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Abstract

Craig interpolation is investigated for various types of formulae. By shifting the
focus from syntactic to semantic interpolation, we generate, prove and classify a se-
ries of interpolation results for first-order logic. A few of these results non-trivially
generalize known interpolation results; all the others are new. We also discuss some
applications of our results to the theory of institutions and of algebraic specifica-
tions, and a Craig-Robinson version of these results.
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1 Introduction

Craig interpolation is a landmark result in first-order logic [8]. In its original
formulation, it says that given sentences I'; and I'y such that I'; | 'y, I there
is some sentence I' whose non-logical symbols occur in both I'y and I'y, called an
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grant NNLOSAA23C, and by several Microsoft gifts. This paper is a full version
(including detailed proofs, more detailed explanations and constructions, and some
further results) of the homonymous conference paper [31].
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1 In this paper we adopt the usual convention to let = denote semantic deduction
(just like the satisfaction relation) and b syntactic deduction. Thanks to complete-
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interpolant, such that I'y = T" and ' |= T'y. This well-known result can also be
rephrased as follows: given first-order signatures ¥; and X5, a »;-sentence '
and a Ys-sentence ['y such that I'; s us, 2, there is some (31 NX5)-sentence
I such that I'y =5, I and I' =5, T's. The conclusion of studying interpolation
in various eztensions of first-order logic was that “interpolation is indeed [a]
rare [property in logical systems|” ([2], page 68). We show in this paper that
the situation is totally different when one looks in the opposite direction, at
restrictions of first-order logic: there is a plethora of interpolation results.

There are simple sub-logics of first-order logic, such as equational logic, where
the interpolation result does not hold for sentences, but it holds for sets of
sentences [35]. For this reason, as well as for reasons coming from theoretical
software engineering, in particular from specification theory and modulariza-
tion [3,15,16,10], it is quite common today to state interpolation more loosely,
in terms of sets of sentences I'y, I'y, and I'. This is also the approach that we
follow in this paper.

We call our approach to interpolation “semantic” because we shift the problem
of finding syntactic interpolants I' to a problem of finding appropriate classes
of models, which we call semantic interpolants. We present a precise charac-
terization for all the semantic interpolants of a given instance I'y =x,us, s,
as well as a general theorem ensuring the existence of semantic interpolants
closed under generic closure operators. Not all semantic interpolants corre-
spond to sets of sentences. However, when semantic interpolants are closed
under certain operators, they become aziomatizable, thus corresponding to
some sets of sentences. Following the fruitful idea from [35] of proving, for
equational logic, Craig interpolation from the Birkhoff axiomatizability theo-
rem, a similar semantic approach was investigated in [32], but it was only ap-
plied there to obtain Craig interpolation results for categorical generalizations
of equational logics. A similar idea is employed in [10], where interpolation
results are presented in an institutional [21] setting. While the institution-
independent interpolation results in [10] can potentially be applied to various
particular logics, their instances still refer to just one type of sentence: the one
that the particular logic comes with.

The conceptual novelty of our semantic approach to interpolation in this paper
is to keep the restrictions on I'y, I's, and I', or more precisely the ones on
their corresponding classes of models, independent. This way, surprising and
interesting results can be obtained with respect to the three types of sentences
involved. By considering several combinations of closure operators allowed by
our parametric semantic interpolation theorem, we provide many interpolation
results; some of them generalize known results, but most of them are new. For

ness, semantic and syntactic deductions coincide for first-order logic and for its
discussed sub-logics.



example, we show that if the sentences in I'y are first-order while the ones in I'y
are universally quantified Horn clauses (UHC’s), then those in the interpolant
I' can be chosen to be UHC’s, too. Surprisingly, sometimes the interpolant
is strictly simpler than I'; and I'y. For example, we show that the following
choices of the type of sentences in the interpolant I' are possible (see also
Table 1, lines 6, 13 and 22):

e If I'; consists of universal sentences and I'y consists of positive sentences,
then I' consists of universally quantified disjunctions of atoms;

e If I'; consists of UHC’s and I'y consists of positive sentences, then I' consists
of universally quantified atoms;

e If I'y consists of finitary first-order sentences and I's consists of infinitary
universally quantified disjunctions of atoms, then I' consists of finitary uni-
versally quantified disjunctions of atoms.

We shall also employ our semantic technique to obtain results about Craig
interpolation in institutions and about Craig-Robinson interpolation.

Motivation

Besides its intrinsic mathematical importance, Craig interpolation has applica-
tions in several areas of computer science. Such an area is formal specification
theory (see [23,16]). For structured specifications [3,37], interpolation ensures
a good, compositional, behavior of module semantics [3,5,32]. In choosing a
logical framework for specifications, one has to find the right balance be-
tween expressive power and amenable computational aspects. Therefore, an
intermediate choice between the “extremes”, namely full first-order logic on
the expressive side and equational logic on the computational side, might be
desirable.? We enable such intermediate logics (e.g., the positive- or (VV)-
logic) as specification frameworks, by showing that they have the interpola-
tion property. Moreover, the very general nature of our results w.r.t. signature
morphisms sometimes allows one to enrich the class of morphisms used for re-
naming usually up to arbitrary morphisms, freeing specifications from unnat-
ural (but technical) constraints, like injectivity of the renaming/translation.
Some technical details about the applications of our results to formal specifi-
cations can be found in Section 7.

Automatic reasoning is another area where interpolation is important and
where our results contribute. There, putting theories together while still taking

2 What one calls “extreme” depends of course on one’s particular interest — for
instance, the variable-substitution mechanism from equational logic might still be
two expensive computationally for certain verification purposes, where propositional
logic interpolation might be the desired computationally amenable extreme.



advantage, inside their union language, of their available decision procedures,
relies on interpolation in a crucial way [28,30]. Moreover, interpolation pro-
vides a heuristic to “divide and conquer” a proving task: in order to show
I'y FEsyus, a2, find some I' over the syntax ; N ¥y and prove the two “sim-
pler” tasks I'; =g, ['and I' =5, T's. For some simpler sub-logics of first-order
logic, such as propositional calculus, where there is a finite set of semantically
different sentences over any given signature, one can use interpolation also as
a disproof technique: if for each (X; N Xg)-sentence I' (there is only a finite
number of them) at least one of I'y =5, I or I' |=y, T's fails, then I'y F=x,0s, s
fails. The results of the present paper, although not effectively constructing
interpolants, provide information about the existence of interpolants of a cer-
tain type, helping reducing the space of search. For instance, according to one
of the cases of our main result, Theorem 5.3, the existence of a positive inter-
polant I' is ensured by the fact that either one of I'; or I'y is positive (lines 2,
3 of Table 1).

The current paper is an extended version of the conference paper [31]. We
have included the following additional content:

A couple of more interpolation results about first-order sub-logics.

A discussion of interpolation in institutions and some consequences for the
higher-order and second-order logics (Section 6).

A discussion of Craig-Robinson interpolation (Section 8).

Full proofs and more detailed explanations and motivations for the results
stated in [31].

The rest of the paper is structured into sections as follows. Section 2 intro-
duces some technical conventions and definitions. Section 3 recalls concepts
related to (many-sorted) first-order logic and interpolation, and gives exam-
ples showing failure of the interpolation property for sub-logics of first-order
logic. Section 4 introduces our semantic technique for establishing interpola-
tion in its most abstract form, in terms of operators on classes. Section 5 puts
to work the concepts of Section 4 in conjunction with known axiomatizability
results in order to obtain new interpolation results for sub-logics of first-order
logic. Section 6 studies interpolation in institutions, again in the light of our
abstract results from Section 4. Section 7 discusses potential applications of
our new results to the theory of formal specifications. Section 8 deals briefly
with a Craig-Robinson interpolation version of our results. Section 9 discusses
related work and draws conclusions. The Appendix contains proofs that were
omitted from the main text.



2 Technical Preliminaries

For simplifying the exposition, set-theoretical foundational issues are ignored
in this paper.® Given a class D, we let P(D) denote the collection of all
subclasses of D. For any C € P(D), let C denote D \ C, that is, the class of all
elements in D which are not in C. Also, given Cy,Cy € P(D) let [Cy, Co] denote
the collection of all classes C which include C; and are included in Cs. Note
that [C1,Cy] is empty if C; & C.

An operator on class D is a mapping F' : P(D) — P(D). Let Idp denote the
identity operator. For any operator F' on D, let Fized(F') denote the collection
of all fized points of F, that is, C € Fized(F) iff F(C) = C. An operator F' on
D is a closure operator iff it is:

e catensive (C C F(C)),
e monotone (if C; C Cy then F(C;) C F(Cs)) and
e idempotent (F(F(C)) = F(C)).

Given a binary relation R on D, let R also denote the operator on D associated
with R, assigning to each C € P(D) the class of all elements from D in relation
with elements in C, that is, R(C) = {¢ € D | (Ic € C) ¢ R '}. Notice that the
operator associated to a reflexive and transitive relation is a closure operator.

Given two classes C and D and a mapping U : C — D, we let U also denote
the mapping U : P(C) — P(D) defined by U(C') = {U(c) | ¢ € C'} for any
C’' € P(C). Also, we let U~ : P(D) — P(C) denote the mapping defined by
U D) = {ceC|Ulc) e D} for any D' € P(D). Given two mappings
U,V : P(C) — P(D), we say that U is included in V, written U T V, iff
U(C") CV(C') for any C' € P(C).

We write the composition of mappings in “diagrammatic order”: if f : A — B
and g : B — C then f; g denotes their composition, regardless of whether f
and g are mappings between sets, between classes, or between collections of
classes.

Definition 2.1 We say that the mappings U, V, U', V' (between classes, like

3 Yet, note that references to collections of classes could be easily avoided.



in the diagram below) form a commutative square iff V' ;U =U"; V.

BVANC
N

A commutative square as pictured above is a weak amalgamation square
iff for all b € B and ¢ € C such that U(b) = V(c), there exists some a' € A’
such that V'(a') = b andU'(a") = c. (We call this amalgamation square “weak”
because a’ is not required to be unique.)

3 First-Order Logic and Classical Interpolation Revisited

A (many-sorted) first-order signature is a triple (S, F, P) consisting of a set S
of sort symbols, a set F' of function symbols, and a set P of relation symbols
(not necessarily binary). Each function or relation symbol comes with a se-
quence of argument sorts, called its arity; function symbols come also with a
result sort. We let F,_ s denote the set of function symbols with arity w and
result sort s, and P, the set of relation symbols with arity w. Given a signa-
ture 3, the class of ¥-models, Mod(X) consists of all first-order structures A
interpreting each sort symbol s as a non-empty? set A, each function symbol
o as a function A, from the product of the interpretations of the argument
sorts to the interpretation of the result sort, and each relation symbol 7 as a
subset A, of the product of the interpretations of the argument sorts.

The set of X-sentences, Sen(X), consists of the usual first-order sentences,
i.e., first-order formulae with no free variables, where the first-order formulae
are built from equational and relational atoms by iterative applications of the
logical connectives A, V, =, = and quantifiers V, 3. The satisfaction of sentences
by models (A |= ) is the usual Tarskian notion. The satisfaction relation
can be extended to a relation = between classes of models M C Mod(X)
and sets of sentences I' C Sen(X): M E T iff A | v for all A € M and
v € I'. This further induces two operators * : P(Sen(X)) — P(Mod(X%)) and
F i P(Mod(X)) — P(Sen(X)), defined by I'* = {A | {A} =T} and M* = {~ |
M = {7}} foreach I" C Sen(X) and M C Mod(X). The two operators _* form
a Galois connection between (P(Sen(X)),C) and (P(Mod(X)), C). The two
composition operators _* ;_* are denoted _* and are called deduction closure
(the one on sets of sentences) and aziomatizable hull (the one on classes of

4 Birkhoff-style axiomatizability, which will be used intensively in this paper, de-
pends on the non-emptiness of carriers [35].



models). We call classes of models closed under _* elementary classes and sets
of sentences closed under _* theories (terminology taken from [26]). If T',T”
C Sen(X), we say that I' semantically deduces I, written I' = T7, iff I'* C I,

Given two signatures ¥ = (S, F, P) and ¥/ = (S', F’, P'), a signature mor-
phism ¢ : ¥ — Y is a triple (¢, °7, ¢"') mapping the three components in a
compatible way. (When there is no danger of confusion, we let ¢ denote each
of the mappings ¢*t, ¢, ¢".) Let ¢ : 3 — Y/ be a signature morphism. It has
an associated sentence translation Sen(¢) : Sen(3) — Sen(X'), which renames
the sorts, function-, and relation- symbols according to ¢. Most of the times
we write ¢ for Sen(¢). The reduct according to ¢ of a ¥'-model A’, denoted
A'ly, is the X-model defined by (A'[4)a = A:j)(a) for each sort, function, or
relation symbol « in X. Let Mod(¢) : Mod(¥X') — Mod(X) denote the mapping
A" — A'l 4. Notice that Sen is covariant, while Mod is contravariant. The sat-
isfaction relation has the important property that it is invariant under change
of notation [21]:

Proposition 3.1 For each v € Sen(X) and A’ € Mod(X'), A" E ¢(vy) iff
Ay .

Given two Y-models A and B, a morphism h : A — B is an S-sorted func-
tion (hs : Ay — By)ses that commutes with the operations (i.e., for each

function symbol o, say of arity s;...s, and sort s, hs(Ay,(ai,...,a,)) =
B, (hs, (a1), ..., hs,(ay)) forall (aq,...,a,) € As, X...xX A, ) and preserves the
relations (i.e., for each predicate symbol 7, say of arity sq...s,, (a1,...,a,) €

A, implies (hg, (a1), ..., hs, (a,)) € By for all (a1,...,a,) € As, X ... X Ag,).
Models and model morphisms form a category, with composition defined as
sort-wise function composition; we also let Mod(32) denote it, just like the class
of models. For each signature morphism ¢ : ¥ — ¥’  the mapping Mod(¢)
can be naturally extended to a functor between Mod(¥X') — Mod(X), defined
on model morphisms similarly to the way it is defined on models. A surjective
(injective) morphism is a morphism which is surjective (injective) on each sort.

Because of the weak form of commutation imposed on morphisms w.r.t. the
relational part of models, relations and functions do not behave similarly along
arbitrary morphisms, but only along closed ones: a morphism h : A — B is
called closed if the relation-preservation condition holds in the “ift” form, that
is, for each predicate symbol 7, (a1, ...,a,) € A; iff (hs,(a1),..., ks, (a,)) €
B,. A morphism h : A — B is called strong if the target relations are cov-
ered through h by the source relation, that is, for each predicate symbol 7 and
(b1,...,b,) € By, there exists (ay, ..., a,) € Ay such that (hg, (a1),. .., hs, (ay))
(b1, ...,b,). Closed injective morphisms and strong surjective morphisms cap-
ture the notions of embedding and homomorphic image, respectively.

We can now define the syntactic counterpart of Definition 2.1 in the case of



first order logic. (We call it “syntactic” because the commutative diagram is
given using morphisms of signatures.)

Definition 3.2 A square of signature morphisms as in the diagram

/\
\/

1s called a weak amalgamation square provided that for all models M, €
Mod(¥X;) and My € Mod(X2) with Mi[s, = Male,, there exists a X' -model M’
such that M'y, = My and M'lg = M.

Notice that a signature square is a weak amalgamation square iff its image by
the functor Mod is a weak amalgamation square according to Definition 2.1.

Interpolation

The original formulation of interpolation [8] is in terms of signature intersec-
tions and unions, that is, w.r.t. squares which are pushouts of signature inclu-
sions. However, subsequent advances in modularization theory [3,15,16,10,4]
showed the need of arbitrary pushout squares or even weak amalgamation
squares. A general formulation of interpolation is the following:

Definition 3.3 Assume a commutative square of signature morphisms (see
diagram) and two sets of sentences I'y C Sen(X;), 'y C Sen(Xs) such that
&h(I1) Ex ¢1(Ta) (i-e., T'y implies T'y on the “union language” ¥'). An in-
terpolant for I'y and 'y is a set I' C Sen(X) such that Ty s, ¢1(I) and

¢2(I') =, Ta.
v \
\ /

The following three examples show that, without further restrictions on sig-
nature morphisms, an interpolant I' may not be found with the same type of
sentences as [y and I'y, but with more general ones. In other words, there are
first-order sub-logics which do not admit Craig Interpolation within themselves



but in a larger (sub-)logic. The first example below shows a square in uncon-
ditional equational logic which does not admit unconditional interpolants, but
admits a conditional one:

Example 3.4 Consider the following pushout of algebraic signatures, as in
[32]: ¥ = ({s},{d1,d2 : s — s}), 31 = ({s},{d1,da,c : s — s}), ¥y =
({s},{d:s—s}), ¥ = ({s}, {d,c:s— s}), all morphisms mapping the sort
s to itself, ¢1 and ¢o mapping di and do to themselves and to d, respectively,
¢y mapping dy and dy to d and c to itself, and ¢ mapping d to itself.

Take Ty = {(Vx)do(z) = c(di(z)), (Vz)di(de(z)) = c(da(z))} and Ty =
{(Vx)d(d(x)) = d(z)} to be sets of ¥i-equations and of Yo-equations, re-
spectively. It is easy to see that 'y implies I's in the “union language”, i.e.,
¢5(T1) E ¢1(T3). ButT'y and Ty have no (unconditional-)equational S-interpolant,
because the only equational ¥-consequences of I'y are the trivial ones, of the
form (VX)t = t with t a X-term (since all the nontrivial equational -
consequences of 'y contain the symbol ¢). Yet, I'y and T's have a conditional-
equational interpolant, e.g., {(Vz)d(x) = da(x) = di(z) = dyi(dy(2))}.

The next example shows a situation in which the interpolant cannot even be
conditional-equational; it can be a more complex first-order sentence, though:

Example 3.5 Consider the same pushout of signatures as in the previous
example and take I'y = {(Vz)da(x) = di(c(z)), (Vx)di(de(z)) = do(c(x))}
and Ty = {(Vz)d(d(z)) = d(z)}. Again, ¢4(I'1) E ¢1(T'2). But now I'y and
I's have no conditional-equational Y-interpolant either, because all nontrivial
conditional equations we can infer from I'y contain ¢ (to see this, think in terms
of the deduction system for conditional equational logic). Nevertheless, I'y and
Ty have a first-order interpolant, e.g., {((Vx)dy(x) = da(z)) = ((Vy)di(y) =
di(di(y)))}-

An obstacle to interpolation inside the desired type of sentences in the exam-
ples above is the lack of injectivity of ¢ on operation symbols; injectivity on
both sorts and operation symbols implies conditional equational interpolation

[34).

The following example, taken from [4], shows that first-order logic does not
admit interpolation either without making additional requirements on the
square’s morphisms.

Example 3.6 Let ¥ = ({s1, 52}, {d1 :— $1,d2 :— s2}), 1 = ({s},{d1,ds :—
s}), Yo = ({s},{d :— s}), ¥ = ({s},{d :— s}), all the morphisms mapping
all sorts to s, ¢1 mapping dy and dy to themselves, and all the other mor-
phisms mapping all operation symbols to d. In [4], it is shown that first-order
interpolation does not hold in this context. For instance, let Ty = {—(dy = d3)}

and 'y = {=(d = d)}. Then obviously ¢5(I'1) | ¢1(['2), but T'y and T'y have



no first-order Y-interpolant. Indeed, assume by contradiction that there exists
a set T' of X-sentences such that T'y = ¢1(T') and ¢o(T") | Ty, let A be the
Y1-model with Ay = {0,1}, such that Ay, = 0 and Ag, = 1. Let B denote
Aly,. We have that Bs, = B,, = {0,1}, By, =0, By, = 1. Because A =T
and 'y = ¢1(), it holds that B = T'. Define the X-model C to be the same
as B, just that one takes Cyq, = Cy, = 0. Now, C' and B are isomorphic, so
C E T; but C admits a ¢o-extension D, and, because ¢o(T") = T'y, we get
D = Ty, which is a contradiction, since no 3y-model can satisfy —(d = d).
What one would need here in order to “fix” interpolation is some extension
of many-sorted first-order formulae which would allow one to equate terms of
different sorts, in the form ti.s1 = ty.59; alternatively, an order-sorted second-
order extension, allowing quantification over sorts, a special symbol < which
15 to be interpreted as inclusion between sort carriers, and membership asser-
tions t : s, meaning ‘t is of sort s” (in the spirit of [25]), would do, because
we could formally state in X that there exists a common subsort s’ of s1 and
Sy such that dy : 8" and —(ds : §').

We shall shortly prove that for a pushout square to have first-order interpola-
tion, it is sufficient that it has one of the morphisms injective on sorts. This is,
up to our knowledge, the most general known effective criterion for a pushout
to have first-order interpolation. (The same result is obtained in [6] and [17]
using different techniques.)

4 Semantic Interpolation

The interpolation problem, despite its syntactic nature, can be regarded se-
mantically, on classes of models. Indeed, by the sentence-model duality and
the satisfaction condition (Proposition 3.1), we have that:

o 5(I') = ¢4 (I'2) iff ¢5(I'1)* € ¢ (I'2)" iff Mod(¢5)~H(I')) € Mod(¢y) =" (I'3).
o 't () I C oy ()i Iy € Mod(¢) = (I').
o ¢o(T) |= T iff ¢o(1)* C T iff Mod(¢y) " (I') C T

Therefore, the interpolation property can be restated in terms of inclusions
between classes of models only. If T" is an interpolant of I'y and I'y, we will call
' a semantic interpolant of I'} and I';. These suggest defining the following
broader notion of “semantic interpolation”:

10



Definition 4.1 Consider the following commutative diagram

B%A‘XC
N

(where the objects are classes and the arrows are mappings between classes)
together with some M € P(B) and N € P(C) such that V'~ (M) CU' " (N).
We say that K € P(A) is a semantic interpolant of M and N iff M C
UHK) and VHK) CN.

If we take A, B, C, D to be Mod(¥), Mod(%,), Mod(Xs), Mod(¥') and U, V,
U, V' to be Mod(¢y), Mod(ps), Mod(dy), Mod(¢}), respectively, we obtain
the concrete first-order case. The connection between semantic interpolation
and classical logical interpolation holds only when one considers classes which
are elementary, i.e., specified by sets of sentences, and the interpolant is also
elementary. Rephrasing the interpolation problem semantically allows us to
adopt the following “divide and conquer” approach, already sketched in [32]:

(1) Find as many semantic interpolants as possible without caring whether
they are axiomatizable or not (note that “axiomatizable” will mean “el-
ementary” only within full first-order logic, but we shall consider other
logics as well).

(2) Then, by imposing axiomatizability closure properties on the two starting
classes of models, try to obtain a closed interpolant.

Let Z(M,N) denote the collection of all semantic interpolants of M and .
The following gives a precise characterization of semantic interpolants together
with a general condition under which they exist.

Proposition 4.2 Under the hypothesis of Definition 4.1:

(1) ZM,N) = [UM),VN)].
(2) If the square is a weak amalgamation square then Z(M,N') # (.

Proof.

1. For any K C A, we have that M C U~!(K) is equivalent to U(M) C K;
moreover, one can see that V-'(K) € N is equivalent to X C V(NV). (In
categorical terms, U ! is the left adjoint of U and K +— V(K) is the left adjoint
of V1) Therefore, K is a semantic interpolant for M and N iff U(M) C K C

VN).

11



2. All we need to show is that U (M) C V(N), i.e., that for any a € U(M), a is
not an element of V(N). Suppose it were and consider b € M and ¢ € N such
that U(b) = a = V(c). From the weak amalgamation property we deduce that
there exists some o’ € D such that V'(a’) = b and U’(a’) = ¢. Since b € M, it
follows that a’ € V'~ (M); since V""" (M) C U (N), it further follows that
a' € U (N), ie., that U'(a') € N'. However, this is in contradiction with the
fact that ¢ = U’'(a’) was chosen from . O

Definition 4.3 Given two classes C and D, a mapping U : C — D and a
pair of operators F' = (F¢ : P(C) — P(C), Fp : P(D) — P(D)), we say that
U preserves fixed points of F if U(Fized(F¢)) C Fived(Fp), that is, for
any fixed point of Fr we obtain through U o fixed point of Fp; also we say that
U lifts F if Fp ;U™ TUY; Fe, that is, for any D' € P(D) and any ¢ € C,
ZfZ/{(C) S FD<D/) then c € FC(Z/{_l(D’)).

Preservation of fixed points of operators is a property frequently encountered
in logic and algebra. Assume U is the reduct functor Mod(¢) for some sig-
nature morphism ¢. If F' is closure under ultraproducts, preserving its fixed
points means commuting with ultraproducts; if F' is closure under quotients,
U preserving its fixed points means being able to expand each quotient of
some model U(M) to a quotient of M. “Lifting” is a somehow less intuitive
property, but in cases of operators given by relations it tends to be dual to
preservation of fixed points (see Proposition 4.5 below). For example, if U is
as above and if I is closure under quotients, U lifting F' means being able to
expand each model for which U(M) is a quotient to a model for which M is
a quotient. Our main results in Section 5 will employ lifting and fixed-point
preserving properties for a large variety of concrete operators on classes of
models.

The following theorem is at the heart of all our subsequent results. It gives
general criteria under which a weak amalgamation square admits semantic
interpolants closed under some generic operators.

Theorem 4.4 Consider a weak amalgamation square as in the diagram below

and two pairs of operators F' = (Fp : P(B) — P(B), Fa: P(A) — P(A)) and
G=(Ge:P(C)—P(C),Gy:P(A) — P(A)) such that:

F.A,”-G.A

/\
\/

12



(1) Fa;Ga;Fa=Fa;Ga.

(2) Ge and G4 are closure operators.
(3) U preserves fixed points of F.

(4) V lifts G.

Then for each M € Fized(Fg) and N' € Fized(G¢) such that V'~ (M) C
U N, M and N have a semantic interpolant K in Fized(F4)NFized(G.4).

Proof.

Take K = G4(U(M)). Let us first show that K € Fized(F4) N Fized(G ).
We have that K € Fized(G 4), since G4 is idempotent. Also, since M €
Fized(Fg) and U preserves fixed points of I, we have that U(M) € Fized(Fy).
Therefore Fiu(K) = FA(GA(U(M))) = FA(GA(FAUM)))) = Ga(FaUU(M))) =
GAU(M)) = K, that is, K € Fixed(F4).

Let us next show that K is a semantic interpolant of M and N. Since G 4 is
extensive, U(M) C G4(U(M)), whence M C U~(K). Using that V lifts G,
we obtain that V1K) = V" HG4(U(M))) C Ge(V(U(M))). From Propo-
sition 4.2 we know that U(M) is a semantic interpolant of M and N, so
V=HU(M)) C N. Using that G¢ is monotone, we get that Ge(V~1({U(M))) C
Ge(N) = N. Thus V1K) C N. We obtained that K is also a semantic in-
terpolant of M and N. O

The operators above will be conveniently chosen in the next section to be clo-
sure operators characterizing axiomatizable classes of models. The two types
of axiomatizability that we consider as attached to F' and G need not be the
same, i.e., the classes M and N need not be axiomatizable by the same type
of first-order sentences. And in the most fortunate cases, as we shall see below,
the interpolant is able to capture and even strengthen the properties of both
classes.

The remaining of this section provides some general properties of operators
(w.r.t. their generating relations, composition, preservation and lifting), that
will be used in our subsequent interpolation results. The rather straightforward
proofs of these properties are exiled into the appendix.

Operators given by relations

The intuition for the word “lifts” used in Definition 4.3 comes from the case
when the operators F¢ and Fp are given by binary relations. Because through-
out the paper many of the employed operators are associated to (reflexive
and transitive) relations, let us next give an easy criterion for a mapping to
lift /[preserve fixed points of] such an operator.

13



Proposition 4.5 Consider two classes C and D, a mapping U : C — D and
a pair of relations R = (Re, Rp), with Re CC X C and Rp € D x D.° Then
the following hold:

(1) U lifts R if and only if for any elements ¢ € C and d € D such that
dRpU(c), there exists ¢ € C such that U(c') = d and ¢ Rec.

(2) Suppose Re is reflexive and transitive. Then U preserves fized points of
R if and only if for all elements ¢ € C and d € D such that U(c)Rpd,
there ezists ¢ € C such that U(c') = d and cRec.

(3) Suppose Re is reflexive and transitive. Then U preserves fized points of
R if and only if U lifts (Rz', Rp').

(4) Let RY be the pair (RS, RY), where RS and R}, are the transitive closures
of Re and Rp respectively. Then U lifts R if U lifts R.

Composed operators

Since the closure operators coming from axiomatizability are in general com-
positions of other closure operators, we shall need the following results in
order to break composed operators into their components that can be treated
separately.

Proposition 4.6 Let A, B,C,D be classes and consider the following dia-

gram:
P(A)V=P(B) " ~P(C)V~P(D)

—

U/
such that U C U'. Then:

(1) V,;UCVU.
(2) V' monotone implies that U ; V' T U ; V.

Proposition 4.7 Let F' and G be operators on the same class D such that F
1s a closure operator. The following hold:

(1) If G;FC F ;G then F;G;F =F;G.

(2) If G is also a closure operator, then F ;G is a closure operator iff G ; F C
F;G.

Proposition 4.8 Consider two classes C and D, a mapping U : C — D and

two pairs of operators F = (Fe, Fp) and G = (Ge,Gp). Then the following

hold:

(1) If G is monotone andU lifts F' and G, thenU also lifts (F¢ ; Ge, Fp ;Gp).

5 Recall that Rc and Rp also denote the induced operators.
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(2) If Fe and G¢ are extensive, G¢ is monotone and U preserves fized points
of F and G, then U also preserves fixed points of (F¢ ;Ge, Fp ;Gp).

(3) If Fe and G¢ are extensive and Fg; Ge is idempotent, then Fe; Ge; Fe
= Fc; Gc.

5 New Interpolation Results for Combinations of First-Order Sub-
Logics

In this section we give a series of novel interpolation results for various types
of first-order sentences.

Recall the following types of first-order sentences:

o FQO: first-order sentences.

e Pos: positive sentences, that is, constructed inductively from atomic formu-

lae by means of any first-order constructs, except negation.

V: sentences (Vxy,zo,. .., xx)e, where e is a quantifier free formula.

e J: sentences (Jzy,xq,. .., xr)e, where e is a quantifier free formula.

o UH, universal Horn clauses, that is, (Voy,xa, ..., 2)(e1 Aea... Ney) = e,
with e;, e atomic formulae.

o UA, universal atoms, that is, (Vxy, z, ... zx)e, where e is an atomic formula.

e VYV, universally quantified disjunctions of atoms, i.e., (Y1, xs,...,x%)(e1 V
ey ...V e,) where e; are atomic formulae.

o FOL, UH, YV, the infinitary extensions of FO, UH, VV, respectively;
in the former case, infinite conjunction and disjunction are allowed; in the
latter two cases, e; Aey... Aey, and e; Vey... V e, are replaced by any
possibly infinite sentence- conjunction and disjunction respectively.

e [ sentences of the form
Ce) (VY1 91,1 - G (Y Ui - U Nzt Vit €ues
where k,7,p;, s, € N, and each e, , is either atomic, or of the form
—o(yi, ...yl ) =y, or of the form —m(y}, ..., yP).

We next recall some basic model theoretic notions, such as submodel, product,
filter, filtered product, ultrafilter, ultraproduct, ultrapower and ultraradical;
the reader is referred to [7,26] for more intuition and discussion on these
notions.

Let (S, F, P) be a first-order signature.
e A model B is a submodel of A if the carrier set of B is included in that of A

and operations and relations in B are interpreted as the restriction of those
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in A to the carrier of B.

Given a family (A;);cr of S-sorted sets (where each A; is thus a family
(A;s)ses), the product of this family, denoted [];c; A;, is the S-sorted set
(Bs)ses, where each By is {(a;s)ier @ Vi.a; s € A; s}. The product of a family
of models (A;);er is the usual set-theoretic one, canonically constructed on
the product of the (S-sorted) carrier sets A;.

A filter F on I, F C P(I), is characterized by the following: I € F, ) & F,
F is closed under (finite) intersection (if A, B € F then AN B € F) and if
Ae Fand AC BCI,then B e F.

Given a family (A;);e; of models and a filter F on I, the filtered product
of (A;)ier over F, denoted [[r A;, has the carrier B = [[;c; A;/=, where
= = (=;)ses is the S-sorted equivalence given by: (a;s)ier =s (bis)icr iff {i €
I'|a;s="0b;s} € F. Operations and relations are defined by B,((a})icr/=s,
voo s (@M)ier) =s,) = (Bolai,...,a"))ier/ =s for 0 € Fy . s and By =
{(@)ier) Zovr- s (@@hicr/Z0) | L € 1| (aly....al) € Ain} € F} for
T e Py s,

e An ultrafilter is a filter F such that if AUB € F then A€ F or B € F.
o If F is an wltrafilter, then [[r A; is said to be an ultraproduct. If, moreover,

all A;’s are equal to some model A, then [[z A; is written A/ and said
to be the ultrapower of A over F. In this latter case, A is said to be an
ultraradical of A’/ x.

The main point to notice in the above definitions is that they are set-theoretical,
and not categorical, defining objects that are genuinely unique, and not just
unique up to isomorphism. In order to emphasize this fact, we shall some-
times refer to the above defined products/filtered products/ultraproducts as
“canonical products/filtered products/ultraproducts”.

Consider the following binary relations on ¥-models:

A S B iff B is isomorphic to a submodel of A.

A Ext B iff B is isomorphic to an extension of A, i.e., to a model C' such
that A is a submodel of C.

A H B iff there exists a surjective morphism between A and B.

A Hs B iff there exists a strong surjective morphism between A and B.

A Ur B iff A and B are isomorphic or B is an ultraradical of a model
isomorphic to A (in other words, if A is either isomorphic to B or isomorphic
to an ultrapower of B).

Recall that any binary relation, in particular the ones on Mod(X) above, has
an associated operator bearing the same name. Besides these operators, we
shall also consider the operators P, Fp, and Up on Mod(X) defined below:

P(M) = M U {all products of models in M}.
Fp(M) = M U {all filtered products of models in M}.
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o Up(M) = M U{all ultraproducts of models in M}.

The next proposition collects some known axiomatizability results. For details,
the reader is referred to [7] (Section 5.2), [26] (Sections 25 and 26), [1], [29], and
[10]. Below, e.g., the pair (UA, {S, H, P}) corresponds to the famous Birkhoff
Theorem (a class of algebras is equationally axiomatizable iff it is closed under
subalgebras, homomorphic images, and products) and the pair (FO, { Up, Ur})
corresponds to the Keisler-Shelah Theorem (a class of first-order models is
elementary iff it is closed under ultraproducts and ultraradicals).

Proposition 5.1 If the pair (T, Ops), consisting of a type T of X-sentences

and a set Ops of operators on Mod(X), is one of (FO,{Up, Ur}), (Pos, { Up, Ur, H}),
(V, {Sv Up}), (El’ {Ext7 Up, UT}), (UHv {Sa Fp}), (U.A, {Sv H, P}), (V\/, {HS, S» Up});
(O,{Hs, Up}), UH,{S, P}), (VWeo,{Hs, S}), then M C Mod(X) is of the
form T with T' CT iff M s a fixed point of all the operators in Ops.

Consider the following syntactic properties for a morphism ¢ : ¥ — Y', where
Y= (S,F,P)and ¥ = (5, F', P'):

(IS) ¢ is injective on sorts.
(IR) ¢ is injective on relation symbols.
(I) ¢ is injective on sorts, operation- and relation- symbols
(RS) there are no operation symbols in F’ \ ¢(F), having the result sort in

¢(5).

The next proposition, whose proof can be found in the appendix, relates syn-
tactic properties of signature morphisms with semantic lifting and preserving
properties of the corresponding operator on models.

Proposition 5.2 For each signature morphism ¢ : 3 — 3/,

(1) Mod(¢) preserves fized points of P, Fp, Up.

(2) (I) = Mod(¢) lifts S, H, Hs and preserves fized points of Ext [10].
(3) (IS) and (RS) = Mod(¢) preserves fized points of S, Hs, and lifts Ext.
(4) (IS), (IR) and (RS) = Mod(¢) preserves fized points of H.

(5) (IS) = Mod(¢) lifts Ur.

Table 1 lists interpolation results for various types of sentences. It should be
read as: given a weak amalgamation square of signatures as in Definition 3.3
and Ty C Sen(3), Ty C Sen(3,), if T'; and T’y are sets of sentences of the
indicated types such that ¢4(I'1) = ¢}(I'2), then they have an interpolant
I’ of the indicated type; the semantic conditions under which this situation
holds are given in the Mod(¢q)- and Mod(¢py)- columns of the table, with
the meaning that Mod(¢q) preserves fixed points of the indicated operator
and Mod(¢s) lifts the indicated operator. (Id is the identity operator.) These
semantic conditions are implied by the syntactic conditions listed in the ¢;-
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Iy Iy r Mod(¢1) | Mod(¢2) $1 b2
Type | Type | Type | preserves lifts
1 FO FO FO Up Ur any (IS)
2 FO Pos | Pos Up H; Ur any (1)
3 Pos FO | Pos Up; H Ur (IS), (IR), (RS) (IS)
4 FO v v Up S any (1)
5 FO v Up;S Id (IS), (RS) any
6 Pos \a% Up;S Hs (IS), (RS) (I)
7 FO 3 3 Up Ext; Ur any (IS), (RS)
8 3 FO 3 Up ; Ext Ur (I) (IS)
9 FO UH UH Fp S any (I)
10 | UH FO UH Fp;S Id (IS), (RS) any
11 | UH UA UA p S, H any (1)
12 UA FO UA P;SH Id (IS), (IR), (RS) any
13 | UH Pos | UA P;S H (IS),(RS) (I)
14| FO ha% ha% Up S Hs any (1)
15| W FO v | Up;S;Hs Id (IS), (RS) any
16 | FO O O Up Hs any (I)
17 O FO O Up ; Hs Id (IS), (RS) any
18 | UHs | UA UA P S H any (I)
19 | UHw | FOx | UHs P;S Id (IS), (RS) any
20 | FOs | VWeo | VWao Id S Hs any (1)
21 | Weo | FOx | VWeo S Hs Id (IS), (RS) any
22| FO | VWx ha% Up S Hs any (1)
Table 1

A summary of the Craig interpolation results for first-order sub-logics.

and ¢o- columns; “any” means that no restriction is posed on the signature
morphism.

Theorem 5.3 The results stated in Table 1 hold, i.e., in each of the 22 cases,
if &1 and ¢y satisfy the indicated properties, I'y and I's have the indicated types
and ¢4(I'1) | @1 (D), then there exists an interpolant I' of the indicated type.

Proof.
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Let F' and G be the operators in the Mod(¢;)- and Mod(ps)- column respec-
tively, and let T, 77,715 be the types of sentences listed on the same line in
the columns of I', I'y, I'; respectively. Notice that, by language abuse, we let F’
denote either of the two operators having the same shape, Iy, : P(Mod(X)) —
P(Mod(X)) and Fy, : P(Mod(X,)) — P(Mod(%,)). Likewise, G' denotes either
of the two operators having the same shape, Gy, : P(Mod(X)) — P(Mod(%))
and Gy, : P(Mod(Xs)) — P(Mod(35)). Thus F has the form Fi;...; Fy and
G has the form Gy;...; G, where k,l € {1,2,3}. (For example, considering
row 11 in Table 1, we have that k =1, F = F; = P, | = 2 and G = G1;Go,
where G; = S and G5 = H.) Because, in each case in the table, all F}’s are
extensive and monotone, we obtain that a set of models is a fixed point of F’
iff it is a fixed point of all of Fi, ..., Fj. And likewise for G and G4, ..., G;.

By Proposition 5.1, I'1* is a fixed point of all of Fy, ..., F}, hence of F', and
I's* is a fixed point of all of GGy, ..., Gy, hence of G. If we manage to show that
the hypotheses (1)-(4) of Theorem 4.4 are satisfied for F, G,U = Mod(¢1),V =
Mod(¢s),U" = Mod(¢}) and V' = Mod(¢}), then we obtain, by the mentioned
theorem, a semantic interpolant IC for I'1* and I'y* which is a fixed point of
F and G, hence a fixed point of all of F},..., F}, Gy,...,G,. Finally, applying
Proposition 5.1, we obtain that there exists a set of sentences I' C Sen(X) of
type indicated in the table such that I'* = K, making I" the desired (syntactic)
interpolant for I'y and I's.

So we are left with verifying the hypotheses of Theorem 4.4.

We check hypothesis 1. All the operators Fi,..., Fj, G1,...,G; are extensive
and monotone and moreover, by Proposition 5.2, Mod(¢;) preserves the fixed
points of each of F1, ..., Fy and Mod(¢,) lifts each of G, . .., G;. Thus, accord-
ing to Proposition 4.8.(3), all we need to check is that F'; G is idempotent. It
is actually the case that F';G is a closure operator, because it coincides with
the axiomatizability hull operator corresponding to the type T'. (Indeed, by
Proposition 5.1, a class of models is T-axiomatizable iff it is a fixed point of
all of F,..., Fy,Gy,..., Gy, i.e., a fixed point of F and G.)

We check hypothesis 2. Well-known closure operators are Id, S, H, Hs (ob-
viously) and Ur (see [7]). Moreover, H ; Ur, Ezt; Ur, S ;H, and S ; Hs are
closure operators by Proposition 4.6.(2) because their components are closure
operators and because Ur;H C H ; Ur, Ur ; ExtC Ext;Ur, H ;ST S ;H,
and Hs ;S C S ; Hs. Indeed, the first two equalities hold because, for a model
A, an ultrapower A’ /F and a homomorphic image (extension) B of A, B! /F
is an homomorphic image (extension) of A!/F. The last two equalities hold
because, if h: B — C'is a (strong) surjective morphism and A is a submodel
of C, then h™'(A), which is a submodel of B with induced operations and
relations, yields a restriction-corestriction of h to h™'(A) — A which is also a
(strong) surjective morphism.
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Finally, we check hypotheses 3 and 4, i.e., prove that if ¢; and ¢, are as
indicated then Mod(¢,) preserves fixed points of F' and Mod(¢s) lifts G. By
Proposition 5.2, Mod(¢,) preserves fixed points of all of Fi, ..., Fy, and Mod(¢2)
lifts all of G, ..., G;. Moreover, since all the involved operators are monotone
and extensive, we can apply Proposition 4.8.(1,2) to obtain that Mod(¢p;)
preserves fixed points of F' and Mod(¢,) lifts G. O

Let us discuss the results listed in the table above. The syntactic conditions on
signature morphisms are in many cases weaker than, or equal to, injectivity
(I). In fact, if we consider only relational languages, i.e., without operation
symbols, all the conditions are so (because (RS) becomes vacuous). As for
operation symbols, it is interesting to note that (RS) comprises the principle
of data encapsulation expressed in algebraic terms [19]. As also suggested by
the examples in Section 3, it seems that the degree of generality that one
can allow on signature morphisms increases with the expressive power of a
logic. For instance, line 1 says that first-order interpolation holds whenever
the right-hand morphism is injective on sorts (and, in fact, since in full first-
order logic Craig interpolation is equivalent to the symmetrical property of
Robinson consistency, ® either one of the morphisms being injective on sorts
would do). On the other hand, universal Horn clauses (lines 9 and 10), and then
universal atoms (lines 11, 12, 13) require stronger and stronger assumptions
on the signature morphisms. Our results say more than interpolation within
a certain type T' of sentences: the interpolant has type T provided one of the
starting sets has type T'. Particularly interesting results are listed in lines 6,
13, and 22, where the interpolant strictly “improves” the type of both sides.

Regarding the finiteness of the interpolant T, as noted in [10], it is easy to see
that if T'y is finite, by the compactness of first-order logic, the interpolant I"
can be chosen to also be finite in our cases of finitary first-order sub-logics.
On the other hand, the finiteness of I'y does not necessarily imply the finite
axiomatizability of ['*. Indeed, assume that > = >y C 3y, ¢, is the inclusion
of signatures, and ¢ the identity. Then ¥’ = ¥, ¢] = ¢1, and ¢, = ¢o. Thus
the finite interpolation problem comes to the following: assuming I'; = T’y
in ¥, find a finite I' C Sen(X) such that I'y = T' = I'y; in other words,
prove that there exists a finite subset A; of I'1* consisting of ¥-sentences such
that A; = I'y in X. But this cannot be always achieved, as shown by the
case where T'y is a X-theory (e-closed set of sentences), finitely axiomatizable
over the extended signature >; by I'y, but not finitely axiomatizable over X..
(Such a theory is known to exist by a famous theorem of Kleene.) In our
model-theoretical approach, the impossibility of relating the finiteness of I'y
to that of I is illustrated by the fact that the operator of taking ultraproduct
components (classically related to finite axiomatizability [7]) is not preserved
by reduct functors (but it is lifted by them).

6 This is not true however for our examples of first-order sub-logics.
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6 Interpolation in Institutions

Institutions were introduced in [20] with the original goal of providing a logic-
independent framework for algebraic specifications of computer science sys-
tems. However, by isolating the essence of a logical system in the abstract
satisfaction relation, institutions proved to be suitable for developing what
was coined as “abstract abstract model theory” [37] (so to distinguish this
approach from the less abstract “abstract model theory” as presented in [2])
- see [27] for an up-to-date discussion on institutions as abstract logics. Here
we compare our set-theoretical interpolation result in Theorem 4.4 with an-
other very generic result obtained in [10] in the institutional setting, showing
that the latter follows from the former. Then we prove another institutional
corollary of Theorem 4.4, showing that interpolation in a logic is brought by
expressive enough universal quantification. Interpolation results for (language-
finitary variants of) second- and higher-order logics (with standard models)
are instances of this corollary.

An institution [20,21] consists of:

(1) A category Sign, whose objects are called signatures.

(2) A functor Sen : Sign — Set, providing for each signature ¥ a set whose
elements are called (X-)sentences.

(3) A functor Mod : Sign — Cat, providing for each signature X a cat-
egory whose objects are called (X-)models and whose arrows are called
(3-)morphisms.

(4) A relation =5 C |Mod(X)| x Sen(X) for each 3 € |Sign|, called (X-) satis-
faction, such that for each morphism ¢ : ¥ — ¥/ in Sign, the satisfaction
condition

M’ sy Sen(¢)(e) iff Mod(¢)(M') =5 e

holds for all M’ € |Mod(¥')| and e € Sen(X). Following the usual nota-
tional conventions, we sometimes let _[, denote the reduct functor Mod(¢)
and let ¢ denote the sentence translation Sen(¢).

In Section 3, when we defined the signatures and models (together with their
morphisms) and the sentences of first-order logic and when we talked about
the invariance of satisfaction under change of notation, we were actually de-
scribing the institution of first-order logic [21]. All the syntactic-detail free
concepts defined there for first-order logic (like deduction closure, axiomatiz-
ability hull, theories, elementary classes) make sense in the abstract framework
of institutions as well. Other examples of institutions include the second-order
and higher-order logics, which will be discussed in Section 6.2.
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6.1 Interpolation in Birkhoff Institutions

Birkhoff institutions were introduced in [10] as a common framework for logics
exhibiting Birkhoff style axiomatizability properties, in that their semantic
consequence operator is expressible in terms of standard operators on classes
of models. A Birkhoff institution is an institution (Sign, Sen, Mod, =) such
that the category Mod(X) has products and directed colimits (hence filtered
products) for each signature ¥, together with

e a class IF' of pairs (I, F), where I is a set and F a filter on I such that
({*},{{x}}) is in IF', where {x} is a singleton set,

e a binary relation By C |Mod(X)| x |Mod(X)| for each signature ¥ that
includes the model-isomorphism relation,

such that M®* = Bg'(IFM) for each signature ¥ and each class of models
M C |Mod(X)|, where IFM denotes the class of all (categorically defined)’
filtered products over filters in I’ of families of models in M. Notice that, in
a Birkhoff institution, satisfaction is preserved by isomorphisms of models.

Definition 3.2 showed a syntactic counterpart of the general weak amalga-
mation square concept in Definition 2.1, in the context of first-order logic. A
similar notion of weak amalgamation square can be defined for any institution,
in particular for Birkhoff institutions.

The following theorem, proved in [10,12], also follows from our Theorem 4.4:®

Theorem 6.1 Given a Birkhoff institution (Sign, Sen, Mod, =, IF, B) and a
weak amalgamation square as above, any two sets I'y C Sen(3y) and T'y C
Sen(3s) admit an interpolant provided that:

e Mod(¢y) preserves products and directed colimits on models.
e Mod(¢1) lifts Bs;).°

Proof.

We take A, B, C, D to be Mod(X), Mod(%,), Mod(%33), Mod(X'), respectively,
and U, V, U', V' to be Mod(p1), Mod(p2), Mod(¢y), Mod(¢,), respectively,
all of them considered up to isomorphism of models. (To avoid working with
collections of isomorphism classes, one can alternatively take a representative

7 The meaningful definition of filtered products in an abstract category of models
is the one based on directed colimits and direct products.

8 Note that this theorem does not follow from the results in [33], nor does it imply
them.

9 We have adapted the statement of this theorem to our terminology — thus what
in [10] is stated as “¢; lifts B”, here is stated as “Mod(¢1) lifts Bg;”.
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for each isomorphism class; thus for example, Mod (%) would then be a class of
non-isomorphic models covering all isomorphism classes, and Mod(¢;) would
take representatives to corresponding representatives in the image.) Notice
that the weak amalgamation property holds for isomorphism classes as well.
The relations By, By,, By, By, etc., and the operators of the form M +—
IFM are also considered up to isomorphisms — the suitability of these “up-
to” relaxations is ensured by the fact that the above relations include the
isomorphism relation and by the categorical nature of ultraproducts here. We
define F4 and Fjp as the mappings M — IF'M on P(A) and P(B), respectively,
and G4 and Ge as (the operators given by the relations) (Bg')* and (Bg))*
(that is, the transitive closures of By' and Bg,j), respectively. Let us check
the hypotheses of Theorem 4.4:

e G4 and G¢ are closure operators because they are given by reflexive and
transitive relations.
o [y, Ga; Fp = Fy; Gy follows from the following:
- Fu;Ga T Fa;Ga; Fy holds because, since ({*},{{*}}) is in ', M C
IF M for each M.
P Gas FAC FasGa Fa; Ga = Fa; Ga:
the above inclusion is true because, (Bs')* being reflexive, G 4 is
extensive;
the above equality is true because Fq; G 4 is an axiomatizability hull
operator, thus a closure operator.
e U preserves fixed points of F' because Mod(¢,) preserves I[F-filtered prod-
ucts.
e V lifts G is implied, via Proposition 4.5.(4), by Mod(¢») lifting (Bg,, Bs').

Now, applying Theorem 4.4, we find a semantic interpolant K which is a fixed
point of both F4 and G 4, i.e., closed under filtered products and under (Bg')*.
Moreover, for any class of models M, since M* = Bg'(IF(M)), it follows
that M* C Bg!(By'(IF(M))) C Bs'(IF(Bg'(IF(M)))) = M** = M*, and
thus M® = Bg'(Bs'(IF(M))); iterating this, we get M*® = (Bg')* (IF(M)),
making the semantic interpolant K a fixed point of e, yielding a (syntactic)
interpolant [C*. O

6.2 Interpolation from Institutional Quantification

Let us fix an institution. Given a morphism of signatures ¢ : ¥ — ¥/, a ¥/~
sentence ¢ and a ¥-model A, we define A |= (Vo)e' as A’ |= ¢’ for all 3'-models
A’ such that A'l, = A. An institution is said to admit universal quantification
[12] provided that for each ¢ : ¥ — ¥ and e as above there exists a sentence
e in Sen(X) semantically equivalent to (Vo)e', in that A | e iff A = (Vo)e
for all X-models A.
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Proposition 6.2 Consider a weak amalgamation square of signatures as in

the diagram
)y
v\
3 PN
N
Z/

i an arbitrary institution that admits universal quantification over ¢o. Then
any two sets of ¥1- and YXo- sentences admit an interpolant.

Proof.

By Theorem 4.4 for i = Idand V = Mod(¢p2), it suffices to show that Mod(¢p2)
lifts the axiomatizability hull operator e. Let M C Mod(X). We need to show
that Mod(dz)" (M*) C Mod(¢s)~'(M)*. For this, let Ay € Mod(¢z)~"(M®).
Then Asly, € M®. In order to prove Ay € Mod(¢s) 1 (M)*, let ez be a X-
sentence such that Mod(¢s) ' (M) | €. Then, for any By € Mod(X;) such
that Bslys, € M, it is the case that By |= ey; but this precisely means that
M = (Vo)es, hence Asly, = (Va)es. From this latter fact and the definition
of ¢o-quantification, one can deduce As |= ey, which is what we needed. O

Let us apply the above result to obtain interpolation in institutions of second-
and higher-order languages. But first, let us briefly describe some unsorted
versions of these two institutions.

In the (unsorted) second-order logic, SOL, signatures and models are the same
as in unsorted first-order logic, ! but the first-order sentences are extended
by allowing quantification on variables ranging not only over individuals, but
also over sets (operations and relations of any arity). Satisfaction is the usual
second-order satisfaction. The behavior of the functors Sign and Mod on sig-
nature morphisms is the natural one.

To define higher-order logic, HOL, let b be a fixed symbol that will stand for
the basic type. The set T' of types is defined recursively by the following rules:

(1) beT.
(2) ifty,...,t, € T, then ty x...xt, € T.
(3) if t € T, then Pt € T, where one should regard P as a type constructor.

A higher-order signature is a T-indexed set ¥ = (X;)ier, the elements of
Y being called constants of type t. A morphism between ¥ and ¥’ is a T-
indexed mapping ¢ = (¢;)ier, where ¢, : X — 3 for all t € T. To each set

10'Since signatures have only one sort, we can omit it and regard the signatures as
pairs (F, P).
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D, one naturally associates the T-indexed set (D;)er as follows: D, = D,
Dysst, = Dy X ... x Dy, Dpy = P(D;). A ¥-model is a structure of the
form (A, (A¢(c))ierces,), where Ai(c) € A; for each t € T and ¢ € %;. The
Y-terms are constants or variables of any type. The Y-atoms have the form
u(vy, ..., v,) with the type of u being P(t; % ...xt,) where each t; is the type
of v;. The ¥-sentences are built from atoms by means of the usual connectives
and quantifiers. The satisfaction relation, as well as the mappings on sentences
and models associated with signature morphisms are the natural ones.

Interpolation for right-finite weak amalgamation squares in SOL and HOL
logics follow as a corollary of Proposition 6.2:

Proposition 6.3 Consider a SOL or HOL weak amalgamation square of sig-
natures as in the diagram above such that the signatures X and Xy are finite. 1!
Then any two sets of ¥1- and Yo- sentences admit an interpolant.

Proof.

All we need to notice is that SOL and HOL admit universal quantification
over any morphism ¢, : ¥ — Y, between finite signatures — for any sentence
ey in Sen(Xs), (Voo )es is semantically equivalent:

e In SOL, to VE, \ ¢7(F)VP \ ¢"(P). (Asgcromnisy—sonie) BallF. 9N

Npreporet (py=grel () Eal(p, r)) = ey, where Eql(f,g) and Eql(p,r) are the
usual syntactic sugar saying that two second-order items (functions or rela-
tions) are equal — in the above sentence, we have used function and relation
symbols in 3, \ ¥ as second-order variables and quantified over them in .

e In HOL, to V3, \ X. (/\teT’ edesy, ot (e)=ot(d) Bal(c, d)) = ey, applying a similar
technique as for SOL.

|

In the above proof, we used that ¥ and Y, were finite (so that the constructed
sentence was finitary) — this hypothesis could actually be relaxed to requiring
that 35 adds only finitely many items to the image ¢5(3) and that ¢, identifies
only finitely many pairs of items from . Also, the proof makes crucial use of
the fact that equality is definable in these logics — this means that we either
work with standard models as we did above, or we work with Henkin models
and take the equality symbol as a primitive, interpreted in models as actual
equality.

1'In HOL, a signature being finite means that it has only a finite number of con-
stants.
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7 Applications to Formal Specification

Craig interpolation is a an important /desired property in many areas. Next we
consider some applications of our interpolation results to formal specification
and module algebra.

In formalisms for modularization [3,15,37], modules are built by composing
other modules via specific operations. One typically starts with flat (or ba-
sic) modules, which are pairs (X,I") comprising a signature ¥ and a set of
Y-sentences I'. According to [3], one of the most natural semantics of mod-
ules, also called flat semantics, is given by their corresponding theories; for
example, the semantics of a basic module (X,T") is the theory (X,T'®). Diverse
operations are used to build up structured theories, among which the export
(or information hiding) and combination (or sum) operators [3] (or [15]), O and
+. O restricts the interface of the theory (3,I") to common symbols of 3 and
Y2, while 4 just puts together two theories in their union signature. Formally,
for each signature X’ and theory (3,T), let ¥'0(%, T') be (X'NY, . ~1(T)), where
t: X' NY — ¥; and for theories (31,T'1) and (X9, 1), let (31,T1) + (35, T'9)
be (31 U Yo, (I'; UTy)®). A desirable property of specification frameworks is
the following restricted distributivity law:

YO((X1,T1) + (22,0%) = (X'0(X,T)) + (X'0(22,0%))

As discussed in [3,15], full distributivity does not typically hold. It is shown in
[3] that, in first-order logic, restricted distributivity is implied by interpolation.
Their proof is rather logic-independent, so it works for any logic that has
first-order signatures and satisfies interpolation. In particular, it works for all
the sub-logics of (finitary or infinitary) first-order logic appearing in Table 1.
Thus our interpolation results show that the restricted distributivity law holds
in module algebra developed within many logical frameworks intermediate
between full first-order logic and equational logic.

Another application to formal specifications relies on the fact that interpo-
lation entails a compositional behavior of the semantics of structured spec-
ifications, by ensuring that the two alternative semantics, the flat and the
structured ones, coincide. There are good reasons to not always consider the
flat semantics of module expressions, but rather to keep the structure of mod-
ules [37,5,22]. In the case of hiding, ¥'0(3,I") provides more information
than (X', I'* N Sen(X)): (1) ' might be finite, showing that I'*, maybe un-
like I'* N Sen(X'), is finitely presented; (2) while the theory of all ¥'-reducts
of (X,T") (i.e., all visible parts of the possible implementations of the theory)
is indeed I'"* N Sen(X'), usually not any model of I'* N Sen(X') is a X-reduct of
a model of (X,T"); hence the theory does not describe precisely the intended
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semantics on classes of models.

To understand the role played by interpolation, consider the situation when
a module ¥'0O(X, I") is imported and its interface (¥’) is renamed via a signa-
ture morphism 7 : ¥’ — ¥’ in the importing context. The flat semantics of the
renamed module is (X7, 7(I"* N Sen(X'))*). On the other hand, the renamed
module itself might be regarded constructively as an information hiding mod-
ule whose interface is X’ and whose base module is a consistent renaming of
(33,T). This is achieved by taking the pushout (X" — Xg,jo: X — Xg) of
(3 — X, j:¥ — ¥"), yielding the new module ¥"0(%, jo(I")). One can show
using interpolation that the modular and the flat semantics are equivalent,
that is, j(I'* N Sen(3'))* = jo(I')* N Sen(X”). This desirable semantical equiv-
alence is shown by our results to hold for several first-order sub-logics. More
precisely, lines 3,5,15 in Table 1 show that the framework may be restricted to
positive-, universal-, or [universal quantification of atom disjunction]- logics.
Moreover, line 21 shows the same thing for the [universal quantification of pos-
sibly infinite atom disjunction]-logic. According to these results, the renaming
morphism j can be allowed to be injective on sorts in the case of positive
logic and any morphism in the other three cases. Note that lines 2,4,14,20
list results complementary to the above, and generalize those in [10]. These
latter results relax the requirements not on the renaming morphism, but on
the hiding morphism (allowing one to replace the inclusion ¥/ — ¥ with an
arbitrary signature morphism).

Within a specification framework, one should not commit to a particular kind
of first-order sub-logic, but rather use the available power of expression on
a by-need basis, keeping flexible the border between expressive power and
effective/efficient decision or computation. The issue of coexistence of differ-
ent logical systems brings up a third application of our results. The various
logical systems that one would like to use should not be simply “swallowed”
by a richer universal logic that encompasses them all, but rather integrated
using logic translations. This methodology, which is the meta-logical counter-
part of keeping structured (i.e., unflattened) the specifications themselves, is
followed for instance in CafeOBJ [13,14]. The underlying logical structure of
this system can be formalized as a Grothendieck institution [9], which provides
a means of building specifications inside the minimal needed logical system.
The framework is initially presented as an indezed institution, i.e., a family
of logical systems with translations between them, and then flattened by a
Grothendieck construction.

Lifting interpolation from the component institutions to the Grothendieck

institution was studied in [11]; a criterion is given there for lifting interpolation,
consisting mainly of three conditions: (1) that the component institutions
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have interpolation (for some designated pushouts of signatures); (2) that the
involved institution comorphisms have interpolation; (3) that each pullback in
the index category yields an interpolating square of comorphisms. We give just
one example showing that, via the above conditions, some of our interpolation
results can be used for putting together in a consistent way two very interesting
logical systems: (finitary) first-order logic (FO) and the logic of universally
quantified possibly infinite disjunctions of atoms (VV,). While the former is a
well-established logic, the latter has the ability of expressing some important
properties, not expressible in the former, such as accessibility of models, e.g.,
(Vz)(z =0Vze =s(0) Ve = s(s(0))V...) for natural numbers. If one combines
the expressive power of these two logics, initiality conditions are also available,
e.g., the above accessibility condition (“no junk”) can be complemented with
the “no confusion” statement =V, jeni<; s(0) = s7(0). Since the two logical
systems have the same signatures, condition (2) above is trivially satisfied.
Moreover, our results stated in lines 1 and 21 of Table 1 ensure condition (1)
for some very wide class of signature pushouts. Finally, condition (3) is fulfilled
by the result in line 22, which states that formulae from the two logics have
interpolants in their intersection logic, that of universally quantified (finite)
conjunctions of atoms.

8 Craig-Robinson Interpolation

Throughout this paper, we used the term “interpolation” to mean “Craig
interpolation” (abbreviated CI). A related stronger property is Craig-Robinson
interpolation (CRI). Some researchers [24,16] have argued that CRI, and not
just CI, is desirable in algebraic specification frameworks. First-order logic has
CRI, and so does any logic which has CI, is compact and has implications [12].
However, this is not the case with most of the important fragments of first-
order logic, like Horn logic; in fact, most of the logics in Table 1 do not have
CRI (unless one takes some harsh restrictions on the signature morphisms).

We can apply our semantic technique, to some extent, to obtain a general CRI
theorem, too. A sketch of a semantic approach to CRI is discussed next (we
omit the proofs, because they are quite similar to those for CI).

Definition 8.1 Assume a commutative square of signature morphisms (see
diagram below) and three sets of sentences I'y C Sen(X1), and A, Ty C Sen(Xq)
such that ¢4(I'1) U@ (A) Esr ¢1(I'2). A Craig-Robinson interpolant (CR
interpolant) for I'1,T's through A is a setT' C Sen(X) such that 'y s, ¢1(T1)
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and ¢2(T) U A |, T,

/\
\/

Just like CI, CRI can be regarded semantically, using the equivalences below:

o ¢5(I') U ¢i(A) E ¢(I2) iff (¢2(F1) U ¢1(A))" C ¢ (T2)" iff ¢p(l'1)* N
P (A)* C ¢ (Ta)* iff Mod(¢h)~H(I'T) N Mod(¢;) " (A*) € Mod(¢)~'(T5).

o 't E () iff T} C ¢y (D) iff T} € Mod (¢1) " (T™).

e 6o(T)UA [= Ty iff (6a(T) UA)* C % iff o (I)"NA* C T iff Mod ()~ (")
A* C T3 iff Mod(¢)"'(T*) C T3 U A%,

Therefore, one can define semantic CR interpolants as follows:

Definition 8.2 Consider the commutative diagram

B%AXC
N

together with some M € P(B) and N,R € P(C) such that V' (M) N
U R) CUTN). We say that K € P(A) is a semantic CR inter-
polant of M and N through R iff M CUHK) and VI (K)NR CN.

If we take A, B, C, D to be Mod(X), Mod(%,), Mod(Xs), Mod(¥') and U, V,
U', V' to be Mod(¢y1), Mod(¢ps), Mod(dy), Mod(¢h), respectively, we obtain
the concrete first-order case.

Let CRZ(M, N, R) denote the collection of all CR semantic interpolants of
M and N through R. The following two results characterize the semantic
CR interpolants and give criteria for their existence (the second taking fixed
points into account).

Proposition 8.3 Under the hypothesis of Definition 8.2:

(1) CRIZM,N,R) = [UM), VN NR)].
(2) If the square is a weak amalgamation square then CRZ(M,N,R) # 0.

Theorem 8.4 Consider a weak amalgamation square as in the diagram below
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Iy | T, A T Mod(¢1) | Mod(¢2) P ®2
Type | Type | Type | preserves lifts
1 FO | FO FO Up Ur any (IS)
2 Pos | FO | Pos Up;H Ur (IS), (IR), (RS) | (IS)
3 v FO v Up;S Id (IS), (RS) any
4 3 FO 3 Up; Ext Ur (1) (IS)
5 UH | FO | UH Fp;S Id (IS), (RS) any
6 UA | FO | UA P;S;H Id (IS), (IR), (RS) | any
7 ha% FO Y Up;S;Hs Id (IS), (RS) any
8 O FO O Up ; Hs Id (IS), (RS) any
9 | UHx | FOx | UH pP;S Id (IS), (RS) any
10 | Weo | FOx | VWeo S5 Hs Id (IS), (RS) any
Table 2

Craig-Robinson interpolation results for first-order sub-logics.

and two pairs of operators F' = (Fg, Fy) and G = (Ge, G4) such that:

(1) Fa;Ga; Fa=Fy;Ga.

B%AYC
N

(2) Ge and G 4 are closure operators.
(3) U preserves fized points of F.

(1) V lifts G.

Then for each M € Fized(Fg) and NUR € Fized(Ge) such that V' ™' (M) C
U NN, M and N have through R a semantic interpolant K in Fized(F4)N

Fized(G,).

Note that Theorem 8.4 is almost identical with its CI counterpart, Theorem
4.4 — the hypotheses (1)-(4) are the same and the conclusion has the same
format. The only difference is that one requires that N'U R, rather than just
N, to be a fixed point of G¢. That our semantic approach works for CRI as
well is very fortunate; however, as we see below, the application to concrete
cases is much restricted compared to CI due to the resulted requirement that

N UTR be axiomatizable.
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Table 2 states CR interpolation results for various first-order sub-logics. It
should be read as: given a weak amalgamation square of signatures as in
Definition 8.1, if 'y C Sen(X), I's C Sen(X,), and A C Sen(X,) are sets of
sentences of the indicated types such that ¢4(I'y) U@|(A) = ¢ (I'y), then they
have a CR interpolant I' of the indicated type; the semantic conditions under
which this situation holds are again given in the Mod(¢q)- and Mod(¢ps)-
columns of the table, with the meaning that Mod(¢;) preserves fixed points
of the indicated operator and Mod(¢s) lifts the indicated operator.

Theorem 8.5 The results stated in Table 2 hold, i.e., in each of the 10 cases,
if o1 and ¢o satisfy the indicated properties, I'y, I'y and A have the indicated
types and ¢5(T) U ¢ (A) = ¢)(T'2), then there exists a CR interpolant I' of
the indicated type.

As an interesting (but admittedly not very significant for algebraic specifica-
tion) consequence of the above results, it follows from line 5 of the table that
Horn logic without operation symbols has Craig-Robinson interpolation.

Notice that the CRI results in Table 2 correspond to the CI results in Table 1
for which the sentences on the righthand side are arbitrary finitary or infini-
tary first-order sentences (that is, FO and FO,), because these are the only
cases in Table 1 where the axiomatizable classes of models are closed under

complement and union, as required to deal with the expression A/ U R from
Theorem 8.4.

9 Related Work and Concluding Remarks

The idea of using axiomatizability properties for proving Craig interpolation
first appeared, up to our knowledge, in [35] in the case of many-sorted equa-
tional logic. Then [32] generalized this to an arbitrary pullback of categories,
by considering some Birkhoff-like operators on those categories, with results
applicable to different versions of equational logic.

An institution-independent relationship between Birkhoff-like axiomatizability
and Craig interpolation was depicted in [10], using the concept of Birkhoff in-
stitution. Moreover, [17] studies insitution-independent Robinson consistency,
which is equivalent to Craig interpolation for any compact logic and admit-
ting finite conjunctions and negations (in particular, for FOL, but not for any
of its sub-logics discussed in our paper). If we disregard the combination of
logics and flatten to the least logic, the results in lines 2,4,14,20 of Table 1
can be also found in [10], and the result in line 1 of Table 1 can be also found
in [6] and [17]. Our Theorem 4.4 generalizes the previous “semantic” results,
bringing the technique of semantic interpolation, we might say, up to its limit.

31



The merit of Theorem 4.4 is that it provides general conditions under which
a semantic interpolant has a syntactic counterpart (i.e., it is axiomatizable).
This theorem solves only half of the interpolation problem; concrete lifting
and preserving conditions, as well as certain inclusions between operators,
still have to be proved. Thus, in this paper, we provide a general methodology
for proving interpolation results. Following this methodology, we worked out
many concrete examples.

The list of first-order sub-logics that fit our framework is open to any other
suitably axiomatizable logics; and so are the possible combinations between
these logics, which might guarantee interpolants even simpler than the types
of formulae of both logics, as shown by some of our results. Regarding our
combined interpolation results, it is worth pointing out that they are not over-
lapped with, but rather complementary to, the ones in [11] for Grothendieck
institutions. There, some combined interpolation properties are previously as-
sumed, in order to ensure interpolation in the resulted larger logical system.
As for Craig-Robinson interpolation, the only general treatment of this prop-
erty that we are aware of is the monograph [12], which relates Craig and
Craig-Robinson interpolations in an arbitrary institution which is compact
and admits negation.

An interesting fact to investigate would be to which extent can syntactically-
obtained interpolation results compete with our semantic results. While it is
true that the syntactic proofs are sometimes more constructive, they do not
seem to provide information on the type of the interpolant comparable to what
we gave here. In particular, since the diverse Gentzen systems for first-order
logic with equality have only partial cut elimination [18], an appeal to the non-
equality version of the language, by adding appropriate axioms for equality
in the theory, is needed; moreover, dealing with function symbols requires a
further appeal to an encoding of functions as relations, again with the cost of
adding some axioms. All these transformations make syntactic proofs rather
indirect and obliterating, and sometimes place the interpolant way outside the
given subtheory — this is probably the reason why an interpolation theorem
for equational logic was not known until a separate, equational-logic-specific
proof was given in [36]. Comparing and paralleling (present or future) semantic
and syntactic proofs seems fruitful for deepening our understanding of Craig
interpolation, such a purely syntactic and yet surprisingly semantic property
for logical systems.

Acknowledgements. We thank the referees for their very helpful comments
and suggestions.
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APPENDIX - Proofs for some of the facts in the paper

Proposition 4.5 Consider two classes C and D, a mapping U : C — D and
a pair of relations R = (Re, Rp), with Re CC x C and Rp C D x D.'2 Then
the following hold:

(1) U lifts R if and only if for any elements ¢ € C and d € D such that
dRpU(c), there exists ¢ € C such that U(c') = d and ¢ Rec.

(2) Suppose Re is reflexive and transitive. Then U preserves fized points of
R if and only if for all elements ¢ € C and d € D such that U(c)Rpd,
there exists ¢ € C such that U(c') = d and cRec .

(3) Suppose Re is reflexive and transitive. Then U preserves fized points of
R if and only if U lifts (Rz*, Rp').

(4) Let RY be the pair (RE, RY), where RS and R}, are the transitive closures
of Re and Rp respectively. Then U lifts R if U lifts R.

Proof.

1. Assume that U lifts R and let ¢ € C and d € D be two elements such that
dRpU(c). Then U(c) € Rp({d}), thus c € Re(U1({d})), i.e., there exists ¢’ €
C such that U(c') € {d} and ¢ € Re({¢'}). But the latter just mean U(c') = d
and ¢ Ree. Conversely, let D' € P(D) and ¢ € C such that U(c) € Rp(D').
Then there exists d € D’ such that dRplU(c). Thus, there exists ¢ € C such
that U(c') = d and ¢ Rec. But this implies ¢ € U~'(D’), and furthermore
S RC(Z/{‘l(D’)).

2. Suppose U preserves fixed points of R and let ¢ € C and d € D be two
elements such that U(c) Rpd. Since R is reflexive and transitive we have that

12 Recall that Re and Rp also denote the induced operators.
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Re({c}) is a fixed point of Re, so U(Rc({c})) must be a fixed point of Rp.
Since U(c) € U(Rc({c})) and U(c) Rpd, it follows that d € U(Rc({c})), whence
there exist ¢ € Re({c}) such that U(c') = d. But ¢ € Re({c}) means exactly
that cRec. Conversely, let C' be a fixed point of Re. We want to show that
U(C') is a fixed point of Rp. Let d € Rp(U(C')). There exists ¢ € C' such
that U(c) Rpd whence there exists ¢ € C such that U(c') = d and cRec’. Since
c € C' and C' is a fixed point of Re, it follows that ¢ € C’, whence d € U(C').

3. Obvious from points 1 and 2.

4. Assume U lifts R and let ¢ € C and d € D such that dR5U(c). Then there
exist dy,...,d, € D such that dy = d, d = U(c), and d;Rpd;,, for each
i € {1,...,k — 1}. Iterating the R-lifting property, we obtain, successively,
elements ¢y, ...,c; € C such that ¢, = ¢ and ¢;Reciyq and U(c¢;) = d; for each
ie{l,...,k—1}. We thus found ¢; € C such that U(c;) = dy; = d and ¢; R}c,
as desired. O

Proposition 4.6 Let A, B,C, D be classes and consider the following diagram.:

U

P(A)—~P(B)___P(C)—~P(D)

U/
such that U T U'. Then:

(1) V,UCV ;U
(2) V' monotone implies that U ; V' T U ; V.

Proof.
1. Clearly U(V(A")) CU'(V(A')) for all A" C A.

2. Let B C B. Then U(B') C U'(B'), hence V'(U(B')) C V'(U'(B')) by the
monotonicity of V. O

Proposition 4.7 Let F' and G be operators on the same class D such that
F is a closure operator. The following hold:

(1) If G;FC F ;G then F;G;F=F;G.

(2) If G is also a closure operator, then F' ;G is a closure operator iff G ; F T
F . G.

Proof.

1. We use Proposition 4.6, together with the idempotency and extensivity of
Fr P (G )R (FG)=(F;F);G=F;GC (F;G);F.

2. Suppose that G is also a closure operator. First notice that monotony

36



and extensivity are preserved by operator composition. Furthermore, since
G ;FCF ;G weget F':;G;F ;GCVF F ;G ;G=F ;G so, using
also extensivity, we obtain I’ ;G idempotent. It follows that F' ;G is a clo-
sure operator. Conversely, by extensivity of ' we have 1pp) E F'. Now, since
G ; F' is monotone, it follows from Proposition 4.6 that G ; F C F ;G ; F.
But since G is extensive and F ;G is idempotent, we further have F' ;G ; F C
F;G;F;G=F;G. O

Proposition 4.8 Consider two classes C and D, a mapping U : C — D and
two pairs of operators F' = (F¢, Fp) and G = (Ge¢,Gp). Then the following
hold:

(1) If Ge¢ is monotone and U lifts F' and G, thenU also lifts (F¢ ; Ge, Fp ;Gp).
(2) If Fe and Ge are extensive, Ge is monotone and U preserves fized points
of F and G, then U also preserves fived points of (F¢ ;Ge, Fp ;Gp).

(3) If Fe and Ge are extensive and Fe; Ge is idempotent, then Fg;Ge; Fe

= Fc; Gc.

Proof.

1. We use Proposition 4.6. First take V to be Fp and U, U’ to be Gp ;U and
UL Ge respectively, to obtain Fp ;Gp ;U™ T Fp ;U™ ; Ge. Next take V' to
be G¢ (which is monotone) and U, U’ to be Fp ;U~! and U™! ; F¢ respectively,
to obtain Fp ;U™ ;Ge CU ; Fp ;Ge. Thus Fp ;Gp ;U T U Fp ;G

2. If C' is a fixed point of Fg; Ge, then:

e Because F¢ and G are extensive, C' C F¢(C') € Ge(Fe(C')); hence C' =
Fe(C).

e Because F¢ and G are extensive and G¢ is monotone, C' C G¢(C') C
Ge(Fe(C)); hence C' = Ge(C').

Thus C' is a fixed point for F¢ and G¢, making U(C") a fixed point for Fp and
G'p, therefore a fixed point for Fp; Gp.

3. Fe; Ge C Fe; Ge; Fe follows from Fp being extensive. On the other hand,
since G is extensive and F¢; Ge idempotent, we get Fe; Ge; Fe & Fe; Ge; Fo; Ge =
Fe;Ge. O

Proposition 5.2 For each signature morphism ¢ : ¥ — >/,

(1) Mod(¢) preserves fized points of P, Fp, Up.

(2) (I) = Mod(¢) lifts S, H, Hs and preserves fized points of Ext [10].
(3) (IS) and (RS) = Mod(¢p) preserves fixed points of S, Hs, and lifts Ext.
(4) (IS), (IR) and (RS) = Mod(¢) preserves fized points of H.

(5) (IS) = Mod(¢) lifts Ur.
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Proof.

Throughout this proof, for any signature 3, ¥-morphism i : A — B, and w =
$1...8, € S* hy : A — B" denotes the mapping defined by hy(as, ..., a,) =
(hs,(a1), ..., hs, (ay)).

1. Follows from the well-known facts that Mod(¢) preserves canonical direct
products and canonical filtered colimits and that canonical filtered products
are canonical filtered colimits of canonical direct products.

2. Proved in [10], Proposition 1. Note that for a binary relation R, Mod(¢)
lifts R iff ¢ lifts R~! according to the terminology in [10]; also, our relations

S, H and Hs coincide with the inverses of the relations %, % and 2= defined
in [10], respectively.

3 and 4. Let A’ be a YX'-model and B a Y-model.

Preservation of fixed points of § and lifting of Fxt: Suppose there exists a

strong injective morphism i : B — A'[,. Let B’ be the following ¥’-model:

- For each ' € &', let B, = By if s’ has the form ¢*(s) and B, = A,

otherwise. Since ¢* is injective, the definition is not ambiguous. We can now

define for each s’ € S’, i, : B, — A, to be i, if s’ has the form ¢*(s) and

1 A otherwise;

- For each ¢’ € F!,_,, let B, = B, if ¢’ has the form ¢ (o) and B.,(V/) =

AL (i, (¥)) for each I/ € B™ otherwise. (Note that, because of (RS), in the

latter case of the definition s’ & ¢**(S), thus A.,(i’,(V)) € By.) Let us show

that the definition above is not ambiguous. Consider oy, 09 € F,,_., such that
v (o1) = ¢ (03). Then (A'ly)s, = (A'l4)s, and since ¢ is injective it

follows that B,, = B,,.

- For each ' € P, let B!, = (i,,) "' (AL).

Thus, B’ is a ¥'-model and 7’ is an injective morphism. Furthermore, 7’ is strong

from the way the relations B, were defined on B’. Also, the models B[, and

B have the same sort carriers and operations by the definition of B’. Finally,

for any 7 € Py, we have that Br = (iu) ' ((A'lg)x) = (1) ™ (Apri(m) =
;w(w) = (B'l4)x, hence B'[4; and B coincide on the relational part too.

Preservation of fixed points of H and Hs: Suppose there exists a surjection
h: A'l, — B. Let B’ be the following ¥’-model:

- For each ' € &', let B., = B, if &' has the form ¢*(s) and B, = {x} (a
singleton) otherwise. Since ¢*" is injective, the definition is not ambiguous. We
now define for each s’ € S’, hl, : AL, — B/, to be h if s’ has the form ¢*(s)
and the only possible mapping otherwise;

- For each o’ € F!, ., let B), = B, if ¢’ has the form ¢ (c) and B, (V) = %
for each ¥ € B!, otherwise. (Note that, because of (RS), in the latter case
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of the definition s’ does not have the form ¢*(s), thus B, = {x}.) Let us

show the definition above is not ambiguous. Consider o, 09 € F,,_. such that
P (o1) = ¢ (02). Then (A'l4)s, = (A'4)0s, and, since h is surjective, it

follows that B,, = B,,.

- Let n' € P.,. If h is strong, let B., = h,(A’,). If h is not strong (thus we

work under the hypothesis that ¢" is injective), let B, = B, if 7' has the

form ¢"'(7) and B., = B" otherwise.

Thus, B’ is a ¥'-model and A’ is a surjective morphism. Furthermore, the

models B'[, and B have the same sort carriers and operations by the definition

of B'. If h is not strong, then B[, and B coincide on the relational part too,

by the definition of B’. On the other hand, if A is strong, then for any = € P,

we have that Bl = hy/(AL), hence Br = hy((A'l)r) = Myer () (Ari(ry) =
</¢>”(7r) = (B'l4)x- Note that in case h is strong, h' is strong too.

5. Let A’ be a ¥'-model and let B be a 3-model isomorphic to an ultrapower of
A'ly, say A’[¢I/;. Let C" = A’I/;. It is known [7] that C"[ is equal to A/[¢I/f,
hence is isomorphic to B. Since ¢ has (IS), it is easy to define a >'-model B’
such that B'[4 = B and B’ is isomorphic to C’, whence B'Ur A’. O
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