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Abstract—We present a point of view concerning HOAS  [34], [36], [58], [21], [1], [12], [48]. This is charactered] by
(Higher-Order Abstract Syntax) and an extensive exercisen  the extension of the pure logical frameworks as in (I) with
HOAS along this point of view. The point of view is that a9 reasoning capabilities. The diad (object systemamet

HOAS can be soundly and fruitfully regarded as adefinitional . . . .
extensionon top of FOAS (First-Order Abstract Syntax). As logic) from (1) becomes a triadibject systerriogical frame-

such, HOAS is not only anencoding technique but also a ~ Workwhere this system is specifietieta-logical framework
higher-order view of a first-order reality A rich collection of =~ where one can reas@boutthe logical framework [46]. The
concepts and proof principles is developed inside the staadd  challenge here is choosing suitable logical and meta-#bgic
mathematical universe to give technical life to this point fview. frameworks that allow for adequate HOAS encodings, as

The exercise consists of a new proof of Strong Normalization . : .
for System F. The concepts and results presented here have well as enough expressive meta-theoretic power. (Thedbgic

been formalized in the theorem prover Isabelle/HOL. fram_eW(_)rk_ is ty_pically chosen to be a weak I(_)gic, €.g., an
Keywords Higher-Order Abstract Syntax; System F: intuitionistic logic or type system as in (1), or linear lagi
General-Purpose Framework; Isabelle/HOL Somewhat Complementary to the above work on HOAS-
tailored meta-reasoning [55], [16] developed HOAS-
|. INTRODUCTION tailored recursive definitionprinciples in a logical frame-

HOAS (Higher-Order Abstract Syntdxs a methodology work distinguishing between a parametric and a primitive-
for representing formal systems (typically, logical sys$e recursive function space.
or static or dynamic semantics of programming languages of(ll.b) The general-purpose framework approaftb], [14],
calculi), referred to a®bject systemsnto a fixed suitably [6]. This approach employs a general-purpose setting for
chosen logic, referred to as theeta logic HOAS prescribes  developing mathematics, such as ZF Set Theory, Calculus of
that the object system be represented in the meta logic sBGonstructions, or HOL with Infinity, as the logical frame-
that variable-binding, substitution and inference me@rmans  work, with object-level bindings captured again by means
of the former be captured by corresponding mechanisms aff meta-level bindings, here typically functional binding
the latter. HOAS originated in [32], [47], [27], [44] and has this means that terms with bindings from the object system
ever since been extensively developed in frameworks witlare denoted usingtandard functionsHere there is no need
a wide variety of features and flavors. We distinguish twofor the three-level architecture as in (Il.a), since thesgm
main (overlapping) directions in these developments. logical framework is already strong enough, meta-theoreti
-(I) First, the employment of a chosen meta logic gauee  expressiveness not being a problem. However, the difficulty
logical framework used for defining object systems for the here is brought be the meta-level function space being wider
purpose of reasoningside those systemA standard exam- than desired, containing so-called “exotic terms”. Evdpraf
ple is higher-order logic (HOL) as the meta logic and first-the function spaces are cut down to valid terms, adequacy
order logic (FOL) as the object system. Thanks to affinitiess harder to prove than at (ll.a), precisely because of the
between the mechanisms of these two logics, one obtains dogic’s expressiveness.
adequate encodingf FOL in HOL by merely declaring in We advocate here a variant of the approach (ll.b), high-
HOL types and constants and stating the FOL axioms antighting an important feature, to our knowledge not yet
rules as HOL axioms — then the mechanisms for buildingexplored in the HOAS literature: the capabilityitdernalize,
FOL deductions (including substitution, instantiatiotc. ~ and eventually automate, both the representation map and
are already present in the meta logic, HOL. the adequacy proofiVe illustrate this point by an example.
-(Il) Second, the employment of the meta-logic to reasorSay we wish to represent and reason aboetlculus and
aboutthe represented object systems, i.e., to represent nit associateg-reduction (as we actually do in this paper).
only the object systems, but also (some of) theieta- Therefore, the object system is an “independent” (Platonic
theory (E.g., cut elimination is a propertgbout Gentzen- if you will) mathematical notion, given by a collection of
style FOL, not expressible in a standard HOAS-encoding oftems called\-terms, with operators on them, among which
FOL into HOL.) While direction (I) has been quasi-saturatedthe syntactic constructs, free variables and substitutaod
by the achievement of quasi-maximally convenient logicalwith an inductively defined reduction relation.
frameworks (such Edinburgh LF [27] and generic Isabelle In the HOAS-tailored framework approach, for represent-
[44]), this second direction undergoes these days a pefiod dng this system one defines a corresponding collection of
active research. We distinguish two main approaches hereconstants in the considered logical framework, say LF, and
-(Il.a) The HOAS-tailored framework approad®6], [54], then does an informal (but rigorouggn and paper proodf



the fact that the syntax representation is adequate (e., t impredicativity flavors that make “pure” HOAS so attractive

existence of a compositional bijection between Mterms This paper develops novel HOAS concepts and techniques
and normal forms of LF terms of appropriate types) and ofpertaining to thegeneral-purpose framework approach
a corresponding fact fas-reduction [45]. Here, the general-purpose framework could be regarded as

In the general-purpose framework approach, one can ddeing the mathematical universe (given axiomatically by an
fine the original system itself (herecalculus) in the meta- standard formalization of mathematics). All the involved
logical framework (say, HOL, Higher-Order Logic with systems, including the original systems and their represen
Infinity) in such a way that accepting this definition as con-tations, dwell in this mathematical universe, and are thus
forming to the mathematical definition is usually not a prob-discussed and related via standard-mathematics concepts a
lem (for one who already accepts that HQIs adequate for theorems. Our HOAS exercise here is a proof of the strong
representing the mathematical universe (or part of ithigesi  normalization result for System F [23].
the former definitions are typically almost verbatim render  Apart from this introduction, Sec. Il recalling some syntax
ings of the latter — in HOL,, one can define inductively the concepts and Sec. VI drawing conclusions and discussing
datatype of terms, perhaps defineequivalence and factor related and future work, the paper has two main parts. In the
to it, then define substitution, reduction, etc. Moreovee o first part, consisting of Secs. lll and IV, we discuss some
can also define in HQL a system that is a HOAS-style general HOAS techniques for representing syntax and in-
representation of (the original)-calculus, i.e.: define a ductively defined relations, illustrated on thecalculus and
new type of items, call them HOAS-terms, with operatorsSystem F. The HOAS “representation” of the original first-
corresponding to the syntactic constructs of the originabrder syntax will not be a representation in the usual sense
terms, but dealing with bindings via higher-order opermtor (via defining a new (higher-order) syntax), but will take
instead. In particular, the constructor farabstraction will  different view of the same syntalxet us callabstractions
have type (HOAS-terms» HOAS-terms)— HOAS-terms, pairs (z, X) variable-term modulax-equivalence. (In this
where one may choose the type constructerto yield paper, we use lowercases for variables and uppercases for
a restricted function space, or the whole function spaceerms.) Abstractions are therefore the arguments to whieh t
accompanied by a predicate to cut down the “junk”, etc.\-operator applies, as ikz. X . Under the higher-order view,
Once these constructions are done, one may also defirabstractionsA are no longer constructed by variable-term
in HOL,, the syntax representation map frokaterms to  representatives, but are analyzed/"destructed” by apglyi
HOAS-terms and prove adequacy. (And a correspondinghem (as functions), via substitution, to terms. Namelyegi
effort yields the representation afterm reduction.) Now, if a termX, A_X, read “A applied toX”, is defined to be
the above are performed in a theorem prover that implemenfg [ X /z], where(xz, Y') is any variable-term representative for
HOL,, such as Isabelle/HOL, then HOAS-terms become aA. This way, the space of abstractions becomes essentially a
formally certifiedadequate representation of the (original) restricted function space from terms to terms. Although thi
A-terms, not available in the existent HOAS-tailored ap-change of view is as banal as possible, it meets its purpose:
proaches. Moreover, in many cases the construction of ththe role previously played by substitution now belongs to
HOAS-terms, the proofs of their basic properties and thdunction-like application. The latter of course originata
adequacy proof can bautomated being the same for all substitution, but one can forget about its origin. In facteo
syntaxes with bindings. can (although is not required to!) also forget about theiorig

One may argue that, on the other hand, the above HOASal first-order binding constructor and handle terms elgtire
terms do not retain all the convenience of a genuine HOASY means of the new, higher-order destructor. Moving on to
encoding. Thus, when various standard relations need to dbe discussion of recursive-definition principles for syt
defined on HOAS-terms, certain context-free clauses spewe perform an analysis of various candidates for the type
cific to the HOAS-tailored frameworks (within the so-called of the recursive combinator, resulting notably in a novel
HOAS-encoding of judgemejtre no longer available here. “impredicative” HOAS principle.

E.g., arulelike vx x:S=4x:T Then we discuss HOAS representation of inductively
Lam(A): S — T defined relations, performed by a form of transliteratioh fo
(typing rule for A-abstractions -= is logical implication lowing some general patterns. These patterns are illestrat
and A a map from terms to terms) cannot act as a defby the case of the reduction and typing relation for System
initional clause in HOL, for a typing relation_:_, due F, and it appears that a large class of systems (e.g., most
to non-monotonicity. The short answer to this objection isof those from the monographs [9], [25], [37], [49]) can be
agreeing that general-purpose frameworks do bring theihandled along these lines. For typing, we also present a
expressiveness with the price of not allowing the cleanestpurely HOAS” induction principle, not mentioning typing
possible HOAS. A longer answer is given in this paper,contexts. Once our formalization will be fully automated,
where we argue that developing suitable general-purposét- will have a salient advantage over previous HOAS ap-
framework concepts accommodates non-monotonicity angroaches: adequacy will neett be proved by hand, but




will follow automatically from general principles. A. The (untyped)-calculus

In the second part, Sec. V, we sketch a proof of strong We fix an infinite setvar, of variables ranged over by
normalization for System F within our HOAS framework. z,y,z. The setsterm, of terms ranged over byX,Y, Z,
We make essential use of our aforementiodedinitional and abs of abstractions ranged over byA, B, are given
principle and typing-context-free induction princip® ob- by: X == InVz |[App X Y | Lam A A= 2X
tain a general criterion for proving properties on typablewhere we assume that, inX, = is bound inX, andterms
terms, from which we infer strong normalization. Unlike and abstractions are identified modulo the standardly in-
previous proofs [24], [57], [38], [22], [10], [5], [11], [33  duced notion of-equivalencgnot recalled here). Therefore
[17], our proof does not emplogata or type environments what we call “abstractions” and “terms” in this paper are
and semantic interpretation of typing contextsa virtue of ~ equivalence classegNote: the operator&pp, Lam andx._
our setting, which is thus delivering the HOAS-prescribed(for any fixedx) are well-defined om-equivalence classes.)
service ofclearing the picture of inessential details For convenience, we shall keep implicit the injective map
Isabelle formalization. For the formalization of the con- InV : var — term, and pretend thavar C term (this
cepts and results presented in this paper (including themission will be performed directly for the syntax of System
FOAS definitions of the systems, their HOAS representaF below). Anenvironmenp € envis a finite-domain partial
tions and adequacy theorems, and the Strong Normalizatidiinction from variables to terms. We write:
theorem), we have chosen a particular general-purpose logi- fresh : var — term — bool, for the predicate indicating if
namely HOL,, implemented as Isabelle/HOL [43]. The a variable is fresh in a term (*fresh” meaning “non-free”);
formal scripts can be downloaded from [51]. The document _[_] : term — env — term, for the concurrent substitu-
SysF.pdf from that (zipped) folder contains a detailed pre-tion on terms — namelyX o] is the term obtained fronkX
sentation of the relevant theories. These theories can aldty concurrently (and capture-avoiding-ly) substitutingX
be browsed in html format in the fold@ysF_Browse. The  each variabler with the termp(x) if p(z) is defined.
section-wise structure of this paper reflects quite faltpfu - _[_/_] : term — term — var — term, for unary
that of our Isabelle development, so that the reader shoulgubstitution — namelyX[Y/y] is the term obtained from
have no difficulty mapping one to the other. Moreover, theX by (capture-avoiding-ly) substituting with Y in X
concrete syntax we use for our operators in Isabelle is @imos We employ the same notations for abstractioinssh :
identical to the one of the paper; the proofs, written (far th var — abs— bool, _[_] : abs— env — abs etc.
more complex facts) in the top-down Isar [42] style, areOne-steps-reduction~ : term —term —bogl is given by:
also fairly readable. (More details in the appendix of [52]. App (Lam(z.v)) X — ¥ [X/2] Co® Lam(z.x) — Lam(z.y)
The above precautions allow us to focus our presentation X Y AopL X Y ADDR
on mathematics rather than on formalization. As a side- App X Z~~AppY Z (AppL) App Z X ~App Z Y (APPR)
effect, we hope to illustrate that the discussed “genergéhma X is called strongly normalizingif there is no infinite
ematics” is formalizable in other general-purpose theorensequencéX,,),c v With Xo = X andVn. X,, ~ X, 41.
provers besides that of our choice. (Though some extra caf®. System F
is required if working in more constructive settings.) We describe this system as a typing system Xderms
Conventions and notations.While Isabelle distinguishes Without type annotations, in a Curry style (see [9]). Itstayn
between types (as primitive items) and sets (as items inconsists of two copies of the untypedcalculus syntax —
habiting bool-functional types), we shall ignore this dis- one for data and one for types. More precisely, we fix two
tinction here and refer to all the involved collections asinfinite setsdvar, of data variablegdvarsfor short), ranged
sets (the reader can recognize the types though by thé&ver byz,y, z, andtvar, of type variablegtvarsfor short),
boldface fonts). We employ the lambda-abstraction, univerranged over bytx, ty, tz. The setsdterm anddabs of data
sal/existential quantification and implication symbalsY, termsandabstractiongdtermsanddabstractiondor short),
3 and = only in the meta-language of this paper, amt ranged over byX,Y, 7 and A, B, C, andtterm andtabs,
in the formal languages that we discuss— B is the A- of type termsand abstractiongttermsandtabstractionsfor
to-B function space, andP(A) and Py(A) the powerset short), ranged over byX, tY, tZ andt A, tB, tC, are defined
and P(A) \ {0}, respectively. is functional composition. by the following grammars, again up teequivalence:

For R C A x A, R* is its reflexive-transitive closuré] is X = z[App XY |Lam A A n=a.X
the empty list and infixed “” is list concatenation. tX n= tx | A tX tY | Al tA tA == tx.tX
Above, App and Lam stand, as in Subsec II-A, for “appli-
Il. THE A-CALCULUS AND SYSTEM F RECALLED cation” and “lambda”, whilearr and Al stand for “arrow”

The two systems are standardly defined employing First2nd the “for all” quantifier. Since dterms do not have type
Order Abstract Syntax (FOAS), moduleequivalence. We annotations, indeed both the abstract syntax of dterms and

later refer to them as “the original systems”, to contrastrih that of tterms are that of-calculus (from Subsec. II-A), just
with their HOAS representations. that for tterms we writeArr andAl instead ofApp andLam.



All concepts and results from Subsec. 1I-A apply to eithersubstitution and scope extrusion (e.g., all variables appe

syntactic category, separately. Lagnv, ranged over by,
be the set of data environments, atesv, ranged over by
&, that of type environments. For any itemsand b, we
may write a : b for the pair (a,b). A well-formed typing
context(contextfor short)I" € ctxt is a list of pairs dvar-
tterm, x1 : tXq,..., 2, : tX,, with the x;’s distinct. The
homonymous predicategesh : dvar — ctxt — bool and

fresh : tvar — ctxt — bool (indicating if a dvar or a tvar is

fresh for a context) are defined as expecfegh y [| = True;
freshy (T, (x : tX)) = (freshy T Ay # z); fresh ty [| = True;
fresh ty (T, (x : tX)) = (fresh ty " A fresh ty tX).

The type inference relatioq -_:_) : ctxt — dterm —
tterm — bool is defined inductively by the clauses:

(Asm) T'FX:tX (Weak)
Da:tXFa:txX [freshzT] T oyoty - X x [freshy I
Iz :tXEFY : tY (Arrl) T'FY:tY (All)

'k Lam(z.Y) : ArrtxX ty [freshz Il Ty . Alpxty) [fresh tx I

THX:ATtY Z TFY:tY D FY : Al(tx.tY)

THAPP XY : tZ TFY :tY[tX/tq

We write - X : tX for [| F X : tX. X is calledtypableif
'k X : tX for somel’ andtX.

I11. HOAS VIEW OF SYNTAX
Here we present a HOAS approach to thgntax of

(ArrE)

(AIE)

calculi with bindings. We describe our approach for the

paradigmatic particular case of the untypedalculus (from
Sec. lI-A), but our discussion is easily generalizable tonte

generated from any (possibly many-sorted) binding sigeatu
(as defined, e.g., in [19]). We daot define a new higher-
order syntax, but introduce higher-order operators on the

original syntax — hence we speak ofHDAS viewrather
than of aHOAS representatian
A. Abstractions as functions

either bound, or substituted, or [free in the hypothesis])
which makes the choice of binding representatives irreleva
This phenomenon, to our knowledge not yet rigorously
studied mathematically for a general syntax with bindings,
is really the basis of most HOAS representations from the
literature. In Sec. IV, we elaborate informally on what this
phenomenon becomes in our setting.

-(3) The previous point argued that relevant systepecifi-
cationscan do without constructing abstractions. Now, w.r.t.
proofs of meta-theoretic properties, one may occasionally
need to perform case-analysis and inductiorabstractions
HOAS-style case-analysis and induction are discussed be-
low, after we introduce-abstractions.

B. 2-abstractions

These are for abstractions what abstractions are for terms.
2-abstractions4 < abs2 are defined as pairg.A var-
abstraction up tax-equivalence (just like abstractions are
pairs var-term up tay). (Alternatively, they can be regarded
as triplesx.y.Z, with z,y € var and Z € term, again
up to a.) Next we define two application operators for 2-
abstractions. I1f4 € ab2 and X e term, thenA_1 X and
A_2 X are the following elements aibs
- A_1X = A[X/z], wherex, A are s.t.A = (x.4);
- A2X = (y.(Z[X/x])), wherey,Z are sty # =,
freshy X and A = (y.(z.2)).
(Again, the choice of representatives is immaterial.) Thus
essentially2-abstractions are regarded 2srgument func-
tions and applied correspondingly.
Now we can define homonymous syntactic operations for
abstractions lifting those for terms:
- InV:var — abs by InV z = (y.x), wherey is s.t.y # z;
- App : abs— abs— abs by App A B = (z. (App X 1)),

Throughout the rest of this section, we use the CONCePtR hare~ X V are St.A — (.X) and B = (2.Y)

and notations from Sec. II-A, andot the ones from
Sec. II-B. GivenA € absand X € term, the functional
application of A to X, written A_X, is defined to be
Y[X/z] for anyz andY s.t. A = (z.Y). (The choice of
(z,Y) is easily seen to be immaterial.) The operatois
extensional, qualifying the set of abstractions assricted

term-to-term function spacend preserves freshness. Thus,

- Lam : ab®2 — abs by Lam A = (z.(Lam A)), where
z, A are s.t. A= (z.4).

If we also defined € Abs to be(x.z) for somex, we can
case-analyze abstractions by the above four (complete and
non-overlapping) constructors. Moreover, functional lapp
cation verifies the expected exchange law_1X)_Y =

bstracti | ded . ; i)A_2 Y) _X and commutes with abstraction versus terms
abstractions are no longer regarded as pairs var-term up o ctors. e.g(lam A)_ X — Lam(A_1 X).

to a-equivalence, but as functions, in the style of HOAS. ] A
Under this higher-order view, abstractions can be destcuct C nduction principles for syntax

by application, as opposed to constructed by means of var- The following is the natural principle for terms under the
term representatives as in the original first-order viewt Bu HOAS view. Notice that it requires the use of abstractions.
does the higher-order view suffice for the specification of Prop 1: Let ¢ : term — bool be s.t. the following hold:
relevant systems with bindings? l.e., can we do without) Vz. o z. (i) VX, Y. o X Ap Y = (App X V).
“constructing” abstractions? Our answer is threefold: (iii) VA. (Vo.p(A_z)) = ¢(Lam A).  ThenvX.p X.
_(1) Since the higher-order view does not Change the first- Likewise, a HOAS induction principle for abstractions
order syntax, abstractions by representatives are stil-av requires the use &-abstractions. The-place application in
able if needed. the inductive hypothesis faram in Prop. 2 offers “permuta-
-(2) Many relevant Systems with bindings emp|0y the bind-tive” erXIblllty for when reasoning about multlple blndlBg
ing constructors within a particular style of interactioitw — the proof of Prop. 10 from Sec. V illustrates this.



Prop 2: Let ¢ : abs— bool be s.t. the following hold: cardinality hypothesis of this proposition, but of course c

(i) pid. (i) V. o(InV z). be defined using Prop. 3.) Note the “impredicative” nature

(iiiy YA, B. p AN @ B = o(App A B). of equation (Il): it “defines”H on Lam A in terms of the

(iv) VA. (Vz. p(A_1x) Ap(A_22)) = p(Lam A). “HOAS-components” ofA, where a “HOAS component”
ThenVvA. ¢ A. is a result of applyingd (as a function) to a ternX and

D. Recursive definition principles for syntax can of course be larger thaA. This proposition can be

This is known as a delicate matter in HOAS. One woulduseful in situations where the existence of a compositional
like that, given any set, a mapH : term — C be map is the only relevant aspect, allowing to take a shortcut
determined by a choice of the operatiasisv : var — C,  from the first-order route of achieving compositionality
cApp : C — C — C, andcLam (whose type we do not yet through interpretation in environments — our proof of Sgron
specify) via the conditions: Normalization from Sec. V takes advantage of this.

(D Hz=cinvVz. () HAppXY)=cApp(H X)(HY). Conclusion: While the above preparations for HOAS on
(1) An equation (depending on the type afam) with  top of FOAS do require some work, this work is uniformly

H(Lam A) on the left. applicable to any (statically-scoped) syntax with binding
(We only discussteration, and not general recursion.) hence automatable. Moreover, once this definitional effort
Candidates for the type of the operatham are: is finished, one can forget about the definitions and work

(1) cLam : (term — C) — C, suggesting the equation entirely in the comfortable HOAS setting (meaning: no more
H(Lam A) = cLam(AX. H(A_X)) — this is problematic a-representatives, variable capture, etc.), as illusiratxt.

as a definitional clause, due to its impredicativity; IV. HOAS REPRESENTATION OF INFERENCE

(2) A weak-HOAS-like [14] variable-restriction of (1),  This section deals with the HOAS representation of in-
name!y,cLam : (var — C) — C, yielding the equation ductively defined relations on syntax, such as typing and
(' y): H(Lam A)=cLam(\z. H(A_z)) reduction. Given an inductively defined relation on the

and a recursive IO”UCHO'E . first-order syntax employing the first-order operators, we
Prop 3: There exists a unique mafi : Term — C S.t.  yansliterateit through our HOAS view, roughly as follows:

equations (1), (I1), and (1i},) hold. _ () abstractions constructed by terms with explicit depen-

(3) ctam : (C — C) — C. Then there is no apparent gencies become “plain” abstractions (used as functions);

way of defining the equation (Ill) in terms dfam and )y terms with implicit dependencies become abstractions
cLam without parameterizing by valuations/environments iNapplied to the parameter they depend on:

var — C, and thus getFing into first-order “details” (at least Ill) substitution becomes functional application:

not in a standard setting such as ours — but see [55], [16\/) unbound arbitrary variables become arbitrary terms;
for an elegant f°|Ut'9” within @ modal typeecalculus). (v scope extrusion is handled by universal quantification.
(4) A “flattened” version (collapsing some type information) (We explain and illustrate these as we go through the

of both (1) and (3), namelysLam : Py(C) — C. This  examples, where the informal notions of implicit and explic
may be regarded as obtained by requiring the operator fro'Hependency will also be clarified.)

(1) or (3) to depend only on the image of its arguments oyr presentation focuses on a particular example, the
in term — C or € — C, respectively. The natural as- typing and reduction of System F, but the reader can notice
sociated (valuation-independent) condition (Ill) woulé b {5t the approach is rather general, covering a large class o
H(Lam A) = cLam({H (A_X). X € term}). reduction and type systems.

Unfortunately, this condition is still too strong to guaran At this point, the reader should recall the definitions and
tee_the existencg aff. But interestingly_/,_if we have enough otations pertaining to System F from Sec. 1I-B. All the
variables, the existence of a compositional map holds:  jscussion from Sec. 11l duplicates for the two copies of the

Prop 4: Assumecard(var) > card(C) and letcApp : C = )_calculus that make the syntax of System F. In particular,
C — C andcLam : P(C) — C (wherecard is the cardinal e have data-abstraction-lifted operataysp : dabs —
operator). Then there exist$ : term — C s.t.. dabs — dabs Lam : dabs2 — dabs etc. (wheredabs?2
() H(App X Y) = cApp (H X) (HY) for all X,Y". is the set of dat&-abstractions).

(I) H(tamA) =cLam({H(A_X). X e term}) forall A. 5 Representation of reduction
Prop. 4 is looser than a definition principle, since it does \yie define ~ : dterm —s dterm — bool inductively:

not state uniqueness &f. In effect, it is a “loose definition” . VZ.A_Z ~» B_Z .
principle, which makes no commitment to the choice of app (Lam A) X — A_x (HBew)  TamA —tams O
interpreting the variables. (Though it can be proved that X =Y X s Y

. ; ) . . . (HAppL) (HAPPR)
H is uniquely determined by its action on variables. As a App X Z ~ AppY Z App Z X ~» App Z Y

trivial example, the identity function on terms is uniquely Adequacy of the reduction representation is contained in:
identified by its action on variables and by equations (I) and Prop 5: The following are equivalent:
(I1). Other functions, such as term-depth, dotfallintothe (1) X ~Y. (2) X ~» Y. (3)Vp € denv. X[p] ~ Y|p].



Remember that our HOAS representation dwells in theresh ty (A,(x : tX)) = (fresh ty A A fresh ty tX);
same universe as the original system, i.e., both the ofigind] [¢, p] = [|; (A, (X : tX)) [£, p] = (A[, p], (X[p] : tX[€])).
relation~ and the representation relaties act on the same We represent type inference by the relatiopnt_: _) :
syntax — they only diffeintensionallyin the way their defi- Hctxt — dterm — tterm — bool, called HOAS typing
nition manipulates this syntax: the former through binging (Htyping for short):
and substitution, the latter through abstractions-astfans : (HAsm) AFX X ek
and function application. Looking for the incarnations of & X :IXF X :iX AY:tYFX: X

the general HOAS-transliteration patterns (1)-(V) listed Wiéén;ti -PAI?r_t)i(t\:(tY (HATr!) %# (HAII)
the beginning of this section, we find that: AEX:ATIY(Z AEY:tY AFY :AtA

- The definition of~ is obtained by modifying in~ only AFAPP XY Z HATE) v ox CAE)
the clauses involving binding and substitutigBeta), (Xi); Prop 7: (Adequacy) The following are equivalent:

- In (Beta) and (Xi),Lam(z.Y), Lam(z.X) andLam(z.Y) ()T} X : A.

becomeLam 4, Lam A andLam B, according to (I); (2)T F X : A. (Note: contexts are particular Hcontexts.)
- In (Beta),Y'[X/xz] becomesd _ X, according to (I1l); () (&, p] F X[p] : A¢] for all € € tenv and p € denv.

- In (Xi), regarded as applied backwardse have the extru- It follows that I is a conservative extensiofirom con-

sion of the scope of, asz is bound in the conclusion and texts to Hcontexts) of. Thus, unlike with reduction, our
free in the hypothesis — by pattern (V), this brings universajoAS representation of typind;, doesnot manipulate the
quantification over an arbitrary teri in the hypothesis, as  same items as the original relatibnbutextendghe domain
well as the acknowledgement of an implicit dependency on _ essentially, the new domain is the closure of the original
(now having becomg) in the X andY” from the hypothesis, domain under substitution. Hereafter we writefor either
making them become, by (Il), abstractions applied to thee|ation, but still have™ range overctxt and A over Hctxt.
implicit parameterA_Z and B _Z. The only pattern from (I)-(V) exhibited by our HOAS-
(Note that this example does not illustrate pattern (IM)cei  transliteration of typing that is not already present in¢he
all variables appearing in the definition of are bound.)  for reduction is (IV), shown in the transliterations of (Asm
The infinital’y clause (HX|) from the definition of= (Weak) and (Arrl) — there' we have the Variablesandy
(whose premise quantifies over all dterid} is convenient becoming termsy andY” in (HAsm) (HWeak) and (HArrI).
when proving that- is included inanother relation, as it At (Arrl), (IV) is used in combination with (V), because
makes a very strong induction hypothesis, much strongeg also extruded back from the conclusion to the hypothesis,
than that given by (Xi) for~. This is also true for rule thys becoming in the hypothesis of (HArrl) a universally
inversion, where fromLam A ~» Lam B we can infer a quantified termX. Another phenomenon not exhibited by
good deal of information compared to the first-order casereduction is the presence of freshness side-conditiortagin
However, when proving that» includesa certain relation, original system), whose effect is fwrevent dependencies
it appears that a HOAS clause matching (Xi) more closelye g., the side-conditiofresh y T' from (Weak) says that
may help. Such a clause can be extracted from (Xi): I' does not depend an, meaning that, when transliterating
Prop 6: ~ is closed under the following rule: (Weak) into (HWeak), (I1) is not applicable 0. (Otherwise,
freshzA freshzB Az Bz (HX7) to represent this we would need Hcontext-abstractions!)

Lam A ~» Lam B i inei i
- . C. Induction principle for type inference
Note that (HXT) is stronger than (HXi) (but stronger as a By definition, F offers an induction principle: If a relation

rule means weaker as an induction-principle clause). A rul% - Hetxt — dterm —s tterm —s bool is closed under the

such as (HXi") should be viewed as a facility to descend, - _
if necessary, from the HOAS altitude into “some details” rules defining-, thenvA, X, tX. A F X : tX = R A X X,

(here, a freshness side-condition). This fits into our goal A HOAS technique should ideally do away (whenever

of encouraging HOAS definitions and proofs, while alsopos.S'ble) not only \.N'th the eXpl.'C't referen<_:e_ to bound
. . . variables and substitution, but with the explicit referenc
allowing access to details on a by-need basis.

. . S to inference (judgment) contexts as well. Our inductive
Since, by Prop. 5, the relations> and ~» coincide, - : i
definition of Htyping achieves the former, but not the latter
hereafter we shall use only the symbek:". . . o D N
Now, trying to naively eliminate contexts in a “truly HOAS

B. Representation of inference fashion, replacing, e.g., the rule (HArrl) with somethiiiget

A HOAS context(Hcontextfor short) A € Hctxt is a VX. typeOf X tX = typeOf (A_X) tY
list of pairs indterm x tterm, X; : tXy,..., X, : tX,. typeOf (Lam A) (Arr tX tY) ()
Note thatctxt C Hctxt. For Hcontexts, freshnessesh : in an attempt to definaon-hypothetic typingi.e., typing in
dvar — Hctxt — bool andfresh : tvar — Hctxt — bool,  the empty context) directly as a binary relatitypeOf be-
and substitution, [_,_] : Hctxt — tenv — denv — Hctxt  tween dterms and tterms, we hit two well-known problems:
are defined as expectefleshy [| = True; freshy (A, (X :  -(l) The contravariant position dfpeOf( X, tX) prevents the
tX)) = (fresh y A Afresh y X); fresh ty [] = True;  clause (*) from participating at a valid inductive definitio



-(Il) Even if we “compromise” for a non-definitional (i.e., V. THE HOAS PRINCIPLES AT WORK

axiomatic) approach, but would like to retain the advangage In this section we sketch a proof of strong normalization
of working in a standard logic, then (*) is likely toot for System F within our HOAS representation using the
be sound i.e., not capture correctly the behavior of the developed definitional and proof machinery. Much more
original system. Indeed, in a classical logic it would allow details can be found in Sec. V of [52].

one to type anyjtam A to a typeArr tX tY for some non- The first step is the crucial step in the overall proof:
inhabited typetX. Moreover, even we restrict ourselves to setting a criterion for a predicate on terms to be true for
an intuitionistic setting, we still need to be very carefullw  all empty-context typable terms. Interestingly, the probf
(and, to some extent, make compromises on) the foundationis criterion essentially consists of pipelining our HOAS
of the logic in order for axioms like (*) to be sound. This is specific recursion and induction principles, Props. 4 and 8.
because, while the behavior of the intuitionistic connai We let Zs range over lists of terms and letppL :
accommodates such axioms adequately, other mechanisrdgerm — List(dterm) — dterm be defined byappL X [| =
pertaining to recursive definitions are not a priori guagedt X andAppL X (Z,Zs) = AppL (App X Z) Zs For a listZs

to preserve adequacy — see [29], [35]. and a set7, ZsC G indicates that all terms dfsare inG.
So what can one make of a clause such as (*) in a PI‘Op 9: Assume that? g dterm s.t. the fO”OWing hold:

framework with meta-reasoning capabilities? The HOAS- Z8C G ooy YEARYTEG o6y

tailored framework solution is stepping one level up to a AppLy Zs€ G Yea

meta-logic: (*) would become an axiom in a logig(hosting XeG@ ZsCG AppL(A_X)Zsed (CI%)

the representation of the object system), witfiself viewed AppL (App (Lam A) X) Zs€ G

as an object by the meta-logic; in the meta-logic then, Then FX : AimpliesX € G forall X, A.

one can perform proofs by induction on derivationsZin Proof sketch.Consider the following clauses, expressing
Previous work in general-purpose frameworks, after séverdPotential properties of subsets C dterm (assumed uni-
experiments, eventually proposed similar solutionsgeigf ~ Versally quantified over all the other parameters):

directly interfering with the framework axiomatically [ior - (VCI®): if ZsC G, thenAppL y Zs€ S;

of employing the mentioned intermediate logic L [39]. - (CP):if X € G, ZsC G andAppL (A_X) Zse S, then

Our own solution has an entirely different flavor, and AppL (App (Lam 4) X) Zs€ .

_ s ;
does not involve traveling between logics and/or postugti fAIr_retCC—:C{i QC gr'\d((\:{:l:l llar(lg)(ip)c thJdEAr:/\gl %eflne
. . . - : B ) 102 =

axioms, but stays in this world (the same mathematlcagg VX € S1.App Y X € S} andeAl K — K.

universe where all the development has taken place) and se .

what this world has to offer: it turns out that clauses such as By Prop. 4 there eX'StS. a.maib : tterm — C that
(*) are “backwards sound”, in the sense that any reIationcommmeS withcArr andcal, L.e.:
satisfying them will include the empty-context Htyping “() (A IX Z) = {Y. VX € 01X App Y X € 0 Z}.

relation. This yields “context-free” induction: -(I) O(AI 1A N ﬂtxe}erm O(tA_tX). . .
Now, (Il) is precisely the conjunction of the clauses

Prop 8: Assumed : dterm — tterm — bool s.t.: (All ) and (AIE;) from Prop. 8 (rephrased), while the left-
VXOXK = 0(AX)W 0y v YXOV A to-right inclusion part of (I) is a rephrasing of (AGE
0 (Lam A) (Arr £X tY) 0Y (AItA) Finally, (AIE;) holds because (€) holds for all S € C.
Y (ArtXtz) 6X X (AITE ) oY (AN (AIE) Thus, the hypotheses of Prop. 8 (rephrased) are satisfied
o (App Y X) Z Y (A_X) by 6 : tterm — C (regarded as a map itterm —
Then F X : tX implies§ X tX for all X, tX. P(dterm)). Hence, VX, tX. F X : tX = X € tX. And
Proof sketch.Take R : Hctxt — dterm — tterm — bool  sinceviX.§tX C G, we getV X, tX. FX:tX =X c G. m
tobeRAXtX=(V(Y:tY) e A.0Y tY) = 0 X tX). The second step (not detailed here) is proving that the

ThenR satisfies the clause that defirghence, in particular, set of strongly normalizing terms satisfies the hypothe$es o
forall X,tX, FX :tX impliesR [] X tX, i.e.,,0 X tX. ®m  Prop. 9, allowing us to conclude that all terms typable in
Viewing relations as nondeterministic functions, we canthe empty context are strongly normalizing. (Extending the
rephrase Prop. 8 in a manner closer to the intuition of typegesult to terms typable in arbitrary contexts is then tfivia
as sets of data, with Bgical predicateflavor: and the proof of strong normalization is done.) Among

Prop 8 (rephrased)Assumes : dterm — P(tterm) s.t.: the _Iemmas required at this seconq step, the follpwing is
particularly relevant w.r.t. HOAS, as its proof occasions t

X XEIX = AX) ety )\ WXV EOMA) ,, \ usage of the argument-permutative induction from Prop. 2:
(Lam A) € 6 (A X 1Y) Y eo (AltA) Prop 10: If X ~* X', thenA_X ~»* A_X'.

YeoAarXwz) XeoX , ) YEOWMW ey Proof. First, we note thafresh z AN A_z ~»* A'_z =
(App Y X) € 01z Y eo(A_X) Lam A ~»* Lam A’, from which we get

Then F X : tX implies X € 6 tX for all X,tX. (V2. A_z ~»* A’ _z) = Lam A ~»*Lam A’ (**)




Now, we employ the principle from Prop. 2, performing soundness has been recognized as a general phenomenon
induction onA. For the only interesting case, assurhdnas  pertaining to HOAS and has already been dealt with in the
the formLam A. We know from IH thatvz. (A4_1z)_X  proof of Prop. 4.

e (A_12)_ X' N (A_22)_X ~*(A_2z)_X'. The On the formalization side, we are aware of the LEGO [2]
second conjunct give¥z.(A_1X)_z ~»* (A_1X')_z,  formalization from [5], and of the ATS [12] formalization
hence, with (**), Lam(A_1X) ~»* Lam(A_1 X’), i.e.,,  from [17], both following [24]. [5] uses de Bruijn encoding
(LamA)_X ~»* (LamA)_X'. (We also used the ex- for the whole syntax. [17] employs LF-style, axiomatic
change and commutation laws from Sec. 11I-B.) ] HOAS for data terms and de Bruijn indices for type terms,

The last proof reveals an interesting phenomenon: sincand has the merit of having recognized the suitability of
in HOAS bindings are kept implicit and substitution is HOAS for strong normalization. It appears that potential
mere function application, we may occasionally need toATS variants of some of our results (mainly Props. 4 and 8)
perform a permutation of the “placeholders” for function could have been used to “HOASIfy” (and simplify) the proof
application (requiring2-abstractions). On the other hand, from [17] — in particular, our employment of Prop. 4 seems
in a first-order framework (especially in one “optimized” to answer the following question raised in loc. cit., on page
for Barendregt's variable convention [50], [60], [59]) one 120: "[can one] prove strong normalization using a higher-
would be able to proceed more directly. Indeed, consider @rder representation for types?”. On the other hand, due to
first-order version of Prop. 10, stating that* is substitu-  the partly axiomatic approach, the adequacy of the HOAS
tive: X ~»* X’ implies Y[X/x] ~»* Y[X'/x]. Its proof representation from loc. cit. (i.e., variants of our Props.
goes by induction ort’, treating the case of abstraction and 7) cannot be formally established in that setting.
as follows: AssumeY = Lam(z, Z). We may assume
fresh forz, X, X’. By IH, Z[X/z] ~»* Z[X'/x]. By (Xi) VI. CONCLUSIONS RELATED WORK AND FUTURE WORK
(iterated)Lam(z.(Z[X /x])) ~»* Lam(z.(Z[X'/z])), hence One purpose of this paper was to insist on, and bring
Lam(z.Z)[X/x] ~»* Lam(z.Z)[X'/x], as desired. technical evidence for, the advantage of using a general-

The proof of the first-order version of the fact is more purpose framework for HOAS, i.e., to employ HOAS within
direct than that of the HOAS version because under FOAStandard mathematics. We showed that our general-purpose
atermY allows substitutiorat any positioni.e., at any of its ~ framework offers access to some of the HOAS advanced
free variables, while under HOAS an abstractibias only ~ conveniences, such as impredicative and context-free rep-
one particular positiorprepared for substitution/application. resentations of (originally context-based) type systesms.

Our definitional framework accommodates both the first-other purpose was to bring, via an extensive HOAS exercise,
order and the HOAS facts (which are equivalent by adeimore evidence to a belief seemingly shared by the whole
quacy) and proofs, sindbe object syntax is the sagfmeing HOAS community (beyond the large variety of proposed
only subjected to two distinct views. technical solutions), but not yet sustained by many exasnple
Our proof in the context of existing proof§he first proof in the literature (apart from those from [8]): that a HOAS
of strong normalization for System F was given in Girard’srepresentation of a system is in principle able not only to
Ph.D. thesis [23], the very place where (a Church-typedillow hassle-free manipulation and study of a system, but
version of) the system was introduced. All the proofs thatalso to actuallyshed more light on the deep properties of a
followed employed in one way or another Girard’s original SystemWe believe that our general-purpose HOAS machin-
idea ofreducibility candidatesOur own proof follows this  ery does simplify and clarify the setting and justificatian o
idea as well, but delves more directly into the heart of thea notoriously hard result in type theory.

problem, by doing away with the notions tfping context Future work. The constructions and results from Sec. IlI
and fype or datg environmentwhich are employed irmll can be straightforwardly generalized to an arbitrary many-
the previous proofs as “auxiliaries” to the main proof idea.sorted syntax with bindings. Moreover, the constructions
Indeed, previous proofs define a variant of our type evaluaand adequacy proofs from Sec. IV seem to work for a
tion mapé (required to apply Prop. 8) that arameterized large class of inductively defined inference systems in whos
by type environments.e., by maps from tvars to tterms. clauses the migration of variables between scopes satisfies
Instead, we employ our compositionality criterion (Prop.a few general conditions, allowing the sound application
4) to obtain a lightweight, non-parameterizéddirectly,  of transformations (I)-(V) discussed in Sec. IV. We are
verifying what is known as Girard’s trick (namely, proving currently working on determining such general conditions
that it has its image in the set of candidates) in a moreand automating the results into an Isabelle HOAS package.
transparent fashion. Then, previous proofs define a notioMore related work.There is a very extensive literature
of semantic deduction in contexts, universally quantifyin on the subject of syntax representation in general and
over type environments and/or data environments, and proven HOAS in particular. We only mention some works
the typing relation sound w.r.t. it — this stepristrequired  most directly relevant here. The HOAS-tailored framework
by our proof; more precisely, this routine issue of logicalapproach yielded several theorem provers and functional



programming environments (some of them already mature[5] T. Altenkirch. A formalization of the strong normalizat
and with an extensive case-study record), including sévera

extensions of LF (Twelf [4], Delphin [1], ATS [12], Beluga
[48]) and Abella [3], a HOAS-specialized prover based
on definitional reflection. On the other hand, the Hybrid
package [6], written in Isabelle/HOL, is a successful real-
ization of the general-purpose framework approach. Laterl”
versions of this system [39], [41], [18] also import the #we
level architecture idea from the HOAS-tailored framework

(6]

proof for System F in LEGO. IMTLCA pages 13-28, 1993.

S. Ambler, R. L. Crole, and A. Momigliano. Combining
Higher Order Abstract Syntax with tactical theorem proving
and (co)induction. INTPHOLS pages 13-30, 2002.

1 S.J. Ambler, R. L. Crole, and A. Momigliano. A definitidna

approach to primitive recursion over Higher Order Abstract
Syntax. INMERLIN, 2003.

approach. Our context-free induction principle from Prop. [8] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using
8 captures the (non-inductive) open-world situation from a

HOAS-tailored setting while avoiding the need for an exotic

logic or for a “third-party” logic.

[9]

Another standard classification of HOAS approaches is

in weak versus strong HOAS. Both capture object-level
bindings by meta-levedlinctionalbindings; “weak” refers to
the considered functions mappirngriablesto terms, while
“strong” refers to these functions mappitgrmsto terms.

(10]

Weak HOAS approaches are taken in [14], [30], [53], [26],[11]

including in category-theoretic form (with a denotational

semantics flavor) in [19], [29], [7], [20]. Our work in this [12]
paper, the above HOAS-tailored approaches, as well as [15],

the work on Hybrid [6], [39], [41], [18], parametric HOAS
[13], parametricity-based HOAS [31], and de-Bruijn-mixed
HOAS [28], fall within strong HOAS. In weak HOAS,

(13]

some of the convenience is lost, since substitution of termE4]

for variables is not mere function application, as in strong

typed A-calculus to implement formal systems on a machine.
J. of Aut. Reasoningd(3):309-354, 1992.

H. Barendregt. Introduction to generalized type systeth
Funct. Program,. 1(2):125-154, 1991.

H. Barendregt. Lambda calculi with types. In S. Abramsk
D. M. Gabbay, and T. Maibaum, editoidandbook of Logic
in Computer ScienceéDxford University Press, 1992.

M. Berger, K. Honda, and N. Yoshida. Genericity and the
pi-calculus. Acta Inform, 42(2):83-141, 2005.

C. Chen and H. Xi. Combining programming with theorem
proving. InICFP, pages 66—77, 2005.

A. J. Chlipala. Parametric higher-order abstract aynfor
mechanized semantics. IGFP, pages 143-156, 2008.

J. Despeyroux, A. P. Felty, and A. Hirschowitz. Higloeder
abstract syntax in Coq. IMLCA pages 124-138, 1995.

directly inductively. However, as illustrated in this pape
and in previous work [15], [6], in a general-purpose setting
having strong HOAS (perhaps on top of weak HOAS as in
[15], or directly on top of the first-order syntax as here) is
only a matter of somelefinitionalwork. Because variables

[16]

are particular terms, strong HOAS can accommodate weald 7]

induction and recursion principles, and in fact in most
situations only such weak principles are available due ¢o th

need of well-foundedness — Prop. 1 (similar to an axiom18]

postulated in the Theory of Contexts [30] and to a fact
proved by Hybrid [6]), as well as our permutative induction

for 2-abstractions expressed in Prop. 2, are examples (ﬁg]

“weak” principles within strong HOAS. To our knowledge,
our Prop. 4 is the first genuinely “strong” (albeit restritjte

compositionality principle for syntax interpretation tiit
general-purpose frameworks.
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