terms of 

Mean Error, has been checked and found to be low (see [18]).  

Table 8 MSE𝐴𝑔𝑔/MSEℎof aggregated forecasts for INARMA series when 𝑙 = 3 

Models  INAR(1) INMA(1) INARMA(1,1) 

Dataset 1 0.9636 0.9907 1.5557 

Dataset 2 0.9706 0.9841 1.1180 

 

Table 9 MSE𝐴𝑔𝑔/MSEℎof aggregated forecasts for INARMA series when 𝑙 = 6 

Models  INAR(1) INMA(1) INARMA(1,1) 

Dataset 1 0.9057 0.9789 1.6815 

Dataset 2 0.9242 0.9573 1.2176 

 

In order to compare the results with simulation results, the range of estimated parameters for 

each of the INARMA models are provided in Table 10. 

Table 10 Parameters’ estimates for Dataset 1 and Dataset 2 

Models  INAR(1) INMA(1) INARMA(1,1) 

Dataset 1 

�̂� is close to 0.2 (the average 

is 0.2460 and 52.94 percent 

are between 0.1 and 0.3) 

�̂� is close to zero (the average 

is 0.0898 and 46.29 percent 

are between 0 and 0.1) 

0.1 < �̂� < 0.3 (the average is 

0.2988 and 66.67 percent are 

between 0.05 and 0.35) 

 
 �̂� is around 0.5 (the average 

is 0.3562 and 97.06 percent 

are between 0 and 1) 

�̂� is around 0.3 (the average is 

0.3782 and 55.56 percent are 

between 0.2 and 0.4) 

�̂� is close to zero (the average 

is 0.1405 and 77.78 percent 

are between 0 and 0.1) 

   
�̂� is around 0.3 (the average is 

0.3558 and 44.44 percent are 

between 0.2 and 0.5) 

Dataset 2 
�̂� is close to 0.1 (the average 

is 0.1234 and 50.65 percent 

are between 0.05 and 0.15) 

�̂� is close to zero (the average 

is 0.0374 and 79.94 percent 

are between 0 and 0.05) 

0.1 < �̂� < 0.3 (the average is 

0.1907 and 54.28 percent are 

between 0.05 and 0.35) 
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�̂� is around 2 (the average is 

2.5972 and 40.52 percent are 

between 1 and 3) 

�̂� is between 2 and 3 (the 

average is 2.7357 and 43.55 

percent are between 2 and 3) 

�̂� is close to zero (the average 

is 0.0773 and 57.14 percent 

are between 0.01 and 0.1) 

   
�̂� is around 2 (the average is 

2.1996 and 67.14 percent are 

between 1 and 2.5) 

It can be seen that the results for the INAR(1) and INMA(1) processes are in agreement with 

the simulation results. For the INAR(1) series, the results are comparable to the simulation 

results of Table 3 and Table C-1. For the INMA(1) series, this is comparable to the simulation 

results of Table 4 and Table C-3. Finally, for the INARMA(1,1) series the results of Dataset 2 

are comparable to the simulation results of Table 5 and Table C-5 which suggest that 

INARMA-h produces better results than INARMA-Agg for those parameter ranges. It is worth 

mentioning that for Dataset 1, only a few series were identified as INARMA(1,1).  

Therefore, the above results suggest that for an INAR(1)  process, the INARMA-Agg method 

has lower MSE that the INARMA-h method and the improvement increases with the length of 

history. For an INMA(1) process, the two methods are very close. For INARMA(1,1) series, 

the empirical results of Dataset 2 confirm the simulation result that, for low autoregressive and 

moving average parameters, INARMA-h outperforms INARMA-Agg in terms of MSE.  

 

5. CONCLUSIONS 

This paper addresses forecast horizon aggregation in INARMA processes. The conditional 

mean of the aggregated process is obtained for the general INARMA(p,q) process which can 

be used for forecasting. The purpose of the paper is not to propose new forecasting methods, 

but rather to compare the performance of alternative INARMA approaches. This has been 

achieved by simulation and empirical analysis.  

It is shown that the aggregation of an INARMA process over a horizon results in an INARMA 

process. The conditional mean of the aggregated process is also derived as a basis for 
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forecasting. The results of a simulation experiment are provided to assess the accuracy of the 

forecasts produced using the conditional mean of the aggregated process for three INARMA 

processes: INAR(1), INMA(1) and INARMA(1,1). The results are compared to the case where 

the forecasts are produced by adding up the h-step-ahead forecasts over the forecast horizon.  

The simulation results suggest that, in most cases, the aggregation method generates forecasts 

with smaller MSEs than the cumulative h-step-ahead method. The difference is substantial 

when the autoregressive parameter is high. The only case in which the INARMA-h method is 

better than the INARMA-Agg method is for an INARMA(1,1) process with small 

autoregressive and moving average parameters and short length of forecast horizon.  

The performance of these forecasts is also tested on empirical data of two real demand data 

series and the results generally confirm the simulation results. 

As previously mentioned, this paper has focused on INARMA processes with Poisson 

innovations. Other discrete self-decomposable distributions such as generalized Poisson and 

negative binomial distributions could be used as marginal distributions. Also, the findings of 

this paper are based on MSE. Other performance measures could be used to examine the 

accuracy of forecasts. In an inventory management context, this can be done by looking at 

inventory implication metrics such as service level and inventory level [34].  

Finally, aggregated forecasts are becoming increasingly important for Decision Support 

Systems (DSS) in the area of production planning [35]. Further research into issues related to 

the application of aggregated forecasts in such a context should be very important both from 

academic and practitioner perspectives.                                    
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APPENDIX A- HORIZON FORECASTING FOR AN INAR(1) MODEL 

In this appendix, it is shown how to derive the conditional second moment of a forecast horizon 

aggregated PoINAR(1) process (𝜇𝑍 = 𝜎𝑍
2 = 𝜆). The aggregated process over horizon 𝑙 can be 

written as:  

∑𝑌𝑡+𝑖

𝑙

𝑖=1

=
𝑑 (𝛼 ∘ 𝑌𝑡 + 𝑍𝑡+1) + (𝛼

2 ∘ 𝑌𝑡 + 𝛼 ∘ 𝑍𝑡+1 + 𝑍𝑡+2) + ⋯ 

+(𝛼𝑙 ∘ 𝑌𝑡 + 𝛼
𝑙−1 ∘ 𝑍𝑡+1 + 𝛼

𝑙−2 ∘ 𝑍𝑡+2 +⋯+ 𝛼 ∘ 𝑍𝑡+𝑙−1 + 𝑍𝑡+𝑙)   (A.1) 

where =
𝑑 means equal in distribution. It can be simplified as: 

∑𝑌𝑡+𝑖

𝑙

𝑖=1

=
𝑑 (𝛼 ∘ 𝑌𝑡 + 𝛼

2 ∘ 𝑌𝑡 +⋯+ 𝛼
𝑙 ∘ 𝑌𝑡) 

+(𝑍𝑡+1 + 𝛼 ∘ 𝑍𝑡+1 +⋯+ 𝛼
𝑙−1 ∘ 𝑍𝑡+1) + (𝑍𝑡+2 + 𝛼 ∘ 𝑍𝑡+2 +⋯+ 𝛼𝑙−2 ∘ 𝑍𝑡+2) +

⋯+ (𝑍𝑡+𝑙−1 + 𝛼 ∘ 𝑍𝑡+𝑙−1) + 𝑍𝑡+𝑙      (A.2) 

We know that cov(𝛼𝑖 ∘ 𝑋, 𝛼𝑗 ∘ 𝑋) = 𝛼𝑖𝛼𝑗𝐸(𝑋2) − 𝛼𝑖𝐸(𝑋)𝛼𝑗𝐸(𝑋) = 𝛼𝑖𝛼𝑗var(𝑋). Hence, 

we have cov(𝛼𝑖 ∘ 𝑍𝑡 , 𝛼
𝑗 ∘ 𝑍𝑡) = 𝛼

𝑖𝛼𝑗𝜆. The variance of the (A.2) given 𝑌𝑡 is: 

var [∑𝑌𝑡+𝑖

𝑙

𝑖=1

|𝑌𝑡] = var(𝛼 ∘ 𝑌𝑡|𝑌𝑡) + var(𝛼
2 ∘ 𝑌𝑡|𝑌𝑡) + ⋯+ var(𝛼

𝑙 ∘ 𝑌𝑡|𝑌𝑡) 

+2cov(𝛼 ∘ 𝑌𝑡 , 𝛼
2 ∘ 𝑌𝑡|𝑌𝑡) + 2cov(𝛼 ∘ 𝑌𝑡 , 𝛼

3 ∘ 𝑌𝑡|𝑌𝑡) + ⋯+ 2cov(𝛼 ∘ 𝑌𝑡 , 𝛼
𝑙 ∘ 𝑌𝑡|𝑌𝑡)

+ 2cov(𝛼2 ∘ 𝑌𝑡 , 𝛼
3 ∘ 𝑌𝑡|𝑌𝑡) + 2cov(𝛼

2 ∘ 𝑌𝑡 , 𝛼
4 ∘ 𝑌𝑡|𝑌𝑡) + ⋯+ 2cov(𝛼

2 ∘ 𝑌𝑡 , 𝛼
𝑙 ∘ 𝑌𝑡|𝑌𝑡) 

+⋯+ 2cov(𝛼𝑙−2 ∘ 𝑌𝑡 , 𝛼
𝑙−1 ∘ 𝑌𝑡|𝑌𝑡) + 2cov(𝛼

𝑙−2 ∘ 𝑌𝑡 , 𝛼
𝑙 ∘ 𝑌𝑡|𝑌𝑡) 

+2cov(𝛼𝑙−1 ∘ 𝑌𝑡 , 𝛼
𝑙 ∘ 𝑌𝑡|𝑌𝑡) 

+var(𝑍𝑡+1) + var(𝛼 ∘ 𝑍𝑡+1) + var(𝛼
2 ∘ 𝑍𝑡+1) + ⋯+ var(𝛼

𝑙 ∘ 𝑍𝑡+1) 

+2cov(𝑍𝑡+1, 𝛼 ∘ 𝑍𝑡+1) + 2cov(𝑍𝑡+1, 𝛼
2 ∘ 𝑍𝑡+1) + ⋯+ 2cov(𝑍𝑡+1, 𝛼

𝑙 ∘ 𝑍𝑡+1) 
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+2cov(𝛼 ∘ 𝑍𝑡+1, 𝛼
2 ∘ 𝑍𝑡+1) + 2cov(𝛼 ∘ 𝑍𝑡+1, 𝛼

3 ∘ 𝑍𝑡+1) + ⋯+ 2cov(𝛼 ∘ 𝑍𝑡+1, 𝛼
𝑙 ∘ 𝑍𝑡+1) 

+⋯+ 2cov(𝛼𝑙−2 ∘ 𝑍𝑡+1, 𝛼
𝑙−1 ∘ 𝑍𝑡+1) + 2cov(𝛼

𝑙−2 ∘ 𝑍𝑡+1, 𝛼
𝑙 ∘ 𝑍𝑡+1) 

+2cov(𝛼𝑙−1 ∘ 𝑍𝑡+1, 𝛼
𝑙 ∘ 𝑍𝑡+1) 

+var(𝑍𝑡+2) + var(𝛼 ∘ 𝑍𝑡+2) + ⋯+ var(𝛼
𝑙−1 ∘ 𝑍𝑡+2) 

+2cov(𝑍𝑡+2, 𝛼 ∘ 𝑍𝑡+2) + 2cov(𝑍𝑡+2, 𝛼
2 ∘ 𝑍𝑡+2) + ⋯+ 2cov(𝑍𝑡+2, 𝛼

𝑙−1 ∘ 𝑍𝑡+2) 

+2cov(𝛼 ∘ 𝑍𝑡+2, 𝛼
2 ∘ 𝑍𝑡+2) + 2cov(𝛼 ∘ 𝑍𝑡+2, 𝛼

3 ∘ 𝑍𝑡+2) + ⋯

+ 2cov(𝛼 ∘ 𝑍𝑡+2, 𝛼
𝑙−1 ∘ 𝑍𝑡+2) 

+⋯+ 2cov(𝛼𝑙−3 ∘ 𝑍𝑡+2, 𝛼
𝑙−2 ∘ 𝑍𝑡+2) + 2cov(𝛼

𝑙−3 ∘ 𝑍𝑡+2, 𝛼
𝑙−1 ∘ 𝑍𝑡+2) 

+2cov(𝛼𝑙−2 ∘ 𝑍𝑡+2, 𝛼
𝑙−1 ∘ 𝑍𝑡+2) + ⋯ 

+var(𝑍𝑡+𝑙−2) + var(𝛼 ∘ 𝑍𝑡+𝑙−2) + var(𝛼
2 ∘ 𝑍𝑡+𝑙−2) 

+2cov(𝑍𝑡+𝑙−2, 𝛼 ∘ 𝑍𝑡+𝑙−2) + 2cov(𝑍𝑡+𝑙−2, 𝛼
2 ∘ 𝑍𝑡+𝑙−2) + 2cov(𝛼 ∘ 𝑍𝑡+𝑙−2, 𝛼

2 ∘ 𝑍𝑡+𝑙−2) 

+var(𝑍𝑡+𝑙−1) + var(𝛼 ∘ 𝑍𝑡+𝑙−1) 

+2cov(𝑍𝑡+𝑙−1, 𝛼 ∘ 𝑍𝑡+𝑙−1) 

+var(𝑍𝑡+𝑙)         (A.3) 

Since 𝑌𝑡 is fixed, cov(𝛼𝑖 ∘ 𝑌𝑡, 𝛼
𝑗 ∘ 𝑌𝑡|𝑌𝑡) = 𝛼

𝑖𝛼𝑗var(𝑌𝑡|𝑌𝑡) = 0. Hence: 

var [∑𝑌𝑡+𝑖

𝑙

𝑖=1

|𝑌𝑡] = 𝛼(1 − 𝛼)𝐸(𝑌𝑡|𝑌𝑡) + 𝛼
2(1 − 𝛼2)𝐸(𝑌𝑡|𝑌𝑡) + ⋯+ 𝛼

𝑙(1 − 𝛼𝑙)𝐸(𝑌𝑡|𝑌𝑡) 

+𝜆 + [𝛼2𝜆 + 𝛼(1 − 𝛼)𝜆] + [𝛼4𝜆 + 𝛼2(1 − 𝛼2)𝜆] +⋯+ [𝛼2𝑙𝜆 + 𝛼𝑙(1 − 𝛼𝑙)𝜆] 
+2[𝛼 + 𝛼2 +⋯+ 𝛼𝑙]𝜆 + 2[𝛼3 + 𝛼4 +⋯+ 𝛼𝑙+1]𝜆 +⋯+ 2[𝛼2𝑙−3 + 𝛼2𝑙−2]𝜆
+ 2[𝛼2𝑙−1]𝜆 

+𝜆 + [𝛼2𝜆 + 𝛼(1 − 𝛼)𝜆] + [𝛼4𝜆 + 𝛼2(1 − 𝛼2)𝜆] +⋯+ [𝛼2𝑙−2𝜆 + 𝛼𝑙−1(1 − 𝛼𝑙−1)𝜆] 
+2[𝛼 + 𝛼2 +⋯+ 𝛼𝑙−1]𝜆 + 2[𝛼3 + 𝛼4 +⋯+ 𝛼𝑙]𝜆 +⋯+ 2[𝛼2𝑙−5 + 𝛼2𝑙−4]𝜆
+ 2[𝛼2𝑙−3]𝜆 +⋯ 

+𝜆 + [𝛼2𝜆 + 𝛼(1 − 𝛼)𝜆] + [𝛼4𝜆 + 𝛼2(1 − 𝛼2)𝜆] 
+2[𝛼 + 𝛼2]𝜆 + 2[𝛼3]𝜆 

+𝜆 + [𝛼2𝜆 + 𝛼(1 − 𝛼)𝜆] 
+2𝛼𝜆 

+𝜆          (A.4) 

The above result can be summarized to: 
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var [∑𝑌𝑡+𝑖

𝑙

𝑖=1

|𝑌𝑡] = 𝑌𝑡∑𝛼𝑗(1 − 𝛼𝑗)

𝑙

𝑗=1

+
𝜆

1 − 𝛼
[𝑙 −∑𝛼𝑗

𝑙

𝑗=1

] 

+
2𝜆

1−𝛼
∑ 𝛼2𝑗−1 [(𝑙 − 𝑗) −

𝛼(1−𝛼𝑙−𝑗)

1−𝛼
]𝑙

𝑗=1       (A.5) 
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APPENDIX B- HORIZON FORECASTING FOR AN INARMA(p,q) MODEL 

In order to find the conditional mean of the forecast horizon aggregated process, we need to 

express the aggregated INARMA(p,q) process in terms of the last 𝑝 observations 

(𝑌𝑡−𝑝+1, 𝑌𝑡−𝑝+2, … , 𝑌𝑡−1, 𝑌𝑡). The aggregated process is given by: 

∑ 𝑌𝑡+𝑗
𝑙
𝑗=1 = 𝑌𝑡+1 + 𝑌𝑡+2 +⋯+ 𝑌𝑡+𝑙       (B.1) 

To write the above equation in the form of (19), we need to know: 

 the number and the coefficient of {𝑌𝑡−𝑤+1}𝑤=1
𝑝

, and 

 the number, the coefficient and the subscript of 𝑍𝑡+𝑘𝑖𝑗 

in (B.1). Each of these is discussed in the following subsections.  

 

B.1 The Number of {𝒀𝒕−𝒘+𝟏}𝒘=𝟏
𝒑

 

Each of the {𝑌𝑡+𝑗}𝑗=1
𝑙  in the RHS of (B.1) needs to be expressed in terms of {𝑌𝑡−𝑤+1}𝑤=1

𝑝
 by 

repeated substitution of 𝑌𝑡+𝑗 in the equation for the INARMA(p,q) model (11). Because the 

autoregressive order of the process is 𝑝, 𝑌𝑡+𝑗 can be expressed in terms of 𝑝 previous 

observations by utilising the first component of the RHS of (11), namely: 𝛼1 ∘ 𝑌𝑡+𝑗−1 +⋯+

𝛼𝑝 ∘ 𝑌𝑡+𝑗−𝑝.  

Now, if 𝑗 ≤ 𝑝 − (𝑤 − 1), there is one 𝑌𝑡−(𝑤−1) when we express the 𝑗th observation in the 

RHS of (B.1) (𝑌𝑡+𝑗) without any need for further substitution. Repeated substitution of 

(𝑌𝑡+1, … , 𝑌𝑡+𝑝−(𝑤−1)) by their 𝑝 previous observations would result in obtaining more 

𝑌𝑡−(𝑤−1). Therefore, in total, the number of 𝑌𝑡−(𝑤−1) in each of {𝑌𝑡+𝑗}𝑗=1
𝑙+1  when 𝑗 ≤ 𝑝 − (𝑤 −

1) is equal to the number of  𝑌𝑡−(𝑤−1) in its 𝑝 previous observations plus one. 
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However, when 𝑗 > 𝑝 − (𝑤 − 1), each 𝑌𝑡+𝑗 from (B.1) should be substituted by (11) in order 

to reach 𝑌𝑡−(𝑤−1), and the number of 𝑌𝑡−(𝑤−1) in each of {𝑌𝑡+𝑗}𝑗=1
𝑙  would be equal to the 

number of 𝑌𝑡−(𝑤−1) in its 𝑝 previous observations. 

 

B.2 The Coefficient of {𝒀𝒕−𝒘+𝟏}𝒘=𝟏
𝒑

 

For 𝑗 ≤ 𝑝 − (𝑤 − 1), the corresponding coefficient of 𝑌𝑡−(𝑤−1) in the 𝑗th observation in the 

RHS of (B.1),𝑌𝑡+𝑗, is 𝛼𝑗+(𝑤−1) because: 

𝑌𝑡+𝑗 = 𝛼1 ∘ 𝑌𝑡+𝑗−1 +⋯+ 𝛼𝑗+(𝑤−1) ∘ 𝑌𝑡−(𝑤−1) +⋯+ 𝛼𝑝 ∘ 𝑌𝑡+𝑗−𝑝 + 𝑍𝑡+𝑗 +∑𝛽𝑖 ∘ 𝑍𝑡+𝑗−𝑖

𝑞

𝑖=1

 

For other 𝑌𝑡−(𝑤−1) the coefficient in each of {𝑌𝑡+𝑗}𝑗=1
𝑙  is 𝛼𝑖 thinned the coefficient of 𝑌𝑡−(𝑤−1) 

in the 𝑖th previous observation for 𝑖 = 1,… ,𝑝.  

For 𝑗 > 𝑝 − (𝑤 − 1), again, the coefficient of 𝑌𝑡−(𝑤−1) in each of {𝑌𝑡+𝑗}𝑗=1
𝑙  is 𝛼𝑖  thinned the 

coefficient of 𝑌𝑡−(𝑤−1) in the 𝑖th previous observation for 𝑖 = 1,… ,𝑝 (the difference with the 

previous case is that we do not have 𝛼𝑗+(𝑤−1)). 

 

B.3 The Number of 𝒁𝒕+𝒌𝒊𝒋 

Now we come back to (B.1) to find the 𝑍 terms in each of {𝑌𝑡+𝑗}𝑗=1
𝑙  in the RHS of the equation 

when they expressed in terms of {𝑌𝑡−𝑤+1}𝑤=1
𝑝

. As the process has a moving average component 

of order 𝑞, each {𝑌𝑡+𝑗}𝑗=1
𝑙  has 𝑞 + 1 innovation terms {𝑍𝑡+𝑗, 𝑍𝑡+𝑗−1, … , 𝑍𝑡+𝑗−𝑞}. However, by 

repeated substitution, each {𝑌𝑡+𝑗}𝑗=1
𝑙  can be expressed in terms of 𝑝 previous observations, 

each also with 𝑞 + 1 innovation terms. 
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Therefore, the total number of innovation terms in each of {𝑌𝑡+𝑗}𝑗=1
𝑙  is equal to the number of 

innovation terms in the 𝑝 previous observations, plus 𝑞 + 1.  

 

B.4 The Coefficient of 𝒁𝒕+𝒌𝒊𝒋 

The corresponding coefficients for the 𝑞 + 1 terms {𝑍𝑡+𝑗 , 𝑍𝑡+𝑗−1, … , 𝑍𝑡+𝑗−𝑞} are {1, 𝛽1, … , 𝛽𝑞}, 

respectively. For the innovation terms that come from the 𝑝 previous observations, coefficients 

would be 𝛼𝑘 thinned the coefficient of 𝑍𝑡+𝑘𝑖𝑗 in the 𝑘th previous observation for 𝑘 = 1,… , 𝑝.  

 

B.5 The Subscript of 𝒁𝒕+𝒌𝒊𝒋 

𝑡 + 𝑘𝑖𝑗 denotes the subscript of 𝑍 for each 𝑖, 𝑗 (𝑗 = 1,… , 𝑙 and 𝑖 = 1, … , 𝑛𝑗
𝑝+1

). Each {𝑌𝑡+𝑗}𝑗=1
𝑙  

has 𝑞 + 1 innovation terms {𝑍𝑡+𝑗, 𝑍𝑡+𝑗−1, … , 𝑍𝑡+𝑗−𝑞}. Therefore, the subscripts for the last 𝑞 +

1 innovation terms in each {𝑌𝑡+𝑗}𝑗=1
𝑙  are {𝑗 − 𝑞, 𝑗 − 1,… , 𝑗}. This is shown in Table 1 by 𝑖 =

𝑛𝑗−1
𝑝+1 + 1,… , 𝑛𝑗−1

𝑝+1 + 𝑛𝑗
𝑝+1

.  

The other subscripts of innovation terms in each of {𝑌𝑡+𝑗}𝑗=1
𝑙  simply are the subscripts of the 

innovation terms of 𝑝 previous observations.  

As a result, the aggregated process can be expressed as (18) with the associated parameters as 

defined in Table 1.  
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APPENDIX C- SIMULATION RESULTS FOR HORIZON-AGGREGATED 

FORECASTS FOR INAR(1), INMA(1) AND INARMA(1,1) MODELS 

In this appendix, the forecast accuracy of the two forecasting methods (INARMA-Agg and 

INARMA-h) is compared in terms of MSE. The results are for the cases where data is produced 

by an INAR(1), an INMA(1) or an INARMA(1,1) process and the forecast horizon is 𝑙 = 6 or 

𝑙 = 9.  

Table C-1 MSE𝐴𝑔𝑔/MSEℎ of aggregated forecasts for INAR(1) series when 𝑙 = 6 

Parameters 𝒏 = 𝟐𝟒 𝒏 = 𝟑𝟔 𝒏 = 𝟒𝟖 𝒏 = 𝟗𝟔 𝒏 = 𝟓𝟎𝟎 

𝛼 = 0.1, 𝜆 = 0.5 0.9534 0.9750 0.9961 0.9979 0.9534 

𝛼 = 0.5, 𝜆 = 0.5 0.8852 0.8976 0.9070 0.8783 0.8852 

𝛼 = 0.1, 𝜆 = 1 0.9515 0.9677 0.9929 0.9966 0.9515 

𝛼 = 0.5, 𝜆 = 1 0.8610 0.8545 0.8474 0.8302 0.8610 

𝛼 = 0.1, 𝜆 = 3 0.9444 0.9567 0.9811 0.9923 0.9444 

𝛼 = 0.5, 𝜆 = 3 0.7693 0.7365 0.6942 0.6742 0.7693 

𝛼 = 0.1, 𝜆 = 5 0.9211 0.9398 0.9677 0.9857 0.9211 

𝛼 = 0.5, 𝜆 = 5 0.9534 0.9750 0.9961 0.9979 0.9534 

 

Table C-2 MSE𝐴𝑔𝑔/MSEℎ of aggregated forecasts for INAR(1) series when 𝑙 = 9 

Parameters 𝒏 = 𝟐𝟒 𝒏 = 𝟑𝟔 𝒏 = 𝟒𝟖 𝒏 = 𝟗𝟔 𝒏 = 𝟓𝟎𝟎 

𝛼 = 0.1, 𝜆 = 0.5 0.6497 0.8698 0.9284 0.9868 0.9983 

𝛼 = 0.5, 𝜆 = 0.5 0.6973 0.8425 0.8887 0.9251 0.9189 

𝛼 = 0.1, 𝜆 = 1 0.6418 0.8723 0.9305 0.9829 0.9960 

𝛼 = 0.5, 𝜆 = 1 0.6924 0.8362 0.9046 0.9056 0.8920 

𝛼 = 0.1, 𝜆 = 3 0.6657 0.8574 0.8979 0.9717 0.9939 

𝛼 = 0.5, 𝜆 = 3 0.6235 0.7602 0.8016 0.8048 0.7732 

𝛼 = 0.1, 𝜆 = 5 0.6055 0.8669 0.9119 0.9677 0.9904 

𝛼 = 0.5, 𝜆 = 5 0.6384 0.7262 0.7532 0.7052 0.6736 
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Table C-3 MSE𝐴𝑔𝑔/MSEℎ of aggregated forecasts for INMA(1) series when 𝑙 = 6 

Parameters 𝒏 = 𝟐𝟒 𝒏 = 𝟑𝟔 𝒏 = 𝟒𝟖 𝒏 = 𝟗𝟔 𝒏 = 𝟓𝟎𝟎 

𝛽 = 0.1, 𝜆 = 0.5 0.9996 0.9996 0.9999 1.0000 1.0000 

𝛽 = 0.5, 𝜆 = 0.5 0.9982 0.9989 0.9992 0.9996 0.9999 

𝛽 = 0.9, 𝜆 = 0.5 0.9969 0.9978 0.9984 0.9992 0.9998 

𝛽 = 0.1, 𝜆 = 1 0.9997 0.9998 0.9999 1.0000 1.0000 

𝛽 = 0.5, 𝜆 = 1 0.9986 0.9988 0.9992 0.9995 0.9999 

𝛽 = 0.9, 𝜆 = 1 0.9966 0.9979 0.9983 0.9991 0.9998 

𝛽 = 0.1, 𝜆 = 3 0.9999 0.9996 1.0000 1.0000 1.0000 

𝛽 = 0.5, 𝜆 = 3 0.9974 0.9987 0.9992 0.9995 0.9999 

𝛽 = 0.9, 𝜆 = 3 0.9948 0.9975 0.9981 0.9991 0.9998 

𝛽 = 0.1, 𝜆 = 5 1.0002 0.9999 0.9998 1.0000 1.0000 

𝛽 = 0.5, 𝜆 = 5 0.9976 0.9988 0.9992 0.9995 0.9999 

𝛽 = 0.9, 𝜆 = 5 0.9945 0.9975 0.9980 0.9990 0.9998 

 

Table C-4 MSE𝐴𝑔𝑔/MSEℎ of aggregated forecasts for INMA(1) series when 𝑙 = 9 

Parameters 𝒏 = 𝟐𝟒 𝒏 = 𝟑𝟔 𝒏 = 𝟒𝟖 𝒏 = 𝟗𝟔 𝒏 = 𝟓𝟎𝟎 

𝛽 = 0.1, 𝜆 = 0.5 0.9995 0.9998 1.0000 1.0000 1.0000 

𝛽 = 0.5, 𝜆 = 0.5 0.9984 0.9992 0.9995 0.9997 0.9999 

𝛽 = 0.9, 𝜆 = 0.5 0.9973 0.9986 0.9989 0.9995 0.9999 

𝛽 = 0.1, 𝜆 = 1 0.9995 0.9999 0.9999 1.0000 1.0000 

𝛽 = 0.5, 𝜆 = 1 0.9984 0.9993 0.9995 0.9997 0.9999 

𝛽 = 0.9, 𝜆 = 1 0.9973 0.9985 0.9989 0.9994 0.9999 

𝛽 = 0.1, 𝜆 = 3 0.9991 0.9998 0.9999 1.0000 1.0000 

𝛽 = 0.5, 𝜆 = 3 0.9978 0.9994 0.9994 0.9997 0.9999 

𝛽 = 0.9, 𝜆 = 3 0.9973 0.9985 0.9990 0.9994 0.9999 

𝛽 = 0.1, 𝜆 = 5 1.0000 1.0000 0.9999 1.0000 1.0000 

𝛽 = 0.5, 𝜆 = 5 0.9975 0.9987 0.9995 0.9997 0.9999 

𝛽 = 0.9, 𝜆 = 5 0.9955 0.9976 0.9987 0.9994 0.9999 

 

Table C-5 MSE𝐴𝑔𝑔/MSEℎ of aggregated forecasts for INARMA(1,1) series when 𝑙 = 6 

Parameters 𝒏 = 𝟐𝟒 𝒏 = 𝟑𝟔 𝒏 = 𝟒𝟖 𝒏 = 𝟗𝟔 𝒏 = 𝟓𝟎𝟎 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 0.5 1.1280 1.1290 1.1129 1.0340 0.9975 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 0.5 0.9817 0.9902 0.9727 0.9676 0.9864 

𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 0.5 0.9291 0.8821 0.9278 0.9009 0.9044 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 1 1.0289 1.1009 1.0355 1.0200 0.9991 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 1 0.9652 1.0028 0.9657 0.9736 0.9857 

𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 1 0.8933 0.9272 0.8895 0.9066 0.9065 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 5 0.8930 1.0278 1.0238 1.0005 0.9966 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 5 0.9320 0.9472 0.9848 0.9668 0.9829 

𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 5 0.8281 0.8787 0.8837 0.8904 0.9029 
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Table C-6 MSE𝐴𝑔𝑔/MSEℎ of aggregated forecasts for INARMA(1,1) series when 𝑙 = 9 

Parameters 𝒏 = 𝟐𝟒 𝒏 = 𝟑𝟔 𝒏 = 𝟒𝟖 𝒏 = 𝟗𝟔 𝒏 = 𝟓𝟎𝟎 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 0.5 0.8270 1.1104 1.1042 1.0444 0.9984 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 0.5 0.7848 0.9304 0.9364 0.9652 0.9898 

𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 0.5 0.8773 0.8642 0.9091 0.9123 0.9389 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 1 0.7756 0.9952 1.0110 1.0206 0.9981 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 1 0.6699 0.9117 0.9455 0.9603 0.9901 

𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 1 0.5531 0.8320 0.8976 0.9279 0.9372 

𝛼 = 0.1, 𝛽 = 0.1, 𝜆 = 5 0.3814 0.8981 0.9941 1.0063 0.9967 

𝛼 = 0.1, 𝛽 = 0.9, 𝜆 = 5 0.3441 0.8315 0.9185 0.9654 0.9862 

𝛼 = 0.5, 𝛽 = 0.5, 𝜆 = 5 0.3577 0.8164 0.8840 0.9123 0.9332 
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