
Decidable Model-Checking for a Resource Logic with
Production of Resources

Natasha Alechina1 and Brian Logan1 and Hoang Nga Nguyen1 and Franco Raimondi2

Abstract. Several logics for expressing coalitional ability under
resource bounds have been proposed and studied in the literature.
Previous work has shown that if only consumption of resources is
considered or the total amount of resources produced or consumed
on any path in the system is bounded, then the model-checking prob-
lem for several standard logics, such as Resource-Bounded Coali-
tion Logic (RB-CL) and Resource-Bounded Alternating-Time Tem-
poral Logic (RB-ATL) is decidable. However, for coalition logics
with unbounded resource production and consumption, only some
undecidability results are known. In this paper, we show that the
model-checking problem for RB-ATL with unbounded production
and consumption of resources is decidable.

1 INTRODUCTION

Alternating Time Temporal Logic (ATL) [2] is widely used in verifi-
cation of multi-agent systems. ATL can express properties related to
coalitional ability, for example one can state that a group of agents A
has a strategy (a choice of actions) such that whatever the actions by
the agents outside the coalition, any computation of the system gen-
erated by the strategy satisfies some temporal property. A number of
variations on the semantics of ATL exist: agents may have perfect re-
call or be memoryless, and they may have full or partial observabil-
ity. In the case of fully observable models and memoryless agents,
the model checking problem for ATL is polynomial in the size of
the model and the formula, while it is undecidable for partially ob-
servable models where agents have perfect recall [3]. Additionally,
even in the simple case of fully observable models and memoryless
agents, the complexity increases substantially if the model checking
problem takes into account models with compact (implicit) represen-
tations [3].

In this paper, we consider an extension of perfect recall, fully ob-
servable ATL where agents produce and consume resources. The
properties we are interested in are related to coalitional ability un-
der resource bounds. Instead of asking whether a group of agents
has a strategy to enforce a certain temporal property, we are ask-
ing whether the group has a strategy which can be executed under a
certain resource bound (e.g., if the agents have at most b1 units of re-
source r1 and b2 units of resource r2). Clearly, some actions may no
longer be used as part of the strategy if their cost exceeds the bound.
There are several ways in which the precise notion of the cost of a
strategy can be defined. For example, one can define it as the max-
imal cost of any path (computation of the system) generated by the

1 School of Computer Science, University of Nottingham, UK email:
{nza,bsl,hnn}@cs.nott.ac.uk

2 Department of Computer Science, Middlesex University, UK, email:
f.raimondi@mdx.ac.uk

strategy, where the cost of a path is the sum of resources produced
and consumed by actions on the path. We have chosen a different def-
inition which says that a strategy has a cost at most b if for every path
generated by the strategy, every prefix of the path has cost at most b.
This means that a strategy cannot, for example, start with executing
an action that consumes more than b resources, and then ‘make up’
for this by executing actions that produce enough resources to bring
the total cost of the path under b. It is however possible to first pro-
duce enough resources, and then execute an action that costs more
than b, ensuring the cost of the path is less than b.

There are also many choices for the precise syntax of the logic
and the truth definitions of the formulas. For example, in [4] sev-
eral versions are given, intuitively corresponding to considering re-
source bounds both on the coalition A and the rest of the agents in
the system, considering a fixed resource endowment of A in the ini-
tial state which affects their endowment after executing some actions,
etc. Our logic is closest (but not identical) to LRAL with perfect re-
call, resource-flat, only proponents resource-restricted, and with fini-
tary semantics defined in [4]. Decidability of the model-checking
problem for this version of LRAL was stated as an open problem
in [4]. In [6, 7] a different syntax and semantics are considered, in-
volving resource endowment of the whole system when evaluating a
statement concerning a group of agents A. As observed in [4], sub-
tle differences in truth conditions for resource logics result in the
difference between decidability and undecidabiliity of the model-
checking problem. In [4], undecidability for several versions of the
logics is proved. The only decidable cases considered in [4] are an
extension of Computation Tree Logic (CTL) [5] with resources (es-
sentially one-agent ATL) and the version where on every path only a
fixed finite amount of resources can be produced. Similarly, [6] gives
a decidable logic PRB-ATL (Priced Resource-Bounded ATL) where
the total amount of resources in the system has a fixed bound. The
model-checking algorithm for PRB-ATL runs in time polynomial in
the size of the model and exponential in the number of resources and
the resource bound on the system. In [7] an EXPTIME lower bound
in the number resources is shown.

2 SYNTAX AND SEMANTICS OF RB±ATL

The logic RB-ATL was introduced in [1]. Here we generalise the
definitions from [1] to allow for production as well as consumption
of resources. To avoid confusion with the consumption-only version
of the logic from [1], we refer to RB-ATL with production and con-
sumption of resources as RB±ATL.

Let Agt = {a1, . . . , an} be a set of n agents and Res =
{res1, . . . , resr} be a set of r resources, Π denote a set of propo-
sitions and B = N

r
∞ denote a set of resource bounds where N∞ =

N ∪ {∞}.

ECAI 2014
T. Schaub et al. (Eds.)
© 2014 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-419-0-9

9

Formulas of RB±ATL are defined by the following syntax

ϕ ::= p | ¬ϕ | ϕ ∨ ψ | 〈〈Ab〉〉©ϕ | 〈〈Ab〉〉�ϕ | 〈〈Ab〉〉ϕU ψ

where p ∈ Π is a proposition, A ⊆ Agt, and b ∈ B is a resource
bound. Here, 〈〈Ab〉〉©ϕ means that a coalition A can ensure that the
next state satisfies ϕ under resource bound b. 〈〈Ab〉〉�ϕ means that
A has a strategy to make sure that ϕ is always true, and the cost of
this strategy is at most b. Similarly, 〈〈Ab〉〉ϕU ψ means that A has a
strategy to enforce ψ while maintaining the truth of ϕ, and the cost
of this strategy is at most b.

We extend the definition of concurrent game structure with re-
source consumption and production.

Definition 1. A resource-bounded concurrent game structure (RB-
CGS) is a tuple M = (Agt,Res, S,Π, π, Act, d, c, δ) where:

• Agt is a non-empty set of n agents, Res is a non-empty set of r
resources and S is a non-empty set of states;

• Π is a finite set of propositional variables and π : Π → ℘(S) is
a truth assignment which associates each proposition in Π with a
subset of states where it is true;

• Act is a non-empty set of actions which includes idle, and
d : S × Agt → ℘(Act) \ {∅} is a function which assigns to
each s ∈ S a non-empty set of actions available to each agent
a ∈ Agt. For every s ∈ S and a ∈ Agt, idle ∈ d(s, a). We
denote joint actions by all agents in Agt available at s by D(s) =
d(s, a1)× · · · × d(s, an);

• c : S × Agt × Act → Z
r is a partial function which maps

a state s, and agent a and an action α ∈ d(s, a) to a vector
of integers where the integer in position i indicates consumption
or production of resource resi by the action (positive value for
consumption and negative value for production). We stipulate that
c(s, a, idle) = 0̄ for all s ∈ S and a ∈ Agt where 0̄ = 0r .

• δ : (s, σ) �→ S is a function that for every s ∈ S and joint action
σ ∈ D(s) gives the state resulting from executing σ in s.

Given a RB-CGS M , we denote the set of all infinite sequences
of states (computations) by Sω and the set of non-empty finite se-
quences of states by S+. For a computation λ = s0s1 . . . ∈ Sω , we
use the notation λ[i] = si and λ[i, j] = si . . . sj ∀ j ≥ i ≥ 0.

Given a RB-CGS M and a state s ∈ S, a joint action by a coalition
A ⊆ Agt is a tuple σA = (σa)a∈A such that σa ∈ d(s, a). The set
of all joint actions for A at state s is denoted by DA(s). Given a joint
action by the grand coalition σ ∈ D(s), σA denotes the joint action
executed by A: σA = (σa)a∈A. The set of all possible outcomes of
a joint action σA ∈ DA(s) at state s is:
out(s, σA) = {s′ ∈ S | ∃σ′ ∈ D(s) : σA = σ′

A ∧ s′ = δ(s, σ′)}
The cost of a joint action σA ∈ DA(s) is defined as cost(s, σA) =∑
a∈A c(s, a, σa).
Given a RB-CGS M , a strategy for a coalition A ⊆ Agt is a

mapping FA : S+ → Act such that, for every λs ∈ S+, FA(λs) ∈
DA(s). A computation λ ∈ Sω is consistent with a strategy FA

iff, for all i ≥ 0, λ[i + 1] ∈ out(λ[i], FA(λ[0, i])). We denote by
out(s, FA) the set of all consistent computations λ of FA that start
from s.

In the sequel, we use the usual point-wise notation for vector com-
parison and addition. In particular, (b1, . . . , br) ≤ (d1, . . . , dr) iff
bi ≤ di ∀ i ∈ {1, . . . , r}, and (b1, . . . , br) + (d1, . . . , dr) =
(b1 + d1, . . . , br + dr).

Given a bound b ∈ B, a computation λ ∈ out(s, FA) is b-

consistent with FA iff, for every i ≥ 0,

i∑

j=0

cost(λ[j], FA(λ[0, j])) ≤ b

Note that this definition implies that the cost of every prefix of the
computation is below b.

The set of all b-consistent computations of FA starting from state
s is denoted by out(s, FA, b). FA is a b-strategy iff out(s, FA) =
out(s, FA, b) for any state s.

Given a RB-CGS M , a state s of M , the truth of a RB±ATL for-
mula ϕ with respect to M and s is defined inductively on the struc-
ture of ϕ as follows (the atomic case and the Boolean connectives are
defined in the standard way):

• M, s |= 〈〈Ab〉〉©φ iff ∃ b-strategy FA such that for all λ ∈
out(s, FA): M,λ[1] |= φ;

• M, s |= 〈〈Ab〉〉�φ iff ∃ b-strategy FA such that for all λ ∈
out(s, FA) and i ≥ 0: M,λ[i] |= φ; and

• M, s |= 〈〈Ab〉〉φU ψ iff ∃ b-strategy FA such that for all λ ∈
out(s, FA), ∃i ≥ 0: M,λ[i] |= ψ and M,λ[j] |= φ for all j ∈
{0, . . . , i− 1}.

Since the infinite resource bound version of RB±ATL modalities
correspond to the standard ATL modalities, we will write 〈〈A∞̄〉〉©φ,
〈〈A∞̄〉〉φU ψ, 〈〈A∞̄〉〉�φ as 〈〈A〉〉©φ,〈〈A〉〉φU ψ,〈〈A〉〉�φ, respec-
tively. When the context is clear, we will sometimes write s |= φ
instead of M, s |= φ.

Note that although we only consider infinite paths, the condition
that the idle action of cost 0̄ is always available makes the model-
checking problem easier (we only need to find a strategy with a finite
prefix under bound b to satisfy formulas of the form 〈〈Ab〉〉©φ and
〈〈Ab〉〉φU ψ, and then the strategy can make the idle choice forever).
This makes our logic closer to the finitary semantics in [4].

As an example of the expressivity of the logic, consider the model
in Figure 1 with two agents a1 and a2 and two resources r1 and
r2. Let us assume that c(sI , a1, α) = 〈−2, 1〉 (action α produces
2 units of r1 and consumes one unit of r2), c(s, a2, β) = 〈1,−1〉
and c(s, a1, γ) = 〈5, 0〉. Then agent a1 on its own has a strategy
to enforce a state satisfying p under recource bound of 3 units of
r1 and 1 unit of r2 (M, sI |= 〈〈{a1}〈3,1〉〉〉�U p): a1 has to se-
lect action α in sI which requires it to consume one unit of r2 but
produces two units of r1, and then action γ in s that requires 5
units of r1 which is now within the resource bound since the pre-
vious action has produced 2 units. All outcomes of this strategy
lead to s′ where p holds. After this, a1 has to select idle forever,
which does not require any resources. Any smaller resource bound
is not sufficient. However, both agents have a strategy to enforce the
same outcome under a smaller resource bound of just one unit of r2
(M, sI |= 〈〈{a1, a2}〈0,1〉〉〉�U p): agent a2 needs to select β in s
until the agents have gone through the loop between sI and s four
times and accummulated enough of resource r1 to enable agent a1 to
perform γ in s.

3 MODEL CHECKING RB±ATL

The model-checking problem for RB±ATL is the question whether
for a given RB-CGS structure M , a state s in M and an RB±ATL
formula φ, M, s |= φ. In this section we prove the following theo-
rem:

Theorem 1. The model-checking problem for RB±ATL is decidable.

N. Alechina et al. / Decidable Model-Checking for a Resource Logic with Production of Resources10

sI s s'

p

⟨idle, idle⟩

⟨idle, idle⟩

⟨idle, idle⟩

⟨α, idle⟩

⟨idle, β⟩

⟨γ, idle⟩

Figure 1. An example with consumption and production of resources.

To prove decidability, we give an algorithm which, given a struc-
ture M = (Agt,Res, S,Π, π, Act, d, c, δ) and a formula φ, returns
the set of states [φ]M satisfying φ: [φ]M = {s | M, s |= φ} (see
Algorithm 1).

Algorithm 1 Labelling φ

function RB±ATL-LABEL(M,φ)
for φ′ ∈ Sub(φ) do

case φ′ = p, ¬ψ, ψ1 ∧ ψ2,
〈〈A〉〉©ψ, 〈〈A〉〉ψ1 U ψ2, 〈〈A〉〉�ψ

standard, see [2]
case φ′ = 〈〈Ab〉〉©ψ

[φ′]M ← Preb(A, [ψ]M)

case φ′ = 〈〈Ab〉〉ψ1 U ψ2

[φ′]M ← { s | s ∈ S∧
UNTIL-STRATEGY(node0(s, b), 〈〈Ab〉〉φU ψ)}

case φ′ = 〈〈Ab〉〉�ψ
[φ′]M ← { s | s ∈ S∧

BOX-STRATEGY(node0(s, b), 〈〈Ab〉〉�φ)}
return [φ]M

Given φ, we produce a set of subformulas of φ Sub(φ) in the usual
way, however in addition if 〈〈Ab〉〉γ ∈ Sub(φ), its infinite resource
version 〈〈A〉〉γ is added to Sub(φ). Sub(φ) is ordered in increasing
order of complexity, in addition infinite resource versions of modal
formulas come before bounded versions. Note that if a state s is not
annotated with 〈〈A〉〉γ then s cannot satisfy the bounded resource
version 〈〈Ab〉〉γ.

We then proceed by cases. For all formulas in Sub(φ) apart from
〈〈Ab〉〉©φ, 〈〈Ab〉〉φ1 U φ2 and 〈〈Ab〉〉�ψ we essentially run the stan-
dard ATL model-checking algorithm [2].

Labelling states with 〈〈Ab〉〉 © φ makes use of a function
Preb(A, ρ) which, given a coalition A, a set ρ ⊆ S and a bound
b, returns a set of states s in which A has a joint action σA with
cost(s, σA) ≤ b such that out(s, σA) ⊆ ρ. Labelling states with
〈〈Ab〉〉φU ψ and 〈〈Ab〉〉�φ is more complex, and in the interests
of readability we provide separate functions: UNTIL-STRATEGY for
〈〈Ab〉〉φU ψ formulas is shown in Algorithm 2, and BOX-STRATEGY

for 〈〈Ab〉〉�φ formulas is shown in Algorithm 3.
Both algorithms proceed by depth-first and-or search of M . We

record information about the state of the search in a search tree of
nodes. A node is a structure which consists of a state of M , the re-
sources available to the agents A in that state (if any), and a finite
path of nodes leading to this node from the root node. Edges in the
tree correspond to joint actions by all agents. Note that the resources
available to the agents in a state on a path constrain the edges from
the corresponding node to be those actions σA where cost(s, σA)

is less than or equal to the available resources. For each node n in
the tree, we have a function s(n) which returns its state, p(n) which
returns the nodes on the path and ei(n) which returns the resource
availability on the i-th resource in s(n) as a result of following p(n).
The function node0(s, b) returns the root node, i.e., a node n0 such
that s(n0) = s, p(n0) = [] and ei(n0) = bi for all resources i.
The function node(n, a, s′) returns a node n′ where s(n′) = s′,
p(n′) = [p(n) · n] and for all resources i, ei(n′) = ei(n)− ci(a).

Algorithm 2 Labelling 〈〈Ab〉〉φU ψ

function UNTIL-STRATEGY(n, 〈〈Ab〉〉φU ψ)
if s(n) �|= 〈〈A〉〉φU ψ then

return false

if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ (∀j : ej(n
′) ≥ ej(n)) then

return false

if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ (∀j : ej(n
′) ≤ ej(n)) ∧

ei(n
′) < ei(n) then

ei(n) ← ∞
if s(n) |= ψ then

return true
if e(n) = ∞̄ then

return true
Act ← {a ∈ Act(A, s(n)) | c(a) ≤ e(n)}
for a ∈ Act do

O ← states reachable by a
strat ← true
for s′ ∈ O do

strat ← strat∧
UNTIL-STRATEGY(node(n, a, s′), 〈〈Ab〉〉φU ψ)

if strat then

return true
return false

Algorithm 3 Labelling 〈〈Ab〉〉�φ

function BOX-STRATEGY(n, 〈〈Ab〉〉�φ)
if s(n) �|= 〈〈A〉〉�φ then

return false

if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ (∀j : ej(n
′) > ej(n)) then

return false

if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ (∀j : ej(n
′) ≤ ej(n)) then

return true
Act ← {a ∈ Act(A, s(n)) | c(a) ≤ e(n)}
for a ∈ Act do

O ← states reachable by a
strat ← true
for s′ ∈ O do

strat ← strat∧
BOX-STRATEGY(node(n, a, s′), 〈〈Ab〉〉�φ)

if strat then

return true
return false

Lemma 1. Algorithm 1 terminates.

Proof. All the cases in Algorithm 1 apart from 〈〈Ab〉〉φU ψ and
〈〈Ab〉〉�φ can be computed in time polynomial in |M | and |φ|.
The cases for 〈〈Ab〉〉φU ψ and 〈〈Ab〉〉�φ involve calling the UNTIL-
STRATEGY and BOX-STRATEGY procedures, respectively, for every

N. Alechina et al. / Decidable Model-Checking for a Resource Logic with Production of Resources 11

state in S. We want to show that there is no infinite sequence of
calls to UNTIL-STRATEGY or BOX-STRATEGY. Assume to the con-
trary that n1, n2, . . . is an infinite sequence of nodes in an infinite se-
quence of recursive calls to UNTIL-STRATEGY or BOX-STRATEGY.
Then, since the set of states is finite, there is an infinite subsequence
ni1 , ni2 , . . . of n1, n2, . . . such that s(nij) = s(nik). We show that
there is an infinite subsequence n′

1, n
′
2, . . . of ni1 , ni2 , . . . such that

for k < j e(n′
k) ≤ e(n′

j). Note that since n′
k and n′

j have the same
state, both UNTIL-STRATEGY or BOX-STRATEGY will return in n′

j :
a contradiction. The proof is very similar to the proof of Lemma f
in [8, p.70] and proceeds by induction on the number of resources
r. For r = 1, since e(n) is always positive, the claim is immediate.
Assume the lemma holds for r and let us show it for r+1. Then there
is an infinite subsequence m′

1,m
′
2, . . . of ni1 , ni2 , . . . where for all

resources i ∈ {1, . . . , r} ei(m
′
k) ≤ ei(m

′
j) for k < j. Clearly if we

take m′
1 for the first element in the sequence of nodes with increasing

resource availability we are constructing, there is a node mj in the
sequence m′

1,m
′
2, . . . where er+1(m

′
1) ≤ er+1(m

′
j). We take m′

j

to be n′
2 and repeat.

Before we prove correctness of UNTIL-STRATEGY and BOX-
STRATEGY, we need some auxiliary notions. Let n be a node where
one of the procedures returns true. We will refer to tree(n) as the
tree representing the successful call to the procedure. In particular, if
the procedure returns true before any recursive calls are made, then
tree(n) = n. Otherwise the procedure returns true because there is
an action α ∈ Act such that for all s′ ∈ out(s(n), α) the procedure
returns true in n′ = node(n, α, s′). In this case, tree(n) has n as its
root and trees tree(n′) are the children of n. We refer to the action
α as nact (the action that generates the children of n). For the sake
of uniformity, if tree(n) = n then we set nact to be idle. Such a
tree corresponds to a strategy F where for each path n · · ·m from
the root n to a node m in tree(n), F (s(n) · · · s(m)) = mact.

A strategy F for satisfying 〈〈Ab〉〉φU ψ is U -economical for a
node n if, intuitively, no path generated by it contains a loop that does
not increase any resource. A strategy is �-economical for a node n
if, intuitively, no path generated by it contains a loop that decreases
some resources and does not increase any other resources. Formally,
a strategy F is U -economical for n if

• F satisfies 〈〈Ae(n)〉〉φU ψ at s(n), i.e., ∀λ ∈ out(s(n), F), ∃i ≥
0 : λ[i] |= ψ and λ[j] |= φ for all j ∈ {0, . . . , i}

• The path p(n) ·n is already economical; i.e., ∀n′ ∈ p(n) ·n, n′′ ∈
p(n′) : s(n′′) = s(n′) ⇒ e(n′′) �≥ e(n′);

• Every state is reached by F economically; i.e., ∀s0s1 . . . sk . . . ∈
out(s(n), F) where k ≤ i and i is the first index in s0s1 . . . sk . . .
to satisfy ψ, ∀j < k : sj = sk ⇒ cost(sj . . . sk) �≥ 0̄ where
cost(sj . . . sk) =

∑
l=j,...,k−1 cost(λ[l], F (λ[0, l])); and

• Every state is reached by F economically with respect to the
path p(n); i.e., ∀s0s1 . . . sk . . . ∈ out(s(n), F), ∀n′ ∈ p(n) :
s(n′) = sk ⇒ e(n′) �≥ e(n)− cost(s0 . . . sk)

A strategy F is �-economical if:

• F satisfies 〈〈Ae(n)〉〉�φ at s(n), i.e., ∀λ ∈ out(s(n), F), ∀i ≥
0 : λ[i] |= φ;

• The path p(n) ·n is already economical; i.e., ∀n′ ∈ p(n) ·n, n′′ ∈
p(n′) : s(n′′) = s(n′) ⇒ e(n′′) �> e(n′);

• Every state is reached by F economically; i.e., ∀s0s1 . . . sk . . . ∈
out(s(n), F) ∀j < k : sj = sk ⇒ cost(sj . . . sk) �> 0̄;

• Every state is reached by F economically with respect to the
path p(n); i.e., ∀s0s1 . . . sk . . . ∈ out(s(n), F), ∀n′ ∈ p(n) :
s(n′) = sk ⇒ e(n′) �> e(n)− cost(s0 . . . sk).

Note that any strategy F satisfying 〈〈Ae(n)〉〉φU ψ (〈〈Ae(n)〉〉�φ)
at s(n) can be converted to an economical one by eliminating unpro-
ductive loops.

Next we prove correctness of UNTIL-STRATEGY. The next lemma
essentially shows that replacing a resource value with ∞ in Algo-
rithm 2 is harmless. For the inductive proof, we need the following
notion. Given a tree tree(n) we call the result of removing all chil-
dren of some nodes m1, . . . ,mk that have only leaves as children in
tree(n), (tree(n), prune(m1, . . . ,mk)) (or a pruning of tree(n)).

Lemma 2. Let n = node0(s, b) be a node where UNTIL-STRATEGY

returns true. Let f be a function that for each leaf n′ of tree(n)
returns f(n′) ∈ N

r such that fi(n′) = ei(n
′) if ei(n′) �= ∞. Then

there is a strategy F which eventually generates at least f(n′) for all
leaves n′ of tree(n).

Proof. (sketch) By induction on the structure of tree(n).

Base Case: Let tree(n) contain only its root. The proof is obvious
for any strategy.

Inductive Step: Let us consider a pruning T of tree(n). By the in-
duction hypothesis, any tree T ′ that has a less complex structure
than T has a strategy to generate at least f(n′) ∈ N

r ≤ e(n′) for
all leaves n′ of T ′.

m1 m2

m

n

wr1 (m1)

wr2 (m1)

T ′

Figure 2. Tree T and T ′ = (T, prune(m)).

Let m(m1, . . . ,mk) be an arbitrary depth-1 sub-tree of T (see
Figure 2). By removing m(m1, . . . ,mk) from T , we obtain a
pruning T ′ of T .
Let n · · ·m ·mi be a path in T from the root n to one of the leaves
mi. For each resource r the availability of which turns to ∞ at
mi, there must be a node wr(mi) in the path n · · ·m ·mi which
is used to turn the availability of r to ∞ at mi. We may repeat
the path from wr(mi) to mi several times to generate enough
resource availability for r. We call the path from wr(mi) to mi

together with all the immediate child nodes of those along the path
the column graph from wr(mi) to mi. Each time, an amount of
gr = er(m) − cr(a(m)) − er(w(mi)) is generated. Then, the
minimal number of times to repeat the path from w(mi) to mi is
hr(mi) = � fr(mi)−er(m)−cr(a(m))

gr
�.

Note that we need to repeat at each mi for each resource r the
path from wr(mi) to mi hr times. To record the number of times
the path has been repeated, we attach to each mi a counter ĥr for
each r and write the new node of mi as mĥ(mi)

i .
Initially, ĥr = 0 for all r. A step (see Figure 3) of the repetition
is done as follows: let mĥ(mi)

i be some node such that ĥr(mi) <

hr(mi). Let mĥ(mj)

j be the sibling of mĥ
i (j �= i). We extend

N. Alechina et al. / Decidable Model-Checking for a Resource Logic with Production of Resources12

mĥ1,ĥ2
1

mĥ1+1,ĥ2
1

mĥ1+1,ĥ2+1
1

mĥ′
2

mĥ′
2

mĥ′
2

m

Figure 3. Repeating steps to generate resources.

from mĥ
i the column-tree from wr(mi) to mi; each new mj (j �=

i) is annotated with ĥ(mj) (same as before) and the new mi is
annotated with ĥ(mi) except that ĥr(mi) is increased by 1. We
repeat the above step until no further step can be made (it must
terminate due to the fact that hr(mi) < ∞ for all r and mi).
At the end, we obtain a tree where all leaves mĥ

i have ĥr =
hr(mi) for all r, hence the availability of r is at least fr . Let
E(m) be the extended tree from m.
Let FT ′ be the generated strategy from T ′. We extend FT ′ with
E(m) for every occurrence of m in FT ′ and denote this extended
strategy FE

T ′ . For all leaves m′ in E(m) which are other than mi,
let E(m′) be some sub-tree of T ′ which starts from m′. Then, we
extend FE

T ′ with E(m′) for every occurrence of m′ in E(m). We
finally obtain a tree FT which satisfies the condition that all leaves
l have resource availability of at least f(l).

Corollary 1. If UNTIL-STRATEGY(node0(s, b), 〈〈Ab〉〉φU ψ) re-
turns true then s |= 〈〈Ab〉〉φU ψ.

Lemma 3. If UNTIL-STRATEGY(n, 〈〈Ab〉〉φU ψ) returns false,
then there is no U -economical strategy from s(n) satisfying
〈〈Ae(n)〉〉φU ψ.

Proof. (sketch) We prove the lemma by induction on the depth of
calling UNTIL-STRATEGY(n, 〈〈Ab〉〉φU ψ).

Base Case: If false is returned by the first if-statement, then
s(n) �|= 〈〈A〉〉φU ψ; this also means there is no strategy satisfying
〈〈Ae(n)〉〉φU ψ from s(n).
If false is returned by the second if-statement, then any strategy
satisfying 〈〈Ae(n)〉〉φU ψ from s(n) is not economical.

Inductive Step: If false is not returned by the first two if-statements,
then, for all actions a ∈ Act, there exists s′ ∈ out(s(n), a)
such that UNTIL-STRATEGY(n′, 〈〈Ab〉〉φU ψ) (where n′ =
node(n, a, s′)) returns false. By induction hypothesis, there is no
economical strategy satisfying 〈〈Ae(n′)〉〉φU ψ from s(n′). As-
sume to the contrary that there is an economical strategy satis-
fying 〈〈Ae(n)〉〉φU ψ from s(n). Let a = F (s(n)), then a ∈ Act.
Obviously, for all s′ ∈ out(s(n), a), F ′(λ) = F (s(n)λ) is
an economical strategy from n′ = node(n, a, s′). This is a
contradiction; hence, there is no economical strategy satisfying
〈〈Ae(n)〉〉φU ψ from s(n).

Corollary 2. If UNTIL-STRATEGY(node0(s, b), 〈〈Ab〉〉φU ψ) re-
turns false then s �|= 〈〈Ab〉〉φU ψ.

Now we turn to Algorithm 3 for labelling states with 〈〈Ab〉〉�φ.
First we show the soundness of Algorithm 3.

Lemma 4. Let n = node0(s, b). If BOX-STRATEGY(n, 〈〈Ab〉〉�φ)
returns true then s(n) |= 〈〈Ab〉〉�ϕ.

Proof. (sketch) In the following, for each node m in tree(n), let
T (m) denote the sub-tree of tree(m) rooted at m. For each leaf

n

m

T (w(m))

tree(n)

w(m)

Figure 4. w(m) of m in tree(n).

m of tree(n), let w(m) denote one of the nodes in p(m) such that
s(w(m)) = s(m) and e(w(m)) ≤ e(m) (see Figure 4).

Let us expand tree(n) as follows:

• T 0 is tree(n);
• T i+1 is T i where all its leaves m are replaced by T (w(m)) (see

Figure 5);

m1

n

Ti

T (w(m1))

m2

T (w(m2))

mk

T (w(mk))

Ti+1

Figure 5. One step in constructing the strategy.

Let T = T∞, then T is a strategy for 〈〈Ab〉〉�ϕ.

Lemma 5. If BOX-STRATEGY(n, 〈〈Ab〉〉�φ) returns false, then there
is no �-economical strategy satisfying 〈〈Ae(n)〉〉�φ at s(n).

Proof. (sketch) The proof is done by induction on the depth of
calling BOX-STRATEGY(n, 〈〈Ab〉〉�φ).

Base Case: If false is returned by the first if-statement, then
s(n) �|= 〈〈A〉〉�φ; this also means there is no strategy satisfying
〈〈Ae(n)〉〉�φ at s(n).
If false is returned by the second if-statement, then any strategy
satisfying 〈〈Ae(n)〉〉�φ at s(n) is not �-economical.

Inductive Step: If false is not returned by the first two if-statements,
for all actions a ∈ Act, there exists s′ ∈ out(s(n), a) such that
BOX-STRATEGY(n′, 〈〈Ab〉〉�φ) (where n′ = node(n, a, s′)) re-
turns false. Assume to the contrary that there is a �-economical
strategy satisfying 〈〈Ae(n)〉〉�φ from s(n). Let a = F (s(n)),
then a ∈ Act. Obviously, for all s′ ∈ out(s(n), a), F ′(λ) =
F (s(n)λ) is a �-economical strategy from n′ = node(n, a, s′).
This is a contradiction; hence, there is no �-economical strategy
satisfying 〈〈Ae(n)〉〉�φ from s(n). �

N. Alechina et al. / Decidable Model-Checking for a Resource Logic with Production of Resources 13

Corollary 3. If BOX-STRATEGY(node0(s, b), 〈〈Ab〉〉�φ) returns
false then s �|= 〈〈Ab〉〉�φ.

4 LOWER BOUND

In this section we show that the lower bound for the complexity of the
model checking problem for RB±ATL is EXPSPACE, by reducing
from the reachability problem of Petri Nets. Note that the exact com-
plexity of this problem is still an open question (although it is known
to be decidable, [8]), hence the same holds for the exact complexity
of the RB±ATL model-checking problem.

A Petri net is a tuple N = (P, T,W,M) where:

• P is a finite set of places;
• T is a finite set of transitions;
• W : P × T ∪ T × P → N is a weighting function; and
• M : P → N is an initial marking.

A transition t ∈ T is enabled iff W (r, t) ≤ M(r) for all r ∈ P .
The result of performing t is a marking M ′ where M ′(r) = M(r)−
W (r, t) +W (t, r), denoted as M [t〉M ′.

A marking M ′ is reachable from M iff there exists a sequence

M0 [t1〉M1 [t2〉 . . . [tn〉Mn

where M0 = M and n ≥ 0 such that Mn ≥ M (where M ≥ M ′

iff M(r) ≥ M ′(r) for all r ∈ P). It is known that the lower bound
for the complexity of this version of the reachability problem (with
Mn ≥ M rather than Mn = M) is EXPSPACE [8, p.73].

We present a reduction from an instance of the reachability prob-
lem of Petri Nets to an instance of the model checking problem of
RB±ATL.

Given a net N = (P, T,W,M) and a marking M ′, we construct
a RB-CGS IN,M′ = ({1}, P, S, {p}, π, Act, d, c, δ) where:

s0

t1

t2

tk

e

s

t
+
1

t
−
1

t
+
2

t
−
2

t
+
k

t
−
k

idle

idle

idle

idle

good

idle

idle

p

Figure 6. Structure IN,M′ .

• S = {s0} ∪ T ∪ {s, e};
• π(p) = {s};
• Act = {idle, good} ∪ {t−, t+ | t ∈ T};
• d(s0) = {idle, good} ∪ {t− | t ∈ T};
• d(s) = d(e) = {idle};
• d(t) = {idle, t+};
• c(idle) = 0̄; c(good) = M ′;
• cr(t

−) = W (r, t) for all r ∈ P ;
• cr(t

+) = −W (r, i) for all r ∈ P ;
• δ(x, idle) = e for x ∈ {s0, t, e};

• δ(s0, good) = s;
• δ(s0, t

−) = t;
• δ(t, t+) = s0.

The following is straightforward:

Lemma 6. Given a net N = (P, T,W,M) and a marking M ′, M ′

is reachable from M iff IN,M′ , s0 |= 〈〈1M 〉〉�U p.

Corollary 4. The lower bound for the model checking problem com-
plexity of RB±ATL is EXPSPACE.

5 CONCLUSION

The main contribution of this paper is a model-checking algorithm
for RB±ATL, a logic with resource production. This is the first de-
cidability result for a resource logic of strategic ability (multi-agent
rather than single agent) that allows both unbounded production and
consumption of resources. The lower bound for the model-checking
complexity of RB±ATL is EXPSPACE and the upper bound is still
an open problem. In future work, we plan to concentrate on identi-
fying computationally tractable cases for RB±ATL model-checking,
for example by restricting the class of transition systems to those
without ‘mixed’ loops (producing one resource and consuming an-
other).

Acknowledgments This work was supported by the Engineering
and Physical Sciences Research Council [grants EP/K033905/1 and
EP/K033921/1]. We would also like to thank the anonymous ECAI
2014 reviewers whose comments and suggestions helped to improve
the paper.

REFERENCES

[1] N. Alechina, B. Logan, H. N. Nguyen, and A. Rakib, ‘Resource-bounded
alternating-time temporal logic’, in Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS
2010), pp. 481–488. IFAAMAS, (2010).

[2] R. Alur, T. Henzinger, and O. Kupferman, ‘Alternating-time temporal
logic’, Journal of the ACM, 49(5), 672–713, (2002).

[3] N. Bulling, J. Dix, and W. Jamroga, ‘Model checking logics of strategic
ability: Complexity*’, in Specification and Verification of Multi-agent
Systems, 125–159, Springer, (2010).

[4] N. Bulling and B. Farwer, ‘On the (un-)decidability of model checking
resource-bounded agents’, in Proceedings of the 19th European Confer-
ence on Artificial Intelligence (ECAI 2010), volume 215 of Frontiers in
Artificial Intelligence and Applications, pp. 567–572. IOS Press, (2010).

[5] E. M. Clarke, E. A. Emerson, and A. P. Sistla, ‘Automatic verification of
finite-state concurrent systems using temporal logic specifications’, ACM
Transactions on Programming Languages and Systems, 8(2), 244–263,
(1986).

[6] D. Della Monica, M. Napoli, and M. Parente, ‘On a logic for coalitional
games with priced-resource agents’, Electr. Notes Theor. Comput. Sci.,
278, 215–228, (2011).

[7] D. Della Monica, M. Napoli, and M. Parente, ‘Model checking coali-
tional games in shortage resource scenarios’, in Proceedings of the 4th
International Symposium on Games, Automata, Logics and Formal Ver-
ification (GandALF 2013, volume 119 of EPTCS, pp. 240–255, (2013).

[8] W. Reisig, Petri Nets: An Introduction, volume 4 of EATCS Monographs
on Theoretical Computer Science, Springer, 1985.

N. Alechina et al. / Decidable Model-Checking for a Resource Logic with Production of Resources14

