
Strong normalization for System F by HOAS on top of FOAS

Andrei Popescu1 Elsa L. Gunter2 Christopher J. Osborn3

1,2,3:University of Illinois at Urbana-Champaign. 1: Corresponding author. Emailuuomul@yahoo.com

Abstract—We present a point of view concerning HOAS
(Higher-Order Abstract Syntax) and an extensive exercise in
HOAS along this point of view. The point of view is that
HOAS can be soundly and fruitfully regarded as adefinitional
extensionon top of FOAS (First-Order Abstract Syntax). As
such, HOAS is not only an encoding technique, but also a
higher-order view of a first-order reality. A rich collection of
concepts and proof principles is developed inside the standard
mathematical universe to give technical life to this point of view.
The exercise consists of a new proof of Strong Normalization
for System F. The concepts and results presented here have
been formalized in the theorem prover Isabelle/HOL.

Keywords- Higher-Order Abstract Syntax; System F;
General-Purpose Framework; Isabelle/HOL

I. I NTRODUCTION

HOAS (Higher-Order Abstract Syntax) is a methodology
for representing formal systems (typically, logical systems
or static or dynamic semantics of programming languages or
calculi), referred to asobject systems, into a fixed suitably
chosen logic, referred to as themeta logic. HOAS prescribes
that the object system be represented in the meta logic so
that variable-binding, substitution and inference mechanisms
of the former be captured by corresponding mechanisms of
the latter. HOAS originated in [32], [47], [27], [44] and has
ever since been extensively developed in frameworks with
a wide variety of features and flavors. We distinguish two
main (overlapping) directions in these developments.
-(I) First, the employment of a chosen meta logic as apure
logical framework, used for defining object systems for the
purpose of reasoninginside those systems. A standard exam-
ple is higher-order logic (HOL) as the meta logic and first-
order logic (FOL) as the object system. Thanks to affinities
between the mechanisms of these two logics, one obtains an
adequate encodingof FOL in HOL by merely declaring in
HOL types and constants and stating the FOL axioms and
rules as HOL axioms – then the mechanisms for building
FOL deductions (including substitution, instantiation, etc.)
are already present in the meta logic, HOL.
-(II) Second, the employment of the meta-logic to reason
about the represented object systems, i.e., to represent not
only the object systems, but also (some of) theirmeta-
theory. (E.g., cut elimination is a propertyabout Gentzen-
style FOL, not expressible in a standard HOAS-encoding of
FOL into HOL.) While direction (I) has been quasi-saturated
by the achievement of quasi-maximally convenient logical
frameworks (such Edinburgh LF [27] and generic Isabelle
[44]), this second direction undergoes these days a period of
active research. We distinguish two main approaches here:
-(II.a) The HOAS-tailored framework approach[56], [54],

[34], [36], [58], [21], [1], [12], [48]. This is characterized by
the extension of the pure logical frameworks as in (I) with
meta-reasoning capabilities. The diad (object system, meta
logic) from (I) becomes a triad:object system, logical frame-
work where this system is specified,meta-logical framework
where one can reasonaboutthe logical framework [46]. The
challenge here is choosing suitable logical and meta-logical
frameworks that allow for adequate HOAS encodings, as
well as enough expressive meta-theoretic power. (The logical
framework is typically chosen to be a weak logic, e.g., an
intuitionistic logic or type system as in (I), or linear logic.)

Somewhat complementary to the above work on HOAS-
tailored meta-reasoning, [55], [16] developed HOAS-
tailored recursive definitionprinciples in a logical frame-
work distinguishing between a parametric and a primitive-
recursive function space.
-(II.b) Thegeneral-purpose framework approach[15], [14],
[6]. This approach employs a general-purpose setting for
developing mathematics, such as ZF Set Theory, Calculus of
Constructions, or HOL with Infinity, as the logical frame-
work, with object-level bindings captured again by means
of meta-level bindings, here typically functional bindings –
this means that terms with bindings from the object system
are denoted usingstandard functions. Here there is no need
for the three-level architecture as in (II.a), since the chosen
logical framework is already strong enough, meta-theoretic
expressiveness not being a problem. However, the difficulty
here is brought be the meta-level function space being wider
than desired, containing so-called “exotic terms”. Even after
the function spaces are cut down to valid terms, adequacy
is harder to prove than at (II.a), precisely because of the
logic’s expressiveness.

We advocate here a variant of the approach (II.b), high-
lighting an important feature, to our knowledge not yet
explored in the HOAS literature: the capability tointernalize,
and eventually automate, both the representation map and
the adequacy proof. We illustrate this point by an example.
Say we wish to represent and reason aboutλ-calculus and
its associatedβ-reduction (as we actually do in this paper).
Therefore, the object system is an “independent” (Platonic,
if you will) mathematical notion, given by a collection of
items calledλ-terms, with operators on them, among which
the syntactic constructs, free variables and substitution, and
with an inductively defined reduction relation.

In the HOAS-tailored framework approach, for represent-
ing this system one defines a corresponding collection of
constants in the considered logical framework, say LF, and
then does an informal (but rigorous)pen and paper proofof

the fact that the syntax representation is adequate (i.e., the
existence of a compositional bijection between theλ-terms
and normal forms of LF terms of appropriate types) and of
a corresponding fact forβ-reduction [45].

In the general-purpose framework approach, one can de-
fine the original system itself (hereλ-calculus) in the meta-
logical framework (say, HOLω, Higher-Order Logic with
Infinity) in such a way that accepting this definition as con-
forming to the mathematical definition is usually not a prob-
lem (for one who already accepts that HOLω is adequate for
representing the mathematical universe (or part of it)), since
the former definitions are typically almost verbatim render-
ings of the latter – in HOLω, one can define inductively the
datatype of terms, perhaps defineα-equivalence and factor
to it, then define substitution, reduction, etc. Moreover, one
can also define in HOLω a system that is a HOAS-style
representation of (the original)λ-calculus, i.e.: define a
new type of items, call them HOAS-terms, with operators
corresponding to the syntactic constructs of the original
terms, but dealing with bindings via higher-order operators
instead. In particular, the constructor forλ-abstraction will
have type (HOAS-terms# HOAS-terms)→ HOAS-terms,
where one may choose the type constructor# to yield
a restricted function space, or the whole function space
accompanied by a predicate to cut down the “junk”, etc.
Once these constructions are done, one may also define
in HOLω the syntax representation map fromλ-terms to
HOAS-terms and prove adequacy. (And a corresponding
effort yields the representation ofλ-term reduction.) Now, if
the above are performed in a theorem prover that implements
HOLω, such as Isabelle/HOL, then HOAS-terms become a
formally certifiedadequate representation of the (original)
λ-terms, not available in the existent HOAS-tailored ap-
proaches. Moreover, in many cases the construction of the
HOAS-terms, the proofs of their basic properties and the
adequacy proof can beautomated, being the same for all
syntaxes with bindings.

One may argue that, on the other hand, the above HOAS-
terms do not retain all the convenience of a genuine HOAS
encoding. Thus, when various standard relations need to be
defined on HOAS-terms, certain context-free clauses spe-
cific to the HOAS-tailored frameworks (within the so-called
HOAS-encoding of judgements) are no longer available here.
E.g., a rule like ∀X. X : S ⇒ AX : T

Lam(A) : S → T

(typing rule for λ-abstractions –⇒ is logical implication
and A a map from terms to terms) cannot act as a def-
initional clause in HOLω for a typing relation : , due
to non-monotonicity. The short answer to this objection is
agreeing that general-purpose frameworks do bring their
expressiveness with the price of not allowing the cleanest
possible HOAS. A longer answer is given in this paper,
where we argue that developing suitable general-purpose-
framework concepts accommodates non-monotonicity and

impredicativity flavors that make “pure” HOAS so attractive.
This paper develops novel HOAS concepts and techniques

pertaining to thegeneral-purpose framework approach.
Here, the general-purpose framework could be regarded as
being the mathematical universe (given axiomatically by any
standard formalization of mathematics). All the involved
systems, including the original systems and their represen-
tations, dwell in this mathematical universe, and are thus
discussed and related via standard-mathematics concepts and
theorems. Our HOAS exercise here is a proof of the strong
normalization result for System F [23].

Apart from this introduction, Sec. II recalling some syntax
concepts and Sec. VI drawing conclusions and discussing
related and future work, the paper has two main parts. In the
first part, consisting of Secs. III and IV, we discuss some
general HOAS techniques for representing syntax and in-
ductively defined relations, illustrated on theλ-calculus and
System F. The HOAS “representation” of the original first-
order syntax will not be a representation in the usual sense
(via defining a new (higher-order) syntax), but will takea
different view of the same syntax. Let us callabstractions
pairs (x,X) variable-term moduloα-equivalence. (In this
paper, we use lowercases for variables and uppercases for
terms.) Abstractions are therefore the arguments to which the
λ-operator applies, as inλx.X . Under the higher-order view,
abstractionsA are no longer constructed by variable-term
representatives, but are analyzed/”destructed” by applying
them (as functions), via substitution, to terms. Namely, given
a termX , A X , read “A applied toX”, is defined to be
Y [X/x], where(x, Y) is any variable-term representative for
A. This way, the space of abstractions becomes essentially a
restricted function space from terms to terms. Although this
change of view is as banal as possible, it meets its purpose:
the role previously played by substitution now belongs to
function-like application. The latter of course originates in
substitution, but one can forget about its origin. In fact, one
can (although is not required to!) also forget about the origi-
nal first-order binding constructor and handle terms entirely
by means of the new, higher-order destructor. Moving on to
the discussion of recursive-definition principles for syntax,
we perform an analysis of various candidates for the type
of the recursive combinator, resulting notably in a novel
“impredicative” HOAS principle.

Then we discuss HOAS representation of inductively
defined relations, performed by a form of transliteration fol-
lowing some general patterns. These patterns are illustrated
by the case of the reduction and typing relation for System
F, and it appears that a large class of systems (e.g., most
of those from the monographs [9], [25], [37], [49]) can be
handled along these lines. For typing, we also present a
“purely HOAS” induction principle, not mentioning typing
contexts. Once our formalization will be fully automated,
it will have a salient advantage over previous HOAS ap-
proaches: adequacy will neednot be proved by hand, but

2

will follow automatically from general principles.
In the second part, Sec. V, we sketch a proof of strong

normalization for System F within our HOAS framework.
We make essential use of our aforementioneddefinitional
principle and typing-context-free induction principleto ob-
tain a general criterion for proving properties on typable
terms, from which we infer strong normalization. Unlike
previous proofs [24], [57], [38], [22], [10], [5], [11], [33],
[17], our proof does not employdata or type environments
andsemantic interpretation of typing contexts– a virtue of
our setting, which is thus delivering the HOAS-prescribed
service ofclearing the picture of inessential details.
Isabelle formalization. For the formalization of the con-
cepts and results presented in this paper (including the
FOAS definitions of the systems, their HOAS representa-
tions and adequacy theorems, and the Strong Normalization
theorem), we have chosen a particular general-purpose logic,
namely HOLω, implemented as Isabelle/HOL [43]. The
formal scripts can be downloaded from [51]. The document
SysF.pdf from that (zipped) folder contains a detailed pre-
sentation of the relevant theories. These theories can also
be browsed in html format in the folderSysF Browse. The
section-wise structure of this paper reflects quite faithfully
that of our Isabelle development, so that the reader should
have no difficulty mapping one to the other. Moreover, the
concrete syntax we use for our operators in Isabelle is almost
identical to the one of the paper; the proofs, written (for the
more complex facts) in the top-down Isar [42] style, are
also fairly readable. (More details in the appendix of [52].)
The above precautions allow us to focus our presentation
on mathematics rather than on formalization. As a side-
effect, we hope to illustrate that the discussed “general math-
ematics” is formalizable in other general-purpose theorem
provers besides that of our choice. (Though some extra care
is required if working in more constructive settings.)
Conventions and notations.While Isabelle distinguishes
between types (as primitive items) and sets (as items in-
habiting bool-functional types), we shall ignore this dis-
tinction here and refer to all the involved collections as
sets (the reader can recognize the types though by the
boldface fonts). We employ the lambda-abstraction, univer-
sal/existential quantification and implication symbolsλ, ∀,
∃ and⇒ only in the meta-language of this paper, andnot
in the formal languages that we discuss.A → B is theA-
to-B function space, andP(A) and P6=∅(A) the powerset
and P(A) \ {∅}, respectively.◦ is functional composition.
For R ⊆ A × A, R∗ is its reflexive-transitive closure.[] is
the empty list and infixed “,” is list concatenation.

II. T HE λ-CALCULUS AND SYSTEM F RECALLED

The two systems are standardly defined employing First-
Order Abstract Syntax (FOAS), moduloα-equivalence. We
later refer to them as “the original systems”, to contrast them
with their HOAS representations.

A. The (untyped)λ-calculus
We fix an infinite setvar, of variables, ranged over by

x, y, z. The setsterm, of terms, ranged over byX,Y, Z,
and abs, of abstractions, ranged over byA,B, are given
by: X ::= InV x | App X Y | Lam A A ::= x.X
where we assume that, inx.X , x is bound inX , andterms
and abstractions are identified modulo the standardly in-
duced notion ofα-equivalence(not recalled here). Therefore
what we call “abstractions” and “terms” in this paper areα-
equivalence classes. (Note: the operatorsApp, Lam andx.
(for any fixedx) are well-defined onα-equivalence classes.)
For convenience, we shall keep implicit the injective map
InV : var → term, and pretend thatvar ⊆ term (this
omission will be performed directly for the syntax of System
F below). Anenvironmentρ ∈ env is a finite-domain partial
function from variables to terms. We write:
- fresh : var → term → bool, for the predicate indicating if
a variable is fresh in a term (“fresh” meaning “non-free”);
- [] : term → env → term, for the concurrent substitu-
tion on terms – namely,X [ρ] is the term obtained fromX
by concurrently (and capture-avoiding-ly) substituting in X
each variablex with the termρ(x) if ρ(x) is defined.
- [/] : term → term → var → term, for unary
substitution – namely,X [Y/y] is the term obtained from
X by (capture-avoiding-ly) substitutingy with Y in X .

We employ the same notations for abstractions:fresh :
var → abs→ bool, [] : abs→ env→ abs, etc.
One-stepβ-reduction : term→ term→bool is given by:

·

App (Lam(x.Y)) X Y [X/x]
(Beta)

X Y

Lam(z.X) Lam(z.Y)
(Xi)

X Y

App X Z App Y Z
(AppL)

X Y

App Z X App Z Y
(AppR)

X is called strongly normalizingif there is no infinite
sequence(Xn)n∈IN with X0 = X and∀n. Xn Xn+1.
B. System F

We describe this system as a typing system forλ-terms
without type annotations, in a Curry style (see [9]). Its syntax
consists of two copies of the untypedλ-calculus syntax –
one for data and one for types. More precisely, we fix two
infinite sets,dvar, of data variables(dvarsfor short), ranged
over byx, y, z, andtvar , of type variables(tvars for short),
ranged over bytx, ty, tz. The setsdterm and dabs, of data
termsandabstractions(dtermsanddabstractionsfor short),
ranged over byX,Y, Z andA,B,C, and tterm and tabs,
of type termsandabstractions(ttermsand tabstractionsfor
short), ranged over bytX, tY, tZ andtA, tB, tC, are defined
by the following grammars, again up toα-equivalence:

X ::= x | App X Y | Lam A A ::= x.X
tX ::= tx | Arr tX tY | Al tA tA ::= tx . tX

Above, App and Lam stand, as in Subsec II-A, for “appli-
cation” and “lambda”, whileArr and Al stand for “arrow”
and the “for all” quantifier. Since dterms do not have type
annotations, indeed both the abstract syntax of dterms and
that of tterms are that ofλ-calculus (from Subsec. II-A), just
that for tterms we writeArr andAl instead ofApp andLam.

3

All concepts and results from Subsec. II-A apply to either
syntactic category, separately. Letdenv, ranged over byρ,
be the set of data environments, andtenv, ranged over by
ξ, that of type environments. For any itemsa and b, we
may write a : b for the pair (a, b). A well-formed typing
context(contextfor short)Γ ∈ ctxt is a list of pairs dvar-
tterm, x1 : tX1, . . . , xn : tXn, with the xi’s distinct. The
homonymous predicatesfresh : dvar → ctxt → bool and
fresh : tvar → ctxt → bool (indicating if a dvar or a tvar is
fresh for a context) are defined as expected:fresh y [] = True;
fresh y (Γ, (x : tX)) = (fresh y Γ∧y 6= x); fresh ty [] = True;
fresh ty (Γ, (x : tX)) = (fresh ty Γ ∧ fresh ty tX).

The type inference relation(⊢ :) : ctxt → dterm →
tterm → bool is defined inductively by the clauses:

·

Γ, x : tX ⊢ x : tX
(Asm)
[fresh x Γ]

Γ ⊢ X : tX

Γ, y : tY ⊢ X : tX
(Weak)
[fresh y Γ]

Γ, x : tX ⊢ Y : tY

Γ ⊢ Lam(x.Y) : Arr tX tY
(ArrI)
[fresh x Γ]

Γ ⊢ Y : tY

Γ ⊢ Y : Al(tx.tY)
(AlI)
[fresh tx Γ]

Γ ⊢ X : Arr tY tZ Γ ⊢ Y : tY

Γ ⊢ App X Y : tZ
(ArrE)

Γ ⊢ Y : Al(tx.tY)

Γ ⊢ Y : tY[tX/tx]
(AlE)

We write ⊢ X : tX for [] ⊢ X : tX. X is called typable if
Γ ⊢ X : tX for someΓ and tX.

III. HOAS VIEW OF SYNTAX

Here we present a HOAS approach to thesyntax of
calculi with bindings. We describe our approach for the
paradigmatic particular case of the untypedλ-calculus (from
Sec. II-A), but our discussion is easily generalizable to terms
generated from any (possibly many-sorted) binding signature
(as defined, e.g., in [19]). We donot define a new higher-
order syntax, but introduce higher-order operators on the
original syntax – hence we speak of aHOAS viewrather
than of aHOAS representation.
A. Abstractions as functions

Throughout the rest of this section, we use the concepts
and notations from Sec. II-A, andnot the ones from
Sec. II-B. GivenA ∈ abs and X ∈ term, the functional
application of A to X , written A X , is defined to be
Y [X/x] for any x and Y s.t. A = (x.Y). (The choice of
(x, Y) is easily seen to be immaterial.) The operatoris
extensional, qualifying the set of abstractions as arestricted
term-to-term function space, and preserves freshness. Thus,
abstractions are no longer regarded as pairs var-term up
to α-equivalence, but as functions, in the style of HOAS.
Under this higher-order view, abstractions can be destructed
by application, as opposed to constructed by means of var-
term representatives as in the original first-order view. But
does the higher-order view suffice for the specification of
relevant systems with bindings? I.e., can we do without
“constructing” abstractions? Our answer is threefold:
-(1) Since the higher-order view does not change the first-
order syntax, abstractions by representatives are still avail-
able if needed.
-(2) Many relevant systems with bindings employ the bind-
ing constructors within a particular style of interaction with

substitution and scope extrusion (e.g., all variables appear
either bound, or substituted, or [free in the hypothesis])
which makes the choice of binding representatives irrelevant.
This phenomenon, to our knowledge not yet rigorously
studied mathematically for a general syntax with bindings,
is really the basis of most HOAS representations from the
literature. In Sec. IV, we elaborate informally on what this
phenomenon becomes in our setting.
-(3) The previous point argued that relevant systemsspecifi-
cationscan do without constructing abstractions. Now, w.r.t.
proofs of meta-theoretic properties, one may occasionally
need to perform case-analysis and inductionon abstractions.
HOAS-style case-analysis and induction are discussed be-
low, after we introduce2-abstractions.

B. 2-abstractions
These are for abstractions what abstractions are for terms.

2-abstractionsA ∈ abs2 are defined as pairsx.A var-
abstraction up toα-equivalence (just like abstractions are
pairs var-term up toα). (Alternatively, they can be regarded
as triplesx.y.Z, with x, y ∈ var and Z ∈ term, again
up to α.) Next we define two application operators for 2-
abstractions. IfA ∈ abs2 andX ∈ term, thenA 1X and
A 2X are the following elements ofabs:
- A 1X = A[X/x], wherex,A are s.t.A = (x.A);
- A 2X = (y.(Z[X/x])), where y, Z are s.t.y 6= x,
fresh y X andA = (y.(x.Z)).
(Again, the choice of representatives is immaterial.) Thus,
essentially,2-abstractions are regarded as2-argument func-
tions and applied correspondingly.

Now we can define homonymous syntactic operations for
abstractions lifting those for terms:
- InV : var → abs, by InV x = (y.x), wherey is s.t.y 6= x;
- App : abs→ abs→ abs, by App A B = (z. (App X Y)),
wherez,X, Y are s.t.A = (z.X) andB = (z.Y).
- Lam : abs2 → abs, by Lam A = (x. (Lam A)), where
x,A are s.t.A = (x.A).

If we also defineid ∈ Abs to be(x.x) for somex, we can
case-analyze abstractions by the above four (complete and
non-overlapping) constructors. Moreover, functional appli-
cation verifies the expected exchange law(A 1X) Y =
(A 2 Y) X and commutes with abstraction versus terms
constructors, e.g.,(Lam A) X = Lam(A 1X).

C. Induction principles for syntax
The following is the natural principle for terms under the

HOAS view. Notice that it requires the use of abstractions.
Prop 1: Let ϕ : term → bool be s.t. the following hold:

(i) ∀x. ϕ x. (ii) ∀X,Y. ϕ X ∧ ϕ Y ⇒ ϕ(App X Y).
(iii) ∀A. (∀x.ϕ(A x)) ⇒ ϕ(Lam A). Then∀X.ϕ X .

Likewise, a HOAS induction principle for abstractions
requires the use of2-abstractions. The2-place application in
the inductive hypothesis forLam in Prop. 2 offers “permuta-
tive” flexibility for when reasoning about multiple bindings
– the proof of Prop. 10 from Sec. V illustrates this.

4

Prop 2: Let ϕ : abs→ bool be s.t. the following hold:
(i) ϕ id. (ii) ∀x. ϕ(InVx).
(iii) ∀A,B. ϕA ∧ ϕB ⇒ ϕ(AppAB).
(iv) ∀A. (∀x. ϕ(A 1 x) ∧ ϕ(A 2 x)) ⇒ ϕ(Lam A).

Then∀A.ϕ A.
D. Recursive definition principles for syntax

This is known as a delicate matter in HOAS. One would
like that, given any setC, a mapH : term → C be
determined by a choice of the operationscInV : var → C,
cApp : C → C → C, andcLam (whose type we do not yet
specify) via the conditions:
(I) H x = cInV x. (II) H(AppX Y) = cApp (H X) (H Y).
(III) An equation (depending on the type ofcLam) with
H(Lam A) on the left.
(We only discussiteration, and not general recursion.)

Candidates for the type of the operatorcLam are:
(1) cLam : (term → C) → C, suggesting the equation
H(Lam A) = cLam(λX.H(A X)) – this is problematic
as a definitional clause, due to its impredicativity;
(2) A weak-HOAS-like [14] variable-restriction of (1),
namely,cLam : (var → C) → C, yielding the equation
(III w): H(Lam A)=cLam(λx.H(A x))
and a recursive principle:

Prop 3: There exists a unique mapH : Term → C s.t.
equations (I), (II), and (IIIw) hold.
(3) cLam : (C → C) → C. Then there is no apparent
way of defining the equation (III) in terms ofLam and
cLam without parameterizing by valuations/environments in
var → C, and thus getting into first-order “details” (at least
not in a standard setting such as ours – but see [55], [16]
for an elegant solution within a modal typedλ-calculus).
(4) A “flattened” version (collapsing some type information)
of both (1) and (3), namely,cLam : P6=∅(C) → C. This
may be regarded as obtained by requiring the operator from
(1) or (3) to depend only on the image of its arguments
in term → C or C → C, respectively. The natural as-
sociated (valuation-independent) condition (III) would be
H(Lam A) = cLam({H(A X). X ∈ term}).

Unfortunately, this condition is still too strong to guaran-
tee the existence ofH . But interestingly, if we have enough
variables, the existence of a compositional map holds:

Prop 4: Assumecard(var) ≥ card(C) and letcApp : C →
C → C andcLam : P6=∅(C) → C (wherecard is the cardinal
operator). Then there existsH : term → C s.t.:
(I) H(App X Y) = cApp (H X) (H Y) for all X,Y .
(II) H(LamA) = cLam({H(A X). X ∈ term}) for all A.

Prop. 4 is looser than a definition principle, since it does
not state uniqueness ofH . In effect, it is a “loose definition”
principle, which makes no commitment to the choice of
interpreting the variables. (Though it can be proved that
H is uniquely determined by its action on variables. As a
trivial example, the identity function on terms is uniquely
identified by its action on variables and by equations (I) and
(II). Other functions, such as term-depth, donot fall into the

cardinality hypothesis of this proposition, but of course can
be defined using Prop. 3.) Note the “impredicative” nature
of equation (II): it “defines”H on LamA in terms of the
“HOAS-components” ofA, where a “HOAS component”
is a result of applyingA (as a function) to a termX and
can of course be larger thanA. This proposition can be
useful in situations where the existence of a compositional
map is the only relevant aspect, allowing to take a shortcut
from the first-order route of achieving compositionality
through interpretation in environments – our proof of Strong
Normalization from Sec. V takes advantage of this.
Conclusion: While the above preparations for HOAS on
top of FOAS do require some work, this work is uniformly
applicable to any (statically-scoped) syntax with bindings,
hence automatable. Moreover, once this definitional effort
is finished, one can forget about the definitions and work
entirely in the comfortable HOAS setting (meaning: no more
α-representatives, variable capture, etc.), as illustrated next.

IV. HOAS REPRESENTATION OF INFERENCE

This section deals with the HOAS representation of in-
ductively defined relations on syntax, such as typing and
reduction. Given an inductively defined relation on the
first-order syntax employing the first-order operators, we
transliterateit through our HOAS view, roughly as follows:
(I) abstractions constructed by terms with explicit depen-
dencies become “plain” abstractions (used as functions);
(II) terms with implicit dependencies become abstractions
applied to the parameter they depend on;
(III) substitution becomes functional application;
(IV) unbound arbitrary variables become arbitrary terms;
(V) scope extrusion is handled by universal quantification.
(We explain and illustrate these as we go through the
examples, where the informal notions of implicit and explicit
dependency will also be clarified.)

Our presentation focuses on a particular example, the
typing and reduction of System F, but the reader can notice
that the approach is rather general, covering a large class of
reduction and type systems.

At this point, the reader should recall the definitions and
notations pertaining to System F from Sec. II-B. All the
discussion from Sec. III duplicates for the two copies of the
λ-calculus that make the syntax of System F. In particular,
we have data-abstraction-lifted operatorsApp : dabs →
dabs → dabs, Lam : dabs2 → dabs, etc. (wheredabs2
is the set of data2-abstractions).
A. Representation of reduction

We define :dterm→dterm→bool inductively:
·

App (Lam A) X A X
(HBeta)

∀Z. A Z B Z

Lam A Lam B
(HXi)

X Y

App X Z App Y Z
(HAppL)

X Y

App Z X App Z Y
(HAppR)

Adequacy of the reduction representation is contained in:
Prop 5: The following are equivalent:

(1) X Y . (2) X Y . (3) ∀ρ ∈ denv. X [ρ] Y [ρ].

5

Remember that our HOAS representation dwells in the
same universe as the original system, i.e., both the original
relation and the representation relation act on the same
syntax – they only differintensionallyin the way their defi-
nition manipulates this syntax: the former through bindings
and substitution, the latter through abstractions-as-functions
and function application. Looking for the incarnations of
the general HOAS-transliteration patterns (I)-(V) listedat
the beginning of this section, we find that:
- The definition of is obtained by modifying in only
the clauses involving binding and substitution: (Beta), (Xi);
- In (Beta) and (Xi),Lam(x.Y), Lam(z.X) and Lam(z.Y)
becomeLam A, Lam A andLam B, according to (I);
- In (Beta),Y [X/x] becomesA X , according to (III);
- In (Xi), regarded as applied backwards, we have the extru-
sion of the scope ofz, asz is bound in the conclusion and
free in the hypothesis – by pattern (V), this brings universal
quantification over an arbitrary termZ in the hypothesis, as
well as the acknowledgement of an implicit dependency onz
(now having becomeZ) in theX andY from the hypothesis,
making them become, by (II), abstractions applied to the
implicit parameter,A Z andB Z.
(Note that this example does not illustrate pattern (IV), since
all variables appearing in the definition of are bound.)

The infinitary clause (HXi) from the definition of
(whose premise quantifies over all dtermsZ) is convenient
when proving that is included inanother relation, as it
makes a very strong induction hypothesis, much stronger
than that given by (Xi) for . This is also true for rule
inversion, where fromLam A Lam B we can infer a
good deal of information compared to the first-order case.
However, when proving that includesa certain relation,
it appears that a HOAS clause matching (Xi) more closely
may help. Such a clause can be extracted from (Xi):

Prop 6: is closed under the following rule:
fresh z A fresh z B A z B z

Lam A Lam B
(HXi’)

Note that (HXi’) is stronger than (HXi) (but stronger as a
rule means weaker as an induction-principle clause). A rule
such as (HXi’) should be viewed as a facility to descend,
if necessary, from the HOAS altitude into “some details”
(here, a freshness side-condition). This fits into our goal
of encouraging HOAS definitions and proofs, while also
allowing access to details on a by-need basis.

Since, by Prop. 5, the relations and coincide,
hereafter we shall use only the symbol “ ”.

B. Representation of inference
A HOAS context(Hcontext for short) ∆ ∈ Hctxt is a

list of pairs in dterm × tterm , X1 : tX1, . . . , Xn : tXn.
Note thatctxt ⊆ Hctxt . For Hcontexts, freshness,fresh :
dvar → Hctxt → bool and fresh : tvar → Hctxt → bool,
and substitution, [,] : Hctxt → tenv → denv→ Hctxt
are defined as expected:fresh y [] = True; fresh y (∆, (X :
tX)) = (fresh y ∆ ∧ fresh y X); fresh ty [] = True;

fresh ty (∆, (x : tX)) = (fresh ty ∆ ∧ fresh ty tX);
[] [ξ, ρ] = []; (∆, (X : tX)) [ξ, ρ] = (∆[ξ, ρ], (X [ρ] : tX[ξ])).

We represent type inference by the relation(I⊢ :) :
Hctxt → dterm → tterm → bool, called HOAS typing
(Htyping for short):

·

∆,X : tX I⊢X : tX
(HAsm)

∆ I⊢X : tX

∆, Y : tY I⊢X : tX
(HWeak)

∀X. ∆,X : tX I⊢A X : tY

∆ I⊢ Lam A : Arr tX tY
(HArrI)

∀tX. ∆ I⊢ Y : tA tX

∆ I⊢ Y : Al tA
(HAlI)

∆ I⊢X : Arr tY tZ ∆ I⊢ Y : tY

∆ I⊢App X Y : tZ
(HArrE)

∆ I⊢ Y : Al tA

∆ I⊢Y : tA tX
(HAlE)

Prop 7: (Adequacy) The following are equivalent:
(1) Γ ⊢ X : A.
(2) Γ I⊢X : A. (Note: contexts are particular Hcontexts.)
(3) Γ[ξ, ρ] I⊢X [ρ] : A[ξ] for all ξ ∈ tenv andρ ∈ denv.

It follows that I⊢ is a conservative extension(from con-
texts to Hcontexts) of⊢. Thus, unlike with reduction, our
HOAS representation of typing,I⊢, doesnot manipulate the
same items as the original relation⊢, butextendsthe domain
– essentially, the new domain is the closure of the original
domain under substitution. Hereafter we writeI⊢ for either
relation, but still haveΓ range overctxt and∆ overHctxt .

The only pattern from (I)-(V) exhibited by our HOAS-
transliteration of typing that is not already present in theone
for reduction is (IV), shown in the transliterations of (Asm),
(Weak) and (ArrI) – there, we have the variablesx and y
becoming termsX andY in (HAsm) (HWeak) and (HArrI).
At (ArrI), (IV) is used in combination with (V), becausex
is also extruded back from the conclusion to the hypothesis,
thus becoming in the hypothesis of (HArrI) a universally
quantified termX . Another phenomenon not exhibited by
reduction is the presence of freshness side-conditions (inthe
original system), whose effect is toprevent dependencies–
e.g., the side-conditionfresh y Γ from (Weak) says that
Γ does not depend onx, meaning that, when transliterating
(Weak) into (HWeak), (II) is not applicable toΓ. (Otherwise,
to represent this we would need Hcontext-abstractions!)
C. Induction principle for type inference

By definition,I⊢ offers an induction principle: If a relation
R : Hctxt → dterm → tterm → bool is closed under the
rules definingI⊢, then∀∆, X, tX. ∆ I⊢X : tX ⇒ R ∆ X tX.

A HOAS technique should ideally do away (whenever
possible) not only with the explicit reference to bound
variables and substitution, but with the explicit reference
to inference (judgment) contexts as well. Our inductive
definition of Htyping achieves the former, but not the latter.
Now, trying to naively eliminate contexts in a “truly HOAS”
fashion, replacing, e.g., the rule (HArrI) with something like:

∀X. typeOfX tX ⇒ typeOf (A X) tY

typeOf (Lam A) (Arr tX tY)
(∗)

in an attempt to definenon-hypothetic typing(i.e., typing in
the empty context) directly as a binary relationtypeOf be-
tween dterms and tterms, we hit two well-known problems:
-(I) The contravariant position oftypeOf(X, tX) prevents the
clause (*) from participating at a valid inductive definition.

6

-(II) Even if we “compromise” for a non-definitional (i.e.,
axiomatic) approach, but would like to retain the advantages
of working in a standard logic, then (*) is likely tonot
be sound, i.e., not capture correctly the behavior of the
original system. Indeed, in a classical logic it would allow
one to type anyLamA to a typeArr tX tY for some non-
inhabited typetX. Moreover, even we restrict ourselves to
an intuitionistic setting, we still need to be very careful with
(and, to some extent, make compromises on) the foundations
of the logic in order for axioms like (*) to be sound. This is
because, while the behavior of the intuitionistic connectives
accommodates such axioms adequately, other mechanisms
pertaining to recursive definitions are not a priori guaranteed
to preserve adequacy – see [29], [35].

So what can one make of a clause such as (*) in a
framework with meta-reasoning capabilities? The HOAS-
tailored framework solution is stepping one level up to a
meta-logic: (*) would become an axiom in a logicL (hosting
the representation of the object system), withL itself viewed
as an object by the meta-logic; in the meta-logic then,
one can perform proofs by induction on derivations inL.
Previous work in general-purpose frameworks, after several
experiments, eventually proposed similar solutions, either of
directly interfering with the framework axiomatically [40] or
of employing the mentioned intermediate logic L [39].

Our own solution has an entirely different flavor, and
does not involve traveling between logics and/or postulating
axioms, but stays in this world (the same mathematical
universe where all the development has taken place) and sees
what this world has to offer: it turns out that clauses such as
(*) are “backwards sound”, in the sense that any relation
satisfying them will include the empty-context Htyping
relation. This yields “context-free” induction:

Prop 8: Assumeθ : dterm → tterm → bool s.t.:
∀X. θ X tX ⇒ θ (A X) tY

θ (Lam A) (Arr tX tY)
(ArrI θ)

∀tX. θ Y (tA tX)

θ Y (Al tA)
(AlI θ)

θ Y (Arr tX tZ) θ X tX

θ (App Y X) tZ
(ArrE θ)

θ Y (Al tA)

θ Y (tA tX)
(AlEθ)

Then I⊢X : tX implies θ X tX for all X, tX.

Proof sketch.TakeR : Hctxt → dterm → tterm → bool
to beR ∆ X tX = ((∀(Y : tY) ∈ ∆. θ Y tY) ⇒ θ X tX).
ThenR satisfies the clause that defineI⊢, hence, in particular,
for all X, tX, I⊢X : tX impliesR [] X tX, i.e., θ X tX.

Viewing relations as nondeterministic functions, we can
rephrase Prop. 8 in a manner closer to the intuition of types
as sets of data, with alogical predicateflavor:

Prop 8 (rephrased):Assumeθ : dterm → P(tterm) s.t.:

∀X. X ∈ θ tX ⇒ (A X) ∈ θ tY

(Lam A) ∈ θ (Arr tX tY)
(ArrI θ)

∀tX. Y ∈ θ (tA tX)

Y ∈ θ (Al tA)
(AlI θ)

Y ∈ θ (Arr tX tZ) X ∈ θ tX

(App Y X) ∈ θ tZ
(ArrE θ)

Y ∈ θ (Al tA)

Y ∈ θ (tA tX)
(AlEθ)

Then I⊢X : tX impliesX ∈ θ tX for all X, tX.

V. THE HOAS PRINCIPLES AT WORK

In this section we sketch a proof of strong normalization
for System F within our HOAS representation using the
developed definitional and proof machinery. Much more
details can be found in Sec. V of [52].

The first step is the crucial step in the overall proof:
setting a criterion for a predicate on terms to be true for
all empty-context typable terms. Interestingly, the proofof
this criterion essentially consists of pipelining our HOAS-
specific recursion and induction principles, Props. 4 and 8.

We let Zs range over lists of terms and letAppL :
dterm → List(dterm) → dterm be defined byAppL X [] =
X andAppL X (Z,Zs) = AppL (App X Z) Zs. For a listZs
and a setG, Zs⊆ G indicates that all terms ofZs are inG.

Prop 9: Assume thatG ⊆ dterm s.t. the following hold:
Zs⊆ G

AppL y Zs∈ G
(VClG)

∀x. App Y x ∈ G

Y ∈ G
(AppClG)

X ∈ G Zs⊆ G AppL (A X) Zs∈ G

AppL (App (Lam A) X) Zs∈ G
(ClG)

Then I⊢X : A impliesX ∈ G for all X,A.
Proof sketch.Consider the following clauses, expressing
potential properties of subsetsS ⊆ dterm (assumed uni-
versally quantified over all the other parameters):
- (VClS): if Zs⊆ G, thenAppL y Zs∈ S;
- (ClS): if X ∈ G, Zs⊆ G andAppL (A X) Zs∈ S, then
AppL (App (Lam A) X) Zs∈ S.

Let C = {S ⊆ G. (VClS) and (ClS) hold}. We define
cArr : C → C → C and cAl : P6=∅(C) → C by cArr S1 S2 =
{Y. ∀X ∈ S1.App Y X ∈ S2} andcAl K =

⋂
K.

By Prop. 4, there exists a mapθ : tterm → C that
commutes withcArr andcAl, i.e.:
-(I) θ(Arr tX tZ) = {Y. ∀X ∈ θ tX. App Y X ∈ θ tZ}.
-(II) θ(Al tA) =

⋂
tX∈tterm θ(tA tX).

Now, (II) is precisely the conjunction of the clauses
(AlI θ) and (AlEθ) from Prop. 8 (rephrased), while the left-
to-right inclusion part of (I) is a rephrasing of (ArrEθ).
Finally, (AlEθ) holds because (ClS) holds for all S ∈ C.
Thus, the hypotheses of Prop. 8 (rephrased) are satisfied
by θ : tterm → C (regarded as a map intterm →
P(dterm)). Hence,∀X, tX. I⊢X : tX ⇒ X ∈ θ tX. And
since∀tX. θ tX ⊆ G, we get∀X, tX. I⊢X : tX ⇒ X ∈ G.

The second step (not detailed here) is proving that the
set of strongly normalizing terms satisfies the hypotheses of
Prop. 9, allowing us to conclude that all terms typable in
the empty context are strongly normalizing. (Extending the
result to terms typable in arbitrary contexts is then trivial,
and the proof of strong normalization is done.) Among
the lemmas required at this second step, the following is
particularly relevant w.r.t. HOAS, as its proof occasions the
usage of the argument-permutative induction from Prop. 2:

Prop 10: If X
∗ X ′, thenA X

∗ A X ′.
Proof. First, we note thatfresh z A ∧ A z ∗ A′ z ⇒
Lam A

∗ Lam A′, from which we get
(∀z. A z ∗ A′ z) ⇒ Lam A

∗ Lam A′ (**)

7

Now, we employ the principle from Prop. 2, performing
induction onA. For the only interesting case, assumeA has
the form Lam A. We know from IH that∀z. (A 1 z) X

∗ (A 1 z) X ′ ∧ (A 2 z) X
∗ (A 2 z) X ′. The

second conjunct gives∀z.(A 1X) z ∗ (A 1X ′) z,
hence, with (**), Lam(A 1X) ∗ Lam(A 1X ′), i.e.,
(LamA) X

∗ (LamA) X ′. (We also used the ex-
change and commutation laws from Sec. III-B.)

The last proof reveals an interesting phenomenon: since
in HOAS bindings are kept implicit and substitution is
mere function application, we may occasionally need to
perform a permutation of the “placeholders” for function
application (requiring2-abstractions). On the other hand,
in a first-order framework (especially in one “optimized”
for Barendregt’s variable convention [50], [60], [59]) one
would be able to proceed more directly. Indeed, consider a
first-order version of Prop. 10, stating that ∗ is substitu-
tive: X

∗ X ′ implies Y [X/x] ∗ Y [X ′/x]. Its proof
goes by induction onY , treating the case of abstraction
as follows: AssumeY = Lam(z, Z). We may assumez
fresh forx,X,X ′. By IH, Z[X/x] ∗ Z[X ′/x]. By (Xi)
(iterated),Lam(z.(Z[X/x])) ∗ Lam(z.(Z[X ′/x])), hence
Lam(z.Z)[X/x] ∗ Lam(z.Z)[X ′/x], as desired.

The proof of the first-order version of the fact is more
direct than that of the HOAS version because under FOAS
a termY allows substitutionat any position, i.e., at any of its
free variables, while under HOAS an abstractionA has only
one particular positionprepared for substitution/application.
Our definitional framework accommodates both the first-
order and the HOAS facts (which are equivalent by ade-
quacy) and proofs, sincethe object syntax is the same, being
only subjected to two distinct views.
Our proof in the context of existing proofs. The first proof
of strong normalization for System F was given in Girard’s
Ph.D. thesis [23], the very place where (a Church-typed
version of) the system was introduced. All the proofs that
followed employed in one way or another Girard’s original
idea of reducibility candidates. Our own proof follows this
idea as well, but delves more directly into the heart of the
problem, by doing away with the notions oftyping context
and [type or data] environment, which are employed inall
the previous proofs as “auxiliaries” to the main proof idea.
Indeed, previous proofs define a variant of our type evalua-
tion mapθ (required to apply Prop. 8) that isparameterized
by type environments, i.e., by maps from tvars to tterms.
Instead, we employ our compositionality criterion (Prop.
4) to obtain a lightweight, non-parameterizedθ directly,
verifying what is known as Girard’s trick (namely, proving
that it has its image in the set of candidates) in a more
transparent fashion. Then, previous proofs define a notion
of semantic deduction in contexts, universally quantifying
over type environments and/or data environments, and prove
the typing relation sound w.r.t. it – this step isnot required
by our proof; more precisely, this routine issue of logical

soundness has been recognized as a general phenomenon
pertaining to HOAS and has already been dealt with in the
proof of Prop. 4.

On the formalization side, we are aware of the LEGO [2]
formalization from [5], and of the ATS [12] formalization
from [17], both following [24]. [5] uses de Bruijn encoding
for the whole syntax. [17] employs LF-style, axiomatic
HOAS for data terms and de Bruijn indices for type terms,
and has the merit of having recognized the suitability of
HOAS for strong normalization. It appears that potential
ATS variants of some of our results (mainly Props. 4 and 8)
could have been used to “HOASify” (and simplify) the proof
from [17] – in particular, our employment of Prop. 4 seems
to answer the following question raised in loc. cit., on page
120: ”[can one] prove strong normalization using a higher-
order representation for types?”. On the other hand, due to
the partly axiomatic approach, the adequacy of the HOAS
representation from loc. cit. (i.e., variants of our Props.5
and 7) cannot be formally established in that setting.

VI. CONCLUSIONS, RELATED WORK AND FUTURE WORK

One purpose of this paper was to insist on, and bring
technical evidence for, the advantage of using a general-
purpose framework for HOAS, i.e., to employ HOAS within
standard mathematics. We showed that our general-purpose
framework offers access to some of the HOAS advanced
conveniences, such as impredicative and context-free rep-
resentations of (originally context-based) type systems.An-
other purpose was to bring, via an extensive HOAS exercise,
more evidence to a belief seemingly shared by the whole
HOAS community (beyond the large variety of proposed
technical solutions), but not yet sustained by many examples
in the literature (apart from those from [8]): that a HOAS
representation of a system is in principle able not only to
allow hassle-free manipulation and study of a system, but
also to actuallyshed more light on the deep properties of a
system. We believe that our general-purpose HOAS machin-
ery does simplify and clarify the setting and justification of
a notoriously hard result in type theory.
Future work. The constructions and results from Sec. III
can be straightforwardly generalized to an arbitrary many-
sorted syntax with bindings. Moreover, the constructions
and adequacy proofs from Sec. IV seem to work for a
large class of inductively defined inference systems in whose
clauses the migration of variables between scopes satisfies
a few general conditions, allowing the sound application
of transformations (I)-(V) discussed in Sec. IV. We are
currently working on determining such general conditions
and automating the results into an Isabelle HOAS package.
More related work.There is a very extensive literature
on the subject of syntax representation in general and
on HOAS in particular. We only mention some works
most directly relevant here. The HOAS-tailored framework
approach yielded several theorem provers and functional

8

programming environments (some of them already mature
and with an extensive case-study record), including several
extensions of LF (Twelf [4], Delphin [1], ATS [12], Beluga
[48]) and Abella [3], a HOAS-specialized prover based
on definitional reflection. On the other hand, the Hybrid
package [6], written in Isabelle/HOL, is a successful real-
ization of the general-purpose framework approach. Later
versions of this system [39], [41], [18] also import the three-
level architecture idea from the HOAS-tailored framework
approach. Our context-free induction principle from Prop.
8 captures the (non-inductive) open-world situation from a
HOAS-tailored setting while avoiding the need for an exotic
logic or for a “third-party” logic.

Another standard classification of HOAS approaches is
in weak versus strong HOAS. Both capture object-level
bindings by meta-levelfunctionalbindings; “weak” refers to
the considered functions mappingvariablesto terms, while
“strong” refers to these functions mappingterms to terms.
Weak HOAS approaches are taken in [14], [30], [53], [26],
including in category-theoretic form (with a denotational-
semantics flavor) in [19], [29], [7], [20]. Our work in this
paper, the above HOAS-tailored approaches, as well as [15],
the work on Hybrid [6], [39], [41], [18], parametric HOAS
[13], parametricity-based HOAS [31], and de-Bruijn-mixed-
HOAS [28], fall within strong HOAS. In weak HOAS,
some of the convenience is lost, since substitution of terms
for variables is not mere function application, as in strong
HOAS. On the other hand, weak HOAS is is easier to define
directly inductively. However, as illustrated in this paper
and in previous work [15], [6], in a general-purpose setting
having strong HOAS (perhaps on top of weak HOAS as in
[15], or directly on top of the first-order syntax as here) is
only a matter of somedefinitionalwork. Because variables
are particular terms, strong HOAS can accommodate weak
induction and recursion principles, and in fact in most
situations only such weak principles are available due to the
need of well-foundedness – Prop. 1 (similar to an axiom
postulated in the Theory of Contexts [30] and to a fact
proved by Hybrid [6]), as well as our permutative induction
for 2-abstractions expressed in Prop. 2, are examples of
“weak” principles within strong HOAS. To our knowledge,
our Prop. 4 is the first genuinely “strong” (albeit restricted)
compositionality principle for syntax interpretation within
general-purpose frameworks.
Acknowledgements.We thank the reviewers for their in-
sightful comments and suggestions.

REFERENCES

[1] Delphin. http://cs-www.cs.yale.edu/homes/carsten/delphin.

[2] LEGO. http://www.dcs.ed.ac.uk/home/lego.

[3] Abella Theorem prover, 2009. http://abella.cs.umn.edu/.

[4] The Twelf Project, 2009. http://twelf.plparty.org/.

[5] T. Altenkirch. A formalization of the strong normalization
proof for System F in LEGO. InTLCA, pages 13–28, 1993.

[6] S. Ambler, R. L. Crole, and A. Momigliano. Combining
Higher Order Abstract Syntax with tactical theorem proving
and (co)induction. InTPHOLs, pages 13–30, 2002.

[7] S. J. Ambler, R. L. Crole, and A. Momigliano. A definitional
approach to primitive recursion over Higher Order Abstract
Syntax. InMERLIN, 2003.

[8] A. Avron, F. Honsell, I. A. Mason, and R. Pollack. Using
typedλ-calculus to implement formal systems on a machine.
J. of Aut. Reasoning, 9(3):309–354, 1992.

[9] H. Barendregt. Introduction to generalized type systems. J.
Funct. Program., 1(2):125–154, 1991.

[10] H. Barendregt. Lambda calculi with types. In S. Abramsky,
D. M. Gabbay, and T. Maibaum, editors,Handbook of Logic
in Computer Science. Oxford University Press, 1992.

[11] M. Berger, K. Honda, and N. Yoshida. Genericity and the
pi-calculus.Acta Inform., 42(2):83–141, 2005.

[12] C. Chen and H. Xi. Combining programming with theorem
proving. In ICFP, pages 66–77, 2005.

[13] A. J. Chlipala. Parametric higher-order abstract syntax for
mechanized semantics. InICFP, pages 143–156, 2008.

[14] J. Despeyroux, A. P. Felty, and A. Hirschowitz. Higher-order
abstract syntax in Coq. InTLCA, pages 124–138, 1995.

[15] J. Despeyroux and A. Hirschowitz. Higher-Order Abstract
Syntax with induction in Coq. InLPAR, pages 159–173, 1994.

[16] J. Despeyroux and P. Leleu. Recursion over objects of func-
tional type. Mathematical Structures in Computer Science,
11(4):555–572, 2001.

[17] K. Donnelly and H. Xi. A formalization of strong nor-
malization for simply-typed lambda-calculus and system F.
Electron. Notes Theor. Comput. Sci., 174(5):109–125, 2007.

[18] A. P. Felty and A. Momigliano. Hybrid: A definitional
two-level approach to reasoning with Higher-Order Abstract
Syntax. CoRR, abs/0811.4367, 2008.

[19] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and
variable binding (extended abstract). InLICS, pages 193–
202, 1999.

[20] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract
model for theπ-calculus. InLICS, pages 43–54, 1996.

[21] A. Gacek, D. Miller, and G. Nadathur. Combining generic
judgments with recursive definitions. In F. Pfenning, editor,
LICS, pages 33–44, June 2008.

[22] J. Gallier. On Girard’s candidats de reductibilite. InLogic and
Computer Science, pages 123–203. Academic Press, 1990.

[23] J.-Y. Girard. Une extension de l’interpretation de Gödel a
l’analyse, et son application a l’elimination des coupure dans
l’analyse et la theorie des types. In2nd Scandinavian Logic
Symposium, pages 63–92. 1971.

9

[24] J.-Y. Girard.Proofs and Types. Cambridge University Press,
1989.

[25] C. A. Gunter.Semantics of Programming Languages. Struc-
tures and Techniques. The MIT Press, 1992.

[26] E. L. Gunter, C. J. Osborn, and A. Popescu. Theory support
for weak Higher Order Abstract Syntax in Isabelle/HOL. In
LFMTP, pages 12–20, 2009.

[27] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. InLICS, pages 194–204. IEEE, Computer
Society Press, 1987.

[28] J. Hickey, A. Nogin, X. Yu, and A. Kopylov. Mechanized
meta-reasoning using a hybrid HOAS/de Bruijn representa-
tion and reflection. InICFP, pages 172–183, 2006.

[29] M. Hofmann. Semantical analysis of higher-order abstract
syntax. InLICS, page 204, 1999.

[30] F. Honsell, M. Miculan, and I. Scagnetto. An axiomatic
approach to metareasoning on nominal algebras in HOAS.
In ICALP, pages 963–978, 2001.

[31] D. J. Howe. Higher-order abstract syntax in classical higher-
order logic. InLFMTP, pages 1–11, 2009.

[32] G. P. Huet and B. Lang. Proving and applying program
transformations expressed with second-order patterns.Acta
Inf., 11:31–55, 1978.

[33] R. Loader. Normalization by calculation. Un-
published note, 1995. http://homepages.ihug.co.nz/ suck-
fish/papers/normal.pdf.

[34] R. McDowell and D. Miller. Reasoning with higher-order
abstract syntax in a logical framework.ACM Transactions
on Computational Logic, 3(1):80–136, 2002.

[35] R. C. McDowell. Reasoning in a logic with definitions and
induction. PhD thesis, University of Pennsylvania, 1997.

[36] D. Miller and A. Tiu. A proof theory for generic judgments.
ACM Transactions on Computational Logic, 6(4):749–783,
2005.

[37] J. C. Mitchell. Foundations for Programming Languages.
MIT Press, 1996.

[38] J. C. Mitchell and A. R. Meyer. Second-order logical relations
(extended abstract). InCLP, pages 225–236, 1985.

[39] A. Momigliano and S. Ambler. Multi-level meta-reasoning
with higher-order abstract syntax. InFoSSaCS, pages 375–
391, 2003.

[40] A. Momigliano, S. J. Ambler, and R. L. Crole. A comparison
of formalizations of the meta-theory of a language with
variable bindings in isabelle. Technical report, Supplemental
Proceedings of TPHOL’01, 2001.

[41] A. Momigliano, A. J. Martin, and A. P. Felty. Two-level
Hybrid: A system for reasoning using Higher-Order Abstract
Syntax. Electron. Notes Theor. Comput. Sci., 196:85–93,
2008.

[42] T. Nipkow. Structured Proofs in Isar/HOL. InTYPES, pages
259–278, 2003.

[43] T. Nipkow, L. C. Paulson, and M. Wenzel.Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Springer, 2002.

[44] L. C. Paulson. The foundation of a generic theorem prover.
J. Autom. Reason., 5(3):363–397, 1989.

[45] F. Pfenning. Logical frameworks. InHandbook of Automated
Reasoning. Elsevier Science, 1999.

[46] F. Pfenning. Logical frameworks - a brief introduction. In
Paris Colloqvium on Programming, pages 137–166. 2002.

[47] F. Pfenning and C. Elliot. Higher-order abstract syntax. In
PLDI, pages 199–208, 1988.

[48] B. Pientka. Beluga: Programming with dependent types,
contextual data, and contexts. InFLOPS, pages 1–12, 2010.

[49] B. C. Pierce.Types and Programming Languages. The MIT
Press, 2002.

[50] A. M. Pitts. Nominal logic: A first order theory of names and
binding. In TACS, pages 219–242, 2001.

[51] A. Popescu. HOAS on top of FOAS formalized in Is-
abelle/HOL. Tech. Rep., Univ. of Illinois at Urbana-
Champaign, 2010. http://hdl.handle.net/2142/15449.

[52] A. Popescu, E. L. Gunter, and C. J. Osborn. Strong
normalization of System F by HOAS on top of FOAS.
Tech. Rep., Univ. of Illinois at Urbana-Champaign, 2010.
http://hdl.handle.net/2142/15451.

[53] C. Röckl and D. Hirschkoff. A fully adequate shallow em-
bedding of the [pi]-calculus in Isabelle/HOL with mechanized
syntax analysis.J. Funct. Program., 13(2):415–451, 2003.

[54] C. Schurmann. Automating the meta-theory of deductive
systems. PhD thesis, Carnegie Mellon University, 2000.

[55] C. Schurmann, J. Despeyroux, and F. Pfenning. Primitive
recursion for higher-order abstract syntax.Theor. Comput.
Sci., 266(1-2):1–57, 2001.

[56] C. Schurmann and F. Pfenning. Automated theorem proving
in a simple meta-logic for LF. InCADE, pages 286–300,
1998.

[57] W. Tait. A realizability interpretation of the theory of species.
In Logic Colloquium, pages 240–251. Springer, 1975.

[58] A. Tiu. A Logical Framework for Reasoning about Logical
Specifications. PhD thesis, Penn State University, 2004.

[59] C. Urban, S. Berghofer, and M. Norrish. Barendregt’s variable
convention in rule inductions. InCADE, pages 35–50, 2007.

[60] C. Urban and M. Norrish. A formal treatment of the Baren-
dregt variable convention in rule inductions. InMERLIN,
pages 25–32, 2005.

10

