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Abstract. We extended Isabelle/HOL with a pair of definitional commands for
datatypes and codatatypes. They support mutual and nested (co)recursion through
well-behaved type constructors, including mixed recursion–corecursion, and are
complemented by syntaxes for introducing primitive (co)recursive functions and
by a general proof method for reasoning coinductively. As a case study, we ported
Isabelle’s Coinductive library to use the new commands, eliminating the need for
tedious ad hoc constructions.

1 Introduction

Coinductive methods are becoming widespread in computer science. In proof assistants
such as Agda and Coq, codatatypes and coinduction are intrinsic to the logical calculus.
Formalizations involving programming language semantics, such as the CompCert ver-
ified C compiler [17], use codatatypes to represent potentially infinite execution traces.
The literature also abounds with “coinductive pearls”—papers that demonstrate how
coinductive methods lead to more elegant solutions than traditional approaches.

Thus far, provers based on higher-order logic (HOL) have mostly stood on the side-
lines of these developments. Isabelle/HOL provides a few manually derived codatatypes
(e.g., lazy lists) in the Coinductive entry of the Archive of Formal Proofs [18]. This li-
brary forms the basis of JinjaThreads [19], a verified compiler for a Java-like language,
and of the formalization of the Java memory model [21]. The manual constructions are
heavy, requiring hundreds of lines for each codatatype.

Even in the realm of datatypes, there is room for improvement. Isabelle’s datatype
package was developed by Berghofer and Wenzel [4], who drew on the work of Melham
[22], Gunter [11, 12], Paulson [24], and Harrison [14]. The package supports positive
recursion through functions and reduces nested recursion through datatypes to mutual
recursion, but otherwise allows no nesting. For example, it rejects definitions such as

datatype α treeFS = TreeFS α (α treeFS fset)

where fset designates finite sets (a non-datatype). Moreover, the reduction of nested to
mutual recursion makes it difficult to specify recursive functions modularly.

We introduce a definitional package for datatypes and codatatypes that addresses the
issues noted above. The key notion is that of a bounded natural functor (BNF), a type
constructor equipped with map and set functions and a cardinality bound (Section 2).
BNFs are closed under composition and least and greatest fixpoints and are expressible
in HOL. Users can register well-behaved type constructors such as fset as BNFs.
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The BNF-based datatype and codatatype commands provide many conveniences
such as automatically generated discriminators, selectors, map and set functions, and
relators (Sections 3 and 4). Thus, the command

codatatype (lset: α) llist (map: lmap rel: lrel) =
lnull: LNil | LCons (lhd: α) (ltl: α llist)

defines the type α llist of lazy lists over α, with constructors LNil :: α llist and LCons ::
α⇒ α llist⇒ α llist, a discriminator lnull :: α llist⇒ bool, selectors lhd :: α llist⇒ α
and ltl :: α llist⇒ α llist, a set function lset :: α llist⇒ α set, a map function lmap ::
(α⇒ β)⇒ α llist⇒ β llist, and a relator lrel :: (α⇒ β⇒ bool)⇒ α llist⇒ β llist⇒
bool. Intuitively, the codatatype keyword indicates that the constructors can be applied
repeatedly to produce infinite values—e.g., LCons 0 (LCons 1 (LCons 2 . . .)).

Nesting makes it possible to mix recursion and corecursion arbitrarily. The next
commands introduce the types of Rose trees with finite or possibly infinite branching
(list vs. llist) and with finite or possibly infinite paths (datatype vs. codatatype):

datatype α tree = Tree (lab: α) (sub: α tree list)
datatype α treeω = Treeω (labω: α) (subω: α treeω llist)
codatatype α ltree = LTree (llab: α) (lsub: α ltree list)
codatatype α ltreeω = LTreeω (llabω: α) (lsubω: α ltreeω llist)

Primitive (co)recursive functions can be specified using primrec and primcorec
(Sections 5 and 6). The function below constructs a possibly infinite tree by repeatedly
applying f :: α⇒ α llist to x. It relies on lmap to construct the nested llist modularly:

primcorec iterate_�ltreeω :: (α⇒ α llist)⇒ α⇒ α ltreeω where
iterate_�ltreeω f x = LTreeω x (lmap (iterate_�ltreeω f ) ( f x))

An analogous definition is possible for α ltree, using list’s map instead of lmap.
For datatypes that recurse through other datatypes, and similarly for codatatypes,

old-style mutual definitions are also allowed. For the above example, this would mean
defining iterate_�ltreeω by mutual corecursion with iterate_�lforestω :: (α⇒ α llist)⇒
α llist⇒ α ltreeω llist. Despites its lack of modularity, the approach is useful both for
compatibility and for expressing specifications in a more flexible style. The package
generates suitable (co)induction rules to facilitate reasoning about the definition.

Reasoning coinductively is notoriously tedious in Isabelle, because the coinduct
method requires the user to provide a witness relation. Our new coinduction method
eliminates the boilerplate that has plagued earlier developments (Section 7). It is now
possible to have one-line proofs by coinduction auto. To show the package in action,
we present a theory of stream processors, which combine a least and a greatest fixpoint
(Section 8). In addition, we describe our experience porting the Coinductive library to
use the new package (Section 9). A formal development accompanies this paper [8].

The package has been part of Isabelle starting with version 2013. The implementa-
tion is a significant piece of engineering, at over 17 500 lines of Standard ML code and
2 500 lines of Isabelle formalization. Most of the features described here are available
in 2013-2; a few are present only in the development repository. In the current imple-
mentation, the BNF-based datatype and primrec commands are suffixed with _new
to avoid clashes with the old package. The input syntax and the generated constants and
theorems are documented in the user’s manual [5].
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2 Low-Level Constructions

At the lowest level, each (co)datatype has a single unary constructor. Multiple curried
constructors are modeled by disjoint sums (+) of products (×). A (co)datatype defi-
nition corresponds to a fixpoint equation. For example, the equation β = unit+α×β
specifies either (finite) lists or lazy lists, depending on which fixpoint is chosen.

Bounded natural functors (BNFs) are a semantic criterion for where (co)recursion
may appear on the right-hand side of an equation. The theory of BNFs is described in a
previous paper [28] and in Traytel’s M.Sc. thesis [29]. We refer to either of these for a
discussion of related work. Here, we focus on implementational aspects.

There is a large gap between the low-level view and the end products presented to
the user. The necessary infrastructure—including support for multiple curried construc-
tors, generation of high-level characteristic theorems, and commands for specifying
functions—constitutes a new contribution and is described in Sections 3 to 6.

Bounded Natural Functors. An n-ary BNF is a type constructor equipped with a
map function, n set functions, and a cardinal bound that satisfy certain properties. For
example, the map and set functions associated with α llist are lmap and lset, and the
relator lrel extends binary predicates over elements to binary predicates over lazy lists:

lrel R xs ys = (∃zs. lset zs⊆ {(x, y) | R x y} ∧ lmap fst zs = xs ∧ lmap snd zs = ys)

Additionally, lbd bounds the number of elements returned by lset; it may not depend on
α’s cardinality. To prove that llist is a BNF, the greatest fixpoint operation discharges
the following proof obligations:1

lmap id= id lmap ( f ◦g) = lmap f ◦ lmap g
∧

x. x ∈ lset xs =⇒ f x = g x

lmap f xs = lmap g xs|lset xs| ≤o lbd lset ◦ lmap f = image f ◦ lset
ℵ0 ≤o lbd lrel R �•�• lrel S v lrel (R �•�• S)

(The operator ≤o is a well-order on ordinals [6], and �•�• denotes the relational compo-
sition of binary predicates.) Internally, the package stores BNFs as an ML structure that
combines the functions, the basic properties, and derived facts such as lrel R �•�• lrel S =
lrel (R �•�• S), lrel (op =) = (op =), and R v S =⇒ lrel R v lrel S.

Given an n-ary BNF, the n type variables associated with set functions, and on which
the map function acts, are live; any other variables are dead. The notation σ 〈α |∆〉
stands for a BNF of type σ depending on the (ordered) list of live variables α and the
set of dead variables ∆. Nested (co)recursion can only take place through live variables.

A two-step procedure constructs (co)datatypes as solutions to fixpoint equations:

1. Construct the BNFs for the right-hand sides of the equations by composition.
2. Perform the least or greatest fixpoint operation on the BNFs.

Whereas codatatypes are always nonempty, some datatype definitions must be re-
jected in HOL. For example, the type of infinite streams can be defined only as a co-
datatype: codatatype α stream = SCons (shd: α) (stl: α stream). In the general BNF
setting, each functor must keep track of its nonemptiness witnesses [7].

1 The list of proof obligations has evolved since our previous work [28]. The redundant cardi-
nality condition |{xs | lset xs⊆ A}| ≤o (|A|+2)lbd has been removed, and the preservation of
weak pullbacks has been reformulated as a simpler property of the relator.
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The Fixpoint Operations. The LFP operation constructs a least fixpoint solution
τ1, . . . , τn to n mutual fixpoint equations βj = σj. Its input consists of n BNFs sharing
the same live variables [28, 29]:

LFP : n (m+n)-ary BNFs σj 〈α, β |∆ j〉 →
• n m-ary BNFs τj 〈α |∆1 ∪ ·· · ∪ ∆m〉 for newly defined types τj

• n constructors ctor_�τj :: σj[β 7→ τ]⇒ τj

• n iterators iter_�τj :: (σ1⇒ β1)⇒ ··· ⇒ (σn⇒ βn)⇒ τj⇒ βj

• characteristic theorems including an induction rule

(The fixpoint variables βj are harmlessly reused as result types of the iterators.) The
contract for GFP, the greatest fixpoint, is identical except that coiterators and coinduct-
ion replace iterators and induction. The coiterator coiter_�τj has type (β1⇒σ1)⇒···⇒
(βn⇒ σn)⇒ βj⇒ τj. An iterator consumes a datatype, peeling off one constructor at
a time; a coiterator produces a codatatype, delivering one constructor at a time.

LFP defines algebras and morphisms based on the equation system. The fixpoint,
or initial algebra, is defined abstractly by well-founded recursion on a sufficiently large
cardinal. In contrast, GFP builds a concrete tree structure. An abstract approach is also
possible for GFP [26]; preliminary results indicate that it is simpler and more efficient.

The BNF approach to nesting scales much better than the old package’s reduction
to mutual recursion [29, Appendix B]. On the other hand, the LFP and GFP operations
scale poorly in the number of mutual types; n≈ 8 is often the limit in practice. Reducing
mutual recursion to nested recursion would circumvent the problem.

The ML functions that implement BNF operations all adhere to the same pattern:
They introduce constants, state their properties, and discharge the proof obligations
using dedicated tactics. About one fifth of the code base is devoted to tactics. They rely
almost exclusively on resolution and unfolding, which makes them fast and reliable.

Methodologically, we developed the package gradually, starting with the formaliza-
tion of a fixed abstract example β= (α, β, γ)F0 and γ = (α, β, γ)G0 specifying α F and
α G. We axiomatized the BNF structure and verified the closure under LFP and GFP
using structured Isar proofs. We then expanded the proofs to detailed apply scripts [8].
Finally, we translated the scripts into tactics and generalized them for arbitrary m and n.

The Composition Pipeline. Composing functors together is widely perceived as be-
ing trivial, and accordingly it has received little attention in the literature, including our
previous paper [28]. Nevertheless, an implementation must perform a carefully orches-
trated sequence of steps to construct BNFs for the types occurring on the right-hand
sides of fixpoint equations. This is achieved by four operations:

COMPOSE : m-ary BNF σ 〈α |∆〉 and m n-ary BNFs τi 〈β |Θi〉 →
n-ary BNF σ[α 7→ τ] 〈β |∆ ∪Θ1 ∪ ·· · ∪Θm〉

KILL : m-ary BNF σ 〈α |∆〉 and k ≤ m →
(m− k)-ary BNF σ 〈αk+1, . . . , αm |∆ ∪ {α1, . . . , αk}〉

LIFT : m-ary BNF σ 〈α |∆〉 and n type variables β →
(m+n)-ary BNF σ 〈β, α |∆〉

PERMUTE : m-ary BNF σ 〈α |∆〉 and permutation π of {1, . . . ,m} →
m-ary BNF σ 〈απ(1), . . . , απ(m) |∆〉
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COMPOSE operates on BNFs normalized to share the same live variables; the other
operations perform this normalization. Complex types are proved to be BNFs by ap-
plying normalization followed by COMPOSE recursively. The base cases are manually
registered as BNFs. These include constant α 〈|α〉, identity α 〈α |〉, sum α+β 〈α, β |〉,
product α×β 〈α, β |〉, and restricted function space α⇒β 〈β |α〉. Users can register
further types, such as those introduced by the new package for non-free datatypes [27].

As an example, consider the type (α⇒β) + γ×α. The recursive calls on the argu-
ments to + return two BNFs, α⇒β 〈β |α〉 and γ×α 〈γ, α |〉. Since α is dead in α⇒β,
it must be killed in γ×α as well. This is achieved by permuting α to be the first variable
and killing it, yielding γ×α 〈γ |α〉. Next, both BNFs are lifted to have the same set of
live variables: α⇒β 〈γ, β |α〉 and γ×α 〈β, γ |α〉. Another permutation ensures that the
live variables appear in the same order: α⇒β 〈β, γ |α〉. At this point, the BNF for +
can be composed with the normalized BNFs to produce (α⇒β)+ γ×α 〈β, γ |α〉.

The compositional approach to BNF construction keeps the tactics simple at the
expense of performance. Composition initially took seconds even for simple examples.
By inlining intermediate definitions and deriving auxiliary BNF facts lazily, we were
able to address the main bottlenecks. Nevertheless, Brian Huffman has demonstrated in
a private prototype that the monolithic approach is feasible and less heavy.

Nested-to-Mutual Reduction. The old datatype command reduces nested recursion
to mutual recursion, as proposed by Gunter [11]. Given a nested datatype specification
such as α tree = Tree α (α tree list), the old command first unfolds the definition of list,
resulting in the mutual specification of trees and “lists of trees,” as if the user had entered

datatype α tree=Tree α (α treelist) and α treelist=Nil |Cons (α tree)(α treelist)

In a second step, the package translates all occurrences of α treelist into the more palat-
able α tree list via an isomorphism. As a result, the induction principle and the input
syntax to primrec have an unmistakable mutual flavor.

For compatibility, and for the benefit of users who prefer the mutual approach, the
new package also implements a nested-to-mutual reduction operation, N2M, that con-
structs old-style induction principles and iterators from new-style ones:

N2M : n (m+n)-ary BNFs σj 〈α, β |∆ j〉 and n datatypes τj →
• n iterators n2m_�iter_�τj :: (σ1⇒ β1)⇒ ·· · ⇒ (σn⇒ βn)⇒ τj⇒ βj

• characteristic theorems including an induction rule

Like LFP and GFP, the N2M operation takes a system of equations βj = σj given as
normalized BNFs. In addition, it expects a list of datatypes τj that solve the equations
and that may nest each other (e.g., α tree and α tree list). The operation is dual for co-
datatypes. Its implementation is a single ML function that reverses some of the function
and implication arrows when operating on codatatypes.

The primrec and primcorec commands invoke N2M when they detect nested
(co)datatypes used as if they were mutual. In addition, datatype_compat relies on
N2M to register new-style nested datatypes as old-style datatypes, which is useful
for interfacing with existing unported infrastructure. In contrast to Gunter’s approach,
N2M does not introduce any new types. Instead, it efficiently composes existing arti-
facts: (co)iterators and (co)induction rules. The (admittedly technical) description be-
low is to our knowledge the first account of such an operation.
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As an abstract example that captures most of the complexity of N2M, let α F be the
LFP of β = (α, β)F0 and α G be the LFP of β = (α, βF)G0.2 These two definitions
reflect the modular, nested view: First α F is defined as an LFP, becoming a BNF in its
own right; then α G is defined as an LFP using an equation that nests F. The resulting
iterator for α G, iter_�G, has type ((α, γF)G0 ⇒ γ)⇒ α G⇒ γ, and its characteristic
equation recurses through the F components of G using map_�F.

On the other hand, if we defined α GM (' α G) and α GFM (' α G F) together, in
the old-style mutually recursive fashion, as the LFP of β= (α, γ)G0 and γ= (β, γ)F0,
we would obtain two iterators with the following types:

iter_�GM :: ((α, γ)G0⇒ β)⇒ ((β, γ)F0⇒ γ)⇒ α GM ⇒ β
iter_�GFM :: ((α, γ)G0⇒ β)⇒ ((β, γ)F0⇒ γ)⇒ α GFM⇒ γ

These are more flexible: iter_�GFM offers the choice of indicating recursive behavior
other than a map for the α GFM components of α GM. The gap is filled by N2M, which
defines “mutualized” iterators by combining the standard iterators for F and G. It does
not introduce any new types α GM and α GFM but works with the existing ones:

n2m_�iter_�G :: ((α, γ)G0⇒ β)⇒ ((β, γ)F0⇒ γ)⇒ α G ⇒ β
n2m_�iter_�G_�F :: ((α, γ)G0⇒ β)⇒ ((β, γ)F0⇒ γ)⇒ α G F⇒ γ

n2m_�iter_�G g f = iter_�G (g ◦map_�G0 id (iter_�F f ))
n2m_�iter_�G_�F g f = iter_�F ( f ◦map_�F0 (n2m_�iter_�G g f ) id)

N2M also outputs an induction principle corresponding to mutualized recursion.
The operation first derives the low-level relator induction rule—a higher-order version
of parallel induction on two values of the same shape (e.g., lists of the same length)—for
each input BNF. The relator induction rules for α G and α G F are as follows:∧

x x′. rel_�G0 P (rel_�F R) x x′ =⇒ R (ctor_�G x) (ctor_�G x′)
rel_�G P v R∧

y y′ . rel_�F0 R S y y′ =⇒ S (ctor_�F y) (ctor_�F y′)
rel_�F R v S

The relators are compositional, enabling a modular proof of the mutualized relator in-
duction from the relator inductions for G and F and relator monotonicity of G0 and F0:∧

x x′. rel_�G0 P S x x′ =⇒ R (ctor_�G x) (ctor_�G x′)∧
y y′ . rel_�F0 R S y y′ =⇒ S (ctor_�F y) (ctor_�F y′)

rel_�G P v R ∧ rel_�F (rel_�G P) v S

The standard induction rule is derived by instantiating P :: α⇒ α′⇒ bool with equality,
followed by some massaging. Coinduction is dual, with =⇒ and v reversed.

3 Types with Free Constructors

Datatypes and codatatypes are instances of types equipped with free constructors. Such
types are interesting in their own right, irrespective of whether they support (co)induc-
tion; for example, pattern matching requires only distinctness and injectivity.

2 It may help to think of these types more concretely by taking
F := list G := tree (α, β)F0 := unit+α×β (α, β)G0 := α×β
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We have extended Isabelle with a database of freely constructed types. Users can en-
ter the wrap_free_constructors command to register custom types, by listing the con-
structors and proving exhaustiveness, distinctness, and injectivity. In exchange, Isabelle
generates constants for case expressions, discriminators, and selectors—collectively
called destructors—as well as a wealth of theorems about constructors and destructors.
The datatype and codatatype commands use this functionality internally.

The case constant is defined via the definite description operator ( ι)—for example,
case_�list n c xs = ( ιz. xs = Nil ∧ z = n ∨ (∃y ys. xs = Cons y ys ∧ z = c y ys)). Syntax
translations render case_�list n c xs as an ML-style case expression.

Given a type τ constructed by C1, . . . ,Cm, its discriminators are constants is_�C1, . . . ,
is_�Cm :: τ⇒ bool such that is_�Ci (Cj x̄) if and only if i = j. No discriminators are needed
if m = 1. For the m = 2 case, Isabelle generates a single discriminator and uses its
negation for the second constructor by default. For nullary constructors Ci, Isabelle can
use λx. x = Ci as the discriminator. In addition, for each n-ary constructor Ci :: τ1 ⇒
·· ·⇒ τn⇒ τ, n selectors un_�Cij :: τ⇒ τj extract its arguments. Users can reuse selector
names across constructors. They can also specify a default value for constructors on
which a selector would otherwise be unspecified.

The example below defines four selectors and assigns reasonable default values.
The mid selector returns the third argument of Node2 x l r as a default value:

datatype α tree23 =
Leaf (defaults left: Leaf mid: Leaf right: Leaf)
| Node2 (val: α) (left: α tree23) (right: α tree23) (defaults mid: λx l r. r)
| Node3 (val: α) (left: α tree23) (mid: α tree23) (right: α tree23)

4 (Co)datatypes

The datatype and codatatype commands share the same input syntax, consisting of
a list of mutually (co)recursive types to define, their desired constructors, and optional
information such as custom names for destructors. They perform the following steps:

1. Formulate and solve the fixpoint equations using LFP or GFP.
2. Define the constructor constants.
3. Generate the destructors and the free constructor theorems.
4. Derive the high-level map, set, and relator theorems.
5. Define the high-level (co)recursor constants.
6. Derive the high-level (co)recursor theorems and (co)induction rules.

Step 1 relies on the fixpoint and composition operations described in Section 2 to
produce the desired types and low-level constants and theorems. Step 2 defines high-
level constructors that untangle sums of products—for example, Nil= ctor_�list (Inl ())
and Cons x xs = ctor_�list (Inr (x, xs)). Step 3 amounts to an invocation of wrap_free_
constructors, described in Section 3. Step 4 reformulates the low-level map, set, and
relator theorems in terms of constructors; a selection is shown for α list below:

list.map: map f Nil= Nil map f (Cons x xs) = Cons ( f x) (map f xs)
list.set: set Nil= {} set (Cons x xs) = {x} ∪ set xs
list.rel_inject: rel R Nil Nil rel R (Cons x xs) (Cons y ys)←→ R x y ∧ rel R xs ys
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Datatypes and codatatypes differ at step 5. For an m-constructor datatype, the high-
level iterator takes m curried functions as arguments (whereas the low-level version
takes one function with a sum-of-product domain). For convenience, a recursor is de-
fined in terms of the iterator to provide each recursive constructor argument’s value both
before and after the recursion. The list recursor has type β⇒ (α⇒ α list⇒ β⇒ β)⇒
α list⇒ β. The corresponding induction rule has one hypothesis per constructor:

list.rec: rec_�list n cNil= n rec_�list n c (Cons x xs) = c x xs (rec_�list n c xs)

list.induct:
P Nil

∧
x xs. P xs =⇒ P (Cons x xs)

P t

For nested recursion beyond sums of products, the map and set functions of the type
constructors through which recursion takes place appear in the high-level theorems:

treeω.rec: rec_�treeω f (Treeω x ts) = f x (lmap (λt. (t, rec_�treeω f t)) ts)

treeω.induct:
∧

x ts. (
∧

t. t ∈ lset ts =⇒ P t) =⇒ P (Treeω x ts)

P t

As for corecursion, for an m-constructor codatatype, m−1 predicates sequentially deter-
mine which constructor to produce. Moreover, for each constructor argument, a func-
tion specifies how to construct it from an abstract value of type α. For corecursive
arguments, the function has type α⇒ τ+α and returns either a value that stops the co-
recursion or a tuple of arguments to a corecursive call. At the high level, such functions
are presented as three arguments stop :: α⇒ bool, end :: α⇒ τ, and continue :: α⇒ α,
abbreviated to s, e, c below. For example, the high-level corecursor for lazy lists has the
type (α⇒ bool)⇒ (α⇒ β)⇒ (α⇒ bool)⇒ (α⇒ β llist)⇒ (α⇒ α)⇒ α⇒ β llist:

llist.corec: n a =⇒ corec_�llist n h s e c a = LNil
¬ n a =⇒ corec_�llist n h s e c a =

LCons (h a) (if s a then e a else corec_�llist n h s e c (c a))

Nested corecursion is expressed using the map functions of the nesting type construc-
tors. The coinduction rule uses the relators to lift a coinduction witness R. For example:

ltree.corec: corec_�ltree l s a =

LTree (l a) (map (case_�sum (λt. t) (corec_�ltree l s)) (s a))

ltree.coinduct:
R t u

∧
t u. R t u =⇒ llab t = llab u ∧ rel R (lsub t) (lsub u)

t = u

5 Recursive Functions

Primitive recursive functions can be defined by providing suitable arguments to the
recursors. The primrec command automates this process: From recursive equations
specified by the user, it synthesizes a recursor-based definition.

The main advantage of the new implementation of primrec over the old one is its
support for nested recursion through map functions [23]. For example:

primrec height_�treeFS :: α treeFS⇒ nat where
height_�treeFS (TreeFS _ T ) = 1+

⊔
fset (fimage height_�treeFS T )



9

In the above, α treeFS is the datatype constructed by TreeFS ::α⇒α treeFS fset⇒α treeFS

(Section 1),
⊔

N stands for the maximum of N, fset injects α fset into α set, and the
map function fimage gives the image of a finite set under a function. From the specified
equation, the command synthesizes the definition

height_�treeFS = rec_�treeFS (λ_ TN. 1+
⊔

fset (fimage snd TN))

From this definition and the treeFS.rec theorems, it derives the original specification as a
theorem. Notice how the argument T :: α treeFS fset becomes TN :: (α treeFS×nat) fset,
where the second pair component stores the result of the corresponding recursive call.

Briefly, constructor arguments x are transformed as follows. Nonrecursive argu-
ments appear unchanged in the recursor and can be used directly. Directly or mutually
recursive arguments appear as two values: the original value x and the value y after the
recursive call to f. Calls f x are replaced by y. Nested recursive arguments appear as a
single argument but with pairs inside the nesting type constructors. The syntactic trans-
formation must follow the map functions and eventually apply fst or snd, depending on
whether a recursive call takes place. Naked occurrences of x without map are replaced
by a suitable “map fst” term; for example, if the constant 1 were changed to fcard T in
the specification above, the definition would have fcard (fimage fst TN) in its place.

The implemented procedure is somewhat more complicated. The recursor generally
defines functions of type α treeFS⇒ β, but primrec needs to process n-ary functions that
recurse on their jth argument. This is handled internally by moving the jth argument to
the front and by instantiating β with an (n−1)-ary function type.

For recursion through functions, the map function is function composition (◦). In-
stead of f ◦ g, primrec also allows the convenient (and backward compatible) syntax
λx. f (g x). More generally, λx1 . . . xn. f (g x1 . . . xn) expands to (op ◦ (. . . (op ◦ f ) . . .)) g.

Thanks to the N2M operation described in Section 2, users can also define mutually
recursive functions on nested datatypes, as they would have done with the old package:

primrec height_�tree :: α tree⇒ nat and height_�forest :: α tree list⇒ nat
where
height_�tree (Tree _ ts) = 1 + height_�forest ts
| height_�forest Nil = 0
| height_�forest (Cons t ts) = height_�tree t t height_�forest ts

Internally, the following steps are performed:

1. Formulate and solve the fixpoint equations using N2M.
2. Define the high-level (co)recursor constants.
3. Derive the high-level (co)recursor theorems and (co)induction rules.

Step 1 produces low-level constants and theorems. Steps 2 and 3 are performed by the
same machinery as when declaring mutually recursive datatypes (Section 4).

6 Corecursive Functions

The primcorec command is the main mechanism to introduce functions that produce
potentially infinite codatatype values [23]. The command supports three competing syn-
taxes, or views: destructor, constructor, and code. Irrespective of the view chosen for in-
put, the command generates the characteristic theorems associated with all three views.
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The Destructor View. The coinduction literature tends to favor the destructor view,
perhaps because it best reflects the duality between datatypes and codatatypes [1, 16].
The append function on lazy lists will serve as illustration:

primcorec lapp :: α llist⇒ α llist⇒ α llist where
lnull xs =⇒ lnull ys =⇒ lnull (lapp xs ys)
| lhd (lapp xs ys) = lhd (if lnull xs then ys else xs)
| ltl (lapp xs ys) = (if lnull xs then ltl ys else lapp (ltl xs) ys)

The first formula, called the discriminator formula, gives the condition on which
LNil should be produced. For an m-constructor datatype, up to m discriminator formulas
can be given. If exactly m−1 formulas are stated (as in the example above), the last one
is implicitly understood, with as its condition the complement of the other conditions.

The last two formulas, the selector equations, describe the behavior of the function
when an LCons is produced. They are implicitly conditional on ¬ lnull xs ∨ ¬ lnull ys.
The right-hand sides consist of ‘let’, ‘if’, or ‘case’ expressions whose leaves are either
corecursive calls or arbitrary non-corecursive terms. This restriction ensures that the
definition qualifies as primitive corecursive. The selector patterns on the left ensure that
the function is productive and hence admissible [16].

With nesting, the corecursive calls appear under a map function, in much the same
way as for primrec. Intuitive λ syntaxes for corecursion via functions are supported.
The nested-to-mutual reduction is available for corecursion through codatatypes.

Proof obligations are emitted to ensure that the conditions are mutually exclusive.
These are normally given to auto but can also be proved manually. Alternatively, users
can specify the sequential option to have the conditions apply in sequence.

The conditions need not be exhaustive, in which case the function’s behavior is left
underspecified. If the conditions are syntactically detected to be exhaustive, or if the
user enables the exhaustive option and discharges its proof obligation, the package
generates stronger theorems—notably, discriminator formulas with←→ instead of =⇒.

The Constructor View. The constructor view can be thought of as an abbreviation for
the destructor view. It involves a single conditional equation per constructor:

primcorec lapp :: α llist⇒ α llist⇒ α llist where
lnull xs =⇒ lnull ys =⇒ lapp xs ys = LNil
| _ =⇒ lapp xs ys = LCons (lhd (if lnull xs then ys else xs))

(if lnull xs then ltl ys else lapp (ltl xs) ys)

The wildcard _ stands for the complement of the previous conditions.
The constructor view is convenient as input and sometimes for reasoning, but the

equations are generally not suitable as simplification rules since they can loop. Compare
this with the discriminator formulas and the selector equations of the destructor view,
which can be safely registered as simplification rules.

The Code View. The code view is a variant of the constructor view in which the con-
ditions are expressed using ‘if’ and ‘case’ expressions. Its primary purpose is for inter-
facing with Isabelle’s code generator, which cannot cope with conditional equations.

The code view that primcorec generates from a destructor or constructor view is
simply an equation that tests the conditions sequentially using ‘if’:
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lapp xs ys = (if lnull xs ∧ lnull ys then LNil
else LCons(lhd(if lnull xs then ys else xs))(if lnull xs then ltl ys else lapp(ltl xs)ys))

If the cases are not known to be exhaustive, an additional ‘if’ branch ensures that the
generated code throws an exception when none of the conditions are met.

The code view has a further purpose besides code generation: It provides a more
flexible input format, with nested ‘let’, ‘if’, and ‘case’ expressions outside the con-
structors, multiple occurrences of the same constructors, and non-corecursive branches
without constructor guards. This makes the code view the natural choice for append:

primcorec lapp :: α llist⇒ α llist⇒ α llist where
lapp xs ys = (case xs of LNil⇒ ys | LCons x xs⇒ LCons x (lapp xs ys))

The package reduces this specification to the following constructor view:

lnull xs =⇒ lnull ys =⇒ lapp xs ys = LNil
_ =⇒ lapp xs ys = LCons (case xs of LNil⇒ lhd ys | LCons x _⇒ x)

(case xs of LNil⇒ ltl ys | LCons _ xs⇒ lapp xs ys)

In general, the reduction proceeds as follows:

1. Expand branches t of the code equation that are not guarded by a constructor to the
term (case t of C1 x̄1⇒ C1 x̄1 | · · · | Cm x̄m⇒ Cm x̄m), yielding an equation χ.

2. Gather the conditions Φi associated with the branches guarded by Ci by traversing
χ, with ‘case’ expressions recast as ‘if’s.

3. Generate the constructor equations
∨

Φi x̄ =⇒ f x̄ = Ci (un_�Ci1 χ) . . . (un_�Cij χ),
taking care of moving the un_�Cij’s under the conditionals and of simplifying them.

For the append example, step 1 expands the ys in the first ‘case’ branch to the term
(case ys of LNil⇒ LNil | LCons y ys⇒ LCons y ys).

Finally, although primcorec does not allow pattern matching on the left-hand side,
the simps_of_case command developed by Gerwin Klein and Lars Noschinski can be
used to generate the pattern-matching equations from the code view—in our example,
lapp LNil ys = ys and lapp (LCons x xs) ys = LCons x (lapp xs ys).

7 Coinduction Proof Method

The previous sections focused on the infrastructure for defining coinductive objects.
Also important are the user-level proof methods, the building blocks of reasoning. The
new method coinduction provides more automation over the existing coinduct, follow-
ing a suggestion formulated in Lochbihler’s Ph.D. thesis [20, Section 7.2]. The method
handles arbitrary predicates equipped with suitable coinduction theorems. In particular,
it can be used to prove equality of codatatypes by exhibiting a bisimulation.

A coinduction rule for a codatatype contains a free bisimulation relation variable R
in its premises, which does not occur in the conclusion. The coinduct method crudely
leaves R uninstantiated; the user is expected to provide the instantiation. However, the
choice of the bisimulation is often canonical, as illustrated by the following proof:

lemma
assumes infinite (lset xs)
shows lapp xs ys = xs
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proof coinduct
def R = λ l r. ∃xs. l = lapp xs ys ∧ r = xs ∧ infinite (lset xs)
with assms show R (lapp xs ys) xs by auto

fix l r assume R l r
then obtain xs where l = lapp xs ys ∧ r = xs ∧ infinite (lset xs) by auto
thus lnull l = lnull r ∧ (¬ lnull l−→¬ lnull r −→ lhd l = lhd r ∧ R (ltl l) (ltl r))
by auto

qed

The new method performs the steps highlighted in gray automatically, making a
one-line proof possible: by (coinduction arbitrary: xs) auto.

In general, given a goal P =⇒ q t1 . . . tn, the method selects the rule q.coinduct and
takes λz1 . . . zn. ∃x1 . . . xm. z1 = t1 ∧ ·· · ∧ zn = tn ∧ P as the coinduction witness R. The
variables xi are those specified as being arbitrary and may freely appear in P, t1, . . . , tn.
After applying the instantiated rule, the method discharges the premise R t1 . . . tn by re-
flexivity and using the assumption P. Then it unpacks the existential quantifiers from R.

8 Example: Stream Processors

Stream processors were introduced by Hancock et al. [13] and have rapidly become
the standard example for demonstrating mixed fixpoints in proof assistants [1–3,9,10].
Thanks to the new (co)datatype package, Isabelle finally joins this good company.

A stream processor represents a continuous transformation on streams—that is, a
function of type α stream⇒ β stream that consumes at most a finite prefix of the in-
put stream before producing an element of output. The datatype sp1 captures a single
iteration of this process. The codatatype spω nests sp1 to produce an entire stream:

datatype (α, β, δ) sp1 = Get (α⇒ (α, β, δ) sp1) | Put β δ
codatatype (α, β) spω = SP (unSP: (α, β, (α, β)spω) sp1)

Values of type sp1 are finite-depth trees with inner nodes Get and leaf nodes Put. Each
inner node has |α| children, one for each possible input α. The Put constructor car-
ries the output element of type β and a continuation of type δ. The definition of spω
instantiates the continuation type to a stream processor (α, β) spω.

In contrast to Isabelle, Agda supports the simultaneous mutual definition of sp1
and spω with annotations on constructor arguments indicating whether they are to be
understood coinductively [10]. Least fixpoints are taken before greatest fixpoints, which
is appropriate for this example. Isabelle’s nested approach is arguably more explicit,
more flexible, and more consistent with the literature.

The semantics of spω is given by two functions: run1 recurses on sp1 (i.e., consumes
an sp1), and runω, corecurses on stream (i.e., produces a stream, defined in Section 2):

primrec run1 :: (α, β, δ) sp1⇒ α stream⇒ (β×δ)×α stream where
run1 (Get f ) s = run1 ( f (shd s)) (stl s)
run1 (Put x q) s = ((x, q), s)

primcorec runω :: (α, β) spω⇒ α stream⇒ β stream where
runω q s = (let ((x, q′), s′) = run1 (unSP q) s in SCons x (runω q′ s′))
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These definitions illustrate some of the conveniences of primrec and primcorec. For
run1, the modular way to nest the recursive call of run1 through functions would rely
on composition—i.e., (run1 ◦ f ) (shd s) (stl s). The primrec command allows us not
only to expand the term run1 ◦ f to λx. run1 ( f x) but also to β-reduce it. For runω, the
constructor view makes it possible to call run1 only once, assign the result in a ‘let’,
and use this result to specify both arguments of the produced constructor.

The stream processor copy outputs the input stream:
primcorec copy :: (α, α) spω where copy= SP (Get (λa. Put a copy))

The nested sp1 value is built directly with corecursion under constructors as an alterna-
tive to the modular approach: copy= SP (map_�sp1 id (λ_. copy) (Get (λa. Put a ()))).
The lemma runω copy s = s is easy to prove using coinduction and auto.

Since stream processors represent functions, it makes sense to compose them:
function ◦1 :: (β, γ, δ)sp1⇒(α, β, (α, β)spω)sp1⇒(α, γ, δ×(α, β)spω)sp1 where

Put b q ◦1 p = Put b (q, SP p)
Get f ◦1 Put b q = f b ◦1 unSP q
Get f ◦1 Get g = Get (λa. Get f ◦1 g a)

by pat_completeness auto
termination by (relation lex_�prod sub sub) auto

primcorec ◦ω :: (β, γ) spω⇒ (α, β) spω⇒ (α, γ) spω where
unSP (q ◦ω q′) =map_�sp1 (λb. b) (λ(q, q′). q ◦ω q′) (unSP q ◦1 unSP q′)

The corecursion applies ◦ω nested through the map function map_�sp1 to the result of
finite preprocessing by the recursion ◦1. The ◦1 operator is defined using function,
which emits proof obligations concerning pattern matching and termination.

9 Case Study: Porting the Coinductive Library

To evaluate the merits of the new definitional package, and to benefit from them, we
have ported existing coinductive developments to the new approach. The Coinductive
library [18] defines four codatatypes and related functions and comprises a large col-
lection of lemmas. Originally, the codatatypes were manually defined as follows:

• extended naturals enat as datatype enat = enat nat | ∞;
• lazy lists α llist using Paulson’s construction [25];
• terminated lazy lists (α, β) tllist as the quotient of α llist× β over the equivalence

relation that ignores the second component if and only if the first one is infinite;
• streams α stream as the subtype of infinite lazy lists.

Table 1 presents the types and the evaluation’s statistics. The third column gives
the lines of code for the definitions, lemmas, and proofs that were needed to define the
type, the constructors, the corecursors, and the case constants, and to prove the free
constructor theorems and the coinduction rule for equality. For enat, we kept the old
definition because the datatype view is useful. Hence, we still derive the corecursor and
the coinduction rules manually, but we generate the free constructor theorems with the
wrap_free_constructors command (Section 3), saving 6 lines. In contrast, the other
three types are now defined with codatatype in 33 lines instead of 774, among which
28 are for tllist because the default value for TNil’s selector applied to TCons requires
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Lines of code Number Lines of code
Codatatype Constructors for definition of lemmas per lemma

enat 0 | eSuc enat 200 → 194 31 → 57 8.42 → 5.79
α llist LNil | LCons α (α llist) 503 → 3 527 → 597 9.86 → 6.44
(α, β) tllist TNil β | TCons α ((α, β) tllist) 169 → 28+120 121 → 200 6.05 → 4.95
α stream SCons α (α stream) 102 → 2+ 96 64 → 159 3.11 → 3.47

Total 974 → 227+216 743 → 1013 8.60 → 5.65

Table 1. Statistics on porting Coinductive to the new package (before→ after)

unbounded recursion. However, we lost the connection between llist, tllist, and stream,
on which the function definitions and proofs relied. Therefore, we manually set up the
lifting and transfer packages [15]; the line counts are shown behind plus signs (+).

The type definitions are just a small fraction of the library; most of the work went
into proving properties of the functions. The fourth column shows the number of lem-
mas that we have proved for the functions on each type. There are 36% more than
before, which might be surprising at first, since the old figures include the manual type
constructions. Three reasons explain the increase. First, changes in the views increase
the counts. Coinductive originally favored the code and constructor views, following
Paulson [25], whereas the new package expresses coinduction and other properties in
terms of the destructors (Sections 4 and 6). We proved additional lemmas for our func-
tions that reflect the destructor view. Second, the manual setup for lifting and transfer
accounts for 36 new lemmas. Third, the porting has been distributed over six months
such that we continuously incorporated our insights into the package’s implementation.
During this period, the stream part of the library grew significantly and tllist a little.

Therefore, the absolute numbers should not be taken too seriously. It is more in-
structive to examine how the proofs have changed. The last column of Table 1 gives the
average length of a lemma, including its statement and its proof; shorter proofs indicate
better automation. Usually, the statement takes between one and four lines, where two
is the most common case. The port drastically reduced the length of the proofs: We now
prove 36% more lemmas in 11% fewer lines.

Two improvements led to these savings. First, the coinduction method massages the
proof obligation to fit the coinduction rule. Second, automation for coinduction proofs
works best with the destructor view, as the destructors trigger rewriting. With the code
and constructor style, we formerly had to manually unfold the equations, and pattern-
matching equations obtained by simps_of_case needed manual case distinctions.

The destructor view also has some drawbacks. The proofs rely more on Isabelle’s
classical reasoner to solve subgoals that the simplifier can discharge in the other styles,
and the reasoner often needs more guidance. We have not yet run into scalability issues,
but we must supply a lengthy list of lemmas to the reasoner. The destructor style falls
behind when we leave the coinductive world. For example, the recursive function lnth ::
nat⇒ α llist⇒ α returns the element at a given index in a lazy list; clearly, there are no
destructors on lnth’s result type to trigger unfolding. Since induction proofs introduce
constructors in the arguments, rewriting with pattern-matching equations obtained from
the code view yields better automation. In summary, all three views are useful.
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10 Conclusion

Codatatypes and corecursion have long been missing features in proof assistants based
on higher-order logic. Isabelle’s new (co)datatype definitional package finally addresses
this deficiency, while generalizing and modularizing the support for datatypes. The
package is already highly usable and is used not only for the Coinductive library but
also in various ongoing developments by the authors. Although Isabelle is our vehicle,
the approach is equally applicable to the other provers from the HOL family.

For future work, our priority is to integrate the package better with other Isabelle
subsystems, including fun (for well-founded recursive definitions), lifting and trans-
fer, and the counterexample generators. Another straightforward development would
be to have the package produce even more theorems, notably for parametricity. There
is also work in progress on supporting more general forms of corecursion and mixed
recursion–corecursion. Finally, we expect that BNFs can be generalized to support non-
free datatypes, including nominal types, but this remains to be investigated.
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