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Abstract

This paper addresses the problem of combining multi-modal kernels in sit-
uations in which object correspondence information is unavailable between
modalities, for instance, where missing feature values exist, or when using
proprietary databases in multi-modal biometrics. The method thus seeks
to recover inter-modality kernel information so as to enable classifiers to
be built within a composite embedding space. This is achieved through a
principled group-wise identification of objects within differing modal ker-
nel matrices in order to form a composite kernel matrix that retains the
full freedom of linear kernel combination existing in multiple kernel learn-
ing. The underlying principle is derived from the notion of tomographic
reconstruction, which has been applied successfully in conventional pattern
recognition.

In setting out this method, we aim to improve upon object-correspondence
insensitive methods, such as kernel matrix combination via the Cartesian
product of object sets to which the method defaults in the case of no dis-
covered pairwise object identifications. We benchmark the method against
the augmented kernel method, an order-insensitive approach derived from
the direct sum of constituent kernel matrices, and also against straightfor-
ward additive kernel combination where the correspondence information is
given a priori. We find that the proposed method gives rise to substantial
performance improvements.
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methods, tomography

1. Introduction

The problem of multiple kernel learning (MKL) was identified by Lanck-
riet et al. [1] and is now well established within the literature [2, 3, 4, 5,
6, 7, 8, 9, 10, 11]. It builds on the widespread adoption of kernel-based
methods within machine learning for a variety of tasks, in particular regres-
sion and classification [12, 13]. The latter category includes state-of-the-art
methods such as support vector machines (SVMs) [14, 12] and kernel Fisher
discriminant analysis (kernel FDA) [15, 16].

Kernel methods have in common that they map observations into an in-
ner product space, provided that they fulfil the Mercer conditions. A wide
choice of kernels is typically available for any given learning problem; each
of these kernels can be seen as capturing a different aspect of the data.
In classification problems, arbitrarily morphologically-complex (i.e., non-
linear) decision boundaries may be obtained within a linear input space via
the choice of kernel. Early work on learning the kernel includes [17], where
kernel parameters are optimized by minimizing estimates of the generaliza-
tion error of SVMs, and [18], where the complexity of learning the kernel
matrix for SVM classification is analyzed.

Multiple kernel learning seeks to learn an appropriate linear combination
of such base kernels, linear combination being chosen because this crucially
retains the Mercer properties. Lanckriet et al.’s formulation [1] utilizes lin-
ear combination of M m×m training kernel matrices Kk, k = 1, . . . ,M and
m class labels yi ∈ {1,−1}, i = 1, . . . ,m, with m the number of training
samples, this being equivalent to forming the Cartesian product of the as-
sociated feature spaces. The goal of MKL is then to optimize the ‘scaling
factors’ of the feature spaces with respect to the classification. Other MKL
formulations address tractability issues when m is large. These include, e.g.,
the semi-infinite linear programming (SILP) formulation of [3], and the re-
duced gradient descent algorithm of [6]. The ℓ1 regularization in [1] can
also be generalized to an ℓp (p > 1) norm [19] to avoid solution sparsity if
required. Other variants of MKL approaches include, to name a few, hyper-
kernels [20], information theoretic MKL [21], multiple kernel FDA [22, 23],
multiclass MKL [4], multilabel MKL [24] and nonlinear MKL [25].

A key distinction that may be made between multiple kernel methods is
whether they implicitly require object correspondence information; additive
kernel combination such as the method of Lanckriet et al. assumes that this
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information is present. Thus, the ordering of the objects defining the Kk is
assumed to be the same across all modalities. However, methods do exist
that are not dependent on this correspondence, the principle such method
being augmented kernel combination [26]. In augmented kernel combination,
the direct sum of kernel matrices is formed, resulting in a block-diagonal
kernel matrix (i.e. so that all of the constituent kernel matrices are embed-
ded along the diagonal of the resultant matrix, with all inter-kernel values
set to a value of zero); [26] compares the geometric interpretation of linear
combination and augmented kernel combination. It is shown in [27] that
augmented kernel combination is closely related to classifier fusion.

In general, the problem domain will determine whether object correspon-
dence information is available. For instance, it is not uncommon in multi-
modal biometrics to obtain distinct sets of exemplar subjects for each indi-
vidual biometric measurement (e.g., iris scans, finger prints, photographic
images), particularly when employing separate commercial sources [28]. In
this case, we would wish to utilize the information collectively contained
within each data set for a given test subject, but would lack object corre-
spondences in the collective set of multi-modal data sets. In other words,
we have object correspondence in the test set but not the training set. The
augmented kernel approach to classification of individual test subjects in
this case would be to build a composite kernel matrix via the direct sum
of kernel matrices associated with each modality and then utilize this, in
combination with a corresponding vector of class labels, for classifier train-
ing. (The direct sum kernel matrix is order-insensitive with regard to the
training objects within individual modalities provided that the class label
vector is correspondingly permuted).

However, the argument of this paper is that such methods, by omitting
the possibility of re-deriving correspondence information, potentially over-
look important classification information. To address this, we propose a
kernel-based adaptation of a method developed for standard non-kernelized
pattern recognition that is capable of bringing about this correspondence1.
The resulting method for multiple kernel learning gives rise to a kernel ma-
trix that defines an appropriate composite embedding space that, as nearly
as possible, approximates the Kernel matrix that would exist if all object
correspondence information were available. It does so by removing the bi-

1Thus, our method is an MKL method to the extent that it proposes a linear sum of
kernels to be optimized. However, the method of generating these kernels is by no means
linear.
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asing factors associated with linear methods of kernel combination.

1.1. Linear combination bias in non-kernelized pattern recognition

In conventional (i.e., non-kernelized) pattern recognition, it may be
demonstrated [29, 30] that linear classifier combination methods impose a
bias on the composite decision space formed by decision combination2 (by
“decision space” we here mean the space in which the decision boundary is
formed). This bias comes about via the limitations of linear combination
in dealing with correlated information in the marginal classifiers (i.e the
feature-selected classifiers constituting the combination), and prevents the
optimal decision boundary being constructed, leading to suboptimal overall
performance. We thus consider the classifiers within a combination as rep-
resenting, to some degree of approximation, the marginal distributions of
the composite pattern space in which the decision boundary is formed (see
Section 2.1 for a pictorial example of this process; in the remainder of the
Introduction we give a qualitative account).

This biasing behavior occurs, for instance, when feature selection is ap-
plied to an input space of arbitrary dimensionality, S, such that a set of
classifiers (indexed by i ∈ I) become associated with non-coincident (i.e.,
non-overlapping) feature sets that collectively span S (or a subset of it). In
such cases, classifier combination effectively acts to combine, in the original
input space, the set of orthogonal marginals distributions that are implicitly
modelled within the individual classifiers, i (modelling need not be exact,
e.g. in the case of discriminative classifiers; see Section 2.1 for an example
with artificial neural networks).

A similar situation exists in multi-modal fusion problems, where modal-
ities may equally be regarded as the features of some composite decision
space, allocated to specific classifiers associated with the modalities. It was
the effort of [29] to demonstrate that this bias is specifically a form of sam-

pling bias. The bias attributable to linear combination methods within the
composite space is thus due to the mismatch of the very low number of angu-
lar samples of the composite decision space (equivalent in magnitude to |I|)
created by the orthogonal ‘marginal’ distributions of the feature-selection
process in comparison to their linear sampling rate. (The linear sampling
rate equates to the total number of distinguishable input vectors)3. However,

2This applies in situations in which it can be reasonably assumed that there exists
no a priori restriction on density distributions in the decision space, for instance, prior
knowledge of feature independence.

3Note this only represents combination bias; classifier bias also contributes. cf. [30]
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to fully represent arbitrary distributions in the composite space, angular and
linear sampling would have to be of the same order (the orthogonal nature
of this angular sampling is depicted in Section 2.1).

This mismatch between angular and linear sampling of the composite de-
cision space suggests an analogy with tomography theory, for which the com-
ponent classifiers of the combination essentially represent Radon-projections
(linear integrals) of the composite decision space. Linear combination then
acts as the inverse operation to Radon-projection, i.e., back projection (es-
sentially a summation over the Radon Projections that intersect at the
point of reconstruction). However, in tomography theory back-projection
only recovers a biased simulacra of the original unprojected composite space
(the outcome of back-projection being the original distribution in the space
convolved with an artefact defined by the angular frequency of the Radon
sampling). The process of tomography is thus concerned with the pre- or
post-combination filtration of this artefact in order to remove the sampling
bias.

Similarly, this bias is represented within tomographic classifier combi-
nation theory as a convolution of the true underlying distribution of pat-
tern vectors (denoted Ftrue) in the decision space with an artefact (denoted
Fsamp) deriving from the sampling (Ftrue and Fsamp are thus density distri-
butions defined over the entirety of S). The ’recovered’ density distribution
induced by classifier combination is thus Fcomb = Ftrue ⋆ Fsamp, with ⋆ the
convolution operation. Fsamp is thus defined in the composite space by the
response of an origin-centered Dirac delta function, firstly to representation
as a series of individual Dirac delta functions in the marginal spaces asso-
ciated with each classifier, and secondly to the action of the combination
rule that reconstructs an ‘image’, Fcomb, of the original Dirac delta function
within the composite space. That is, Fsamp is what is obtained if one were to
take a single pattern vector from the true underlying distribution of pattern
vectors in the decision space, represent it within the individual classifiers via
feature-selection, and then ‘re-project’ it back onto in the decision space by
applying the combination rule. The resulting entity formalizes the system-
atic convolutional ‘bias’ introduced by the combination rule: convolutional
biasing is thus a manifestation of the inevitable failure of the combination
rule to interpolate the missing distribution information lost by feature se-

for a fuller discussion of the bias/variance breakdown under this paradigm. See also
[31, 32, 33] for a general discussion of bias-variance-covariance decomposition in classifier
ensembles.
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lection.
As part of the theoretical development of this paper, we will, in the

next section, formalize this process for the sum rule decision scheme before
demonstrating how the tomographic fusion principle may be explicitly ker-
nelized and applied to the problem of kernel fusion. In doing so, we note the
similarity of this approach to the mechanism (though not the application) of
the pyramid match kernel (PMK), in that it involves a bottom-up pairwise
identification of entities in a kernel context. However, note, that while the
PMK is used to generate a positive-semidefinite (PSD) kernel matrix from
a set of features contained within different objects, the current algorithm
combines kernel matrices associated with differing modalities into a single,
inter-modal kernel matrix.

The remainder of this paper is thus organized as follows. In Section 2,
we set out the tomographic fusion methodology as applied to the sum rule
decision scheme, and demonstrate how it relates to morphological corre-
spondence. In Section 3 we demonstrate how this method can be applied to
kernel spaces and, in doing so, set out a novel algorithm for multiple kernel
combination. Section 4 then applies this method to a series of experimen-
tal scenarios, firstly on an illustrative simulated domain, and secondly on a
range of data sets obtained from the UCI machine learning repository [34],
and from the CAL500 semantic retrieval problem. In Section 5 we discuss
the relative performance of the method, and conclude in Section 6 with a
summary of achievements.

2. Morphologically-Unbiased Classifier Fusion

2.1. Pictorial example

We illustrate the process of morphologically-unbiased classifier fusion
with a simple example. Suppose a multi-modal dataset consists of just
two modalities (with each modality consisting of one real-valued feature),
such that the totality of the data can be represented within a composite
two-dimensional pattern space. Suppose that the underlying distribution
of pattern vectors for single classes in this space are well-separated uni-
modal two-dimensional multivariate distributions (e.g. Gaussians). Further
suppose that these individual modalities (labelled x and y) are represented
by individual perceptron classifiers (or equivalently that the composite 2D
feature space has been allocated to two distinct perceptron classifiers with
non-overlapping feature-sets following feature-selection). The 2D data dis-
tribution is thus ‘integrated’ along each of two axes in order to be represented
within the two 1-D classifiers.
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Figure 1: Sigmoid pseudo-density functions for each individual perceptron classifiers rep-
resenting the two feature ordinates labelled x and y.

We illustrate the resulting sigmoid activation functions, F l
x(x) and F l

y(y),
in Figure 1 for the single class, l. Thus, although perceptrons are primarily
discriminative, F l

x(x) and F l
y(y) are treated as density approximating func-

tions throughout the following: clearly explicitly generative classifiers will
exhibit a closer correspondence to the underlying density distribution. It is
then apparent that a straightforward linear summation combination rule:

class label(x, y) = argmax
l

(

F l
x(x) + F l

y(y)
)

will generate an implicit class density function, F l
comb(x, y) =

(

F l
x(x) +

F l
y(y)

)

within the decision space S as depicted in Figure 2 (left). (The
decision space is equivalent to the original composite pattern space in this
example). Thus, the final class allocation in the decision scheme will be
lchosen = argmaxl F l

comb(x1, y1) for a test pattern vector with a value x = x1
in the first modality and a value y = y1 in the second modality).

However, it is evident that the distribution F l
comb(x, y) by no means re-

sembles a unimodal two-dimension multivariate Gaussian; the distribution
F l
comb(x, y) exhibits long extensions of excess density along the axes. The

reason for this can be understood in terms of tomography theory [35]; F l
x(x)

and F l
y(y) approximate Radon transformations of the underlying distribu-

tion F l
true(x, y) (i.e., they are projections along the axis). In standard to-
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Figure 2: left: composite class density function, F l

comb(x, y), right: the modified composite
density function F l

comb(x, y) after deconvolution.

mographic reconstruction, the inverse of the Radon transformation process
is the back projection operation, which is equivalent in this case to generat-
ing the 2D function F l

x(x) +F l
y(y). However, back projection introduces an

artefact into the reconstruction that is defined by the angular sampling rate
of the original Radon transformation (i.e., the number of Radon ‘slices’).
In our case this angular sampling rate is extremely low; we are integrating
(i.e., Radon transforming) only along the two orthogonal axes defined by
the ordinates x and y.

There is thus introduced an artefact, Fsamp(x, y) = δ(x)dx + δ(y)dy,
into the reconstruction (see inset of Figure 2, right). This artefact acts to
‘blur out’ the attempted reconstruction of F l

true(x, y) via convolution. In
particular, it acts to blur the attempted reconstruction along the axes of
integration.

Any truly unbiased reconstruction of the 2D space thus requires that we
deconvolve out this artefact. Figure 2 (right) illustrates the modification
of the composite density function F l

comb(x, y) when this deconvolution takes
place. It is immediately evident that the resulting distribution more closely
resembles the underlying unimodal two-dimension multivariate Gaussian;
what we have achieved by the deconvolution is to eliminate all traces of
axial bias from the decision space (i.e., the projection along the axes). Note
that the deconvolved space still gives an identical marginal projection to
the undeconvolved space, so that F l

x(x) and F l
y(y) are unaffected by the

deconvolution. Typically, when carried out for all classes, this results in sig-
nificantly improved classification performance (though obviously the method
will fail if the underlying distribution does exhibit axial bias; however this
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tends not to occur when modalities are of intrinsically different kind). In
the following, we derive this more formally. (We will continue to derive the
methodology in terms of the Sum Rule decision scheme, both because this
exemplifies linear combination methods, but also because it serves to sim-
plify the mathematics; note, however, that any linear combination rule will
give rise to axial artefacts).

3. Kernelization of Morphologically Unbiased Fusion

The technique for morphological debiasing of classifier combination dis-
cussed in the previous section is explicitly density-centric, and might on first
inspection appear inapplicable to multi-kernel approaches, for which the
embedding space is collectively defined by the component kernel matrices,
K1,K2 . . ., rather than given a priori. However, morphologically unbiased
combination, at its most basic, relies upon the principle that there exists
some composite decision space composed of component (‘marginal’) spaces
relating to the individual input classifiers, each of which perhaps associated
with a distinct modality. It further assumes that the typically orthogonal
angular sampling rate implicit in this marginalization is significantly smaller
than the linear sampling of the input space (essentially, the potentially in-
finite number of distinct pattern vectors for which the classifier provides an
output).

Both of the above are true of multi-kernel learning problems for which
the composite Reproducing Kernel Hilbert Space (RKHS) is generally the
(weighted) Cartesian Product of the component RKHSs in order to comply
with the Mercer constraints. Note that the notion of sampling in this context
assumes that the RKHS are equipped with a Kernel norm. Throughout the
following we shall, for clarity, consider only the unweighted kernel fusion
problem; the presence of weight coefficients does not affect the methodology
of combination, other than by introducing an additional ‘scaling factor’ to
the marginal components.

Morphologically unbiased combination also assumes that there is no a

priori reason to suppose that the angular sampling implied by the marginal-
ization process has any intrinsic relation to the underlying morphology of
the distribution of vectors within the decision space. While multiple ker-
nel learning does not employ the notion of distributions of pattern vectors
existing within a pre-existing space, as such, the implicit construction of
a decision space via the Cartesian product of the component embedding
spaces does not itself depend on the morphology of those embedding spaces.
Consequently, the orthogonal angular sampling implied by the formation of
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the Cartesian product of the component kernels’ embedding spaces is in-
dependent of the values within the component kernel matrices K1,K2, . . .
provided that these are consistent with the formation of the same embedding

space (i.e., they have the same Mercer features (λ
1

2

1 u1, λ
1

2

2 u2, . . .) (or some
permutation of these) under the eigenvalue decomposition, Kn = UΛU ′:
where U = (u1, u2, . . . , ur) and Λ = diag(λ1, λ2, . . .)).

We thus assume that there is no a priori restriction on object distribu-
tions within the composite embedding space arising from kernel composition.
This is generally true in multi-modal kernel fusion problems where there is
no reason to suppose that embedding spaces associated with one modality
are intrinsically related to those of another modality (specific kernel mea-
surements are still free to exhibit intra-modal correlations, however)4.

The underlying motivations behind morphologically unbiased combina-
tion classifier combination thus remain valid within a kernel-based context.
Moreover, by removing the explicit requirement for reconstruction of a den-
sity distribution in the composite space, we shall show that it is possible to
maximize the efficiency of the method.

The goal of tomographic kernel fusion is thus to generate a novel kernel
matrix, Kcomp, from the input matrix for each modality K1,K2, . . . ,KM

(along with their associated class labelings), such that a classification al-
gorithm (typically an SVM) can act in the most effective manner on the
composite data, optimally taking advantage of correlations within the data.
We further wish to do this in a way that does not generate an excessive num-
ber of objects within Kcomp, in contrast to the tensor product approach.

In the following subsection, we give a breakdown of the key algorithmic
stages of morphologically-unbiased kernel combination, with full pseudocode
set out in Algorithm 1.

3.1. Algorithmic approach to morphologically unbiased combination kernel

combination

3.1.1. Initialization requirements

First, the Kernel matrices is split for each modality K1,K2, . . . ,KM into
class l specific components: K l

1,K
l
2, . . . ,K

l
M , 1 ≤ l ≤ L, after which a map

4These assumptions are less certain, though not necessarily invalid, in the case of mul-
tiple kernels measurements applied to the same data sets. Thus, while the morphologically
unbiased combination fusion may be applied without restriction to any kernel combination
problem, we expect its advantages to hold predominantly in the multi-modal kernel fusion
domain.
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fi(l, j) is defined that takes an object index j in kernel matrix l to its original
index in Ki. Thus, for a set of objects, xm,l ∈ X, and class labels, L, such
that c : X → {l ∈ L} we obtain the kernel matrices K l

n defined such that:

K l
m(xm,l

i , xm,l
j ) =Km(xm,l

i , xm,l
j ) iff c(xm,l

i ) → l ∧ c(xm,l
j ) → l

∀l, ∀i, ∀j, 1 < m < M,m ∈ I

Note that, defining the magnitude of a kernel matrix, |K|, to be the
number of objects that it indexes, we shall assume for simplicity through-
out the following that ∀l, l′,m,m′, |K l

m| = |K l′

m′ |. The method, however,
does not depend on this assumption. This class separation is necessary
in the following since we do not expect, a priori, observations to exhibit
inter-class kernel dependencies. Thus Km(xm,l

i , xm,l
j ) tells us nothing about

Km(xm,l′

k , xm,l′

l ) intrinsically. Note however that we will need these rela-
tions in order to build the final output matrix Kcomp of the procedure, since
inter-class kernel dependencies define, in part, the Mercer embedding space
of Kcomp. Note that all of the following there is no explicit dependency on
object ordering within the Km; the method assumes no object correspon-
dence at the outset. Obviously, if this information exists, it can be directly
utilized as Koutput = ΣmKm.

A squared distance matrix is then defined via the standard kernel norm
independently for each modality and class:

Dl
m(xm,l

i , xm,l
j ) = K l

m(xm,l
i , xm,l

i ) +K l
m(xm,l

j , xm,l
j ) (1)

−K l
m(xm,l

i , xm,l
j )−K l

m(xm,l
j , xm,l

i )

where symmetry implies that this only need be explicitly calculated for i ≥ j.
This matrix is treated throughout the following as being indicative, within
the bounds of stochastic variability, of the (class-wise and modality-wise)
inverse-squared pairwise density distribution within the embedding space.

For each Dl
m(xm,l

i , xm,l
j ), an index set of ordered5 object pairs

{Sl
m(tlm) = (xm,l

i , xm,l
j )t : 1 ≤ t ≤ |K l

m|2}

is then defined such that

Dl
m(Sl

m(tlm)) ≥ Dl
m(Sl

m(tlm − 1)), ∀tlm, tlm > 1.

5The accumulated sort procedures introduce a time penalty of
O(

∑
l

∑
m
|Kl

m|2log|Kl

m|2) ≈ O(
∑

m
|Km|2log|Km|2) for typical sort algorithms, re-

ducible to ≈ O(max(|Kl

m|2)log(max(|Kl

m|2))) ≈ O((|Km|2/L)log(|Km|2/L)) if executed
in parallel.
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tlm thus varies over the indices of object pairs ordered in terms of their
density in the embedding space. Consecutive indices may relate to the same
density value (i.e., if they are degenerate with respect to Dl

m), in which
case the ordering of the index may be arbitrarily permuted over these values
without consequence.

To initialize the iterative procedure, the set of object pairs that are
degenerate with the density maxima is obtained for each modality and
class in the same manner as the marginalized morphological correspon-
dence algorithm of [35]. That is, for all l and m, we obtain the sets:
{Sl

m(tlm) : Sl
m(tlm) = Sl

m(0)}. Note that zeros on the leading diagonals
of the Dl

m are ignored in the above and throughout the following.
The morphological debiasing algorithm treats density maxima that occur

within the distinct modalities as correspondent, i.e., such that they collec-
tively co-ordinate maxima in the composite decision space. The maximal
set of such ordinal correspondences obtained from the density maxima of
the different modalities is given via the Cartesian product over all of the
modalities:

Sl(0) =
⊗

m

{Sl
m(tlm) : Sl

m(tlm) = Sl
m(0)}

Sl(0) thus consists of ordered sets of the form
(

x1,l, x2,l, . . . , xM,l
)

, where

xm,l is either component of the pair (xm,l
i , xm,l

j )t when t is in the considered
density band – here the lowest density band – for each of the modalities.
Note that the Cartesian product here is over the constituents of the Sl

m(tlm),
such that Sl

m(tlm) is treated as a set rather than an ordered pair.
This implicitly establishes a set of object correspondences, xm

′,l → xm
′′,l,

across the differing modalities m′ and m′′ when xm
′,l and xm

′′,l co-occur
within the ordered sets Sl. When there are several ordered sets for which
this occurs (i.e., if for any m |{Sl

m(t) : Sl
m(t) = Sl

m(0)}| > 1), then there
is a ambiguity of association, and object pairs within each modality have a
set of object pairs with which they are associated6. In the ideal case, i.e.,
|{Sl

m(t) : Sl
m(t) = Sl

m(0)}| = 1 ∀m, object pairs in the different modalities
exist in a one-to-one correspondence. (Of course, this must apply at every
single iteration of the association procedure for this there to be perfect
pairwise correspondence across each modality). Ambiguity of association
thus serves to increase the intrinsic size of the kernel matrix derived from

6Note that using pairwise object correspondences also introduces an intrinsic ambiguity
of association, such that m distinct pairs in each modality gives rise to 2m points within
the composite space.
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the procedure (although we shall discuss methods for reducing this). In
the asymptotic case of one-to-one object correspondence, the output kernel
matrix of the procedure would have the same magnitude as the input matrix,
i.e., |Kcomp| = |Km|. (Note that, whatever the final size of |Kcomp|, we
always utilize all of the available object correspondences; i.e. we discard
none of the available data).

The above procedure thus equates to the compilation of the Cartesian
product of the highest density level sets of the marginal density distribu-
tions. We have not yet, however, constructed the kernel relations implicit in
this notion; at present we are considering only the establishment of object
correspondences.

3.1.2. Iterative Object Correspondence Determination

In order to utilize the above initialization within an iterative context,
the set Sl(0), with 0 indicating that this is the first iteration, is added to
what will become the cumulative set of correspondences, S l (note caligra-
phization):

S l(n) = S l(n− 1)
⋃

Sl(n), n ∈ I

The ‘marginalized’ per-modality set of object pairs for which correspon-
dences have been established, S l

m is also cumulatively aggregated:

S l
m(n) = S l

m(n− 1)
⋃

{Sl
m(n) ∈ Sl(n)}

Individual ordinal counters klm are then instigated for each separate
modality and class, which are able to increment independently with each
iteration number n. klm(n) is thus the value of the ordinal index at iteration

n, such that Sl
m(klm(n)) is the klm(n)’th ordinal pair, i.e., (xm,l

i , xm,l
j )klm(n).

This will allow the algorithm to accommodate differingly-sized density de-

generacy sets at each iteration, and corresponds to the ∆z
(n)
x , ∆z

(n)
y variation

that we employed in the marginal version of morphological correspondence
algorithm.

A reference counter, nominated as that of modality m = 1, i.e., kl1(n),
is increased to the index value immediately above that of the highest value
in the degeneracy set obtained by the previous iteration of the kernelized
Högbom procedure7. It has an initial value of kl1(0) = 0, and is set after

7It is also possible to subdivide the reference counting if too many degenerate values
are found within the Kernel matrices (see experimental section).
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each iteration, to a value

kl1(n) = |{Sl
1(t) : S

l
1(t) = Sl

1(1)}|+ kl1(n− 1)

The counters of the remaining modalities, i.e., klm(1), m 6= 1, are then
incremented until the density value closest to the reference density value is
obtained8. Thus:

klm(n) = argmin
t

{

|Dl
m(Sl

m(t))−Dl
1(S

l
1(k

l
1(n)))|

}

, ∀m 6= 1

Note that, where the minimum values are degenerate, the lowest klm(n) value
is selected.

We denote the set of ordered object pairs within a given modality that
falls within this density band as T l

m(n). Thus:

T l
m(n) = {Sl

m(t) : klm(n− 1) < t ≤ klm(n)}

The T l
m(n) are then the kernelized equivalent of the level sets of the marginal-

ized Högbom deconvolution algorithm in [35]. Thus, for the iterative update
we have that: Sl(n) =

⊗

m T l
m(n).

The Cartesian product inherent in Sl(n) establishes object correspon-
dences via the density correlations between modalities. However, once den-
sity maxima correlations have been established (i.e., peaks have already been
established in the class distribution in the composite embedding space), any
sequence of object pairs, s′ ∈ Sl(n+ 1), at an incrementally higher density
level, n+1, can in principle be associated with sequences of object pairs con-
tained within Sl(n) simply via the topological connectivity implicit in the
definition of s and Sl(n). In this case there is no ambiguity in inter-modal
object association, and the Cartesian product need not be carried out9. We
model this as follows:

For all modalities m, let the set of first and second objects of all the
ordinal pairs in T l

m(n) be denoted T l,1
m (n) and T l,2

m (n), respectively. T l,1
m (n)

is thus the set of lowest-valued object indices in the set of object pairs that
make up T l

m(n). (Recall that the associated object pairs (xm,l
i , xm,l

j )t are
ordered with the lowest index value first).

8This is in principle a logarithmic O(log|Kl

m|) time-complexity process (binary search),
though incremental search is generally sufficient given the relatively small reference index
increment at each iteration.

9Such points are topologically attached to an existing density maxima, and are therefore
exempt from the Cartesian multiplication with other modalities that gives rise to novel
peaks in the first place, i.e., there is no ambiguity as to their inter-modal correspondence.
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Let glm(n) be an single element of T l,1
m (n) for each modality, such that

the composite (gl1(n), g
l
2(n), . . . , g

l
M (n)) ∈ Gl represents a coordinate of the

composite embedding space for all modalities. A corresponding point can
be derived from the second objects of the ordinal pairs:

(hl1(n), h
l
2(n), . . . , h

l
M (n)) ∈ H l such that hlm(n) ∈ T l,2

m (n)

Provided that the first point is an element of S l(n):

(gl1(n), g
l
2(n), . . . , g

l
M (n)) ∈ S l(n)

then the second point can be added to the set S l(n), i.e.,

S l(n)
⋃

(hl1(n), h
l
2(n), . . . , h

l
M (n))

and the pairs (glm(n), hlm(n)) can be removed from T l
m(n) for each modality:

T l
m(n) = T l

m(n)/(glm(n), hlm(n))

The Cartesian product, Sl(n) =
⊗

m T l
m(n), thus involves fewer elements

and consequently less ambiguity of object association.
Note that the newly added point is a modality-independent maximum

distance of (
∑

mDl
1(k

l
1(n)))

1

2 from the topologically connected point in the
embedding space, and the separate index counters, kl1(n), are designed to
ensure equal density sampling in the embedding space. Thus we implicitly
employ the l1-norm for determining topologically-connected points; how-
ever a further l2-norm constraint can be applied such that peaks in the
embedding-space class density distribution are established and aggregated
in a radially symmetric manner; this would be the equivalent of employing
a fully density-based morphologically unbiased combination model.

The reference counter kl1(n) is incremented according to the above crite-
ria, and the two processes of Cartesian product multiplication and topolog-
ical association are continuously iterated until the indices all achieve their
maximum wherein all pairs are sampled. The output of the iterative process
is a complete set of object correspondences across the various modalities for
each class, i.e., S l(nmax).

3.1.3. Reconstruction of Composite Kernel Matrix

These object correspondences are transformed back into a Kernel ma-
trix in the following way. First, a class-index vector C is compiled for each
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meta-object, O =
(

x1,l, x2,l, . . . xM,l
)

in S l(nmax) generated by the twin pro-
cesses of Cartesian multiplication and object/peak association for each of
the classes in sequence. Thus C(t′) = l if

t′ = Σk=l−1
k=1 |Sk(nmax)|+ t

where
(

x1,l, x2,l, . . . xM,l
)

t
∈ S l(nmax)

Next, the morphologically unbiased kernel matrix is compiled for each
meta-object across all of the classes. Recall that, although separately con-
stituted, the different class distributions exist within the same embedding
space. Thus, exploiting the fact that Mercer properties are preserved under
additivity, and assuming coefficients of unity:

Kcomp(OI , OJ) = ΣmKm(xmI , xmJ )

where
1 < {I, J} < |C|, OI =

(

x1I , x
2
I , . . . , x

m
I

)

I

The xmI are thus the objects within modality m re-indexed by the class-
concatenated variables I, J (implicitly utilizing the mapping functions fi(l, j)
involved in the original class separation). This typically gives rise to a kernel
matrix Kcomp of magnitude:

sup(|Km|) ≤ |Kcomp| << eΣmln|Km|

with actual size dependent on the data.
This matrix may then be used alongside the class labelings contained

within C for, e.g., SVM training in the normal manner. If a test matrix is
required (such that test points are contained within the same embedding
space as the support vectors of the SVM), then this may be compiled in the
same manner by utilizing the fact that the test objects can be embedded in
each of the individual modality’s embedding spaces, i.e.,

Ktest(O
test
i , OJ) = ΣmKtest

m (xm,test
i , xmJ )

where the xmtest are test objects indexed via i, and Ktest
m is the test kernel

matrix generated by forming the kernel product of the test and training data.
Note that the each index I value in xmI does not necessarily correspond to
the same object in each modality m.

A further refinement of the method permits sub-sampling of the Carte-
sian products generated during the procedure. Thus, if during iteration
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n calculation of the product Sl(n) =
⊗

m T l
m(n) is indicated, a randomly-

selected subsample of the product can instead be obtained with> Σm|T l
m(n)|

samples (this sampling minimum is chosen so as to preserve marginal sam-
ple rates). The subsampling procedure is thus designed so as to give rise to
an equivalent areal coverage of generated points to that of the full Carte-
sian product method, and thus no significant performance degradation is
expected (identical support vectors should be selected). Such sub-sampling
helps to ensure that Kcomp does not become excessively large in that case
of minimal morphological correlation.

Algorithm 1 sets out pseudocode for the above method. Note we have
for simplicity assumed that the Km are either intrinsically of similar value
ranges, or else have been normalized so as to have similar or identical value
ranges. However the sort-based nature of the method means that this is not
a critical consideration.

Algorithm 1 will thus solve any l-class, m-modality problem for which the
inputs are the inter-modality kernel matrices, Km, the inter-modality test
matrices, Ktest

m and the class labels c(xm,l
j ) → l. Outputs are the composite

kernel matrix Kcomp, the class labels C for the constructed objects in Kcomp,
and the test kernel matrix Ktest defined within the embedding space of
Kcomp.

3.2. Complexity Considerations

The order of complexity of the proposed method can be broken down in
terms of the three main components of the procedure as follows.

3.2.1. Initialization

Initialization consists of the following series of processes, with respective
complexities given in square brackets: class-based matrix splitting [O(|K|)], a
squared kernel distance calculation [O(m|K|2)], distance sorting [O(m|K|2log(|K|2))]
and, finally, a linear search for degenerate densities [O(m log(|K|2))]. (Note
that we do not need an explicit co-ordinatization step of order O(|K|2m)
since it is only required that we identify the degenerate sets within each
modality constituting the initial coordinate m-tuples; we do not calculate
each point individually at this stage).

Initialization is thus dominated by the O(m|K|2log(|K|2)) sorting pro-
cess.

3.2.2. Main Loop

The main loop essentially carries out a series of n inter-modally co-
dependent searches within each modality’s sorted list of kernel distances
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Algorithm 1 PseudoCode for Morphologically unbiased kernel fusion
1:

2: initialization
3:

4: For each modality, split the kernel matrix Km into l classes with independent
mapping indices;

5: Compile squared kernel norm matrix for each modality m and class l with
zero-valued lead diagonal, using Equation (1) and Dl

m → Dl
m −Dl

mI;
6: Find the set of density-sorted object pairs Sl

m(tlm) degenerate with the density
maxima: i.e., ∀l,m obtain: {Sl

m(tlm) : Sl
m(tlm) = Sl

m(0)};
7: Specify an initial peak set via the Cartesian product Sl(0) =

⊗

m{Sl
m(tlm) :

Sl
m(tlm) = Sl

m(0)}: set counters n = 1, kl
1
(−1) = 0;

8:

9: main loop
10:

11: while kl
1
(n) ≤ |K1

m| do
12: Set kl

1
(n) = |{Sl

1
(t) : Sl

1
(t) = Sl

1
(1)}|+ kl

1
(n− 1);

13: ∀m, m 6= 1 find klm(n) for which |Dl
1
(Sl

1
(kl

1
(n))) − Dl

m(Sl
1
(klm(n)))| is a

minimum;
14: Associate object correspondences within density level set to existing peaks

if topologically connected, i.e., if (gl
1
(n), gl

2
(n), . . . , glM (n)) ∈ Sl(n), then

Sl(n) = Sl(n)
⋃

(hl
1
(n), hl

2
(n), . . . , hl

M (n));
15: For all m, remove connected pairs (glm(n), hl

m(n)) from T l
m(n), i.e., T l

m(n) =
T l
m(n)/(glm(n), hl

m(n)) where T l
m(n) = {Sl

m(t) : klm(n− 1) < t ≤ klm(n)};
16: Form the Cartesian product: Sl(n) =

⊗

m T l
m(n) (Sub-sampling if required);

17: Update correspondence set: Sl(n) = Sl(n− 1)
⋃

Sl(n), n ∈ I;
18: n = n+ 1;
19: end while

20:

21: reconstruction of kernel matrix
22:

23: Compile class-index vector C for each meta-object created by object associa-
tions, O =

(

x1,l, x2,l, . . . , xM,l
)

, in Sl(nmax);
24: Form composite meta-objects kernel matrix from corresponding reindexed

modality kernel matrices: Kcomp(OI , OJ) = ΣmKm(xm
I , xm

J );
25: Form test matrix via: Ktest(O

test

i , OJ) = ΣmKtest

m (xm,test
i , xm

J );
26: Train classifier using Kcomp and C;

18



in order to identify density-degenerate sets for the co-ordinatization pro-
cess, where n is essentially a density resolution parameter. This process is
inherently of order O(mlog(|K|2))] within each of the n iterations. If we
assume the worst-case scenario in which the number of iterations n scales
linearly with the number of objects |K| (i.e. such that we assume a consis-
tent density-bin size, irrespective of the number of objects), then the total
loop complexity is O(m|K|log(|K|2)). The main loop is thus asymptotically
less complex than the initialisation phase.

3.2.3. Final Kernel Matrix Construction

Final kernel matrix construction cannot be derived from the coordinate
set identifications derived during the main loop iteration without addi-
tional cost, since composite kernel distance must now be explicitly calcu-
lated via the kernel addition process (an inherently linear complexity pro-
cess with respect to kernel matrix entries). For the purpose of calculating
the complexity, it may be assumed that this process is carried out explic-
itly following each identification of degenerate density sets during the main
loop iteration, thus extending the original O(m|K|log(|K|2)) process into
a O(m|K|(log(|K|2) + |K|2) = O(m|K|(|K|2) = O(m|K|3) process (using
subsampling). The reconstruction phase will thus tend to dominate asymp-
totically, having a polynomial complexity similar to that of the support
vector machine that typically constitutes the next step of the process.

The process as a whole is thus not prohibitive in terms of its order of
complexity, though execution time will vary greatly with the degree of mor-
phological correlation between data sets; for data sets exhibiting a typical
degree of morphological correlation, such as those of the UCI data set, the
SVM process will generally constitute the bottleneck.

4. Experiments

4.1. Illustrative example

As a simple illustrative example of the above process, we consider a 2-
class problem in which individual class distributions are defined by a 2-D
Gaussian density function with randomly-generated covariance matrix. Dif-
fering modalities are simulated by marginalization: two kernel matrices K1

and K2 are generated via the dot products of, respectively, the x and y
ordinates of a set of 10 pattern vectors generated using the two 2-D class
distributions (see Figure 3 left). (Each modality’s kernel matrix thus gener-
ates a 1D embedding space; the original 2D space represents a hypothetical
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Figure 3: Left: Contour plots of the two class probability density distributions. Right:
Decision boundary in the original space for K1 +K2 (with object correspondence)

composite multi-modal pattern space [or else the space that exists before fea-
ture selection]). We also assume no a priori correspondence between object
ordering in K1 and K2 (simulating the ‘black-box’ multi-modal problem).

We then carry out an SVM classification of the full composite data using
a Kernel matrix, K, derived from the inner product of the 20 pattern vectors
in the 2D space. We use the LIBSVM [36] toolbox with default settings, i.e.,
the trade-off parameter C in SVM is set to 1. This provides a benchmark
of idealized performance, in which no decision information is lost though
marginalization into the two distinct modalities. It also produces a direct
illustration of the maximum margin decision boundary in the input domain
(see Figure 3 right). Note that the Kernel matrix K equates to K1 + K2,
when the orderings of K1 and K2 are assumed to be correspondent. The
current experiment thus seeks to benchmark the two non-correspondence-
based methods of augmented kernel fusion and tomographic kernel fusion
against ground-truth correspondence-based kernel fusion in order to provide
a measure of the degree to which correspondence information is recovered
by the two methods.

The composite Kernel matrix, Ktom, is then computed from the K1 and
K2 kernel matrices via the tomographic method. (We also compute the
corresponding class-label vector for the meta-objects so formed).

These are then used to produce an SVM classifier. Figure 4 depicts
the objects and decision hyper-plane defined in the input domain using this
approach. (Of course, the embedding space is not identical to the input
space intrinsically; in order to generate the decision hyper-plane in Figure
4, it is necessary to identify the specific object correspondences implicit in
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Figure 4: Decision boundaries in the composite space obtained via tomographic kernel
fusion

each element of Ktom such that the support objects can be attributed the
corresponding x and y ordinates). The relevant information is obtainable
from the final correspondence set S l(n) in conjunction with the original
pattern vector ordinates.

Finally, we compute the Augmented Kernel [26] as the block diagonal
matrix obtained by appending K1 and K2 as a direct sum, i.e., Kaug =
K1

⊕

K2. We then train an SVM on this kernel matrix (and also plot the
decision boundary in the input domain: cf. Figure 5; this is calculated
by assuming that K1

⊕

K2 = ([v1]
⊕

[v2])([v1]
⊕

[v2])
⊤, where v1 and v2 are

respectively the ordered column vectors of object ordinates x and y that exist
within K1 and K2 [i.e we recover the ‘missing’ object correspondences purely
in order to visualize the decision boundary; note that the actual decision
boundary is calculated purely from the augmented kernel]. This ensures
that the support objects exist within the original space with coordinates
(vi1, 0) or (0, v

i
2) with vi1 ∈ v1, v

i
2 ∈ v2 ).

We thus obtain three performances figures for the three combined ker-
nel matrices K, Kaug, Ktom. For the distribution given in Figure 3, we
obtain, after 20 trials, training accuracy figures of: accuracy(K) = 90%,
accuracy(Ktom) = 90%, accuracy(Kaug) = 60%. (The training error is
given here rather than the test error for clarity of methodological illustra-
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Figure 5: Decision boundaries in the composite space obtained via the Augmented Kernel
(note the pattern vectors on the margins).

tion at this stage, i.e with no test set sampling issues). It is clear that
despite the creation of some additional ‘ambiguity-set’ objects, the tomo-
graphic kernel procedure produces an extremely similar hyper-plane to the
ground-truth. Moreover, the performance obtained with respect to the train-
ing set is identical to that of the ground truth; the tomographic method has
thus reconstructed all of the key classification-relevant missing object corre-
spondence information.

Having thus illustrated the result of kernel combination on the decision
boundary using artificial data, we now turn to an evaluation of the method
on real data.

4.2. Experiments on UCI data sets

To further evaluate the method on standard data we utilize the UCI data
sets Ionosphere, Heart, Iris, Pima, Sonar, and Wine. In order to generate
comparable two-class problems across data sets, we identify the class label
‘Iris-virginica’ with the class label ‘Iris-setosa’ for the Iris data set, and the
class label ‘3’ with class label ‘1’ for the Wine data set.

Implicit within tomographic kernel fusion is a principled methodology
for building composite kernels via object correspondences, which can thus
be considered as a ‘wrapper’ to the underlying kernel combination aspect.
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There is consequently the same freedom of linear kernel composition that
applies in standard MKL (i.e., when object correspondence information is

available). There hence thus exists freedom to introduce arbitrary coeffi-
cients into the linear combination. In the following experiments, however,
we wish to focus on the purely tomographic aspects of combination, without
consideration of these factors. We thus work with the inner product kernel
on feature spaces that have been normalized to a range of ±1, so that coef-
ficients with unity value are a suitable (i.e., near optimal) choice of linear
combination.

We carry out 1400 trials on each of the UCI data sets; for each exper-
imental trial, we divide the feature dimensions into two sets at random.
Experimental inputs are the kernel matrices associated with each feature
set, along with their associated class labeling (i.e., the kernel matrices are
formed via the inner product of the object feature vectors; Kn = XT

nXn).
We again use LIBSVM with default settings as the base classifier and com-
pute the following quantities: the Tomographic Kernel Fusion training and
test errors, the Augmented Kernel training and test errors, the training and
test errors of the individual feature kernel matrices (as a measure of baseline
performance), and finally training and test errors for the kernel formed by
summing the individual feature matrices with all of the ground-truth object

associations in place (i.e., so that the composite kernel matrix is of the same
size as individual feature kernel matrices). This latter would thus represent
the ideal outcome of tomographic kernel fusion, in which there is no ambi-
guity of object association, and all objects are correctly associated. It thus
serves as an overall performance benchmark for the proposed method.

The calculation of the training error serves to provide a direct window on
the relative morphological bias that has been removed from the training set
by the proposed procedure, aside from generalization considerations. Note
that, in the case of the tomographic fusion strategy this error measure is
calculated in relation to the tomographically generated kernel matrices. The
test error, of course, remains the principle performance indicator.

Within each of the 1400 trials we perform 3-fold cross-validation to arrive
at the accuracy figure for each of the selected feature pairs, i.e., so there are
three sub-trials per trial, with a 2:1 training-to-test-set split for each sub-
trial. Random sub-sampling is applied for the Cartesian product generation
aspect of the tomographic fusion algorithm. The sample frequency for this
is specified in terms of the quantity Smin; the minimum possible coverage
required to generate the same marginal object ambiguity sets (see above).
Thus, for two object ambiguity sets, S1, S2 associated with feature sets 1 and
2, this value is Smin = sup(|S1||S2|). We thus select a sampling probability
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Table 1: Training Accuracy Rates for the 5 Classification Scenarios (in %). From column
2 to column 6 are SVM training accuracy of: tomographic kernel, kernel from feature set
1 only, kernel from feature set 2 only, augmented kernel, and composite kernel (i.e., with
full object correspondence), respectively.

Data set Tomog. Ftr. Set 1 Ftr. Set 2 Aug. Comp.

Ionosphere 96.8 ± 1.1 86.1 ± 8.1 86.9 ± 7.2 85.5 ± 3.9 94.4 ± 1.2
Heart 93.8 ± 1.9 78.3 ± 7.4 80.0 ± 6.0 78.6 ± 2.8 86.4 ± 1.7
Iris 80.1 ± 5.7 68.7 ± 3.9 70.3 ± 4.1 69.5 ± 2.2 73.5 ± 3.1
Pima 81.9 ± 2.0 70.8 ± 5.1 72.6 ± 5.0 71.1 ± 1.1 77.9 ± 1.2
Sonar 97.3 ± 1.3 83.5 ± 8.6 84.0 ± 8.0 83.6 ± 3.6 92.5 ± 1.9
Wine 99.4 ± 0.6 88.7 ± 11.7 91.3 ± 9.5 89.3 ± 5.0 99.1 ± 0.7

Table 2: Testing Accuracy Rates for the 5 Classification Scenarios (in %). From column
2 to column 6 are SVM training accuracy of: tomographic kernel, kernel from feature set
1 only, kernel from feature 2 set only, augmented kernel, and composite kernel (i.e., with
full object correspondence), respectively.

Data set Tomog. Ftr. Set 1 Ftr. Set 2 Aug. Comp.

Ionosphere 85.5 ± 3.1 82.4 ± 7.2 83.2 ± 6.5 81.4 ± 4.7 87.7 ± 2.6
Heart 82.6 ± 3.5 76.3 ± 7.9 77.8 ± 6.5 76.7 ± 3.7 83.3 ± 3.3
Iris 65.2 ± 7.2 67.8 ± 6.1 68.6 ± 6.2 68.2 ± 5.8 69.9 ± 6.3
Pima 74.8 ± 2.4 70.1 ± 5.5 71.7 ± 5.5 70.6 ± 2.1 76.8 ± 2.2
Sonar 76.1 ± 4.7 73.0 ± 6.8 73.3 ± 6.3 72.9 ± 4.6 75.9 ± 4.5
Wine 96.4 ± 2.6 86.9 ± 12.3 89.5 ± 10.1 87.5 ± 5.5 97.3 ± 2.1

of factor of Smin/|S1| × |S2| to ensure reasonable sampling, and at the same
time guarantee non-excessive tomographic kernel matrix sizes.

A characteristic of the UCI data sets is that there are large numbers of
similar kernel matrix values in a number of the data sets. We therefore need
an additional method to deal with the associated matrix element degeneracy,
when this leads to very large Cartesian product sets. For the sortal processes
within the tomographic fusion algorithm we thus introduce a sub-sampling
of the indices of the sorted density bins. This is performed via the bisection
method, which terminates with a maximum density bin index gap of 5. (This
is an O(log(n)) process and so does not generate significant computational
overhead).

Finally, we compute the mean Mahalanobis distance of class centroids
over the marginal features as a measure of intrinsic classification difficulty,
and also the tomographic performance deficit (defined as the performance of
the composite kernel with full object correspondence minus the tomographic
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Figure 6: Ionosphere Data Set Accuracy Results

test performance). This relationship is plotted in 12. Results are reported
for the six data sets in Tables 1 and 2, and Figures 6 to 11.

4.3. Experiments on CAL500 data sets

We now consider a realistic experimental setting, in which kernel ma-
trices are derived from very different modalities. The CAL500 multi-kernel
dataset (http://cosmal.ucsd.edu/cal/) consists of 6 distinct kernel matrices
derived from various features that describe retail music [37].

Specifically, it contains 500 distinct songs human-labelled with 174 tags
in 8 different semantic categories. These categories include genre, prevailing
emotion, instrumentation, presence of solos, and vocal style. Tags are given
as Binary labels (i.e., relevant or irrelevant). The 6 kernels matrices are
derived as follows:
K subsamplePPK: this is the Probability Product Kernel (PPK) between
Gaussian mixture models (GMMs) of sub-samples of individual songs’ Delta-
MFCC feature vectors.
K 30sec PPK: this is a temporal coarse-graining of the above (the PPK
between GMMs accumulated over 30 seconds intervals of individual song’s
Delta-MFCC feature vectors).
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Figure 7: Heart Data Set Accuracy Results

Figure 8: Iris Data Set Accuracy Results
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Figure 9: Pima Data Set Accuracy Results

Figure 10: Sonar Data Set Accuracy Results
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Figure 11: Wine Data Set Accuracy Results

Figure 12: Tomographic performance deficit relative to mean Mahalanobis distance of
class centroids
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K 30sec CHROMAPPK: this is the 30 second temporally coarse-grained
PPK between GMMs of individual song’s Chroma feature vectors (consisting
of vectors of pitch-histograms).
K fpRBF: this is the RBF (Radial basis function) kernel between features
representing individual songs.
K lastfm: this is the RBF kernel of comparisons between document vectors
obtained from (Last.fm’s) social tagging.
K webdoc: this is the RBF kernel of comparisons between document vec-
tors describing web pages returned by Google searching on the song title.

For our experiment, we choose the binary tag ‘Instrument - Male Lead
Vocals’ as the class label so as to give the most equally-proportioned binary
partition of the possible labels available (most of the other classes exhibit
very large imbalances). There are thus 339 positive class labels out of a
total 502. We perform 100 trials of two-fold cross validation on the data
(that is, for each of the 100 trials we randomly partition the objects into
test and training objects, which are then reversed so that objects in the test
partition are reallocated to the training partition and vice versa). Following
this partitioning of the data we obtain the following accuracy scores for the
tomographic and augmented kernels:

Tomographic kernel matrix accuracy %

-test accuracy: 64.70± 0.80 %
-train accuracy: 100.0± 0%

Augmented kernel matrix accuracy %

-test accuracy: 63.67± 0.86%
-train accuracy: 100.0± 0%

Average kernel matrix accuracy %

-test accuracy: 63.70± 0.84 %
-train accuracy: 100.0± 0 %

The latter performance indicator, an average performance of the 6 in-
dividual kernel matrices, performs similarly to the augmented kernel, sug-
gesting that the latter is failing to add significant information to the classi-
fication problem. The tomographic kernel, however performs substantially
better, suggesting that the method is indeed finding some appropriate corre-
spondences between different objects within each modalities’ kernel matrix,
despite their very different nature. This result is confirmed by applying
the same experimental methodology to a very different class label category,
in this case the alternative binary partitioning “Emotion-Powerful Strong
(yes/no)”, which has a total of 160 positive labels, and gives the following
results:
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Tomographic kernel matrix accuracy %

-test accuracy: 66.55± 0.57 %
-train accuracy: 100.0± 0%

Augmented kernel matrix accuracy %

-test accuracy: 65.79± 0.51 %
-train accuracy: 100.0± 0%

Average kernel matrix accuracy %

-test accuracy: 65.79± 0.52 %
-train accuracy: 100.0± 0 %

5. Discussion

In both the simulated and real experimental environments the tomo-
graphic kernel fusion method gives very similar performance to the bench-
mark composite kernel matrix that incorporates full ground-truth object
correspondence information across all of the data sets (with the exception
of the Iris dataset, the accuracy figure for is derived from a very small num-
ber of samples in consequence of the overall paucity of its feature set). The
tomographic Kernel method is thus very nearly equivalent to the sum of
kernels when object correspondence information is available.

The tomographic kernel fusion method thus finds nearly all of the signifi-
cant object correspondences for discriminative purposes. This result would,
by analogy with the original density-based tomographic fusion approach,
presumably scale advantageously with increasing numbers of Kernel input
spaces (the favorable scaling of accuracy with input dimensionality is shown
for non-kernelized tomographic fusion in [38]).

It is therefore an ideal ‘first resort’ strategy in situations for which object
correspondence information is unavailable, such as those typically found in
multi-modal problems (especially biometrics). It is also capable of being
deployed in cases where there are significant omissions in the feature values
for some fraction of objects (as for instance happens frequently in census
data returns). In this case each individual pattern space can be treated
as having distinct sets of objects associated with it, only some of which
correspond to the objects in other feature spaces.

We have, in the above, used random sub-sampling to avoid the generation
of large kernel matrices. A further possibility unexplored here is to employ
just the outer vertices of the region defined by the set Cartesian products,
i.e., the hypercube corner vertices. This would scale computationally as 2n

rather than |S|n (S being the number of objects in the ambiguity set for
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some iteration of the algorithm). This would give identical results for SVM
classification if the classes are linearly separable in the embedding space;
however random sub-sampling is likely to be statistically more reliable if
classes are not well separated.

In this regard, we might also ask what effect random sampling has in
comparison with the non-subsampled alternative (which was omitted from
the UCI tests in consequence of the large kernel matrices generated for
certain data sets). If the random sub-sampling were significantly affecting
performance, it might be expected that an inverse correlation would exist
between the tomographic performance deficit (relative to kernel summation
with full object correspondence) and the mean Mahalanobis distance of class
centroids: randomly-sampled feature pairs often have very poor class separa-
bility on the UCI data sets, so that it may be thought that more significance
would thereby attach to the sub-sampling data omissions. However, Figure
12 demonstrates the opposite trend, in common with the augmented kernel
approach. We therefore conclude that sub-sampling is not the most signifi-
cant factor affecting performance.

A final observation is that the method has some conceptual similarities
with the pyramid kernel matching method [39] used predominantly for im-
age processing, in that it combines unordered feature-sets, and produces an
output kernel matrix with an efficiency similar to that of pyramid matching.
However, the current method is more principled, in that it proceeds directly
from the notion of filtered bias removal in tomographic combination. Ambi-
guity classes of matches are thus handled in the most optimal fashion. How-
ever, the main difference of the current method over pyramid kernel match-
ing is that it takes kernel matrices as inputs, not features, and produces
an output kernel matrix using an appropriate linear combination (Mercer
properties are guaranteed by the sum of PSD kernels, so that the output
defines a definite feature space, i.e., K(xi, xj) =< Φ(xi),Φ(xj) >, ∀xi, xj).

Finally, as we noted before, the choice of β coefficients of the linear
combination remains free, so an additional optimization along the lines of
Lanckriet et al. [1] can also be introduced.

6. Conclusions

We have presented a novel methodology for multiple kernel learning that
utilizes a tomographic approach to remove the implicit bias from linear
combination methods. In kernelizing this approach, the method essentially
becomes one of identifying object correspondences between kernel matri-
ces associated with differing modalities. We therefore anticipate that the

31



method has wide application in areas such as biometrics, for which propri-
etary data sets often preclude the possibility of object correspondence, and
also missing feature problems, which can be treated as a combination over
Kernel matrices with incomplete object correspondence.

In the illustrative experiment (the first of our experimental evaluations),
the tomographic method gives rise to a very similar decision boundary to
the benchmark composite kernel matrix generated in the original composite
space. Since this is equivalent to the sum of kernels when object corre-
spondence information is available, it is clear that the tomographic kernel
fusion method recovers nearly all of this information (at least in regard to
the discrimination problem).

In the evaluation on UCI and CAL500 datasets we have shown that the
same findings apply on real-world problems, giving superior performance in
almost all cases to the augmented kernel alternative, and consequently con-
clude that the method is an ideal ‘first resort’ kernel combination strategy.
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[3] S. Sonnenburg, G. Rätsch, C. Schafer, B. Schölkopf, Large scale multi-
ple kernel learning, JMLR 7 (2006) 1531–1565.

[4] A. Zien, C. Ong, Multiclass multiple kernel learning, in: ICML, 2007.

[5] M. Gönen, E. Alpaydin, Localized multiple kernel learning, in: ICML,
2008, pp. 352–359.

[6] A. Rakotomamonjy, F. Bach, Y. Grandvalet, S. Canu, Simplemkl,
JMLR 9 (2008) 2491–2521.

[7] C. Cortes, M. . Mohri, A. Rostamizadeh, Learning nonlinar combina-
tions of kernels, in: NIPS, 2009.

[8] J. Aflalo, A. Ben-Tal, C. Bhattacharyya, J. Nath, S. Raman, Variable
sparsity kernel learning, JMLR 12 (2011) 565–592.

32



[9] M. Kloft, U. Brefeld, S. Sonnenburg, A. Zien, Lp norm multiple kernel
learning, JMLR 12 (2011) 953–997.

[10] M. Gönen, E. Alpaydin, Multiple kernel learning algorithms, JMLR 12
(2011) 2211–2268.

[11] M. Kloft, G. Blanchard, On the convergence rate of lp-norm multiple
kernel learning, JMLR 13 (2012) 2465–2502.

[12] J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis,
Cambridge University Press, 2004.

[13] B. Scholkopf, A. Smola, Learning with Kernels, MIT Press, 2002.

[14] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag,
1999.

[15] S. Mika, Kernel fisher discriminants, PhD Thesis, University of Tech-
nology, Berlin, Germany (2002).

[16] G. Baudat, F. Anouar, Generalized discriminant analysis using a kernel
approach, Neural Computation 12 (2000) 2385–2404.

[17] O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple
parameters for support vector machines, Machine Learning 46 (2002)
131–159.

[18] O. Bousquet, D. Herrmann, On the complexity of learning the kernel
matrix, in: NIPS, 2003.

[19] M. Kloft, U. Brefeld, S. Sonnenburg, A. Zien, Efficient and accurate
lp-norm mkl, in: NIPS, 2009.

[20] C. Ong, A. Smola, R. C. Williamson, Learning the kernel with hyper-
kernels, JMLR 6 (2005) 1043–1071.

[21] Y. Ying, K. Huang, C. Campbell, Information theoretic kernel integra-
tion, in: NIPS Workshop on Learning from Multiple Sources, 2009.

[22] S. Kim, A. Magnani, S. Boyd, Optimal kernel selection in kernel fisher
discriminant analysis, in: ICML, 2006.

[23] J. Ye, S. Ji, J. Chen, Multi-class discriminant kernel learning via convex
programming, JMLR 9 (2008) 719–758.

33



[24] S. Ji, L. Sun, R. Jin, J. Ye, Multilabel multiple kernel learning, in:
NIPS, 2008.

[25] M. Varma, B. Babu, More generality in efficient multiple kernel learn-
ing, in: ICML, 2009.

[26] F. Yan, K. Mikolajczyk, J. Kittler, A. Tahir, Combining multiple ker-
nels by augmenting the kernel matrix, in: International Workshop on
Multiple Classifier Systems 2010, 2010.

[27] M. Awais, F. Yan, K. Mikolajczyk, J. Kittler, Augmented kernel matrix
vs classifier fusion for object recognition, in: British Machine Vision
Conference, 2011.

[28] N. Poh, D. Windridge, V. Mottl, A. Tatarchuk, A. Eliseyev, Address-
ing missing values in kernel-based multimodal biometric fusion using
neutral point substitution, IEEE Trans. on Information Forensics and
Security.

[29] D. Windridge, J. Kittler, A morphologically optimal strategy for clas-
sifier combination: Multiple expert fusion as a tomographic process,
IEEE Trans. Pattern Anal. Mach. Intell. 25 (3) (2003) 343–353.

[30] D. Windridge, Tomographic considerations in ensemble bias/variance
decomposition, in: Proc. Multiple Classifier Systems, 9th International
Workshop, MCS 2010, 2010.

[31] G. Valentini, T. G. Dietterich, Bias-variance analysis of support vector
machines for the development of svm-based ensemble methods, J. Mach.
Learn. Res. 5 (2004) 725–775.
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