
Verification of DNSsec Delegation Signatures
Florian Kammüller

Middlesex University London
f.kammueller@mdx.ac.uk

Abstract—In this paper, we present a formal model for the
verification of the DNSsec Protocol in the interactive theorem
prover Isabelle/HOL. Relying on the inductive approach to
security protocol verification, this formal analysis provides a
more expressive representation than the widely accepted model
checking analysis. Our mechanized model allows to represent the
protocol, all its possible traces and the attacker and his knowl-
edge. The fine grained model allows to show origin authentication,
and replay attack prevention. Most prominently, we succeed in
expressing Delegation Signatures and proving their authenticity
formally.

Index Terms—DNSsec, Isabelle/HOL, authentication, chain of
trust, delegation signatures.

I. INTRODUCTION

The Domain Name System (DNS) does not use strong
security measures and is thus vulnerable for false IP addresses
faked by an attacker – so-called spoofing. The attacker can
exploit this weakness and manipulate clients to connect not
to the intended server but instead to another possibly ma-
licious one [3]. Domain Name System Security Extensions
(DNSsec) [2] is a more recent update of the original DNS
protocol to address this security issue. It employs public
key cryptography: domain name servers use signatures to
authenticate the resolutions of alphanumeric names to numeric
values. The additional complexity of DNSsec may lead to
misconfigurations and new attacks. Formal models of the
DNSsec protocol have been rigorously analysed using model
checking tools [4]. However, none of the formal approaches to
verifying the DNSsec protocol extension uses the expressive
and powerful technique of Paulson’s inductive approach [12]
to security protocol verification.

In this paper, we use this approach to provide a formal
machine checked proof of one of the most important features
of DNSsec, the Delegation Signatures (DS). In order to make
origin authentication work, it is crucial that the used public
keys are themselves certified to be trustworthy using a chain
of trust leading to the trust anchor, the root key. We prove the
security of this chain of trust in Isabelle/HOL thus providing
logical machine checked verification.

In this paper, we first review the prerequisites for our work:
the DNSsec protocol and the inductive approach to security
protocol verification with Isabelle/HOL in Section II. The
model and analysis of DNSsec is based on the adaptation
of the inductive approach in Isabelle/HOL to IP-protocols
[8]. Besides being capable of scaling up our approach, using
Isabelle/HOL provides the additional advantage of being a
fully fledged Higher Order Logic with a rich set of theories
available. This enables modeling of the chain of trust through

Delegation Signatures (DS) which is an important part of the
DNSsec protocol. After the preliminaries in Section II, we
present in Section III, the model of the Delegation Signature
(DS) authentication for DNSsec followed by the results proved
in Isabelle/HOL in Section IV. We conclude with related work
and a discussion. The Isabelle/HOL sources are available in
full online at https://sites.google.com/site/floriankammueller/
home/resources.

II. PRELIMINARIES

A. DNS and DNSsec

The DNS protocol organises how alphanumerical internet
addresses, for example www.mdx.ac.uk are translated into
numerical IP addresses, for example 162.192.10.1 [10].
This translation must clearly be performed in a correct way,
otherwise some malicious server in the internet could provide
a translation for an alphanumerical to an IP address of his own
choice thus leading the client to connect to this address [3].

The way the DNS has been designed – as the entire internet
protocol – is such that “spoofing” is very easily possible: data
packets contain a source IP address which can be changed
since packets are not encrypted1. Now, the DNS protocol is
a very simple two-way protocol based on IP where a local
recursive resolver (LRR) contacts a DNS server and asks for
an address translation. In response the server sends back an IP
package to the recursive resolver containing the translation of
the query into an IP address. This two-way protocol is repeated
about three times as illustrated in Figure 1 on a sample run.
The repeated “recursive” process is due to the way internet
IPv4 addressing is organised into zones of three or four groups
of address chunks, e.g. www.mdx.ac.uk. For each of those
zones, a DNS server is the authority and an LRR contacts
first the root DNS authority server which in turn delegates his
initial query by giving him a partial IP address translation that
allows the LRR to follow up the query with the DNS server
of the next zone [4]. Figure 1 depicts a typical flow of DNS
name queries through the zones.

The only content in a DNS query and its corresponding
response that ties those two packets together is a 16-bit
transaction number commonly called TXID [4]. As for the
source address it is trivial for the attacker to forge this TXID
if he sees the DNS request sent by the client [4].

The attacks resulting from this lack of authentication and
integrity assurance in the DNS protocol are the well-known

1Protocol extensions, like IPSec, do in fact encrypt message contents and
may even encrypt source and destination addresses, but this requires the IPSec
specific infrastructure in place, which is not normally given in IP traffic.

Fig. 1. DNSsec repeatedly applies simple two-way query protocol [4].

cache-poisoning and the resulting man-in-the-middle attack
[1]. These attacks have been known for some time but more re-
cently the highly publicised variation on DNS cache poisoning
discovered by Dan Kaminsky has attracted a lot of attention
probably because several actual exploits of this attack on DNS
servers run by ISPs redirected customers of these ISPs from
popular web sites to attack sites [7].

DNSsec [2] is proposed as a solution to this issue. This
protocol adds origin authentication based on public key cryp-
tography as the main method to the simple two way protocol
of DNS. The idea is simple: in asymmetric cryptography (or
public key cryptography as it is more commonly known) the
proprietor A of a private key K−1

A can use this key to encipher
a message. This cipher-code can then be used as a signature
proving the integrity of the enciphered message: since anyone
has access to the corresponding public key KA, it is possible
to test the signature by deciphering it with the public key and
comparing the outcome with the original message:

M
?
= {{M}K−1

A
}KA

where we denote the application of a (specified yet here
abstract) cryptographic algorithm to message M with key K
as {M}K .

DNSsec applies these ideas very straightforwardly: a LRR
sends a DNS query out to a DNS server. The server sends back
a signed response which contains the query and the correct
resolution to an IP address signed by the DNS server’s private
key. The LRR uses the DNS server’s public key to decode the
response and check whether it is authentic. If this is the case,
it can rely on the returned IP address resolution.

B. Delegation Signatures (DS)

However, how does the LRR know that the DNS server’s
public key really belongs to the server? This authentication of
the public key is a general issue in public key infrastructures
for which certificates are used. Certificates are attestations that
a specific public key KA belongs to a specific principal A.
Technically such an attestation is a signed pair {(KA, A)}K−1

C

certifying that the elements of the pair (KA, A) belong to-
gether. The signature by KC−1 , the private key of the certi-

fication authority, proves that C attests the relation between
KA and A.

This basic concept is used for the Delegation Signatures
(DS) that are also added in DNSsec. They can be seen
in Figure 1 on the right. For example, “RRSIG(DS) by .”
represents a hashed signature of the server’s public key by the
root key. The DS build a so-called chain of trust, i.e., parent
zones sign the public keys for their child zones. Assuming
an initial trust in a global DNSKEY of the root zones, this
extends the trust in the public keys of all zones.

The security of this DS authentication process is the main
result of our paper.

To pave the way for a smoother understanding of our
formalisation of DNSsec, we give the description of the
protocol in “Alice and Bob” notation first. Let the zones of
the IP be denoted as z0, . . . , zn where z0 is the root zone,
and let Sj be serving zone zj with public and private keys
KSj and K−1

Sj
, respectively. Then, the DNSsec protocol may

be represented for each j < n as follows.

LRR→ Sj : A
Sj → LRR : (KSj+1

, {A, ip(A),H(KSj+1
)}K−1

Sj

)

The identifier A represents the alphanumeric IP address,
ip(A) maps this to a sequence of numbers of the next zone
server Sj+1 with public key KSj+1

. The latter is hashed with
a cryptographic hash H for efficiency. After receiving this
message, LRR can use KSj to first decrypt the ticket in the
second part and obtain the hash H(KSj+1

). The hash cannot be
inverted, but, since the hash algorithm H is a publicly known
algorithm, e.g. SHA-256, LRR can apply it to KSj+1

that has
been received as first part of the message in clear to check
that this equals H(KSj+1). If this test succeeds, LRR believes
that the public key KSj+1 belongs to Sj+1 and ip(A) is A’s
address since the packet is signed with the private key K−1

Sj

of the previous server Sj and LRR trusts that Sj has this key.
This trust has been established in the same process in step
j − 1. Initially, the trust to the root’s public key KS0 must
be provided by so-called “out-of-bounds” measures. DNSsec
repeats these two steps three time; the final step, i.e. j = 3,
just omits the first part of the second message.

Besides origin and DS authentication, the DNSsec protocol
also provides in the more recent version defined in RFCs
4470 ”DNSSEC Hashed Authenticated Denial of Existence”
informally called NSEC3. The reason is that the DNSsec
protocol allows adversaries to enumerate all the names in a
zone by following the so-called NSEC chain. Although this is
not an attack on DNS itself it could allow an attacker to map
network hosts by enumerating the contents of a zone. NSEC3
simply avoids this by introducing a default “NSEC3” reply
that is given in case a host is not in a zone thereby avoiding
information flows. The expressiveness of Isabelle/HOL allows
modelling this default message. This extension is possible in
our model but beyond the scope of this paper.

C. The Inductive Approach to Security Protocol Verification

The interactive theorem prover Isabelle/HOL [11] imple-
ments classical higher order logic (HOL) for the modelling of
application logics. Inductive definitions and datatype defini-
tions can be written in a way close to programming languages.
Semantic properties over datatypes can be formalised in a
simple equation style by primitive recursion and are strongly
supported by automated proof procedures based on rewriting,
automated simplification, as well as externally coupled dedi-
cated provers.

The inductive approach to security protocol verification by
Paulson [12], the designer of the Isabelle system, picked up on
the hype generated by the earlier model checking approach to
security by Lowe [9]. In comparison, the inductive approach
is more laborious as it requires human interaction, but it is
unrivaled in its expressiveness which allows proofs beyond
the ones that are usually done in model checkers.

Based on the inductive approach in the interactive theorem
prover Isabelle/HOL [11], we show how the protocol DNSsec
can be modelled and important properties are proved. The
advantage of the inductive approach over model checking lies
in its expressiveness. Although proofs in Isabelle/HOL are not
performed automatically but have to be provided by the user,
this increased expressiveness allows modelling protocols less
abstractly than in model checking. A high level of abstraction
may easily lead to an oversimplification and consequently
overlooking attacks.

1) Attacker Model, Events, and Traces: The principals are
expressed by a datatype definition guaranteeing their distinc-
tiveness. We assume a server, a number of friendly principals,
and a spy. That is, in our model the attacker is explicitly
modeled.

datatype agent = Server | Friend nat | Spy

The attacker can forge messages using all components he can
derive from previous traffic. The inductive operators charac-
terize the constituents of a protocol’s messages (set parts),
messages the attacker can extract from a protocol trace (set
analz), and messages that the attacker can build (set synth).

Protocols are defined by inductive definitions describing the
behaviour of principals taking part in the protocol. Behaviours

are sets of possible event traces. A trace is a list of commu-
nication events, such as interleaved protocol runs.

Compared to the inductive definitions for synth and analz,
protocol definitions are thus of a different type: rather than
specifying a message set, they specify the behaviour of the
communicating principals as traces of events defined as a
datatype comprising different types of protocol communication
events. The main type of event is that an agent sends a message
to another agent: the constructor Says takes three arguments
of types agent, agent, and msg and returns one result of type
event. The other constructors of the datatype event are Gets
and Notes to specify the reception and storing of messages.

Defining a protocol in the inductive definition consists of
defining a set of traces of events representing all possible runs
of the specified protocol. The attacker’s behaviour is added by
including Fake messages into traces. The analysis first derives
the knowledge he can extract from the protocol (analz) and
the messages he can synthesise (synth). This characterizes
the attacker’s behaviour and allows verification of security
properties.

Following the Dolev-Yao model [5], the Spy gets to know
everything that is communicated along any channel. To this
end, the inductive approach models a function spies that
effectively reconstructs event traces into sets of messages. The
central part of this definition (omitting a few technical details
and the Notes and Gets cases) is as follows.

spies (ev # evs) =
case ev of

Says A’ B X ⇒ insert X (spies evs) ...)
...

I.e., for any trace ev # evs its spies-set contains a message
X if it was sent in event ev.

III. DNSSEC VERIFICATION

In this section we first summarize the results on origin
authentication and fixing replay attacks by nonces that we
obtained for the protocol DNSsec by applying the inductive
approach in Isabelle/HOL [8]. We then present in detail the
formalisation of the Delegation Signature protocol for DNSsec
showing the proved DS authentication property.

A. Origin Authentication and Replay Attack on DNSsec

We can use the inductive approach to prove origin authenti-
cation of DNSsec. Using a model of the protocol reflecting the
communication steps between LRR and the DNSsec servers as
introduced in Section II-A, the expressiveness of Isabelle/HOL
allows us to explicitly represent public key infrastructure and
corresponding security properties. Thereby, we can prove that
in each step the returned IP addresses correspond to the
requested IP addresses. However, this proof relies on the
authenticity of the public key, i.e. that it really belongs to
the server and is not inserted by an intruder. This authenticity
of the relationship between the queried server and its public
key is achieved by the chain of trust that can be built from
Delegation Signatures. We are going to prove its authenticity

in this paper and thereby finally complete the proof of origin
authentication.

However, there is another issue. The DNSsec specification
as given in RFC3833 is not specific about the use of times-
tamps or nonces. There is a flaw (at least) in this specification
but possibly also in general in (other implementations) of
DNSsec: the server response can be replayed. We can formally
prove the replay attack possibility on DNSsec. If the Server at
some point in a run of the DNSsec protocol utters a (correct
and signed) response, the Spy – who can record this – can
at any time afterwards resend this Server response: replay
attack.

This replay attack may seem pointless because it contains
a correct IP address and a signature. But – as is usual with
security attacks – the significance of the attack depends on the
context. Since there is no boundary on the time between the
first response and the replay, the attacker may have hijacked
the IP address of the query in between the original response
and the time of attack. The replay can then take effect if a RR

requests the same alphanumeric address A to direct it to the
(now) compromised site ip(A) – even with a correct Server
signature.

To fix this bug in the protocol, the general cure against
replay attacks would help: timestamps. However, we apply and
prove correct an equally effective but more general version of
DNSsec with nonces. Nonces may in principle be guessed
so they must be sufficiently large. However, compared to
timestamps they do not require synchronized clocks thereby
avoiding a serious issue in distributed systems. By a simple
extension of the DNSsec protocol with nonces we make the
protocol safe against replays.

B. DNSsec Delegation Signatures in Isabelle/HOL

Given that the request resolver can trust the signature,
origin authentication is thus provided by the DNSsec protocol.
However to enforce this trust in the public keys of the servers,
we need to verify the Delegation Signatures (DS) as introduced
in Section II-B. We formalise the DNSsec protocol with
delegation signatures in Definition DS_auth with the inductive
definition package as illustrated in Figure 2. As can be seen

inductive_set DS_auth :: event list set
where

Nil: [] ∈ DS_auth
| Fake: J evsf ∈ DS_auth;

X ∈ synth (analz (spies evsf)) K =⇒
Says Spy RR X # evsf ∈ DS_auth

| DS1: J evs1 ∈ DS_auth; RR 6= Server K =⇒
Says RR Server (Number A) # evs1 ∈ DS_auth

| DS2: J evs2 ∈ DS_auth;
Says RR’ Server (Number A) ∈ set evs2 K

=⇒
Says Server RR’ (Crypt(priK Server)

{Number A, ip(A), Hash(Key A)})
evs2 ∈ DS_auth

Fig. 2. Inductive definition for DNSsec

there, this inductive definition specifies a set of event traces,
i.e. lists of events. The initial trace is empty; it represents the

beginning of all possible runs of the protocol (rule Nil in
Figure 2). The Spy can analyse and synthesize from what he
”spies”, i.e. the set of things he knows (see previous Section).
The Spy can then say all these things since he is an agent as
well. This is implemented in the rule Fake. The local request
resolver RR addresses the trusted Server to resolve an address
for him. This address is called A and is the alphanumeric
form of the address, e.g. www.mdx.ac.uk, represented as
Number(A). The recursive resolver RR is assumed to be
different from the Server to eliminate self requests from
traces. The Server responds with the Key and the IP address
ip(A) of the queried server address A. Keys are modelled in
our approach as part of the Message datatype. The constructor
Key is consequently an injective function which gives us that
keys are different for different addresses.

Key :: address ⇒ nat

The Server encrypts the address Number(A), its IP address
ip(A) together with the Hash of the public key of the child
zone with his private key to ensure that this reply can be
verified by RR’ to originate from Server. A few noteworthy
global facts about the specification of DS_auth are as follows.

• The principals Spy and Server are fixed constants of the
inductive approach.

• By contrast, the principals RR and RR’ are variables.
They can be instantiated by arbitrary agents, for example,
Spy or Server (the reason for excluding the latter
possibility explicitly is to avoid meaningless traces of
self-communicating servers).

IV. PROVED PROPERTIES

To build up some infrastructure for proving the security
of DS_auth with the inductive definition, we prove some
characteristic lemmas, before we show authenticity of DS in
lemma server_response_publik_key_is_authentic.

A. Basic Lemmata

A key lemma proves that for any trace evs that respects
the protocol DS_auth, the private key of the Server is not
known to the Spy.

Spy_sees_not_server_priK_DS: evs ∈ DS_auth =⇒
Key (priK Server) /∈ parts (spies evs)

To prove such a lemma, the infrastructure of the inductive
approach provides strong support. In fact, the lemma can be
proved almost fully automatically after the induction scheme
has been set up manually by the following command sequence.

by (erule DS_sec.induct,auto)

This command sequence is a concise proof script advising
Isabelle/HOL to apply the induction rule that is generated (and
proved automatically) for the inductive definition DS_auth

(as defined in Figure 2). The resulting two proof obligations
for the induction base and step can automatically be resolved
using the proof procedure auto invoking various proof tech-
niques and simplification procedures.

B. Delegation Signature Authenticity

A key fact about authenticity of the server response is now
characterized by the lemma server_msg_is_authentic_DS.
It characterizes authenticity: any response of the Server to RR

has been preceded by the proper request of RR, i.e., the same
address Number A as in the request is hashed and signed with
the Server’s private key in the response.

lemma server_msg_is_authentic_DS:
J (Says Server RR (Crypt (priK Server)

{Number A, ip(A), Hash(Key(A))}) # evs)
∈ DS_auth

K =⇒ Says RR Server (Number A) ∈ set evs

The proof of this lemma is simply performed by induction
inversion over the definition DS_auth. This is one of the
strengths of inductive definitions: rule inversion makes use
of a basic implicit property of inductively defined sets: any of
their elements can only be created by those rules enabling an
exhaustive case analysis and inverse reasoning for elements of
inductive sets.

Strengthening the previous lemma corresponds to an in-
tegrity result: the Server signature shows that the hash of the
key that is returned is authentic. I.e., if some arbitrary but fixed
number pk is returned within a signed response corresponding
to the protocol step DS2 then this pk must correspond to the
correct public key of the requested address A.

lemma server_response_publik_key_is_authentic:
J (Says Server RR (Crypt (priK Server)
{Number A, ip(A), Hash pk }) # evs) ∈ DS_auth

K =⇒ pk = Key(A)

To clarify the significance of this result a bit more we consider
its simple logical contraposition: if some agent S signs and
sends a “second” message, and this contains an “incorrect” IP
address, this S has not been the Server.

lemma False_key_not_Server:
J (Says S RR (Crypt (priK S)
{Number A, ip(A), Hash pk }) # evs) ∈ DS_auth;
pk 6= Key(A)

K =⇒ S 6= Server

These lemmata show that origin authentication is guaran-
teed by the protocol as specified in the inductive definition
DS_auth.

V. CONCLUSIONS

A. Related Work

The DNS protocol has been formalised with the model
checker Murφ [4]. This work describes existing attacks but
is not very explicit on the formalisation of the protocol. It
comes up with a list of practical recommendation on how
to implement or deploy the DNSsec protocol. Those recom-
mendation have reinforced the work of others and have since
been addressed in their experimental (attack-based) scrutiny
of DNSsec, e.g. [6]. Our model should have a similar impact,
in particular as it adds an entirely new level of expressivity
due to the use of Higher Order Logic. Our recent paper [8]
provides more detail on the underlying inductive formalisation.

Compared to this earlier formalisation, the current paper
enriches the model to a fully fledged DNSsec-model with
Delegation Signature (DS) signature chain extension. In the
previous work we only addressed a simplified protocol not
proving the chain of trust given by the DS signatures.

B. Discussion

An advantage of modelchecking compared to interactive
theorem proving is that it is a “push-button” technology: the
verification is fully automatic. Consequently, model checking
needs to abstract to be decidable losing expressivity in the
models. The state space needs to be finite and logics are
only propositional with modalities like time or beliefs. Model
checking performs a proofs by complete state exploration
which immediately becomes computationally infeasible with
larger state spaces. The number of states grows exponentially
with the number of variables representing a state. This state-
explosion problem prevents more expressive modelling and
analysis.

Our approach of using Higher Order Logic with Is-
abelle/HOL and the inductive approach to security protocol
verification is first of all much more labour intensive. Proofs
are all done with human interaction, i.e. by hand. However,
most of the proofs for DNSsec could be performed almost
fully automatically. This is because Isabelle/HOL already has
a very powerful set of automated proof procedures such
as auto. In addition, Paulson’s inductive approach offers a
suitable infrastructure of general purpose lemmas for security
protocols, e.g. agents, messages, and the sets synth, analz,
etc. Therefore automation of proofs is largely possible and we
can concentrate on the main steps of the proofs of theorems
almost as in paper proofs. Moreover, since Higher Order Logic
is very expressive, any kind of reasoning is possible, for
example, theorems about keys, prime numbers, or time stamps
can be explicitly performed in Isabelle/HOL as seen here.

REFERENCES

[1] “Bind security advisory. dns cache poisoning issue (’kaminsky bug’),
https://www.isc.org/sw/bind/forgery-resilience.php,” 07/08/2008.

[2] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “Rfc 4033:
Dns security introduction and requirements,” 2005.

[3] D. Atkins and R. Austein, “Threat analysis of the domain name system,”
in (DNS). RFC 3833, Internet Engineering Task Force, 2004.

[4] J. Bau and J. C. Mitchell, “A security evaluation of dnssec with nsec3,”
in NDSS. The Internet Society, 2010.

[5] D. Dolev and A. C. Yao, “On the security of public key protocols,” in
SFCS ’81: Proceedings of the 22nd Annual Symposium on Foundations
of Computer Science. IEEE, 1981.

[6] A. Herzberg and H. Shulman, “Security of patched dns,” in ESORICS,
Vol. 7459, LNCS Springer, 2012.

[7] D. Kaminsky, “It’s the end of the cache as we know it,” August 2008.
[8] F. Kammüller, Y. Kirsal-Ever, and X. Cheng. DNSsec in Isabelle – Re-

play Attack and Origin Authentication. Systems, Man, and Cybernetics,
SMC’13. IEEE 2013.

[9] G. Lowe, “Casper: A compiler for the analysis of security protocols,”
in Computer Security Foundations Workshop (CSFW ’97). IEEE 1997.

[10] P. Mockapetris, “Domain names - concepts and facilities,” in STD 13,
RFC 1034, 1987.

[11] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL – A Proof
Assistant for Higher-Order Logic. Vol. 2283, LNCS Springer, 2002.

[12] L. C. Paulson, “The inductive approach to verifying cryptographic
protocols,” Journal of Computer Security. Vol. 6, no. 1-2, 1998.

