
Mechanizing the Metatheory of Sledgehammer

Jasmin Christian Blanchette and Andrei Popescu

Fakultät für Informatik, Technische Universität München, Germany

Abstract. This paper presents an Isabelle/HOL formalization of recent research
in automated reasoning: efficient encodings of sorts in unsorted first-order logic,
as implemented in Isabelle’s Sledgehammer proof tool. The formalization pro-
vides the general-purpose machinery to reason about formulas and models, emu-
lating the theory of institutions. Quantifiers are represented using a nominal-like
approach designed for interpreting syntax in semantic domains.

1 Introduction

Despite steady progress in the usability of proof assistants, paper proofs reign supreme
in the automated reasoning community. Myreen and Davis’s verification of an ACL2-
like prover in HOL4 [16] and Harrison’s partial self-verification of HOL Light [12]
are exceptions rather than the rule. Important metamathematical results have been for-
malized (e.g., Shankar’s Gödel proof [26]), but new research is still carried out almost
exclusively on paper, with all the risks this entails.

This paper presents a formalization in Isabelle/HOL [17] of the proofs for transla-
tions from many-sorted to unsorted first-order logic (FOL). Claessen et al. [9] designed
lightweight encodings that eliminate much of the clutter associated with traditional
schemes. Blanchette et al. [3, 4] introduced even lighter encodings in a sequel. Central
to these new encodings is the notion of monotonicity. Informally, a sort is monotonic
if its domain can be extended with new elements without compromising satisfiabil-
ity. Nonmonotonic sorts can be made monotonic by introducing protector functions or
predicates, and monotonic sorts can be merged into a single sort.

Sorts are trivially monotonic in FOL without equality. The addition of interpreted
equality makes it possible to encode upper cardinality bounds on the models, breaking
monotonicity. Like other interesting semantic properties, monotonicity is undecidable
but can often be inferred in practice. Monotonicity has many applications in theorem
provers and model finders [5,9]. It is also roughly equivalent to smoothness, a criterion
that arises when combining decision procedures in SMT solvers [28].

The Sledgehammer [18] proof tool for Isabelle/HOL relies on the monotonicity-
based encodings to apply state-of-the-art unsorted provers to sorted problems. The tool
translates interactive proof goals along with relevant lemmas and invokes the external
automatic theorem provers to find proofs, which are reconstructed through Isabelle’s
inference kernel. Early versions of Sledgehammer relied on unsound sort encodings;
as a result, they would often find spurious, unreconstructable proofs, which annoyed
users and could conceal sound proofs. Whereas Sledgehammer reconstructs the external
proofs, tools such as Monotonox [9] and the fully-automatic competition version of
Isabelle [27] do not perform such checks; soundness is crucial for them.



The mechanization of the sort encodings fully covers the correctness proofs from
Claessen et al. [9] and the monomorphic half of its sequel [3, 4], as well as a theorem
by Bouillaguet et al. [8]. This formalization work arose from a desire to provide more
solid assurance to this recent research. Even if the intuition is clear, a paper proof offers
many opportunities for flaws, especially because of the variety of encodings.

The mechanization effort partly coincided with the development of the informal
proofs [4]. The two proofs largely follow the same conventions, with one major dif-
ference: The core of the formal proof (Sections 3 to 5) assumes quantifier-free clausal
normal form (CNF) rather than negation normal form (NNF). This reduces the exposure
to name binders, which are notoriously difficult to reason about. The results are lifted to
NNF using a clausification theorem (Sections 6 to 8). This organization is reminiscent
of the architecture of automatic reasoners that combine a clausifier and a CNF core.

Isabelle’s higher-order logic (HOL) might not be as expressive as set or type theory,
but it can cope with the statements and proofs of classical metatheorems (as shown by
Harrison and others [2, 11, 25]) and practical results. The proof assistant offers many
conveniences; two features have been particularly useful:

• Locales [1,14] parameterize theories over constants and assumptions, with the usual
benefits associated with modularity. Locales are particularly suited to expressing
logic translations abstractly as in the theory of institutions [10].

• A framework for syntax with bindings [22–24] eases reasoning about quantified for-
mulas. It lies at the intersection of first-order nominal approaches [20] and higher-
order abstract syntax [19]. The framework is designed specifically for interpreting
syntax in semantic domains.

Locales have been part of Isabelle for many years and are widely used. The syntax with
bindings is a newer addition; the current application is among the first case studies that
feature it. The formal proofs are available online [6].

Although sort encodings are the focus of this paper, our infrastructure is designed to
be reusable for other applications of many-sorted FOL. Many important metatheories
are awaiting formalization, such as the completeness of paramodulation and tableaux.

2 An Isabelle View of Logic Translations

The formalization covers a variety of translations, including not only the sort encod-
ings but also clausification. The guiding principles, described below, originate from the
theory of institutions; their Isabelle materialization relies on locales.

Institutions. A logic L provides a category of signatures Sig and, for each signature
Σ ∈ Sig, a set of sentences Sen(Σ), a class of structures (interpretations) Str(Σ), and a
satisfaction relation �Σ between structures and sentences. A signature morphism k : Σ→
Σ′ is equipped with a forward sentence translation k : Sen(Σ)→ Sen(Σ′) and a backward
structure translation �k : Str(Σ′)→ Str(Σ). An institution is a logic whose signature
morphisms enjoy the property that “truth is invariant under change of notation”: M ′ �Σ′

k ϕ ←→ M ′�k �Σ ϕ for all k : Σ→ Σ′, M ′ ∈ Str(Σ′), and ϕ ∈ Sen(Σ).



A translation of L -problems (sets of sentences) into L ′-problems consists of a func-
tion $ between L ’s and L ′’s signature classes and, for each Σ ∈ dom($) and Σ-problem
Φ, a sentence translation encΦ : Sen(Σ)→ Sen(Σ$) and a set of axioms AxΦ ⊆ Sen(Σ$).
The translation of Φ is defined as enc Φ = {encΦ ϕ | ϕ ∈Φ}∪AxΦ. Thus, L -problems
are mapped to L ′-problems by joining an elementwise translation and additional ax-
ioms. Given a class C of L -problems, the translation is sound w.r.t. C if satisfiability
of Φ implies satisfiability of enc Φ for all Φ ∈ C , and complete if the converse holds.

The institution literature focuses on “uniform” encodings. For these, the sentence
translation depends only on Φ’s signature Σ, and there exists a backward translation
dec : Str(Σ$)→ Str(Σ) for which an inter-institution version of the institutional condi-
tion holds: M ′ �Σ$ encΣ ϕ ←→ dec M ′ �Σ ϕ. This condition implies completeness.

The source logic L for all the translations considered in this paper is many-sorted
FOL; the target logic L ′ is either many-sorted or unsorted FOL. Sentences are either
CNF clauses or NNF formulas. Most of the translations are nonuniform.

Isabelle. Isabelle/HOL is based on polymorphic HOL, which can be thought of as
a fragment of Standard ML enriched with logical constructs and a proof system. Type
variables are identified by a leading prime (e.g., ′a). The type σ→ τ is interpreted as the
set of (total) functions from σ to τ. Propositions are terms of type bool, and predicates
are functions to bool. Function applications are written without parentheses (e.g., f x y)
or in infix notation (e.g., x+ y). Constants and variables can be functions.

The type ′a list of finite lists over ′a is generated freely from the empty list [] and
the infix constructor # : ′a→ ′a list→ ′a list. The notation [x1, x2, . . . , xn] abbreviates
x1 #(x2 #(· · ·#(xn # []) · · ·)). The higher-order constant map : (′a→ ′b)→ ′a list→ ′b list
applies a unary function to each element in a list, and set : ′a list→ ′a set returns the
set of elements in a list. Sets are written using traditional mathematical notation. Type
parameters of polymorphic types are sometimes omitted (e.g., set for ′a set).

Locales. Isabelle locales are a structuring mechanism provided on top of basic HOL.
They fix types, constants, and assumptions, as in the following schematic examples:

locale X = fixes ′a fixes c : σ′a assumes P′a,c
locale Y = fixes ′b fixes d : τ′b assumes Q′b,d

The definition of locale X fixes a type ′a and a constant c whose type σ′a may depend on
′a, and states an assumption P′a,c : bool over ′a and c. Lemmas proved within the locales
can rely on them. In general, a single locale can introduce several types, constants, and
assumptions. The definition of X also produces a polymorphic locale predicate X =
(λc. P′a,c). Seen from outside the locale, the lemmas proved in locale X are polymorphic
in type variable ′a, universally quantified over variable c, and conditional on X c.

Locales support inheritance, union, and embedding. To embed X into Y, one needs
to indicate how an arbitrary instance of X can be regarded as an instance of Y, by
providing, in the context of X, definitions of the types and constants of Y together with
proofs of Y’s assumptions. The command

sublocale X < Y where ′b = υ and d= t

emits the goal Qυ,t, where υ and t may depend on types and constants from X. After the
proof, all the lemmas proved in the Y become available in X, with υ and t in place of ′b
and d. Homonymous constants d in X and Y are instantiated as d= d by default.



The sublocale relationship is sometimes abbreviated to X ′a,c < Yυ, t or X < Y.
Locales provide a shallow realization of institutions in Isabelle. The institutional

methodology serves as an inspiration and guidance to formulate results about specific
logic translations in a consistent style. Given a logic L , its signatures Sig are captured
by a locale L .Signature, which fixes Isabelle constants for the signature components
(e.g., sorts and symbols) and defines a notion of sentence (e.g., clauses or formulas). A
locale L .Problem extends L .Signature with a fixed set of sentences Φ. Structures M
are represented by a locale L .Structure that also defines a notion of satisfaction. Finally,
satisfiable problems are represented by a locale L .Model that joins L .Problem and
L .Structure and further requires satisfaction between Φ and M .

In this setting, translations between logics L and L ′ and their properties are captured
via locale embedding mechanisms in four steps.
SIG: Define $ as a sublocale relationship L .Signature < L ′.Signature with suitable
parameter instantiations reflecting the definition of Σ$ in terms of Σ.
TRANS: Define encΦ inside L .Problem (where Σ and the Σ-problem Φ are fixed).
SOUND: To prove soundness, define a Σ$-structure M ′ inside L .Model (where the sig-
nature Σ, the Σ-problem Φ, and the structure M such that Φ �Σ M are fixed) and show
L .ModelM < L ′.ModelM ′ .
COMPLETE: To prove completeness, define a locale Problem_Model′ = L .Problem+
L ′.Model that joins a Σ-problem Φ and a Σ$-model M ′of encΦ, define inside Problem_

Model′ a Σ-structure M , and show Problem_Model′M ′ < L .ModelM .

3 Clausal First-Order Logic

The terms, atoms, and literals of (quantifier-free) CNF are represented in HOL by ML-
style free datatypes, parameterized by types ′f and ′p of function and predicate symbols:

datatype ′f tm =
Var var |
Fn ′f (′f tm list)

datatype (′f , ′p) atm =
Pr ′p (′f tm list) |
Eq (′f tm) (′f tm)

datatype (′f , ′p) lit =
Pos ((′f , ′p) atm) |
Neg ((′f , ′p) atm)

The type var is countably infinite. An atom is either an applied predicate (e.g., p(t))
or equality (e.g., t ≈ u). A clause is a list of literals (interpreted disjunctively), and
a problem is a set of clauses (interpreted conjunctively). Formally, (′f , ′p) clause =
(′f , ′p) lit list and (′f , ′p) problem = (′f , ′p) clause set. The CNF representation involves
no name binders, unlike (quantified) NNF (Section 6).

Many-sorted signatures (for CNF and NNF) are captured by the following locale:

locale Signature =
fixes ′s and ′f and ′p
fixes arityF : ′f → ′s list and res : ′f → ′s and arityP : ′p→ ′s list
assumes countable UNIV′s and countable UNIV′f and countable UNIV′p

The locale is parameterized by types for sorts (′s), function symbols (′f ), and predicate
symbols (′p), all required to be countable (i.e. finite or countably infinite). The locale
attaches to each symbol a sort arity (arityF or arityP) and, for functions, a result sort
(res). The sort arity can be empty. Symbols cannot be overloaded. The polymorphic
constant UNIV′a : ′a set is predefined in Isabelle as the set of all values of type ′a.



The Signature locale defines an underspecified function sort : var→ ′s that arbitrar-
ily assigns sorts to variables. Whereas the formalization consistently refers to FOL’s
sorts as types (in view of a possible extension to n-ary type constructors and polymor-
phism), in this paper they are more precisely called sorts. Wellsortedness and well-
formedness of terms and the other syntactic categories are defined in the usual way.
Wellformedness is a precondition to many operations, but such details are omitted here.

The Problem locale joins a signature Σ and a CNF Σ-problem Φ. The Structure
locale combines a signature, a universe ′u, and a triple of functions (intS, intF, intP)
that interpret sorts, function symbols, and predicate symbols:

locale Problem = Signature ′s,′f ,′p arityF res arityP +
fixes Φ : (′f , ′p) problem

locale Structure = Signature ′s,′f ,′p arityF res arityP +
fixes ′u
fixes intS : ′s→ ′u→ bool and intF : ′f → ′u list→ ′u and

intP : ′p→ ′u list→ bool

A few wellformedness assumptions are made on the triple (intS, intF, intP), such as
inhabitation of all sorts (∀σ. ∃d. intS σ d). The Structure locale also defines the in-
terpretation of terms and satisfaction of clauses. A related locale, Model, represents
satisfiable CNF problems by combining a Problem and a Structure it satisfies.

4 Monotonicity and Its Inference

This section focuses on monotonicity in its own right; Section 5 discusses the associated
sort encodings. To simplify the monotonicity arguments, both sections assume a fixed
infinitely countable type ω as the universe ′u of structures, thus working implicitly with
the instances Structureω and Modelω. This limitation is lifted in Section 8 by appealing
to the downward Löwenheim–Skolem theorem.

Claessen et al. [9, §2] define monotonicity on single sorts. Blanchette et al. [3, §3]
generalized the notion to sets of sorts S, making it more useful. The sorts S are collec-
tively monotonic in the problem Φ if for all models M of Φ, there exists a model M ′

such that for all sorts σ, M ′ interprets σ by an infinite domain if σ∈ S and by a domain
of the same cardinality as in M otherwise.

In the formalization, the Mono_Problem locale enriches Problem with a mono-
tonicity assumption on all sorts, expressed using locale predicates:(

∃intS intF intP. Model arityF res arityP Φ intS intF intP
)
−→

∃intS intF intP. Infinite_Model arityF res arityP Φ intS intF intP

The Infinite_Model locale is itself an enrichment of Model with the assumption that for
each sort σ, the expression intS σ d is true for infinitely many elements d.

First Criterion. Claessen et al. designed two syntactic criteria to infer monotonicity.
The first one is defined as a predicate B that checks the absence of naked variables of a
given sort σ in a clause c or a problem Φ:

σB c ←→ ∀x∈nv c. sort x 6= σ σBΦ ←→ ∀c∈Φ. σB c



A naked variable is a variable that occurs directly on either side of a positive equality,
such as X in the literal X ≈ f(Y). Formally:

nv (Var x) = {x} nv (Eq t1 t2) = nv t1 ∪ nv t2 nv (Pos a) = nv a
nv (Fn f ts) = /0 nv (Pr p ts) = /0 nv (Neg a) = /0

with nv c =
⋃
set (map nv c) for clauses. The criterion B soundly infers monotonicity.

This is expressed as a sublocale inclusion Problem_Crit1 < Mono_Problem, where
Problem_Crit1 enriches Problem with the assumption ∀σ. σBΦ. The inclusion holds
because a model of a problem whose sorts passB can be extended into an infinite model
by replicating elements. For each finite sort σ, the extended model contains infinitely
many copies of some element pick σ, all interpreted as in the original model.

Blanchette et al. strengthened the criterion by injecting “infinity knowledge”: Any
sort that is interpreted by an infinite domain in all models is monotonic, regardless of
naked variables [3, §3]. This aspect is part of the formalization but omitted here.

Second Criterion. The improved criterion is parameterized by an assignment of a per-
sort extension policy—which may be true, false, or copy—to each predicate symbol.
In the model construction, the true-extended (resp. false-extended) predicates are in-
terpreted as true (resp. false) for new domain elements of the given sort, whereas the
copy-extended predicates are treated as in the simple criterion.

Implementations can enumerate the possible policy combinations (e.g., using a SAT
solver). In the formalization, the policies are supplied along with the problem as a cur-
ried function policy that maps pairs σ, p to T, F, or C. A function guard associates each
variable x in need of protection with its guarding literal. The criterion is defined as

σI c ←→ ∀l x. l∈ set c ∧ x∈nv l ∧ sort x = σ −→ isGuard x (guard c l x)
σIΦ ←→ ∀c∈Φ. σI c

where isGuard determines whether the given literal actually protects the variable x:

isGuard x (Pos (Eq t1 t2)) ←→ False
isGuard x (Neg (Eq t1 t2)) ←→

∨2
i=1 ti = Var x ∧ ∃ f ts. t3−i = Fn f ts

isGuard x (Pos (Pr p ts)) ←→ x ∈
⋃
set (map nv ts) ∧ policy (sort x) p =T

isGuard x (Neg (Pr p ts)) ←→ x ∈
⋃
set (map nv ts) ∧ policy (sort x) p = F

The notion of naked variables is generalized to account for ill-polarized predicates:

nv (Pos (Pr p ts)) = {x ∈
⋃
set (map nv ts) | policy (sort x) p = F}

nv (Neg (Pr p ts)) = {x ∈
⋃
set (map nv ts) | policy (sort x) p = T}

Theorem 1. Let Φ be a Σ-problem and σ be a Σ-sort.
(1) If σBΦ, then σIΦ for a copy-extended policy.
(2) Given some extension policies, if σIΦ for all Σ-sorts σ, then the set of all Σ-sorts

is monotonic in Φ.

This theorem is expressed in Isabelle as a pair of sublocale inclusions. The where clause
below instantiates Problem_Policy_Crit2’s policy parameter with λσ p. C to enforce
the copy policy for all sorts and predicate symbols:

sublocale Problem_Crit1 < Problem_Policy_Crit2 where policy = (λσ p. C)
sublocale Problem_Policy_Crit2 < Mono_Problem



5 Sort Encodings

A naive, unsound way to translate a many-sorted FOL problem to unsorted FOL is to
erase all the sorts and otherwise leave the problem unchanged. There are two main
sound alternatives that encode the sort information. Sort tags are functions tσ(X) that
directly associate a term X with its sort σ. Sort guards are predicates gσ(X) that check
whether X has sort σ in the original problem. The formalized versions of these encod-
ings follow the four steps sketched in Section 2.

Full Erasure. Full sort erasure is unsound but complete. What makes it interesting
is that it is sound for the class of monotonic problems. By way of composition, it lies
at the heart of the tag- and guard-based encodings. The theory prefix U distinguishes
unsorted entities from their many-sorted counterparts.
SIG: The signature of the target unsorted problem has the same function and predicate
symbols as the original signature but collapses the sorts into a single, implicit sort.
TRANS: The translation function e is the identity except that it forgets the sorts.
SOUND: For the soundness proof, a model of a monotonic problem is extended into a
model that interprets all sorts infinitely, which in turn is transformed into an isomorphic
“full” model that interprets all the sorts uniformly as λd.True (i.e., ∀σ. ∀d. intS σ d),
from which it is easy to build an unsorted model for the e-translated problem:

Mono_Model < Infinite_Model < Full_Model < U.Model

The last step corresponds to Theorem 1 in Bouillaguet et al. [8] and, more approxi-
mately, to Lemma 1 in Claessen et al. [9]. Incidentally, the formalization revealed a
flaw in Claessen et al.: Their main result holds, but not their Lemma 3.1

COMPLETE: The locale Problem_UModel combines a many-sorted problem and an
unsorted model with domain D of the problem’s e translation. The unsorted model can
be regarded as a many-sorted model in which every sort is interpreted as D.

Protector-Based Encodings. Claessen et al. observe that protectors, whether tags or
guards, are not needed for terms with monotonic sorts. The sequel [3] advocates pro-
tecting only those variables that cause the monotonicity check to fail, to reduce clutter.
Thus, for both tags and guards, three schemes are available: the traditional encoding,
the lightweight version due to Claessen et al., and the “featherweight” version from the
sequel. These are called t̃, t̃?, and t̃?? for tags and g̃, g̃?, and g̃?? for guards.

Consider the following fragment of a many-sorted problem, where S has sort st:

S ≈ on ∨ S ≈ off flip(S) 6≈ S

1 The flawed lemma states that whenever there exists a model M where a monotonic sort σ is
interpreted with a given cardinality, there exists for any larger cardinality k a model where σ
has cardinality k and the other sorts have the same cardinalities as in M . This proposition is
invalid for k >ℵ0 because FOL problems can encode the constraint that there exists a bijection
between two infinite, and hence monotonic, sorts σ and τ, making it impossible to increase
σ’s cardinality without also increasing τ’s. This issue is independent of which of the two
definitions of monotonicity is used. We discovered it at an early stage of the formalization as
we were looking for a correct formulation of Löwenheim–Skolem for many-sorted FOL.



The traditional t̃ encoding inserts tags around every subterm:

tst(S)≈ tst(on) ∨ tst(S)≈ tst(off) tst(flip(tst(S))) 6≈ tst(S)

Since the sort st is not monotonic (its only models have cardinality 2), the t̃? encoding
coincides with t̃. In contrast, the featherweight t̃?? encoding tags only naked variables:

tst(S)≈ on ∨ tst(S)≈ off flip(S) 6≈ S

The t̃??-encoded problem is complemented by typing axioms that repair mismatches
between tagged and untagged occurrences of well-sorted terms:

tst(on)≈ on tst(off)≈ off tst(flip(S))≈ flip(S)

For guards, the traditional and lightweight encodings g̃ and g̃? protect each variable:

¬gst(S) ∨ S ≈ on ∨ S ≈ off ¬gst(S) ∨ flip(S) 6≈ S

The featherweight encoding g̃?? guards only naked variables:

¬gst(S) ∨ S ≈ on ∨ S ≈ off flip(S) 6≈ S

The guard encodings are completed by the axioms gst(on), gst(off), and gst(flip(S)).

General Encoding Procedure. The full sort erasure encoding e is part of a two-stage
procedure to encode any many-sorted FOL problem into unsorted FOL. The first stage
makes the problem monotonic by introducing protectors (tags or guards). This corre-
sponds to a sound and complete encoding of many-sorted FOL into itself; the soundness
proofs rely on the monotonicity criteria. The second stage merges all the sorts using e,
which is sound and complete for monotonic problems.

Tags and guards are formalized separately, but for a protector kind, the traditional,
lightweight, and featherweight encodings are treated as instances of a single generalized
encoding. Both generalized encodings are parameterized by a partition of sorts by level
of protection, via disjoint predicates prot, protFw, unprot : ′s→ bool indicating whether
terms of a sort should be fully protected, protected in a featherweight fashion, or left
unprotected. The last option is available only for sorts inferred monotonic by B.

Tags. The tag encoding builds on a datatype of extended function symbols containing
the old symbols as well as a tag for each sort:

datatype (′f , ′s) efsym = Old ′f | Tag ′s
SIG: Signatures over the extended symbols treat the old function symbols as before.
The new symbols Tag σ are unary operations of sort arity [σ] and result sort σ.
TRANS: The encoding function is specified as follows:

t (Var x) =
{
Var x if unprot (sort x)
Fn (Tag (sort x)) [Var x] otherwise

t (Fn f ts) = t′ (Fn f ts)
t (Pos (Eq t1 t2)) = Pos (Eq (t t1) (t t2))
t (Neg (Eq t1 t2)) = Neg (Eq (t′ t1) (t′ t2))
t (Pos (Pr p ts)) = Pos (Pr p (map t′ ts))
t (Neg (Pr p ts)) = Neg (Pr p (map t′ ts))



t′ (Var x) =
{
Fn (Tag (sort x)) [Var x] if prot (sort x)
Var x otherwise

t′ (Fn f ts) =
{
Fn (Tag (res f )) [Fn (Old f ) (map t′ ts)] if prot (res f )
Fn (Old f ) (map t′ ts) otherwise

The t function tags naked variables unless they are of an unprotected sort. The auxiliary
function t′ adds tags only for fully protected sorts; it is invoked on all subterms except
naked variables.

The tag axioms AxΦ—needed to repair mismatches between tagged and untagged
terms in the featherweight encoding t̃??—have the form Pos(Eq(Fn(Tag(res f )[t])) t),
where t = Fn (Old f ) (map Var xs) and xs is a list of distinct variables of sorts arityF f ,
for all function symbols f such that protFw (res f ). The encoding of a problem is
t Φ = {map t c | c ∈Φ} ∪ AxΦ.
SOUND: Given a model of the fixed problem Φ, a model of t Φ is obtained by extending
it with interpreting tags as the identity functions.
COMPLETE: Completeness is more difficult. To convey a sense of the complexity, let
us quote the informal proof, in which x stands for t̃? or t̃?? (t̃ is analogous to t̃?) and
JΦKx denotes the x-encoding of the NNF problem Φ [4, §4.4]:

A model of JΦKx is canonical if all tag functions tσ are interpreted as the
identity. From a canonical model, we obtain a model of Φ by leaving out tσ.
It then suffices to prove that whenever there exists a model M of JΦKx , there
exists a canonical model M ′.

For t̃?, values of a tagged type σ are systematically accessed through tσ.
Hence, we can safely permute the entries of the function table of each tσ so
that it is the identity for the values in its range. We then construct M ′ by re-
moving the domain elements for which tσ is not the identity. It is a model by
Lemma 4.13 [which states that substructures of NNF models are models if they
preserve existential witnesses].

For t̃??, the construction must take possibly nonmonotonic types into ac-
count. No permutation is necessary for these thanks to the typing axioms,
which ensure that the tag functions are the identity for well-typed terms. For
each σ 6B Φ, we remove the model elements for which tσ is not the identity.
The typing axioms ensure that the substructure is well-defined: each tag func-
tion is the identity for at least one element and also for each element within the
range of a non-tag function. The equations tσ(X)≈ X generated for existential
variables ensure that witnesses are preserved, as required by Lemma 4.13.

Relying on permutations is intuitive on paper, but in the proof assistant it is simpler to
combine the permutation and the reduction to a canonical model:

intF f as =

{
eintF (Tag (res f )) [eintF (Old f ) (map2 q (arityF f ) as)] if prot (res f )
eintF (Old f ) (map2 q (arityF f ) as) otherwise

Here, eintF denotes the intF component of the fixed model of t Φ, and map2 applies
a binary function elementwise on parallel lists. The auxiliary function q maps a sort σ



and an element d to d if either unprotσ or d is in the range of eintF (Tagσ); otherwise,
it maps σ, d to eintF (Tag σ) d. The proof that the resulting structure is a model of
the original problem Φ involves defining suitable back-and-forth functions between the
two structures. Finally, proving monotonicity of t Φ is reduced to showing that the first
criterion always succeeds on the translated problem: ProblemΦ < Problem_Crit1tΦ.

Guards. The guard encoding requires extending the signature with guard predicates:

datatype (′p, ′s) epsym = Old ′p | Guard ′s
Each symbol Guard σ has arity [σ] and contributes axioms to the translated problem.

The soundness proof extends models of Φ into models of g Φ by interpreting the
guard predicates as true everywhere. The completeness part is easier for guards than
for tags. A canonical model is one where all guard predicates are interpreted as true
everywhere. The proof handles the three levels of protection uniformly, reflecting the
more uniform nature of g̃??—there are no counterparts to the “typing axioms that repair
mismatches between tagged and untagged occurrences of well-sorted terms” of t̃??.

Monotonicity is proved using the second criterion, with the extension policy C for
the predicates Old p and F for the distinguished symbols Guard σ. This is a departure
from the informal proof, which inlines the model extension argument without appealing
to the monotonicity criterion.

6 First-Order Logic with Quantifiers

This and the next two sections are concerned with lifting the results presented in the
previous sections to negation normal form and structures with arbitrarily large domains.

The locales for quantified FOL formulas in NNF are either the same or similar to
those for CNF; the theory prefix Q is used for disambiguation (e.g., Q.Model). No
cardinality assumption is made about the universe. Terms and atoms are as for CNF, but
formulas can nest positive connectives and quantifiers arbitrarily.

The following declaration gives an approximation of the syntactic category of for-
mulas. The actual type identifies them modulo α-equivalence (variable renaming):

datatype (′s, ′f , ′p) fm =
Pos ((′f , ′p) atm) | Conj ((′s, ′f , ′p) fm) ((′s, ′f , ′p) fm) | All ′s var ((′s, ′f , ′p) fm) |
Neg ((′f , ′p) atm) | Disj ((′s, ′f , ′p) fm) ((′s, ′f , ′p) fm) | Ex ′s var ((′s, ′f , ′p) fm)

The proper formal management of binding syntax modulo α-equivalence is a topic
of extensive research in λ-calculus and programming languages. FOL syntax poses sim-
ilar challenges. In particular, substitution and its interplay with the semantics is difficult
to handle rigorously; for example, a standard textbook [15] dedicates dozens of lem-
mas to these preliminaries, with rough proof sketches. Many of these refer to properties
of any syntax with static bindings, falling under the scope of a general metatheory of
syntax formalized by Popescu et al. [22–24]. A prominent feature of this framework—
distinguishing it from the more established Nominal Isabelle [13], based on nominal
logic [20]—is that it is centered around the notion of substitution:

• The framework defines substitution, including parallel and unary variants, and pro-
vides a large collection of basic facts about the interaction of substitution with free
variables and the other operators.



• It provides a recursor for defining operators that are directly compositional with
substitution. (In contrast, the nominal logic recursor targets compositionality with
permutations, a less useful concept.)

This unconventional focus is appropriate: Substitution is without doubt the central syn-
tactic operator in logics and type systems.

Another main feature is the facilitation of semantic interpretation of syntax, which
is problematic in frameworks optimized for manipulating finitary syntax. For example,
Pitts encounters “a really nontrivial freshness condition on binders” [21, §6.3] he needs
to discharge in the context of applying the nominal recursor to interpret the λ-calculus
in a semantic domain. This feature is illustrated below for interpreting FOL syntax.

The framework requires the user to provide semantic domains—for FOL, types T ,
A , and F for interpreting terms, atoms, and formulas—as well as first-order opera-
tions corresponding to the non-binding constructors other than for variables (e.g., FN :
′f→ T list→ T ) and second-order operations corresponding to the binders: ALL : ′s→
(T → F )→ F and EX : ′s→ (T → F )→ F.

In exchange, the framework produces the functions intTm : tm→ (var→ T )→ T ,
intAt : atm→ (var→ T )→ A , and intFm : fm→ (var→ T )→ F that interpret syntax
in the semantic domains. They map variables according to a valuation ξ. They map the
action of non-binding constructors to that of the corresponding semantic operators, and
similarly for binding constructors but in a valuation-sensitive way. For example:

intTm (Var x) ξ = ξ x
intTm (Fn f ts) ξ = FN f (map (λt. intTm t ξ) ts)
intAt (Eq t1 t2) ξ = EQ (intTm t1 ξ) (intTm t2 ξ)

intFm (Conj ϕ1 ϕ2) ξ = CONJ (intFm ϕ1 ξ) (intFm ϕ2 ξ)
intFm (All σ x ϕ) ξ = ALL σ (λd. intFm ϕ ξ[x 7→ d])

where ξ[x 7→ d] denotes the function that maps x to d and otherwise coincides with ξ. So
far, this looks like the standard interpretation of binding syntax in a semantic domain,
except that here the recursive definition is modulo α-equivalence (which is a priori
difficult to achieve in a proof assistant). The framework also derives compositionality
of substitution w.r.t. valuation update and obliviousness of the interpretation w.r.t. fresh
variables in a systematic, FOL-agnostic way:

intFm ϕ[t/x] ξ = intFm ϕ ξ[x 7→ intTm t ξ]
intFm ϕ ξ = intFm ϕ ξ′ if ξ and ξ′ differ only on variables fresh for ϕ

In the first equation, ϕ[t/x] denotes capture-free substitution of t for x in ϕ.
A many-sorted structure (intS, intF, intP) can be organized as a semantic domain

by taking T =ω, A = F = bool, FN= intF, EQ= (=), CONJ= (∧), ALL σ P=
(∀d. intS σ d −→ P d), and so on. This yields the recursive equations

JVar xKξ = ξ x
JFn f tsKξ = intF f (map (λt. JtKξ) ts)
�ξ Eq t1 t2 ←→ Jt1Kξ = Jt2Kξ

�ξ Conj ϕ1 ϕ2 ←→ �ξ ϕ1 ∧ �ξ ϕ2
�ξ All σ x ϕ ←→ ∀d. intS σ d −→ �ξ[x 7→d] ϕ



which characterize term interpretation (with JtKξ = intTm t ξ), atom satisfaction (�ξ a =
intAt a ξ), and formula satisfaction (�ξ ϕ= intFm ϕ ξ). These functions are defined in the
Q.Structure locale. The framework also produces the substitution lemma �ξ ϕ[t/x]←→
�ξ[x 7→JtKξ ] ϕ. In the next section, the notations � ϕ and � Φ abbreviate ∀ξ. �ξ ϕ and
∀ϕ∈Φ. � ϕ. The structure can also be made explicit—e.g., (intS, intF, intP) �ξ ϕ.

If the orientation toward substitution is the main strength of the framework, its main
weakness is the lack of automation. For each desired binding syntax type, users must
currently instantiate the general theorems manually, much like mathematicians do rou-
tinely when applying universal algebra to groups or rings. The instantiation is tedious
due to the large number of theorems. Despite the availability of “template files,” this
process can take days and thousands of lines of proof text. Automation in the form of a
definitional package, which would provide the basic convenience expected by users of
Nominal Isabelle (while supporting substitution natively), remains for future work.

7 Classical Metatheorems

The lifting argument from countable CNF structures to unbounded NNF structures
(Section 8) relies on clausification and Löwenheim–Skolem for many-sorted FOL with
equality. Earlier formalizations focus on unsorted FOL without equality [2,11,25]. Sorts
and equality are tedious to formalize, and they often fail to reward the formalizer with
deep logical insight, but they are central to monotonicity and sort encodings.

Clausification. The translation of a finite quantified problem into clausal form involves
skolemizing all the existentially quantified variables into function symbols that take the
universally quantified variables in scope as arguments. Skolemization is surprisingly
difficult to treat formally; for example, Harrison [11] claims that it poses greater chal-
lenges than completeness. On the positive side, clausification can be seen as an instance
of the general semantic interpretation principle introduced in Section 6.

The definition of clausification and its soundness and completeness proof follow the
four-step institutional approach.
SIG: Skolemization introduces new function symbols Skoσs x, built from a list of sorts
σs (specifying the arity) and a variable name x, while preserving the sorts of Σ-symbols:

datatype ′f efsym = Old ′f | Sko (′s list) var

TRANS: The clausification function cls takes a Σ-formula ϕ, an environment ρ : var→
tm, a list of universal variables vs, and a set of fresh variables V as arguments. In
addition to massaging the connectives, it replaces existential variables by new symbols
that depend on vs, replaces bound universal variables by fresh variables from V , and
substitutes free variables according to ρ to produce a Σ′-clause.

The characteristic equations for cls are obtained by instantiating the semantic inter-
pretation principle with T = tm, A = atm, and F = var list→ var set→ fm, taking
suitable operators on these domains, and letting cls be intFm. The interesting cases are

cls (All σ x ϕ) ρ vs V = cls ϕ ρ[x 7→ Var v] (v # vs) (V \{v})
cls (Ex σ x ϕ) ρ vs V = cls ϕ ρ[x 7→ Fn f (map Var vs)] vs (V \{v})



where v ∈ V is some variable of sort σ and f = Sko (map sort vs) v is the Skolem
function symbol, which is applied to the universal variables vs. For closed formulas,
clausification is defined as clausify ϕ= cls ϕ ρ [] UNIV for some irrelevant choice of ρ.

As a simple example, let ϕ= All σ x (Ex τ y (Eq (Var x) (Var y))), let v1, v2 be the
variables picked from UNIV and UNIV\{v1}, and let f = Sko [σ] v2. Then

clausify ϕ
= cls ϕ ρ [] UNIV
= cls (Ex τ y (Eq (Var x) (Var y))) ρ[x 7→ Var v1] [v1] (UNIV\{v1})
= cls (Eq (Var x) (Var y)) ρ[x 7→ Var v1, y 7→ Fn f [Var v1]] [v1] (UNIV\{v1,v2})
= Eq (Var v1) (Fn f [Var v1])

SOUND: Soundness is proved in the Structure locale, which fixes a Σ-structure (intS,
intF, intP). The “Skolem model” predicate skmod ϕ ρ vs V eintF eint′F transforms, for
each valuation ξ : var→ ′u, an extended structure eintF such that �ξ cls ϕ ρ vs V into an
extended structure eint′F such that �ξ�ρ ϕ, where � composes valuations with environ-
ments. The introduction rules of skmod emulate cls’s equations; for example,

skmod ϕ ρ[x 7→ Fn f (map Var vs)] vs (V \{v}) eintF[ f 7→ F] eint′F
skmod (Ex σ x ϕ) ρ vs V eintF eint′F

where v ∈ V and F : ′u list→ ′u is a suitable interpretation for the Skolem symbol f ,
defined so that F us gives an arbitrary u such that (intS, intF, intP) �ξ�ρ[x 7→u] ϕ, where ξ
maps vs to us elementwise. The skmod relation is total on the last argument. For closed
formulas ϕ such that (intS, intF, intP) � ϕ, starting with an extension eintF of intF,
skmod yields eint ′F such that (intS,eint ′F, intP) � clausify ϕ. Thus, if ϕ has a model,
then clausify ϕ also has a model.

For problems, we define clausify Φ = clausify (
∧

Φ), where
∧

Φ is the conjunction
of all formulas in Φ, which must be finite. The locale Q.Model fixes Φ and a model,
which is also a model of the formula

∧
Φ. By soundness of clausify on closed formulas,

this yields a model of clausify Φ.
COMPLETE: For completeness, it suffices to show that the backward structure transla-
tion of a model of clausify Φ is a model of Φ. This is straightforward.

Löwenheim–Skolem. The proof of the downward Löwenheim–Skolem theorem is
based on a formalization of a complete inference system, described in a separate pa-
per [7]. In the Q.Model locale, which fixes a problem and model, it constructs a syntac-
tic Henkin model. Since this model has a countable universe, there exists an isomorphic
copy on ω (the countably infinite universe fixed throughout Sections 4 and 5). This
yields Q.Model ′u < Q.Modelω.

Using the obvious sound and complete embedding embed of CNF problems into
NNF problems, it is possible to transfer the Löwenheim–Skolem theorem to CNF:

Model ′u,Φ < Q.Model ′u,embed Φ < Q.Modelω,embedΦ < Modelω,Φ

To summarize the results of this section:

Theorem 2. An NNF problem Φ has a model iff clausify Φ has a model.

Theorem 3. An NNF problem has a model iff it has a countable model.



8 Lifting to Arbitrary Structures and Formulas with Binders

The focus on clausal form and countable structures is a useful simplification, but it is not
faithful to the NNF-based paper proof [3] (or to the implementation in Sledgehammer).
Thanks to a lifting argument that relies on clausification and Löwenheim–Skolem, the
final results are free of such restrictions.

Figure 1 shows how the results are connected. Starting at the top with a satisfiable
quantified problem Φ, the problem is first clausified, then by Löwenheim–Skolem it is
countably satisfiable (by taking ′u =ω). On the left-hand side, the clausified problem is
further encoded using tags or guards (x ∈ {t,g}) and shown to pass one of the mono-
tonicity criteria (i = 1 for t and 2 for g), meaning it is monotonic. On the right-hand
side, the encoded problem is satisfiable. Merging the two branches yields a monotonic
satisfiable problem, whose erasure is a satisfiable unsorted problem. Since every trans-
lation step is also shown complete, the right-hand side can also be traversed bottom-up,
producing a model of the original problem from a model of the translated unsorted
problem. The overall translation is thus sound and complete.

Theorem 4. Given x ∈ {t,g} and a finite many-sorted NNF problem Φ, let Φ′ be the
unsorted CNF problem e(x (clausify Φ)), i.e., the sort-erased x-translated clausified Φ.
(1) For each model M of Φ ( forming together with Φ an instance of Q.ModelΦ), there

exists a model M ′ of Φ′ ( forming together with Φ′ an instance of U.ModelΦ′ ).
(2) Conversely, for every model of Φ′, there exists a model of Φ.

The formal proof puts together many constructions and results of independent interest,
notably soundness of the monotonicity criteria (Theorem 1), soundness and complete-
ness of clausification (Theorem 2), and downward Löwenheim–Skolem (Theorem 3).

Q.Model ′u,Φ

Model ′u,clausifyΦ

Modelω,clausifyΦ

Problemω,clausifyΦ

Problem_Critiω, x (clausifyΦ) Modelω, x (clausifyΦ)

Mono_Problemω, x (clausifyΦ)

Mono_Modelω, x (clausifyΦ)

U.Modelω,e(x (clausifyΦ))

U.Model ′u,e(x (clausifyΦ))

Figure 1. The verified translation pipeline



9 Conclusion

This paper describes a framework and a methodology for formalizing applications of
many-sorted first-order logic while acting as a companion to recent papers on sort en-
codings [3, 8, 9]. To readers from the proof assistant community, it also provides a con-
tribution to the ongoing binder representation debate. And to readers rooted in algebraic
methods, it shows a practical application of the theory of institutions in a context where
the translation functions cannot be assumed to be uniform.

The formalization widely reaffirmed already proved results. On one occasion, it re-
vealed a flaw in a published lemma (Lemma 3 of Claessen et al. [9]). It also helped
detect mistakes in a subsequent paper proof [4] before it reached any readers. The work
provided the opportunity to rethink the proof; for example, the generalized monotonic-
ity concept, in terms of sets of sorts, arose during the formalization.

A potential practical benefit of this work is connected to step-by-step proof recon-
struction. Although the encodings are sound, the inferences in a machine-generated
proof may violate the sort discipline, resulting in failures in Sledgehammer’s proof re-
play. In future work, we want to investigate the feasibility of connecting the soundness
proofs of the encodings with a verified checker for unsorted FOL proofs.

The advantages of machine-checked metatheory are well known from programming
language research, where papers are often accompanied by formal developments and
proof assistants have made it into the classroom. Paradoxically, in the automated rea-
soning community, we have not been very enthusiastic about formalizing our own re-
sults. This paper reported on some steps we have taken to address this.
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