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Abstract. We develop a framework for expressing and analyzing the behavior of
probabilistic schedulers. There, we define noninterfering schedulers by a proba-
bilistic interpretation of Goguen and Meseguer’s seminal notion of noninterfer-
ence. Noninterfering schedulers are proved to be safe in the following sense: if
a multi-threaded program is possibilistically noninterfering, then it is also proba-
bilistically noninterfering when run under this scheduler.

1 Introduction
Noninterference is an important and well-studied formal property modeling confiden-
tiality. It was introduced by Goguen and Meseguer (henceforth abbreviated G&M) in
the context of deterministic multi-user systems having essentially the following mean-
ing [5, p.11]: “One group of users is noninterfering with another group of users if what
the first group does has no effect on what the second group of users can see."

In the context of confidentiality in a language-based setting [16], a quite different
notion, usually also termed as noninterference, emerged in work by Volpano et. al. [23]:
Assuming the program memory is separated into a low, or public, part, which an at-
tacker is able to observe, and a high, or private, part, hidden to the attacker, a sequential
program satisfies noninterference if, upon running it, the high part of the initial memory
does not affect the low part of the resulting memory.

Of course, many systems for which confidentiality is important are concurrent, such
as Internet servers or operating systems. To cope with concurrency, the above language-
based notion of noninterference has been generalized in various ways. A major line of
work focuses on possibilistic noninterference, which roughly states that if an execu-
tion allowing certain observations by the attacker is possible, then another execution
for which these observations are infirmed is also possible. For this notion, powerful
and/or compositional analysis methods have been devised [1,3,8,20]. The downside of
possibilistic noninterference is vulnerability under probabilistic attacks by running the
program multiple times and gathering statistical information and refinement attacks via
knowledge of the thread scheduling. For example, consider the following program con-
sisting of two threads running in parallel under a uniform probabilistic scheduler [18]:

– while h > 0 do {h := h−1} ; l := 2
– l := 1

Then, probability to execute l := 2 after l := 1, i.e., to obtain 2 for the final l, depends
on the initial value of h, making the latter inferable from the distribution of the final l.

These problems have been addressed by introducing several (overlapping) notions
of probabilistic [9, 18, 19] and scheduler-independent [9, 17, 24] noninterference and
means to enforce them. Proposed scheduler-independent solutions (probabilistic or not)



insure confidentiality in the presence of any scheduler [16, 17, 20] or a large class
of schedulers [4, 9, 13], but suffer from various limitations: lack of coping with dy-
namic thread creation [4], too harsh requirements on individual threads (strong secu-
rity) [17, 20], too weak confidentiality guarantees on the overall concurrent system [9],
the reliance on expensive or not always feasible conditions such as race freedom [24]
or termination [9], or non-standard thread-level security primitives [13].

This paper presents a way to alleviate these limitations in a scheduler-dedicated
framework. Its main contributions are:

– A framework for analyzing schedulers independently from the concrete operational
semantics of threads.

– A notion of noninterfering scheduler obtained by a novel reading, in a probabilistic
key, of G&M’s seminal notion.

– A result inferring probabilistic noninterference from possibilistic noninterference
under the assumption of a noninterfering scheduler (for suitable notions of possi-
bilistic and probabilistic noninterference).

This result captures a large class of schedulers, covers dynamic thread creation, allows
timing of thread execution to depend on high data, guarantees a strong security property
on the thread system, and does not rely on undecidable properties of the multi-threaded
program or special security primitives. Our scheduler noninterference, importing in-
sights from system-based noninterference to language-based noninterference, is a step
toward better understanding the complex relationship between these two worlds [7].

We start by introducing the framework for schedulers (§2), carefully factoring in all
and only the information relevant to scheduling. Thus, in order to have fine control over
the scheduling policy including dynamic thread creation, we keep an order on thread
IDs that indicate who spawned who. On the other hand, for studying the behavior of
a scheduler we do not employ concrete thread pools with state-based semantics for
threads—instead, we consider execution scenarios, i.e., possibilistic interleavings of
threads IDs to which the scheduler casts probabilities.

Operational semantics of multi-threaded programs (§3) is separated in two: The
possibilistic semantics is the usual nondeterministic interleaving semantics; in particu-
lar, it yields an execution scenario for each pair (program, initial state). A probabilistic
semantics is obtained by blending in a scheduler with the execution scenario.

Then we move to discussing noninterference (§4). For defining scheduler noninter-
ference, we identify two groups of users à la G&M: the threads that are visible, i.e.,
will eventually affect the observable part of the system during their execution, and the
others, the invisible ones. The user’s actions are, as expected, the very steps taken by
the threads. The observations, however, require a nonstandard interpretation: Given a
visible thread v and letting I denote the collection of invisible threads, the observation
of v is the “exit probability" of v through I, i.e., the probability of the system taking zero
or more I-steps followed by a v-step. We call the scheduler noninterfering if the obser-
vation of each visible thread v is independent of the actions of the invisible threads I,
i.e., the exit probability of v through I is the same as the probability of taking v provided
I were completely inexistent (including from the execution history).

For possibilistic noninterference of programs, we adopt a compositional notion in-
troduced in [9], a weakening of strong security [17] allowing the execution time to
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depend on secrets. In fact, our approach as a whole disregards execution time. We take
probabilistic noninterference to be the notion introduced by Smith [18]: Any two ex-
ecutions that differ only on secret information traverse the same sequence of attacker
observations with the same probability—this seems to be the strongest notion of prob-
abilistic noninterference that ignores timing channels.

Further details on the constructions and results from this paper, including more sub-
stantial proof sketches, can be found in the technical report [10], which is an identical
copy of the paper save for an appendix with additional material.

2 Framework for schedulers

This section introduces the key component of our approach: a framework for studying
schedulers in isolation from the concrete (state-based) operational semantics.

In the noninterference literature (e.g., [9, 17, 18]), the thread IDs manipulated by
schedulers are typically handled implicitly, as the numeric indexes (positions) of the
threads in the pool represented as a list. However, here we endow thread IDs with more
structure, able to store information about the parent thread and the order in which the
current threads have been spawned (§2.1). We introduce histories, i.e., sequences of
thread IDs taken so far during the execution, and rich histories obtained from augment-
ing the histories with information about the threads that were available at each point in
history—these enriched structures offer useful information concerning the thread wait-
ing time (§2.2). Schedulers are defined as operating on rich histories (§2.3). In order to
study scheduler noninterfernce in isolation from a concrete operational semantics, we
single out the aspect of thread semantics relevant for the scheduler’s behavior: execu-
tion scenarios, as trees of thread ID interleavings (§2.4). Given an execution scenario,
a scheduler induces a Markov chain structure on histories, offering a quantitative inter-
pretation of temporal logic formulas (§2.5) useful later for defining noninterference.

2.1 Thread IDs

We let i, j,k, l range over natural numbers. The thread IDs, ranged over by m,n, p,q,
will be elements of the set threadID = nat∗, of words (i.e., finite sequences) of natural
numbers. The empty sequence ε will represent the main thread’s ID. We write m·n for
the concatenation of m and n. As usual, we identify single numbers k with singleton
words, and thus k·m and m·k represent the words obtained by pre-appending and post-
appending k to m, respectively.

For all m ∈ threadID, we define the set of IDs that m may spawn, maySp m, as
{m·k | k ∈ nat}. The full reading of “n ∈ maySp m" is the following: “if m is the ID of
a given thread, then n is valid as ID for a thread the given thread may spawn (in the
future)". Note that ∀n. ε 6∈ maySp n, i.e., no thread may spawn the main thread.

We also define, for each m ∈ threadID, the following order <m on maySp m, called
the m-issuing order : m·k <m m· j iff k < j. The reading of “p <m q" is “the thread ID p
should be generated before q is (in any potential execution)". For example, it holds that
2·1 ∈ maySp 2 and 2·1·1 <2·1 2·1·2.

The “may spawn" operator and the issuing orders will be means to inform the sched-
uler about who spawned who and about the order in which spawning happened. In our
informal explanations, we shall loosely identify threads with thread IDs.

3



2.2 Histories
Our schedulers will depend on execution histories indicated as lists of thread IDs. Since
on the other hand thread IDs are themselves modeled as lists (sequences), to avoid
confusion we use a different notation for lists of threads.

Namely, we let hist, the set of (execution) histories, ranged over ml,nl,pl,ql, consist
of thread ID lists. [m0, . . . ,mk−1] denotes the history consisting of the indicated thread
IDs in the indicated order. [] is the empty history and [m] is a singleton history. ml # nl
denotes the concatenation of histories ml and nl, and we write ml # n and n # ml instead
of ml # [n] and [n] # ml, respectively. If ml = [m0, . . . ,mk−1], ml〈..i〉 is the subhistory of
ml containing the first i elements, [m0, . . . ,mi−1]; thus, ml〈..0〉= [] and ml〈..k〉= ml.

Given n ∈ threadID, N ⊆ maySp n and M ⊆ threadID, M is called an initial frag-
ment of N w.r.t. <n if M ⊆ N and ∀m ∈M. ∀m′ ∈ N \M. m <n m′.

We shall be interested in the relationship between execution histories and the sets of
available threads at each point in such histories. We let Ml range over lists of finite sets
of thread IDs. A pair (ml,Ml) where ml = [m0, . . . ,mk−1] and Ml = [M0, . . . ,Mk] (thus
having length Ml = length ml+1) is said to be:

– start-consistent, if M0 = {ε};
– step-consistent, if ∀i < k. mi ∈Mi;
– termination-consistent, if ∀i < k. Mi \Mi+1 ⊆ {mi};
– spawn-consistent, if ∀i < k. Mi+1 \Mi is an initial fragment of maySp mi \ (M0 ∪
. . . ∪Mi) w.r.t. <mi .

The above conditions describe the correct interplay between the threads available in
the pool at each moment (represented by Ml) and single execution steps taken by the
threads (represented by ml). More precisely, we assume that, at moment i, Mi are the
available threads and mi takes a step, yielding the available threads Mi+1.

Start consistency: Execution starts with the main thread alone in the thread pool.
Step consistency: Only an available thread can take a step.
Termination consistency: Upon a step taken by thread mi, the resulted thread pool

contains all threads except perhaps mi (if terminated).
Spawn consistency: Upon a step taken by thread mi, all newly appearing threads in

the pool get IDs that mi may spawn and, moreover, they get the smallest such IDs that
are fresh, in the sense of not having been assigned before.

Note that start consistency and step consistency imply that m0 = ε . A pair (ml,Ml)
is called a rich history if it is start-, step-, termination-, and spawn- consistent. We let
rhist denote the set of rich histories.

Rich histories (ml = [m0, . . . ,mk−1],Ml = [M0, . . . ,Mk]) contain enough information
to determine various moments in the life span of threads:

– The set of current threads, Cur Ml, is the last element in this list, Mk.
– Given n∈ Cur Ml\{ε}, the moment when n appeared, appMl n, is the smallest i such

that n ∈Mi+1.
– Given n∈ {m0, . . . ,mk−1}, the moment when n was last taken (executed), ltakenml n,

is the greatest i < k such that n = mi.
– Given n ∈ Cur Ml, the moment when n was last touched, ltouchedml,Ml n, is: either

ltakenml n, if n ∈ {m0, . . . ,mk−1}; or appMl n, otherwise.
– Given n ∈ Cur Ml, the waiting time for n, waitml,Ml n, is k−1− ltouchedml n.
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Note that, if both appMl n and ltakenml n are defined, i.e., if n ∈ Cur Ml \ {ε} ∩
{m0, . . . ,mk−1}, then, by step-consistency, appMl n < ltakenml n—this justifies our defi-
nition for ltouchedml,Ml n.

2.3 Schedulers
A scheduler is a family of functions (schml,Ml : Cur Ml→R)ml,Ml , where (ml,Ml) ranges
over rich histories, such that ∀m ∈ Cur Ml. schml,Ml m ≥ 0 and ∑m∈Cur Ml schml,Ml m =
1. Thus, given a rich history (ml,Ml), a scheduler defines a probability distribution
schml,Ml on the currently available threads Cur Ml. Next we give two standard examples.
(See [10, §A] for several others.)

Uniform scheduler. usch assigns all currently available threads equal (history obliv-
ious) probability: uschml,Ml m = 1/|Cur Ml|. Uniform scheduling is the underlying as-
sumption in work by Smith and Volpano on probabilistic noninterference [18, 19, 22].

Round robin scheduler. Given a number j, the round robin scheduler with j step
quotas, rsch j, always schedules with probability 1 the first thread in the queue for j
consecutive steps, where threads are ordered in a queue according to their waiting time.

Given (ml,Ml), we define the following queuing order on M: n <ml,Ml n′ iff

– either waitml,Ml n < waitml,Ml n′,
– or waitml,Ml n = waitml,Ml n′ and n′ ∈ maySp n,
– or else n,n′ ∈ maySp p and n′ <p n for some p.

<ml,Ml organizes the current thread pool M as a queue based on waiting times, resolving
same-waiting-time conflicts as follows: a spawned thread has priority over its parent,
two threads spawned at the same time are discriminated by the issuing order. The first
(maximum) in this waiting queue, maxml,Ml M, is in the set of threads with highest
waiting time and, among these, is the smallest w.r.t. the “may spawn" and issuing orders.

For any history ml, we let $(ml) be the number of trailing occurrences of its last
thread, i.e., the largest number k such that ml has the form nl # mk, where mk consists
of k repetitions of m. We define rsch j, the j-step round robin scheduler, as follows, for
all (ml,Ml) ∈ rhist and p ∈M = Cur Ml:
− If ml = [], then necessarily Ml = {ε}, M = {ε} and p = ε . We put rsch j

ml,Ml p = 1.
− If ml has the form nl # m, then we define

rsch j
ml,Ml p=


1, if $(ml)< j ∧ p = m, (last scheduled thread m still has quota)
1, if $(ml)≥ j ∧ p = maxml,Ml M, (m finished its quota, p comes next)
1, if m 6∈M ∧ p = maxml,Ml M, (m has terminated, p comes next)
0, otherwise. (p neither current, nor next to be scheduled)

Previous work on concurrent noninterference [9,12,14,15,17] considers round robin
schedulers almost equivalent to our rsch j, except for the policy of placing in the pool
the newly spawned threads. Namely, while defining the operational semantics of the
thread pools modeled as lists of threads, the newly spawned threads are inserted in the
list after the parent thread. This, together with the policy of the scheduler tape travers-
ing the thread pool from left to right, makes the scheduler non-starvation-free—e.g.,
if m spawns in one step an identical copy of itself, that copy would be scheduled im-
mediately after m, and thus m and its clones would monopolize execution. Our defi-
nition based on the waiting time avoids this problem. Of course, the problem is also
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solvable by changing the operational semantics to traverse the thread list from right to
left instead. However, this solution reveals a limitation of approaches that hardwire in
the thread-pool operational semantics the policy for placing new threads: the need for
global changes in order to accommodate desired scheduler properties. By contrast, our
approach packs up the whole scheduler behavior in the definition of the scheduler alone.

2.4 Execution scenarios
Although a scheduler depends on rich histories which are essentially linear structures,
its behavior is better comprehended through what we call execution scenarios, tree-like
structures that capture the branching of thread interleaving. Given any set H of histories
and given ml = [m0, . . . ,mk−1] ∈ H such that all its prefixes are also in H:

– Let AvailH ml, the set of thread IDs available in H at point ml, be {m ∈ threadID |
ml # m ∈ H};

– Let HavailH ml, the list of sets of thread IDs available in H all throughout history
ml, be [AvailH ml〈..0〉, . . . ,AvailH ml〈..k〉].

– Given m ∈ AvailH ml, let spawnsH
ml m, the set of threads spawned by one m-step at

history ml, be AvailH (ml # m)\AvailH ml.
An (execution) scenario is a set Sc of histories such that the following properties

hold, where � is the prefix order on lists:
– Prefix Closure: ∀ml nl. nl ∈ Sc ∧ ml� nl =⇒ ml ∈ Sc.
– Finite Branching: ∀ml ∈ Sc. AvailSc ml is finite.
– Consistency: ∀ml ∈ Sc. (ml,HavailSc ml) ∈ rhist.
– Boundedness: ∃k. ∀ml ∈ Sc. ∀m ∈ AvailSc ml. |spawnsSc

ml m| ≤ k.
Thus, a scenario is required to form a finitely branching tree for which all finite

paths are rich histories and there exists a bound on the number of threads spawned con-
currently in one single step. The best way to picture a scenario is as a labeled tree, where
the nodes are histories ml (with [] as the root), and the edges coming out of each ml are
labeled with the elements of AvailSc ml. For example, if we ignore the circled numbers for
now, Fig. 1 shows the finite scenario Sc= {[], [ε], [ε,0], [ε,1], [ε,0,1], [ε,1,0], [ε,1,1·0],
[ε,0,1,1], [ε,1,0,1·0], [ε,1,1·0,0], [ε,1,0,1·0,1·0]}. In this scenario, the following
happen (among other things): at history [], ε takes one step and terminates, with spawn-
ing two threads, 0 and 1 (hence spawnsSc

[] ε = {0,1})—this can be seen from the branch-
ings of [] and [ε]: ε is available at history [], while 0 and 1 are available at the successor
history [ε]; at history [ε], after taking one step, 1 terminates, spawning a new thread 1·0;
at history [ε,0], 1 takes two steps and terminates, without spawning any threads.

Note that, in accordance with termination consistency, the described scenario never
abandons execution, but proceeds until termination is plausible. E.g., from its appear-
ance (at history [ε]), on any path thread 0 is continuously available before it is taken.

2.5 Scheduler-induced probabilities on scenarios

Given a scenario Sc, a scheduler sch assigns probabilities to branches in Sc—at history
ml, the branch m ∈ AvailSc ml receives probability schml, HavailSc ml m—and then to finite
paths in Sc as the product of probabilities of the branches taken along the path. Fig. 1
shows in circles a possible such assignment of probabilities to a scenario, where, e.g.,
the history path [ε,1,1·0] has probability 1∗0.5∗0.75 = 0.375.
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Fig. 1. A scenario with probabilities attached

More generally, let pl ∈ Sc. We let TraceSc
pl be the set of (Sc,pl)-traces, which are

maximal (finite or infinite) sequences mt such that pl # ml ∈ Sc for all finite prefixes
ml of mt. Then we can identify each ml such that pl # ml ∈ Sc with a “basic event"
BevSc

pl,ml consisting of all (Sc,pl)-traces that start with ml, i.e., have ml as a prefix; we
thus postulate that BevSc

pl,ml has the probability of ml when taken in history pl. E.g., in
Fig. 1, BevSc

[ε],[1] consists of {[1,0,1·0,1·0], [1,1·0,0]} and has probability 0.5.

By standard probability theory [6], one can now assign probabilities PSc,sch
pl Mt to

certain measurable sets Mt of (Sc,pl)-traces, namely, to those in the smallest collection
of subsets of TraceSc

pl that is closed under countable union and complement and contains
every BevSc

pl,ml for which pl # ml ∈ Sc. The Markov chain induced by sch on Sc, Mcsch
Sc , is

the family (TraceSc
pl ,P

Sc,sch
pl )pl∈Sc.

The sets of traces describable in linear temporal logic (LTL) are measurable [21].
Thus, to each LTL formula ϕ , for each history point pl ∈ Sc, we can speak of the
(Sc,sch)-probability of ϕ , written PSc,sch

pl ϕ and defined as the probability of the set of
(Sc,pl)-traces satisfying ϕ . Of particular importance for us will be the following LTL
formulas and connectives, where U : hist→ threadID→ bool, n ∈ threadID and ϕ

and χ are any LTL formulas:
Takes U , satisfied by a (Sc,pl)-trace iff that trace takes as first step an element m

such that of U pl m holds.
Ev ϕ , satisfied by a trace iff ϕ eventually holds on some point on that trace.
Alw ϕ , satisfied by a trace iff ϕ always holds (on every point) on that trace.
ϕ Until χ , satisfied by a trace iff ϕ holds on every point on some finite initial fragment

of that trace, and χ holds immediately after. (This is the LTL “strong until".)
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If U simply tests for equality to a fixed thread n, i.e., ∀ml m. U ml m ⇐⇒ m = n,
we write Takes n instead of Takes U . Note that Ev (Takes n) is satisfied by a trace iff that
trace contains n, and (Takes U) Until (Takes n) is satisfied by a trace iff that trace takes
for a while steps for which U holds, and eventually it takes n.

3 Operational semantics of programs
Next we introduce the state-based small-step semantics, both possibilistic and proba-
bilistic, for shared-memory multi-threaded programs featuring dynamic thread creation.

3.1 Possibilistic semantics
Let state, ranged over by s, t, be an unspecified set of memory states. We assume that
the individual threads are commands c,d ∈ cmd with a semantics given by a transition
relation c s→ (γ, [c1, . . . ,cl ],s′), where γ is either⊥ or a command c′, having the follow-
ing interpretation: in state s, c takes one step, spawning threads c1, . . . ,cl , changing the
state to s′, and: terminating, provided γ =⊥, or yielding the continuation c′, provided γ

is a command c′. We assume the transition relation to be total and deterministic, i.e., for
all c and s there exists a unique pair (γ, [c1, . . . ,cl ]) such that c s→ (γ, [c1, . . . ,cl ]). Also,
we assume that each command c is spawn-bounded, in that there exists k (depending on
c) such that the number of threads spawned in one single step by c or any of its continu-
ations or spawned threads during execution is ≤ k—this is a reasonable assumption for
programs written in a concurrent language, where k can be determined by inspecting
the syntax. (Spawn-boundedness has an obvious coinductive definition that we omit.)

A (runtime) configuration is a tuple cf = (ml,Ml, thr,s) such that (ml,Ml) is a rich
history and thr : Cur Ml → cmd. (ml,Ml) indicates the execution so far, thr the as-
signment of commands to thread IDs, s the current memory state. We define a labeled
transition relation on configurations: (ml,Ml = [M0, . . . ,Mk], thr,s) m→ (ml′,Ml′, thr′,s′)
iff m ∈ Mk and the following hold, assuming thr m s→ (γ, [c1, . . . ,cl ],s′) and letting
p1 <m . . . <m pl be the first l smallest thread IDs in maySp m\(M0 ∪ . . . ∪Mk) w.r.t. <m:

– ml′ = ml # m.

– Ml′ = Ml # M′, where M′ =
{

Mk \{m}∪{p1, . . . , pl}, if γ =⊥,
Mk ∪{p1, . . . , pl}, otherwise.

– thr′ behaves like thr on elements of M′∩Mk and additionally sends each pi to ci.

The above is the expected one-step semantics of configurations: any currently available
thread may take a (possibly terminating) step, spawning 0 or more new threads that are
assigned the smallest available thread IDs, and affecting the state; in case of termination,
the thread is removed from the pool.

We define cf
[m1,...,mk]→ cf ′ to mean that there exist cf 0, . . . ,cf k−1 such that cf 0 = cf ,

cf k−1 = cf ′, and cf i
mi+1→ cf i+1 for all i < k.

3.2 From possibilistic to probabilistic semantics, via schedulers
Given c and s, let the initial configuration of (c,s), init (c,s), be ([], [{ε}],ε 7→ c,s). Thus,
in init (c,s), c is the single (main) thread and s the current state; during execution, c may
of course spawn other threads that will populate the configuration. We define Scc,s, the
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scenario of (c,s), to be {ml. ∃cf . init (c,s) ml→ cf ′}—that Sc is indeed a scenario follows
immediately from the definition of configuration transitions.

Note that, for each ml ∈ Scc,s, there exists precisely one cf = (ml,Ml, thr,s) such

that init (c,s) ml→ cf —we write configc,s ml for this cf . Thus, the pair (Scc,s,configc,s)
constitutes an alternative description of the possibilistic semantics of (c,s) (including
complete information about thread spawning and termination). If we also factor in the
Markov chain induced by sch on Scc,s, we obtain a proper notion of probabilistic seman-
tics of (c,s) as the triple (Scc,s,configc,s,Mcsch

c,s ), where we write Mcsch
c,s instead of Mcsch

Scc,s
.

We shall also write Tracec,s and Psch,c,s instead of TraceScc,s and PScc,s,sch.

4 Noninterference
Here we present our main security result: a notion of noninterfering scheduler that en-
sures lifting of possibilistic noninterference to probabilistic noninterference. All through-
out this section, we fix a scheduler sch and a domain odom of observables.

4.1 Noninterfering schedulers
An observation-augmented scenario (OA-scenario) is a pair (Sc,obs), where obs : Sc→
odom. Let (Sc,obs) be an OA-scenario. A thread n is called visible at a certain history
if it is available and, at some point in the future, n will affect the observables, either
directly or indirectly via a spawned thread n′, or via a thread spawned by n′, etc. For-
mally, we define inductively the sets visAvailSc,obs ml of visible threads available at ml:

n ∈ AvailSc ml obs (ml # n) 6= obs ml
n ∈ visAvailSc,obs ml

m,n ∈ AvailSc ml n ∈ visAvailSc,obs (ml#m)

n ∈ visAvailSc,obs ml
n ∈ AvailSc,obs ml n′ ∈ spawnsSc

ml n n′ ∈ visAvailSc,obs (ml # n)
n ∈ visAvailSc,obs ml

An available thread m is called invisible if it is not visible—formally, the predicate
invSc,obs

ml m is defined to mean m ∈ AvailSc,obs ml\ visAvailSc,obs ml.
A scheduler shall be declared noninterfering if the effect of removing invisible

threads is the same as that of hiding them. This property can be formulated in a manner
rather faithful to the style of G&M [5] (recalled in the introduction). Our “users" of
the system managed by sch are the threads (thread IDs), and at each history point there
are two groups of users, visible and invisible, and thus we require that the observations
of the visible threads do not depend on the actions of the invisible ones. Clearly, the
actions should be steps taken by the threads. Moreover, we choose the observation of
a visible user n at history ml to be the probability that n will be scheduled first among
all the visible threads, i.e., the “exit probability" of n after zero or more invisible steps,
PSc,sch

ml (Takes invSc,obs Until Takes n). Note that here, unlike in [5], current users may dis-
appear (by termination) and new users may appear (by spawning), and therefore invSc,obs

is not a fixed set, but a set evolving over time; this is properly handled by the history-
dependent interpretation of temporal formulas.

Having the observations and the actions in place, it is time to zoom in the definition
of noninterference from [5] in more technical detail: For all users n of the second group
(here, the visible threads), the observation of n based on the history (where “history"
means, in [5] as well as here, “the sequence of actions the users have taken in the
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past") is required to be the same as the observation of n on the restriction of the history
by removing all actions of users from the first group (here, the invisible threads). In
order to formally perform this removal, i.e., filter out the (Sc,obs)-invisible actions from
histories, we first define recursively visHistSc,obs ml, the visible restriction of a history ml:

visHistSc,obs[]=[] visHistSc,obs(ml # m)=

{
(visHistSc,obs ml) # m, if m ∈ visAvailSc,obs ml,
visHistSc,obs ml, otherwise.

Moreover, we collect the available visible threads throughout history ml in the set
visHavailSc,obs ml also defined recursively:
visHavailSc,obs [] = [{ε}]

visHavailSc,obs (ml # m)=

{
(visHavailSc,obs ml) # (visAvailSc,obs ml), if m ∈ visAvailSc,obs ml,
visHavailSc,obs ml, otherwise.

The scheduler sch is called noninterfering if the following holds for all OA-scenarios
(Sc,obs), all ml ∈ Sc, and all n ∈ visAvailSc,obs ml:

PSc,sch
ml (Takes invobs,Sc Until Takes n) = schml′,Ml′ n,

where (ml′,Ml′) = (visHistSc,obs ml,visHavailSc,obs ml).
In the above equality, the lefthand side expresses the observation made by n at his-

tory ml, and the righthand side the observation that n would make if any trace of invis-
ible threads were removed (from both the history and the available threads). Since our
notion of observation effectively hides invisible threads (in the style of τ-actions form
process algebra), the meaning of the above equality can be summarized as

Removal = Hiding (of invisible threads)

Note that the notion of scheduler noninterference is independent of the concrete
notion of command at the expense of quantifying universally over all scenarios.

An important question is whether a reasonable class of schedulers are noninterfer-
ing. Roughly speaking, any scheduler that is “politically correct", treating its threads
uniformly, is noninterfering.

Proposition 1 The uniform and round-robin schedulers from §2.3 are noninterfering.

Proof idea. We fix (Sc,obs) and ml ∈ Sc. We need to show the equality of two functions
defined on n ∈ visAvail ml, say F = G, where F n = PSc,sch

ml (Takes invobs,Sc Until Takes n)
and G n = schml′,Ml′ n.

For usch, noninterference follows immediately from its symmetry, since both F and
G are constant on visAvail ml. For rsch j, let m be the last thread in ml and k = $(ml). If
m is visible and k < j, then both F n and G n are either 1, if n = m, or 0, otherwise. If
m is invisible or k ≥ j, then both F n and G n are either 1, if n is the next visible thread
in the queue, or 0, otherwise. ut

Several other noninterfering schedulers are presented in [10, §A]. It is also instruc-
tive to see an interfering one: Consider a modification of the round robin that increments
the quota at each shift to a new thread. Then consider the history ml = [n1,m,m,n2,n2]
with n1,n2 visible and m invisible. Since n2 still has one step in its quota, F n2 = 1. On
the other hand, ml′ = [n1,n2,n2], meaning that, at ml′, n2 yields to n1, hence G n2 = 0.

4.2 Possibilistic noninterference
To discuss noninterference of commands, we fix an attacker-observation function aobs :
state→ odom. A typical choice of aobs [23] assumes the state consists of values stored
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in variables classified as high-security or low-security and defines aobs to return the
low-variable part of the state (see [10, §D]). We define possibilistic noninterference by
a form of bisimilarity up to invisibility.

Invisibility of a command is defined as “never change the observation on the state",
technically, coinductively as the weakest predicate invis satisfying the following prop-
erty: for all c,s,γ,c1, . . . ,cl ,s′ such that invis c and c s→ (γ, [c1, . . . ,cl ],s′), we have that:
(1) aobs s′ = aobs s, (2) invis ci for all i ∈ {1, . . . ,k}; (3) γ ∈ cmd implies invis γ .

Possibilistic bisimilarity of two commands is now defined coinductively as the
weakest relation ≈ satisfying the following property: for all c,d, if c≈ d, then either
invis c and invis d or, for all s, t,γ,c1, . . . ,cl ,s′,δ ,d1, . . . ,dk, t ′ such that aobs s = aobs t,
c s→ (γ, [c1, . . . ,cl ],s′) and d t→ (δ , [d1, . . . ,dk], t ′), we have that: (1) aobs s′ = aobs t ′;
(2) l = k and ci ≈ di for all i ∈ {1, . . . , l}; (3) if γ =⊥, then either δ =⊥ or invis δ ; (4)
if δ =⊥, then either γ =⊥ or invis γ; (5) if γ,δ ∈ cmd, then γ ≈ δ .

A command c is called possibilistically noninterfering if c≈ c. Thus, possibilistic
noninterference of c means that alternative executions starting in states indistinguisha-
ble by the attacker proceed in a synchronized manner for as long as one of them does
not reach an invisible status, moment at which the other is required to also reach such a
status; moreover, termination should be matched by either termination or invisibility.

The componentwise extension of this notion to thread pools coincides with the flex-
ible scheduler-independent security introduced by Mantel and Sudbrock in [9]. As ar-
gued in [9], this notion is both compositional and flexible enough to allow the execution
time of programs to depend on secrets. However, it does share the common limitation
of PER approaches [15] aimed at scheduler independence: its rather strong lock-step
synchronization nature (albeit only on visible executions).

Note that the example from the introduction does not satisfy possibilistic noninter-
ference since, depending on the initial value of h, one alternative execution may enable
the visible action l := 2 earlier than another alternative execution. And indeed, our in-
tention with possibilistic noninterference is to guard (in the presence of noninterfering
schedulers) against probabilistic attacks of the kind allowed by this program—this will
be our main result, Th. 2.

4.3 Probabilistic noninterference
We define probabilistic noninterference following the weak bisimulation approach taken
by Smith [18], using an adaptation of a corresponding notion from probabilistic process
algebra due to Baier and Hermanns [2]: Roughly, a command shall be deemed proba-
bilistically noninterfering if any two executions of it starting in states that differ only on
secret information traverse the same sequence of attacker observations with the same
probabilities. As argued in [18, p.11], this notion is suitable for protecting against inter-
nal leaks, but not external leaks such as timing.

In our formalism, we can define everything in terms of scenarios and their scheduler-
induced Markov chains. Indeed, the function configc,s introduced in §3.2 “observes",
at each execution history ml, the whole thread pool configuration. The attacker’s ob-
servations on execution histories shall be much more restricted: only the state can be
observed, and only through aobs. Namely, assuming configc,s ml = (ml,Ml, thr, t), we
define obsc,s ml = aobs t. Thus, the OA-scenario (Scc,s,obsc,s) is a description of the
executions of command c starting in state s, as observed by the attacker.
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Given H,H ′ ⊆ Sc and ml ∈ Scc,s, we define ml⇒H H ′ to be the set of all traces that
go through elements of H only and eventually reach an element of H ′, namely,

{mt ∈ Tracec,s. ∃nl′. [] 6= nl′ � mt ∧ (∀nl≺ nl′. ml # nl ∈ H) ∧ ml # nl′ ∈ H ′},
where ≺ and � denote the strict and nonstrict prefix orderings on finite or infinite
sequences. Note that ml⇒H H ′ is empty unless ml ∈ H.

Given an equivalence relation E, ClsE denotes its set of equivalence classes, which
we simply call E-classes. Let (Sc,obs) be an OA-scenario. A relation E : Scc,s →
Scc,s→ bool is called a sch-probabilistic bisimulation for (c,s) if the following hold:
(I1) E is an equivalence relation on Scc,s with countable set of equivalence classes.
(I2) For ml,nl ∈ Scc,s, E ml nl implies obsc,s ml = obsc,s nl.
(I3) For distinct E-classes H,H ′ and ml,nl ∈H, Psch,c,s

ml (ml⇒H H ′)=Psch,c,s
nl (nl⇒H H ′).

Thanks to condition (I3), we can define, for any two distinct E-classes H and H ′,
Psch,c,s (H⇒ H ′), the probability of moving from H directly to H ′ (without visiting any
other E-class), to be Psch,c,s

ml (ml⇒H H ′) for some (any) ml ∈ H. Thus, a probabilistic
bisimulation E provides a class partition of the scenario (I1) so that elements of the
same class are indistinguishable both w.r.t. observations (I2) and probabilistic behavior
(I3). By (I2), an attacker is only able to observe the sequence of E-classes induced by an
execution; by (I3), this sequence is statistically the same (modulo repetition) regardless
of the concrete E-class representatives.

We also define a binary version of this indistinguishability relation. (c,s) and (c′,s′)
are called sch-probabilistically bisimilar if there exist E,E ′,F such that:

(1) E and E ′ are sch-probabilistic bisimulations for (c,s) and (c′,s′), respectively.
(2) F : ClsE → ClsE ′ is a bijection such that

(a) obsc,s ml = obsc′,s′ml′ for all ml,ml′,H with ml ∈ H ∈ ClsE and ml′ ∈ F H,
(b) Psch,c,s (H⇒ H1) = Psch,c′,s′ (F H⇒ F H1) for all H,H1 ∈ ClsE ,
(c) F H0 = H ′0, where H0 and H ′0 are the equivalence classes of [] in ClsE and ClsE ′ .

Finally, c is called sch-probabilistically noninterfering if (c,s) and (c,s′) are sch-
probabilistically bisimilar for all s,s′ such that aobs s = aobs s′.

4.4 Noninterference criterion

We can now state our main result connecting three concepts that were defined mutually
independently: possibilistic and probabilistic noninterference of commands and nonin-
terference of schedulers.

Theorem 2 If sch is noninterfering and c is possibilistically noninterfering, then c is
sch-probabilistically noninterfering.

Proof idea. The key of the proof consists of the definition, for any OA-scenario, of its
visible sub-OA-scenario obtained from removing, at each history, the currently invisible
threads. The latter can be proven probablistically bisimilar to the original OA-scenario,
the bisimilarity step being handled using the noninterference of sch. Moreover, from
the noninterference of c, it follows that Scc,s and Scc,s′ have the same visible sub-OA-
scenario Sc′, which makes them probabilistically bisimilar. (See [10, §E].) ut

Next we discuss the security requirements and guarantees of this theorem.
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Requirement 1 (R1): Scheduler noninterference. This is a background condition that
needs to be verified for the scheduler once and for all. Its verification involves quanti-
tative computation with probabilities. However, it is a natural condition expressing a
certain symmetry of the scheduler, and its verification tends to be easy for the examples
considered in §2.3 (as well as for other examples described in [10, §A]).

Requirement 2 (R2): Possibilistic noninterference. Unlike R2, this condition needs
to be verified for each individual program. Fortunately, this style of PER properties is
amenable for compositional verification [8, 15, 17, 18]. In particular, the type systems
from [3, 4, 9, 18], as well as the harsher ones from [17, 20], are static criteria on multi-
threaded programs enforcing this property.

Guarantee (G): Probabilistic noninterference. This appears to be the strongest se-
curity guarantee of a probabilistic system provided we ignore timing channels [18]:
An attacker making observations of the low part of the memory while the program by
multiple running cannot infer any secret, not even by statistically from multiple runs.

In order to further comprehend (G), let us have a look at a consequence in terms of
end-to-end security. Given c,s and S ∈ odom, we define endUpInc,s S⊆ Tracesch,c,s

[]
as the

set of traces that eventually “end up in S", i.e., that eventually reach a point where the
attacker observation becomes S and stays constantly S—in LTL, this set is described by
the formula Ev (Alw obs−1

c,s ). Note that the traces in endUpInc,s S need not be terminating.

Proposition 3 If c is sch-probabilistically noninterfering, then, for all c,s,s′,S,
aobs s = aobs s′ implies Psch,c,s

[]
(endUpInc,s S) = Psch,c,s′

[]
(endUpInc,s′ S).

The guarantee of Prop. 3 is that executions starting in indistinguishable states sta-
bilize in any given attacker-indistinguishable class S with the same probabilities. Note
that termination implies stabilization (but not vice versa), so in particular Prop. 3 says
that if the two executions terminate, then the resulted states have the same probability
distribution w.r.t. what the attacker can see.

Example. We assume that programs are specified in a simple while language with
thread-spawning facilities, states are assignments of values to variables, variables are
classified into low and high, and the attacker observation is the low part of the state.
Consider the following multi-threaded program adapted from [9, §5.2]:

while True do {l1 := inp1 ; l2 := inp2 ; spawn T ; spawn T1 ; spawn T2}
where T is h := addH(l1,h), T1 is l := addL(l1, l), and T2 is l := addL(l2, l).

The program repeatedly performs the following actions: It receives two public val-
ues (through input channels modeled here as low variables inp1 and inp2 assumed to be
volatile) and stores them in the low variables l1 and l2. Then it spawns three threads,
T,T1,T2. T applies the non-atomic operation addH for updating a private database h with
l1, whose timing depends on the value of h. T1 and T2 apply the atomic operation addL
for updating a public database l with l1 and l2, respectively.

This is an intuitively secure program w.r.t. time-insensitive attacks: regardless of
the values of the low variables, the execution of the main thread takes the same path,
repetitively spawning copies of T1,T2 (that assign low to low) and T (that assigns low
to high); the execution of T does depend on h, but this is harmless, since T does not
affect the low part of the state or the behavior of the other threads. The program is
automatically checked to be possibilistically noninterfering by existing type systems
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[9, 18] (see also [10, §D]). Our Th. 2 ensures that it is also noninterfering if run under
any noninterfering scheduler, in particular, the uniform and round robin ones.

This was a simple example of a kind widely encountered in web computing and op-
erating systems: nonterminating multi-threaded programs providing a form of service.
However, it is not proved noninterfering by previous scheduler-independent criteria. In
particular, it does not satisfy strong security [17] (since the running time T may depend
on secrets) or observational determinism [24] (since T1 and T2 are in a data race). Due
to nontermination, it also falls outside the scope of the criterion from [9].

5 Conclusions and related work

In this paper, we proposed a novel notion of scheduler noninterference, which was
proved to behave securely w.r.t. refinement of nondeterminsim: possibilistic noninter-
ference of the multi-threaded program implies probabilistic noninterference when run
under the given scheduler. We have not introduced novel notions of possibilistic or prob-
abilistic noninterference, but used (minor adaptations of) existing ones [9, 18]. Conse-
quently, we can employ existing syntactic methods for verifying that programs satisfy
the hypothesis of our main result, Th. 2.

Mantel and Sudbrock [9] define flexible scheduler-independent (FSI) security, which
we use as our possibilistic noninterference. They also introduce the class of robust
schedulers and they prove an end-to-end security property, in the style of our Prop. 3, but
conditioned by termination of the program. As already discussed, a major improvement
of our Th. 2 is freeness from the termination assumption which is both hard to check
and often not true. Even ignoring termination, the security guarantee of Th. 2 is signifi-
cantly stronger than that of [9], as it takes into account the whole sequence of attacker
observations throughout execution, and not only at the end of it. Another difference be-
tween our setting and [9] is the considered class of schedulers. Like our noninterfering
schedulers, the robust schedulers were shown to include the round robin and uniform
ones. However, robust schedulers are introduced via a probabilistic simulation relation
involving both the scheduler and FSI-secure thread pools. Our noninterference condi-
tion for schedulers has a more natural justification in terms of G&M noninterference
and is stated in isolation from the concrete operational semantics of threads (although it
does employ thread ID interleavings); arguably, it is also easier to check. On the other
hand, the notion of scheduler from [9] allows the flexibility of an arbitrary scheduler
state—we could not have employed the history-based G&M noninterference had we
worked with such general schedulers.

Smith [18] defines probabilistic noninterference via weak probabilistic bisimulation
and provides a type system criterion for it, assuming the uniform scheduler. Since the
guarantee of Th. 2 is precisely Smith’s probabilistic noninterference, our result is in
effect a generalization of his results to a wide class of schedulers.

Sabelfeld and Sands [17] introduce strong security for thread pools (a PER no-
tion requiring complete lock-step synchronization of alternative executions) and prove
security w.r.t. all schedulers; moreover, Sabelfeld [15] proves that strong security can-
not be weakened if we are after a compositional notion covering the whole class of
schedulers. Zdancewic and Myers [24] take a whole different approach to scheduler
independence, focusing on concurrent programs that are a priori safe under refinement
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attacks, in that the attacker’s sequence of observations is the same in any execution (ob-
servational determinism). This is achieved practically by a data race freedom analysis
in conjunction with a type system. Boudol and Castellani [4] describe yet another ap-
proach, based on an operational semantics for the scheduler, run in parallel with a thread
pool that it controls. They do not cover probabilistic schedulers or dynamic thread cre-
ation. Finally, Russo and Sabelfeld [13] achieve scheduler independence by allowing
the threads to explicitly change their security levels and the scheduler to discriminate
between threads according to their levels. [13, §2] and [9, §6] survey more work on
scheduler-independent security. Unlike here, previous work [9, 17] allows schedulers
to depend on the low part of the state. This is also possible in our framework and is
pursued in [10, §A], but here it has been omitted as it brings no further insight into our
method.

This paper was concerned with lifting possibilistic noninterference to probabilistic
noninterference. Somewhat complementary, our previous work [11] studies and clas-
sifies various notions of possibilistic noninterference and their compositionality w.r.t.
language constructs.
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