
Proving Concurrent Noninterference?

Andrei Popescu1,2 Johannes Hölzl1 Tobias Nipkow1

1: Technische Universität München 2: Institute of Mathematics Simion Stoilow, Romania

Abstract. We perform a formal analysis of compositionality techniques for prov-
ing possibilistic noninterference for a while language with parallel composition.
We develop a uniform framework where we express a wide range of noninter-
ference variants from the literature and compare them w.r.t. their contracts: the
strength of the security properties they ensure weighed against the harshness of
the syntactic conditions they enforce. This results in a simple implementable al-
gorithm for proving that a program has a specific noninterference property, using
only compositionality, which captures uniformly several security type-system re-
sults from the literature and suggests a further improved type system. All formal-
ism and theorems have been mechanically verified in Isabelle/HOL.

1 Introduction
Language-based noninterference is an important and well-studied security property. To
state this property, one assumes the program memory is separated into a low, or public,
part, which an attacker is able to observe, and a high, or private, part, hidden to the
attacker. Then a program satisfies noninterference if, upon running it, the high part
of the initial memory does not affect the low part of the resulting memory. Thus, the
program has no information leaks from the private part of the memory into the public
one, so that a potential attacker should not be able to obtain information about private
data by inspecting public data.

Noninterference comes in several different variants, depending on what type of
channels one accepts as capable of transmitting leaks—besides the normal channels
represented by program variables, so-called covert channels include termination and
timing channels. Moreover, when nondeterminism is involved, one can distinguish be-
tween possibilistic and probabilistic noninterference (the latter also taking probabilistic
channels into account).

In this paper, we deal with noninterference in the presence of possibilistic concur-
rency. The literature abounds in notions of concurrent possibilistic noninterference and
techniques to enforce it [2–6, 14, 19–21, 24, 29, 31], many of them surveyed in [23].
There is usually a tradeoff between the strength of a security property and the harsh-
ness of the conditions imposed on the programs in order to satisfy it (typically, a type
system). Yet, new methods for establishing noninterference are often presented as im-
provements over older methods (e.g., a more lenient type system) while being rather
brief on the notion that in effect the whole contract is being changed: less pressure on
the programs, weaker noninterference ensured.

The paper presents the first comparison of a variety of noninterference notions and
results, in a unified and formalized framework, where complex results from the litera-
ture are given uniform and simplified proofs. As a preview of the kind of properties we
? Supported by the DFG project Ni 491/13–1 (part of the DFG priority program RS3) and the

DFG RTG 1480.

analyze and classify in this paper, here is a selection of informal notions of a command
c being secure (noninterfering):

(1) Given any two initial memory states that are indistinguishable by the attacker
(have the same low, i.e., public, part), the executions of c proceed identically w.r.t. both
the program counter and the updates on the low part of the memory—we call this prop-
erty self isomorphism.

(2) c may never change the low part of the memory during its execution—we call
this discreetness (often in the literature this is called highness).

(3) If started in two indistinguishable memory states, the executions of c are lock-
step bisimilar, performing the same updates to the low part of the memory—we call this
self strong bisimilarity, i.e., strong bisimilarity to itself (called strong security in [25]).

(4) A relaxation of strong bisimilarity with lock-step synchronization replaced by
01-bisimilarity (simply called bisimilarity in [5]), where only attacker-visible (i.e., low-
memory changing) steps in one execution are required to be matched by corresponding
steps in the other, while “discreet” (i.e., low-memory unchanging) steps need not be
matched. Thus, one step may be matched by either zero or one steps.

(5) A further relaxation of strong bisimilarity—weak bisimilarity [16] (used in [4,
29] in a security context) where one step may be matched by any number of steps.

Property 1 (self isomorphism) is a very strong security notion, ensuring that an at-
tacker controlling the low inputs of c is not able to infer any information about the high
inputs, not even if he is allowed to observe the low part of intermediate memory states
and the program counter. In particular, self isomorphism exhibits no leaks on covert
channels such as timing or termination. Property 2 (discreetness) is neither weaker nor
stronger than self isomorphism, but it no longer guarantees indistinguishability w.r.t. the
program counter, and moreover the attacker may infer confidential information by mea-
suring execution time. Property 3 (strong bisimilarity) prevents leaks on standard chan-
nels (low variable values) and timing channels, but, unlike self isomorphism, does not
guarantee that execution starting in indistinguishable states follow the very same paths
(taking the same branches). Properties 4 (01-bisimilarity) and 5 (weak bisimilarity) are
weakenings of all of the above three. They are only able to guarantee the absence of
leakage through standard channels.

Example 1 Consider the following commands, where l is a low variable and h,h′ are
high variables:

– c0: h := 0
– c1: if l = 0 then h := 1 else l := 2
– c2: if h = 0 then h := 1 else h := 2
– c3: if h = 0 then h := 1 ; h := 2 else h := 3
– c4: l := 4 ; c3
– c5: c3 ; l := 4
– c6: l := h
– c7: h′ := 0 ; while h > 0 do {h := h−1 ; h′ := h′+1} ; l := 4

c0 is both self isomorphic and discreet. c1 is self isomorphic (since it is not testing
any high variable), but not discreet. c2 and c3 are discreet (as they are not updating any
low variable), but not self isomorphic. c1 and c2, but not c3, are self strongly bisimilar—
the reason why c3 is not is its branching on a high test in conjunction with one branch

taking longer than the other. c4 is self 01-bisimilar, because, after a self isomorphic
assignment, it transits to a discreet continuation. c5 is not self 01-bisimilar, but it is self
weakly bisimilar. c6 is not secure according to any of the five criteria— it exhibits a
direct leak from high to low.

If we ignore timing channels and assume that initially h≥ 0, then it is reasonable to
consider c7 secure, since it has the same effect as the program h′ := h ; l := 4. However,
whether or not we should deem c7 secure when placed in parallel with other threads
depends on the assumption we make on these threads—e.g., are they allowed to change
h, thus preventing termination of c7?

Note that the above example programs are sequential, which seems to contrast with
our declared focus on concurrency—the explanation, hinted in the previous paragraph
and detailed throughout the paper, is that the discussed notions of noninterference are
defined anticipating parallel composition, i.e., so that the subject threads behave well
when placed in parallel with other threads.

Here is an overview of this paper, where we use “security” and “noninterference”
as synonyms. We start by introducing the concurrent setting where we operate: a while
language with parallel composition and a fixed attacker-indistinguishability relation on
program states (§2). Then we systematize and compare bisimilarity-based notions from
the literature (§3). A formal study of the compositionality of, and of the implications
between, these notions (§4) yields a novel proof methodology: To show that c is secure
according to some notion N, first try to reduce the goal to proving N for the components
of c; if this is not feasible due to failure of the required compositionality of N w.r.t. the
language construct Cns located at the top of c (e.g., Cns can be an If, or a While, etc.),
try to identify a stronger notion M that is (more) compositional w.r.t. Cns, and so on,
recursively. The compositionality caveats of existing notions suggests the definition of a
fully compositional security notion (§5). We then look at existing work on security type
systems in the light of our analysis (§6)— the aforementioned simple proof technique
turns out quite insightful, capturing these type system criteria uniformly. Our novel
security notion from §5 yields a more permissive syntactic criterion than the existing
ones, but the result targets only terminating programs. Finally, we discuss end-to-end
security aspects of the studied bisimilarity-based notions (§7). We do not present any
proofs of the stated facts—however, a (readable) Isabelle formalization of this paper’s
development, together with a map connecting the formal scripts with the propositions
stated in this paper, is available at [18].

2 The programming language
We consider a simple while language with parallel composition, whose set com of com-
mands, ranged over by c,d,e, is given by the following grammar:

c ::= atm | Seq c1 c2 | If tst c1 c2 |While tst c | Par c1 c2

Above, atm ranges over an unspecified set atom of atomic commands (atoms). Stan-
dard examples of atoms are assignments such as x := x+ y. Seq c1 c2 is the sequential
composition of c1 and c2, written in concrete syntax as c1 ; c2. If tst c1 c2 is the con-
ditional, written in concrete syntax as if tst then c1 else c2, where tst ranges over an
unspecified set test of tests. Standard examples of tests are Boolean expressions such as

x = y. While tst c is the usual while loop, in concrete syntax, while tst do c. Par c1 c2 is
the parallel composition of c1 and c2, in concrete syntax, c1 ‖ c2. We generally prefer
abstract syntax in theoretical results and concrete syntax in examples.

To give semantics to the language, we assume: a set of (memory) states, state,
ranged over by s, t; an execution function for the atoms, aexec : atom→ state→ state;
an evaluation function for the tests, tval : test→ state→ bool. Then we define a standard
small-step semantics [17] as a pair of inductive predicates→T : (com× state)→ state
and→C : (com× state)→ (com× state) (where the subscripts T and C stand for “ter-
mination” and “continuation”) specified in Fig. 1. Intuitively, we interpret (c,s)→Ts′ as
stating: in state s, command c may take a step terminating while changing the state to s′;
and (c,s)→C(c′,s′) as saying: in state s, command c may take a step yielding the contin-
uation c′ while changing the state to s′. The pairs (c,s), which we call configurations,
are thus thought of as consisting of the part of the program that remains to be executed,
c, and the current state, s. We carefully distinguish between continuation and terminat-
ing steps (as the two predicates →C and →T), since termination-sensitiveness will be
crucial in our development.→∗C denotes the reflexive-transitive closure of→C, and→∗T
the composition of →∗C with →T. Thus, (c,s)→∗C (c′,s′) means that (c′,s′) is reachable
from (c,s) by zero or more continuation steps, and (c,s)→∗T s′ that (the final state) s′ is
reachable from (c,s) by zero or more continuation steps followed by a terminating step.

(atm,s)→T aexec atm s
(c1,s)→Ts′

(Seq c1 c2,s)→C(c2,s′)
(c1,s)→C(c′1,s

′)

(Seq c1 c2,s)→C(Seq c′1 c2,s′)

tval tst s
(If tst c1 c2,s)→C(c1,s)

¬ tval tst s
(If tst c1 c2,s)→C(c2,s)

¬ tval tst s
(While tst c,s)→Ts

(c1,s)→C(c′1,s
′)

(Par c1 c2,s)→C(Par c′1 c2,s′)
tval tst s

(While tst c,s)→C(Seq c(While tst c),s)

(c2,s)→C(c′2,s
′)

(Par c1 c2,s)→C(Par c1 c′2,s
′)

(c2,s)→Ts′

(Par c1 c2,s)→C(c1,s′)
(c1,s)→Ts′

(Par c1 c2,s)→C(c2,s′)

Fig. 1: Small-step semantics

3 Notions of noninterference
Next we proceed to a uniform description of several notions of noninterference from
the literature. We fix a relation ∼ on states, called indistinguishability, where s∼ t is
meant to say “s and t are indistinguishable by the attacker.”

Example 2 Often,∼ is defined as follows. We assume that atomic statements and tests
are built by means of arithmetic and boolean expressions applied to variables taken from
a set var. States are assignments of values to variables, i.e., the set state is var→ val,
where val is a set of values (e.g., integers). Variables are classified as either low (lo)
or high (hi) by a given security level function sec : var→ {lo,hi}. Then ∼ is defined
as coincidence on the low variables, with the intuition that the attacker is only able to
observe these. Formally, s∼ t ≡ ∀x ∈ var. sec x = lo=⇒ s x = t x.

We define the following predicates on commands coinductively as greatest fixed
points, i.e., as the weakest predicates satisfying the indicated clauses:

– Self isomorphism, siso, by siso c ≡
(∀s t c′ s′. s∼ t ∧ (c,s)→C(c′,s′) =⇒ (∃t ′. (c, t)→C(c′, t ′) ∧ s′ ∼ t ′)) ∧
(∀s t s′. s∼ t ∧ (c,s)→Ts′ =⇒ (∃t ′. (c, t)→Tt ′ ∧ s′ ∼ t ′)) ∧
(∀s c′ s′. (c,s)→C(c′,s′) =⇒ siso c′)

– Discreetness, discr, by discr c ≡
(∀s c′ s′. (c,s)→C(c′,s′) =⇒ s∼ s′ ∧ discr c′) ∧ (∀s s′. (c,s)→Ts′ =⇒ s∼ s′)
The coinductive definition of self isomorphism expresses that that execution of a

command proceeds absolutely independently of the indistinguishability class of the
state, and this is true interactively, i.e., regardless of the intervention of the environ-
ment, provided this intervention is itself compatible with the state indistinguishability
relation. And similarly for the definition of discr, expressing that the command never
changes the indistinguishability class, regardless of what that class has become due to
potential action from the environment.

The last aspect, interactivity, is expressed by the universal quantification over the
indistinguishable states s and t in the definition of siso. Indeed, even though transi-
tions operate on (command,state) pairs, the siso predicate operates on commands alone,
forgetting each time the result state s′ from the continuation (c′,s′). Thus, at each re-
sumption point, the predicate quantifies universally over all states s (“overwriting” the
previous s′), to account for the fact that the new state produced by the command under
consideration may have been changed by the environment (perhaps consisting of other
threads running in parallel, and/or of the attacker) before that command gets to perform
an other step. For example, the command c ≡ h := 0 ; l := h (with h high and l low)
would be deemed as self isomorphic if it were not for the interactivity constraint. In-
deed, if no interference from the environment is assumed, the execution of c proceeds
the same way regardless of the initial value of h, as it first assigns 0 to h. However, siso c
does not hold, since the continuation l := h is required to be secure given any value of h
arising as the effect of a secure thread running in parallel, say, h := h′ with h′ high. This
interactivity twist (originating from [22, 25]) is convenient for compositionality, since
it ensures that a command is secure not only in isolation, but also if placed in any pool
of secure threads running in parallel. As a consequence, most of the security notions
discussed in this paper will be interactive.

We shall also need the following interactive notion of termination possibility at
each point during execution, via the coinductively defined predicate mayT (read “may
terminate”): mayTc ≡ ∀sc′ s′.(c,s)→C(c′,s′) =⇒ (∃s′′.(c′,s′)→∗T s′′)∧mayTc′.

Self isomorphism and discreetness were expressible as unary predicates. However,
interesting noninterference properties may require binary relations. To see this, assume
we wish to express that c is secure, i.e., its executions are (multi)step-wise equivalent
if started in indistinguishable states. Assume c branches according to a high test. Then
indistinguishable states may yield different continuations, say, c1 and c2, and so we
are faced with the problem of proving the executions of c1 and c2 (multi)step-wise
equivalent, i.e., proving c1 and c2 bisimilar. (The above two notions have by-passed
this problem in trivial ways: self isomorphism forbids this situation by disallowing the
program counter to diverge, hence disallowing high tests, while discreetness of c also
requires c1 and c2 to be discreet, hence trivially “equivalent”.)

In order to define relevant notions of bisimilarity, it will be useful to first introduce
matching operators (or matchers) that express various choices of rules for the bisimilar-

matchC
C θ c d ≡

∀s t c′ s′. s∼ t ∧ (c,s)→C(c′,s′) =⇒
(∃d′ t ′. (d, t)→C(d′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′)
matchC

01C θ c d ≡
∀s t c′ s′. s∼ t ∧ (c,s)→C(c′,s′) =⇒
(∃d′ t ′. (d, t)→C(d′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′) ∨
(s′ ∼ t ∧ θ c′ d)
matchC

01 θ c d ≡
∀s t c′ s′. s∼ t ∧ (c,s)→C(c′,s′) =⇒
(∃d′ t ′. (d, t)→C(d′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′) ∨
(s′ ∼ t ∧ θ c′ d) ∨
(∃t ′. (d, t)→Tt ′ ∧ s′ ∼ t ′ ∧ discr c′)
matchT

T c d ≡
∀s t s′. s∼ t ∧ (c,s)→Ts′ =⇒
(∃t ′. (d, t)→Tt ′ ∧ s′ ∼ t ′)
matchT

01 c d ≡
∀s t s′. s∼ t ∧ (c,s)→Ts′ =⇒
(∃t ′. (d, t)→Tt ′ ∧ s′ ∼ t ′) ∨
(∃d′ t ′. (d, t)→C(d′, t ′)∧ s′ ∼ t ′∧discr d′) ∨
(s′ ∼ t ∧ discr d)

matchC
MC θ c d ≡

∀s t c′ s′. s∼ t ∧ (c,s)→C(c′,s′) =⇒
(∃d′ t ′. (d, t)→∗C (d′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′)
matchC

M θ c d ≡
∀s t c′ s′. s∼ t ∧ (c,s)→C(c′,s′) =⇒
(∃d′ t ′. (d, t)→∗C (d′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′) ∨
(∃t ′. (d, t)→∗T t ′ ∧ s′ ∼ t ′ ∧ discr c′)
matchT

MT c d ≡
∀s t s′. s∼ t ∧ (c,s)→Ts′ =⇒
(∃t ′. (d, t)→∗T t ′ ∧ s′ ∼ t ′)
matchT

M c d ≡
∀s t s′. s∼ t ∧ (c,s)→Ts′ =⇒
(∃t ′. (d, t)→∗T t ′ ∧ s′ ∼ t ′) ∨
(∃d′ t ′. (d, t)→∗C (d′, t ′)∧ s′ ∼ t ′∧discr d′)

Fig. 2: Matchers

ity game. They are defined in Fig. 2, where θ ranges over binary relations on commands.
In the operator names, the superscripts indicate the kind of steps being taken, and the
subscripts indicate by what kind of steps these must be simulated (matched), where: “C”
means (single) continuation step; “T” means (single) terminating step; “01C” means 0
or 1 continuation steps; “01” means 0 or 1 continuation or terminating steps, i.e., 01C or
T; “MC” means multiple continuation steps; “MT” means multiple continuation steps,
followed by a terminating step; “M” means MC or MT. E.g., matchC

C refers to matching
any continuation step by a continuation step, matchC

01C to matching any continuation step
by 0 or 1 continuation steps, i.e., either by a continuation step or by a stutter move.

Matchers indicate how the single steps of a command c may be matched by single
or multiple steps of a command d. In most cases, the matcher is also parameterized by
a continuation relation θ ; exceptions are matchT

T and matchT
MT, where, due to termina-

tion of both the left and the right sides, no continuation makes sense. matchC
01, matchT

01,
matchC

M and matchT
M are termination-flexible matchers, in that they allow matching con-

tinuation steps against termination steps and vice versa. For instance, matchC
01 (“match

a continuation step against 0 or 1 steps of either kind”) requires for θ , c and d that, for
all indistinguishable states s and t, any step (c,s)→C(c′,s′) be matched by either a con-
tinuation step (d, t)→C(d′, t ′), or a stutter step, or a termination step (d, t)→Tt ′. In each
case, it is also required that the resulting states are indistinguishable. Moreover, in the
first two cases (for continuation and stutter) it is required that the resulting commands
are in relation θ . For the third case though (the termination step), the latter condition
does not make sense, since on the left of the matcher we have a continuation com-
mand, c′, while the right side has terminated; what we require instead is that, w.r.t. the
attacker-observable behavior, c′ acts as if it terminated, in that it will never change the

indistinguishability class of the state, i.e., is discreet. (Similar discreetness conditions
appear in the definitions of the other termination-flexible matchers for similar reasons.)

We are now ready to define the following bisimilarity relations, again coinductively,
by plugging in different combinations of matchers and taking each time the largest
symmetric relation satisfying the given clause (where the bisimilarities are written with
infix notation on the left and are passed as arguments to the matchers on the right):

– Strong bisimilarity, ≈S , by c≈S d ≡ matchC
C (≈S) c d ∧ matchT

T c d
– 01-bisimilarity, ≈01 , by c≈01 d ≡ matchC

01 (≈01) c d ∧ matchT
01 c d

– Termination-sensitive 01-bisimilarity (01T-bisimilarity), ≈01T , by
c≈01T d ≡ matchC

01C (≈01T) c d∧ matchT
T c d

– Weak bisimilarity, ≈W , by c≈W d ≡ matchC
M (≈W) c d ∧ matchT

M c d
– Termination-sensitive weak bisimilarity (weak T-bisimilarity), ≈WT , by

c≈W d ≡ matchC
MC (≈W) c d ∧ matchT

MT c d
All these bisimilarity relations are by definition symmetric and can also be proved

transitive, but they are not reflexive. In fact, the notion of a command c being bisimilar
with itself (e.g., c≈S c, c≈01 c, etc.), which we call self bisimilarity of c (e.g., self strong
bisimilarity, self 01-bisimilarity, etc.) is taken in this paper as the formalization of the
informal notion of security of a command. Below we explain how different bisimilari-
ties correspond to different attacker models.

In all cases, one assumes the attacker has access to the program (command) source
code and the low part of the state, and the ability to set, at the beginning of the com-
mand execution, the low part of the state in any desired way. For strong bisimilarity
(≈S), we assume the attacker’s ability to repeatedly stop the program after single exe-
cution steps and inspect the (low part of the) state, or, equivalently, take snapshots of
the state after controlled numbers of execution steps. Technically, this shows in the two
involved matchers, matchC

C and matchT
T, being one-to-one (w.r.t. continuation or termina-

tion steps). Moreover, we assume the attacker can detect termination—this shows in the
fact that the two matchers preserve the type of transition: continuation vs. continuation
and termination vs. termination. For weak bisimilarity (≈W), the attacker may still stop
the program repeatedly, but has no control on the number of steps that the program takes
between two stops. (For what the attacker knows, zero, one, or more steps could have
been taken.) This shows in the one-to-many nature of the matchers. The termination-
sensitive version of weak bisimilarity (≈WT) additionally assumes the attacker is able
to detect termination. Thus, ≈WT allows, via matchT

MT, matching a termination step by a
sequence of steps only if the latter ends in a termination step. 01-bisimilarity (≈01), also
coming with a termination-sensitive variant (≈01T), is intermediate between strong and
weak bisimilarity. Here, the attacker may keep running the program for 0 or 1 steps,
without knowing which of the two situations has actually occurred.

The following proposition, relating different notions of self bisimilarity, follows
easily from the definitions of the corresponding matchers:
Prop 1 The implications in Fig. 3 hold.

Note that discreetness implies self 01-bisimilarity, but not self 01T-bisimilarity.
However, for may-terminating processes (roughly, processes with finite behavior), it
does imply self wT-bisimilarity.

Example 1 already illustrates most of the above bisimilarities. Here are some further
illustrations that also take Prop. 1 into account (using the Example 1 notations).

c≈W c

c≈01 c

3;nnnnnnnnnnn

nnnnnnnnnnn
c≈WT c

KS

c≈01T c

KSck PPPPPPPPPPP

PPPPPPPPPPP

discr c

KS

c≈S c

KS

discr c ∧ mayT c

KS

@H
																							

																							
siso c

KS

Fig. 3: Implications between security notions

c mayT c discr c ϕ c ψ c
atm True pres atm cpt atm cpt atm

Seq c1 c2
mayT c1
mayT c2

discr c1
discr c2

ϕ c1
ϕ c2

ψT c1
ψ c2
ψ c1
discr c2

If tst c1 c2
mayT c1
mayT c2

discr c1
discr c2

cpt tst
ϕ c1
ϕ c2

cpt tst
ψ c1
ψ c2

While tst d False discr d
cpt tst
ϕ d

False

Par c1 c2
mayT c1
mayT c2

discr c1
discr c2

ϕ c1
ϕ c2

ψ c1
ψ c2

ϕ ∈ {siso,≈S,≈01T,≈WT} ψ ∈ {≈01,≈W}

ψT ≡
{
≈01T, if ψ =≈01

≈WT, if ψ =≈W

Fig. 4: Compositionality table

Example 3 (1) c3 is self 01-bisimilar, as any two discreet processes are 01-bisimilar.

(2) However, c3 is not self 01T-bisimilar, as shown by the following reasoning: de-
pending on h, c3 can move to d ≡ h := 1 ; h := 2 or e ≡ h := 3; but d and e are not
01T-bisimilar, as d is not able to 01T-match the immediate terminating step from e.

(3) The above is not a problem for weak T-bisimilarity though, since here d can catch up
with e by taking multiple steps. Thus, c3 is self weakly T-bisimilar (as any two discreet
processes with finite behavior are weakly T-bisimilar).

(4) c5 ≡ c3 ; l := 4 is self weakly T-bisimilar, since alternative executions (starting in
indistinguishable states) of its first part c3 are able to ≈WT -synchronize, so that they
can proceed strongly synchronously with the remaining non-discreet step l := 4.

(5) However, c5 is not self 01-bisimilar since the above e-continuation of c3 is able
to terminate first, putting itself in a position to take the non-discreet step l := 4, not
available at that time for the other continuation, d.

(6) while h= 0 do h := 0 is discreet, hence self 01-bisimilar, but not weakly T-bisimilar,
as a diverging execution from h = 0 cannot match a terminating one from h 6= 0.

The weak and 01-bisimilarities provide the most fruitful notions in type-system ap-
proaches to noninterference. (The others—self isomorphism, discreetness and strong
bisimilarity—are too harsh requirements, but, as we shall see, turn out as useful aux-
iliaries.) Thus, Smith and Volpano [29] focus on termination-sensitive weak bisimilar-
ity. On the other hand, Boudol and Castellani [5, 6] prefer termination-insensitive 01-
bisimilarity, while later Boudol [4] also considers weak bisimilarity, but in its termination-
insensitive form. In these works, the newly introduced bisimilarities are not formally
compared with preexisting ones—instead, the focus is on comparing the end-product
type systems, i.e., the rely side of the contract (while the bismilarities are the guaran-
tee part). In order to properly revisit and compare type-system results, we first need an
analysis of compositionality for these bisimilarities.

4 Compositionality
We now move to the central concept of this paper—compositionality of noninterference
w.r.t. the language constructs.

An atom atm is called ∼-preserving, written pres atm, if ∀s. aexec atm s∼ s; it is
called ∼-compatible, written cpt atm, if ∀s t. s∼ t =⇒ aexec atm s∼ aexec atm t. A
test tst is called ∼-compatible, written cpt tst, if ∀s t. s∼ t =⇒ tval tst s = tval tst t.
In the setting of Example 2, for atoms, ∼-preservation means no assignment to low
variables and∼-compatibility means no direct leaks, i.e., no assignment to low variables
of expressions depending on high variables (high expressions). Moreover, for tests, ∼-
compatibility means no dependence on high variables.

Prop 2 The compositionality facts stated in Fig. 4 hold.

Here is how to read Fig. 4. The first column lists the possible forms of a command
c (c may be an atom atm, or have the form Seq c1 c2, etc.). The next columns list con-
ditions under which the predicates stated on the first row hold for c. Thus, e.g., row 3
column 3 says: if discr c1 and discr c2 then discr (Seq c1 c2). The horizontal line in row
3 column 5 represents an “or” – thus, row 3 column 5 says: if either [ψT c1 and ψ c2]
or [ψ c1 and discr c2] then ψ (Seq c1 c2). The involved bisimilarities are considered in
their unary, “self” form, e.g., ψ c means c≈01 c or c≈W c.

Example 4 The informal arguments in Examples 1 and 3 can be made rigorous using
the compositionality table in Fig. 4 in conjunction with the implication graph in Fig. 3.
For instance, c4 from Example 1 has the form Seq (l := 4) c3, where c3 has the form
If (h= 0) (Seq (h := 1) (h := 2)) (h := 3). According to the table, for c4 ≈01 c4, it suffices
that (l := 4)≈01T (l := 4) and c3 ≈01 c3. The former is true by the table, since l := 4 is
compatible. However, the table cannot help (yet) in proving c3 ≈01 c3, because there
the required side condition is cpt (h = 0), which does not hold. Therefore we turn to
the implication graph, and try to prove the fact for one of the predecessors of ≈01. One
predecessor is ≈01T , which again requires cpt (h = 0), and so does its predecessor ≈S ,
and so does the predecessor of the latter, siso, which is a bottom node—therefore this
path fails. The other predecessor of ≈01 is discr, for which the table does not require the
problematic side-condition. And the proof of discr c3 goes smoothly according to the
table, since it is reduced to discr (Seq (h := 1) (h := 2)) and discr (h := 3), and further
to discr (h := 1), discr (h := 2) and discr (h := 3), all being true by ∼-preservation.

Note that we appeal to the Fig. 3 graph whenever the table result is not sufficiently
strong, i.e., the given security notion is not sufficiently compositional w.r.t. the given
language construct. For this table-and-graph proof technique, it is instructive to com-
pare the termination-sensitive security notions with the termination-insensitive ones,
that is, ϕ with ψ in Fig. 4. ϕ is more compositional than ψ w.r.t. Seq. (In fact, if interac-
tivity is responsible for Par-compositionality, termination-sensitiveness can be deemed
responsible for Seq-compositionality.) Indeed, for ψ (Seq c1 c2) to go through, the ta-
ble requires strengthening ψ either for c1 to its termination-sensitive variant, ψT, or
for c2 to discreetness. A consequence of this is also the lack of compositionality of ψ

w.r.t. While (since the semantics of While involves iteration of Seq). On the other hand,
ψ enjoys better compositionality w.r.t. If. This is not visible by looking at the table
alone, where the If rules of ϕ and ψ are the same, and they are both conditioned by

the ∼-compatibility of tst. The difference appears when tst is not compatible—then,
according to the graph, unlike ϕ , ψ can “fall back” on discr, which does not require
tst to be compatible. Indeed, unlike ϕ , ψ is above discr in the graph. Note that, among
the ϕ’s, ≈WT is the best located with this respect, since it is above the conjunction of
discr c and mayT c in the graph. But this is still worse than ψ , since falling back on
discr c ∧ mayT c forbids while loops, as shown in the table for mayT.

An interesting theoretical question is whether we can have the best of both worlds
and define a relation that is both above discreetness in the graph and fully compositional
w.r.t. Seq, without sacrificing compositionality with the other constructs. A positive
answer to this question is presented next.

5 A more compositional security notion
The rough idea of the proposed solution is as follows. If we knew that the whole pro-
gram terminates, then discreetness would imply ≈WT. And to integrate termination in-
formation into our coinductive interactiveness, we note that, given a thread c running
in parallel with others in a pool whose execution from a given state s is known to
terminate, the following are true: (1) the execution of c alone starting in s must termi-
nate; (2) between resumption points of the execution of c, the other threads are guar-
anteed to change the state in such a way that termination is preserved. This leads us
to ≈T , a relaxation of ≈WT with interactivity restricted to mustT (“must terminate”)
configurations, where mustT(c,s) is defined to mean that there exists no infinite chain
(c0,s0), . . . ,(cn,sn), . . . such that (c0,s0) = (c,s) and ∀i. (ci,si)→C(ci+1,si+1):

– matchC
TMC θ c d ≡ ∀s t c′ s′. mustT (c,s) ∧ mustT (d, t) ∧ s∼ t ∧ (c,s)→C(c′,s′)

=⇒ (∃d′ t ′. (d, t)→∗C (d′, t ′) ∧ s′ ∼ t ′ ∧ θ c′ d′)
– matchT

TMT c d ≡ ∀s t s′. mustT (c,s) ∧ mustT (d, t) ∧ s∼ t ∧ (c,s)→Ts′

=⇒ (∃t ′. (d, t)→∗T t ′ ∧ s′ ∼ t ′)
– c≈T d ≡ matchC

TMC (≈T) c d ∧ matchT
TMT c d

And, indeed, ≈T achieves the targeted properties, as can be shown by an argument
similar to those of Props. 1 and 2:

Prop 3 (1) The compositionality facts stated in Fig. 4 for ϕ also hold for ≈T.
(2) discr c =⇒ c ≈T c.

Note that ≈T does not require, for the involved programs, termination (a liveness
property), but rather preservation of termination (a safety property). ≈T is weaker than
≈WT , and neither weaker nor stronger than ≈01 and ≈W. The benefit of having ≈T better
suited than the other notions w.r.t. our table-and-graph reasoning is the availability of a
more permissive syntactic criterion, as we detail next.

6 Syntactic criteria
The (compositionality based) table-and-graph proof technique described in Example 4
can be automated, yielding a collection of recursive syntactic predicates corresponding
to the various security notions. The recursive clauses for these predicates will simply
perform the necessary lookups: first in the table, then, if needed, in the graph.

Before listing these clauses, we first simplify the Fig. 3 graph, noticing that ≈S and
≈01T are redundant nodes on top of siso. Indeed, the compositionality conditions for ≈S

and ≈01T from the Fig. 4 table are identical to those of all nodes below, hence identical
to those of siso. This means that, when proving c≈S c or c≈01T c, one cannot do better
than proving compositionality of the stronger (more desirable) siso notion of security.
We therefore drop ≈S and ≈01T from the graph. Fig. 5 shows this new graph, where ≈T

is also integrated. In the Fig. 4 table, we also redefine ψT by redirecting ≈01 to siso:

ψT ≡
{
siso, if ψ =≈01

≈WT , if ψ =≈W .

c≈T c c≈W c

c≈01 c

5=sssssssss

sssssssss
c≈WT c

KSai KKKKKKKKK

KKKKKKKKK

discr c

KS

>F

discr c ∧ mayT c

KS

>F
���������������

���������������
siso c

KSX` 8888888888888888

8888888888888888

Fig. 5: Simplified implication graph of
security notions

≈T c

≈W c

KS

≈01 c

6>ttttttttt

ttttttttt
≈WT c

KS

discr c

KS

discr c ∧ mayT c

KS

?G
����������������

����������������
siso c

KSW_ 7777777777777777

7777777777777777

Fig. 6: Syntactic implications

Let us introduce some notation for the Fig. 4 table and the Fig. 5 graph. A (syntactic)
constructor Cns is any of the following: Seq, If tst where tst ∈ test, While tst where
tst ∈ test, Par. In addition, for uniformity, we also introduce a constructor Atm atm for
every atm ∈ atom, and assume Atm atm is the same as atm. Thus, any command c
has the form Cns c1 . . .ck, where Cns is a constructor and c1 . . .ck are k commands, the
components of c, with k either 0, 1 or 2, depending on Cns (it is 0 for Atm atm).

Henceforth, we let χ range over the notions in the table, namely, χ ∈ {mayT,discr,
siso,≈S,≈01T,≈WT,≈01,≈W,≈T}. The table has an entry corresponding to every combina-
tion (χ,Cns), for which we define the following:

– sideχ,Cns is its side condition, i.e., the part of it not depending on the compo-
nents. If this part is empty, we put True. E.g., sidemayT,Atm atm = sidesiso,Seq = True,
sidesiso,If tst = cpt tst.

– rcondχ,Cns(c1, . . . ,ck) is its recursion condition, i.e., the part involving the compo-
nents of c. Again, if this part is empty, we put True. E.g., rcondmayT,Atm atm = True,
rcondsiso,Seq(c1,c2) = rcondsiso,If tst(c1,c2) = (siso c1 ∧ siso c2).

For any element χ in the graph, we let Pred χ denote its set of predecessors. E.g.,
Pred siso= /0, Pred≈01= {discr, siso}, Pred≈W= {≈01,≈WT}.

Note that, for all χ , Cns, and c of the form Cns c1 . . .ck,

– The table ensures that sideχ,Cns ∧ rcondχ,Cns(c1, . . . ,ck) =⇒ χ c;
– The graph ensures that (

∨
χ ′∈Pred χ χ ′ c) =⇒ χ c.

We define, for each security notions χ , a syntactic predicate χ on commands by
turning the above implications into recursive clauses for each constructor Cns, where
one first tries the table, and then, if the table fails, one tries the graph:

χ (Cns c1 . . .ck) ≡
{
rcondχ,Cns(c1, . . . ,ck), if sideχ,Cns(c1, . . . ,ck),∨

χ ′∈Pred χ χ ′ (Cns c1 . . .ck), otherwise,

where rcondχ,Cns and sideχ,Cns are rcondχ,Cns and sideχ,Cns with all the involved security
predicates χ ′ replaced by their syntactic counterparts χ ′.

For example, taking Cns = If tst, we have:
1. discr (If tst c1 c2) = (discr c1 ∧ discr c2).

2. siso (If tst c1 c2) =

{
siso c1 ∧ siso c2, if cpt tst
False, otherwise.

3. ≈01 (If tst c1 c2) =

{
≈01 c1 ∧ ≈01 c2, if cpt tst
discr (If tst c1 c2) ∨ siso (If tst c1 c2), otherwise

= (by 1 and 2) =
{
≈01 c1 ∧ ≈01 c2, if cpt tst
discr c1 ∧ discr c2, otherwise.

(Recall that, when we instantiate χ to a bisimilarity such as ≈WT , we refer to its unary
version, taking χ c to be c≈WT c. Hence, an instance of χ is the unary predicate ≈WT .)

The proof of the following fact is now routine by structural induction on commands:

Prop 4 The syntactic criteria χ are sound for the security notions χ in Fig. 5, in that
χ c =⇒ χ c for all commands c.

A remarkable property of the χ’s is that they preserve the Fig. 5 hierarchy of χ’s. In
fact, they actually refine it:

Prop 5 The implications listed in Fig. 6 hold.

The hierarchy refinement from Fig. 5 to Fig. 6 consists of the advance of ≈T to
the top, even though ≈T is not weaker than ≈W or ≈01. The reason why ≈T is weaker
than ≈W is the following: The recursive definition of each χ is as permissive as is χ

compositional. And since ≈T is at least as compositional as ≈W and any other relation
involved in its compositionality (here, ≈WT), the proof of ≈W c =⇒ ≈T c goes through
by structural induction on c.

So far, our analysis was purely semantic and local: for semantic notions of secu-
rity χ , we studied compositionality w.r.t. each language construct, inferring from these
syntactic criteria χ automatically. Now it is time to have a closer look at the recursive
clauses of χ and see what they tell us about χ independently of χ . First the easy cases:

– mayT c holds iff c does not contain while loops.
– discr c holds iff all atoms in c are ∼-preserving, a.k.a. high.
– siso c holds iff all tests in c are ∼-compatible, a.k.a. low, and all atoms are ∼-

compatible.
siso c corresponds to a type system from Smith and Volpano [29] for scheduler indepen-
dent security – this criterion is extremely harsh, forbidding high tests at If and While.

We now move to the more interesting cases. ≈WT c is equivalent to another, pos-
sibilistic type system from Smith and Volpano [29]. Here, high tests are allowed at If
provided the branches are discreet, but are disallowed at While: ≈WT (While tst c) =

{
≈WT c, if cpt tst
discr (While tst c)∧mayT (While tst c), otherwise =

{
≈WT c, if cpt tst
False, otherwise.

The above harsh condition on While is the starting point of work by Boudol and Castel-
lani in [5, 6], where a type system equivalent to ≈01 is introduced. ≈01 allows high
tests for While provided the body of the While is discreet. This is possible because, un-
like ≈WT , ≈01 can fall back on discr:
≈01 (While tst c) = discr (While tst c)∨ siso(While tst c) = discrc∨ (cpt tst ∧ sisoc).
However, the price for this is a harsher clause for Seq (as we have seen, a limitation
shared by all termination-insensitive notions). Indeed, ≈WT commutes smoothly with
Seq as ≈WT (Seq c1 c2) = (≈WT c1 ∧ ≈WT c2), but ≈01 needs either siso on the left or
discr on the right: ≈01 (Seq c1 c2) = (siso c1 ∧ ≈01 c2) ∨ (≈01 c1 ∧ discr c2).
Thus, ≈01 requires that either c1 has only low tests, or c2 has only high atoms. Hence,
e.g., the command c5 from Example 1 is accepted by ≈WT , but rejected by ≈01 .

An improvement of ≈01 that accepts c5 also is proposed by Boudol in [4], where
the idea is that, in the c1 part of Seq c1 c2, one should no longer restrict to low tests
everywhere, but rather only in places that may affect termination (i.e., inside While

loops). Interestingly, this condition on c1 is the one imposed by ≈WT , and therefore
the approach of [4] can be seen as a carefully designed combination of ≈WT and ≈01 .
Remarkably, it turns out to be equivalent to ≈W , whose Seq clause is: ≈W (Seq c1 c2) =
(≈WT c1 ∧ ≈W c2) ∨ (≈W c1 ∧ discr c2).

In the above cited work, the soundness of the proposed type systems (results cor-
responding to Prop. 4) are given rather elaborate proofs, defining global bisimulation
relations that involve multiple language constructs combined in ingenious and ad hoc
ways. These proofs are often hard to understand and mechanize. Moreover, they are not
exploiting the uniformities, commonalities and inter-dependencies of the various ap-
proaches. By contrast, our proof methodology is entirely local and uniform: we choose
a language construct and a notion of security, and essentially do our best at proving
(partial) compositionality. Then syntactic criteria follow automatically by our table-
and-graph method. We were pleasantly surprised to find that this general method could
capture such a variety of ad hoc results.

Finally, we discuss ≈T , which is our own novel type-system-like criterion for non-
interference. It turns out to be a natural extension of the original Volpano-Smith-Irvine
typing of sequential programs [30], using the same clauses for the sequential part to-
gether with ≈T (Par c1 c2) = (≈T c1 ∧ ≈T c2). The reason why such a natural type
system is absent from the literature is probably that its associated semantic notion of
security, ≈T , was overlooked.

≈T accepts the commands c7 from Example 1 and d ≡ c7 ‖ l := 5, while the most
permissive criterion studied so far, ≈W , rejects them. However, as discussed, the secu-
rity property that ≈T guarantees, ≈T , is different from ≈W , the main restriction of ≈T

being that it only makes sense under the termination assumption. Thus, ≈T provides a
useful guarantee for c7 and d only in cases when the initial state s ensures termination,
here, if it has h≥ 0. On the other hand, ≈W rejects d out of fear that its c7 component
may not terminate, which would yield the pipelining of the c7 termination channel into
a standard channel for d. Termination knowledge excludes such behavior, and this is
where the new criterion ≈T is advantageous.

7 After-execution noninterference
The bisimilarity-based notions of security studied so far are rather complex, assuming
an elaborate attacker model that interacts continuously with program execution—we
call these during-execution noninterference. Often one is interested in a more tractable
notion, as an input-to-output property, such as: a command is secure if, upon execution
starting in indistinguishable states, the result states (after the command has finished
executing) are again indistinguishable. We call such input-to-output properties after-
execution noninterference.

So what are the after-execution guarantees of the various bisimilarities from §3? To
answer this, we need some terminology. Given a configuration (c,s):

– A finite execution trace starting in (c,s) (finite (c,s)-trace for short) is a finite
sequence of the form (c0,s0),(c1,s1), . . . ,(cn−1,sn−1),sn (consisting of a number of
configurations followed by a state) such that (c0,s0) = (c,s), (ci,si)→C(ci+1,si+1)
for all i < n−1, and (cn−1,sn−1)→Tsn. Then n is said to be the length of the trace
and sn the final state of the trace.

– An infinite execution trace starting in (c,s) (infinite (c,s)-trace for short) is an
infinite sequence of the form (c0,s0),(c1,s1), . . . (consisting of configurations only)
such that (c0,s0) = (c,s) and ∀i. (ci,si)→C(ci+1,si+1).
Given a finite (c,s)-trace tr, length(tr) denotes its length and fstate(tr) denotes its

final state. Thus, finite (c,s)-traces represent the terminating computations starting in
(c,s), and infinite (c,s)-traces the divergent computations starting in (c,s). Note that
(c,s) “must terminate” (as defined in §5) iff there exist no infinite (c,s)-traces. It is not
hard to prove the following about the termination-sensitive bisimilarities:
Prop 6 (1) If c≈S c and s∼ t, then, for every finite (c,s)-trace tr, there exists a finite
(c, t)-trace tr′ with fstate(tr′)∼ fstate(tr) and length(tr′) = length(tr).
(2) If c≈01T c and s∼ t, then, for every finite (c,s)-trace tr, there exists a finite (c, t)-
trace tr′ with fstate(tr′)∼ fstate(tr) and length(tr′)≤ length(tr).
(3) If c≈WT c and s∼ t, then, for every finite (c,s)-trace tr, there exists a finite (c, t)-
trace tr′ with fstate(tr′)∼ fstate(tr).

Thus, for self strongly bisimilar commands, terminating executions starting in in-
distinguishable states have, up to indistinguishability, the same outcomes, obtained in
the same amount of time—this means both standard (low data) channels and timing
channels are secure here. For self weakly T-bisimilar commands, again the outcomes
are the same up to indistinguishability, but timing channels are no longer secured. As
usual, 01T-bisimilarity lies in between—there is a time guarantee, but weaker than per-
fect synchronization.

Now, turning to the termination-insensitive notions, during-execution security faces
the difficulty that here terminating executions need not be matched by terminating exe-
cutions. However, we can still prove a termination-conditioned result:
Prop 7 If ∀s′.mustT (c,s′), then Prop. 6(3) holds with ≈01 or ≈W substituted for ≈WT .

Thus, in the termination-insensitive case, the after-execution distinction between
01- and weak bisimilarity vanishes. As for the after-execution guarantee of our termination-
sensitive security notion ≈T from §5, it is weaker than that of ≈WT (Prop. 6(3)), but
stronger than that of ≈01 and ≈W (Prop. 7):
Prop 8 If mustT (c,s), then Prop. 6(3) holds with ≈T substituted for ≈WT .

8 Conclusions and more related work
This paper was concerned with systematizing and comparing existing type-system based
noninterference results from the literature. As a technical tool, we have introduced a
compositionality “table-and-graph” technique able to capture such results in a uniform
way. The study also suggested a novel, suitably compositional, notion, the termination-
interactive bisimilarity ≈T.

Our approach has important precursors in the literature. Thus, [25] makes a strong
case for compositionality, and illustrates how it can be used to extend to concurrency
a noninterference result [1] in the style of Volpano and Smith. However, [25] does not
pursue this idea systematically or devise a general technique as we do in this paper.
Moreover, our bisimilarity-based treatment employs insight from process algebra [16]
in general and from process algebra approaches to noninterference [8] in particular.
In system-based security, [9, 11, 15] provide general frameworks for trace-based sys-
tem security, the last two having a special focus on compositionality and the first also
incorporating probabilistic systems.

Themes missing from the compositionality framework discussed in this paper are
probabilistic noninterference [13,26–28], dynamic thread creation [13,25,31] and sched-
uler independence [6, 13, 25, 31], known to be particularly problematic w.r.t. noninter-
ference. Incorporating some of these features in our compositional setting is a goal for
future research.

Another exciting future direction is a framework for proving concurrent nonin-
terference by a combination of automated and interactive methods along the lines of
approaches going beyond type systems [2, 7, 12]. This would follow a rely-guarantee
paradigm [10], with information about the environment made available to individual
threads by suitably relaxing interactivity. A step towards this direction is made by our
termination-interactive bisimilarity ≈T , where such context information is termination,
but could in principle be any liveness property.

Acknowledgements. We are grateful to Jasmin Blanchette for lots of suggestions that
have significantly improved the presentation of this paper, to Benedict Nordhoff and
Peter Lammich for noticing various technical typos, and to the anonymous reviewers
for useful comments.

References

1. J. Agat. Transforming out timing leaks. In POPL, pages 40–53, 2000.
2. G. Barthe, P. R. D’Argenio, and T. Rezk. Secure information flow by self-composition. In

IEEE Computer Security Foundations Workshop, pages 100–114, 2004.
3. G. Barthe and L. P. Nieto. Formally verifying information flow type systems for concurrent

and thread systems. In FMSE, pages 13–22, 2004.
4. G. Boudol. On typing information flow. In ICTAC, pages 366–380, 2005.
5. G. Boudol and I. Castellani. Noninterference for concurrent programs. In ICALP, pages

382–395, 2001.
6. G. Boudol and I. Castellani. Noninterference for concurrent programs and thread systems.

Theoretical Computer Science, 281(1-2):109–130, 2002.
7. Á. Darvas, R. Hähnle, and D. Sands. A theorem proving approach to analysis of secure

information flow. In SPC, pages 193–209, 2005.

8. R. Focardi and R. Gorrieri. Classification of security properties (part i: Information flow). In
FOSAD, pages 331–396, 2000.

9. J. Y. Halpern and K. R. O’Neill. Secrecy in multiagent systems. ACM Trans. Inf. Syst. Secur.,
12(1), 2008.

10. C. B. Jones. Specification and design of (parallel) programs. In IFIP Congress’83, pages
321–332, 1983.

11. H. Mantel. On the composition of secure systems. In IEEE Symposium on Security and
Privacy, pages 88–, 2002.

12. H. Mantel, D. Sands, and H. Sudbrock. Assumptions and guarantees for compositional
noninterference. In CSF’11, pages 218–232, Cernay-la-Ville, France, 2011.

13. H. Mantel and H. Sudbrock. Flexible scheduler-independent security. In ESORICS, pages
116–133, 2010.

14. H. Mantel, H. Sudbrock, and T. Kraußer. Combining different proof techniques for verifying
information flow security. In LOPSTR, volume 4407 of LNCS, pages 94–110. 2007.

15. J. McLean. A general theory of composition for trace sets closed under selective interleaving
functions. pages 79–93, May 1994.

16. R. Milner. Communication and concurrency. Prentice Hall, 1989.
17. G. D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program.,

60-61:17–139, 2004.
18. A. Popescu and J. Hölzl. Possibilistic noninterference formalized in Isabelle/HOL. Archive

for Formal Proofs, 2012. http://afp.sourceforge.net/entries/Possibilistic_

Noninterference.shtml.
19. A. Russo, J. Hughes, D. Naumann, and A. Sabelfeld. Closing internal timing channels by

transformation. In ASIAN 2006, volume 4435 of LNCS, pages 120–135. 2007.
20. A. Russo and A. Sabelfeld. Security for multithreaded programs under cooperative schedul-

ing. In Perspectives of Systems Informatics, volume 4378 of LNCS, pages 474–480. 2007.
21. A. Sabelfeld. The impact of synchronisation on secure information flow in concurrent pro-

grams. In Perspectives of System Informatics, volume 2244 of LNCS, pages 225–239. 2001.
22. A. Sabelfeld. Confidentiality for multithreaded programs via bisimulation. In International

Conference on Perspectives of System Informatics, LNCS, pages 260–273, 2003.
23. A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal on

Selected Areas in Communications, 21(1):5–19, 2003.
24. A. Sabelfeld and D. Sands. A PER model of secure information flow in sequential programs.

In European Symposium on Programming, volume 1576 of LNCS, pages 40–58, 1999.
25. A. Sabelfeld and D. Sands. Probabilistic noninterference for multi-threaded programs. In

IEEE Computer Security Foundations Workshop, pages 200–214, 2000.
26. G. Smith. A new type system for secure information flow. In IEEE Computer Security

Foundations Workshop, pages 115–125, 2001.
27. G. Smith. Probabilistic noninterference through weak probabilistic bisimulation. In IEEE

Computer Security Foundations Workshop, pages 3–13, 2003.
28. G. Smith. Improved typings for probabilistic noninterference in a multi-threaded language.

Journal of Computer Security, 14(6):591–623, 2006.
29. G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language.

In ACM Symposium on Principles of Programming Languages, pages 355–364, 1998.
30. D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow analysis. Journal

of Computer Security, 4(2,3):167–187, 1996.
31. S. Zdancewic and A. C. Myers. Observational determinism for concurrent program security.

In IEEE Computer Security Foundations Workshop, pages 29–43, 2003.

http://afp.sourceforge.net/entries/Possibilistic_Noninterference.shtml
http://afp.sourceforge.net/entries/Possibilistic_Noninterference.shtml

	Proving Concurrent Noninterference

