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Abstract
Serious games have recently shown great
potential to be adopted in many applications,
such as training and education. However, one
critical challenge in developing serious games
is the authoring of a large set of scenarios for
different training objectives. In this paper, we
propose a data-driven approach to automatically
generate scenarios for serious games. Com-
pared to other scenario generation methods,
our approach leverages on the simulated player
performance data to construct the scenario
evaluation function for scenario generation.
To collect the player performance data, an
AI player model is designed to imitate how a
human player behaves when playing scenarios.
The AI players are used to replace human
players for data collection. The experiment
results show that our data-driven approach
provides good prediction accuracy on sce-
nario’s training intensities. It also outperforms
our previous heuristic-based approach in its
capability of generating scenarios that match
closer to specified target player performance.
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1 Introduction

With the rapid advances in computer anima-
tion and virtual agent technologies, designing
games and virtual worlds to support learning and
skill acquisition is gaining tremendous momen-
tum. Serious games, which have useful purposes
other than entertainment, have been applied to
many applications, such as training [1, 2, 3] and
education [4, 5]. Compared to traditional train-

ing and tutoring methods, serious gaming has
the advantage of offering an engaging, interac-
tive and collaborative virtual experience, which
can lead to better learning performance [5].

In serious games for training, one of the
key requirements to ensure effective learning
is the provision of scenarios, which describe
the flow of events during game-play. By play-
ing different scenarios, a trainee can exercise
different skills or undertake certain missions.
Thus, it is essential to design the scenarios that
can meet different training objectives and, at
the same time, be customized for individual
trainees. However, manual authoring of sce-
narios is a time-consuming and tedious process
and it has become a critical bottleneck to train-
ing [6]. Our goal, therefore, is to design a sce-
nario generation system that can automatically
generate scenarios while allowing a trainer to
have a directed control over the generation pro-
cess.

Our previous work [7, 8] has proposed a ge-
netic algorithm (GA)-based scenario generation
system, which considers both the trainer’s pref-
erences and trainee’s skill levels in generation
process. The system relies on a heuristic-based
fitness evaluation, which examines how well (in
terms of training intensities) a given scenario
can match with trainer’ inputs. In this paper, we
extend our work by designing a data-driven ap-
proach for scenario evaluation. The data-driven
approach can provide a more accurate approach
for scenario evaluation, as the evaluation func-
tion is constructed based on the data collected
on the actual effect of a scenario in simulation.
It is also more flexible to adapt to new types of
scenarios, as an automated data training process
is employed.



The key contributions of our data-driven ap-
proach described in this paper are as follows.
First, an artificial neural network (ANN) based
data training process is designed to automati-
cally train ANNs based on the data collected
from simulation. The trained ANNs are used for
evaluating how well a scenario matches with the
training objectives set by trainer. Second, an AI
player model is designed and utilized for collect-
ing player performance data in the data collec-
tion process. The AI player model is designed
to imitate how a human player behaves when
playing a scenario. The use of the AI player can
facilitate the large-scale data collection without
having human players play the scenarios. Lastly,
a scenario generation framework based on the
data-driven approach is introduced and evalu-
ated in a military operation training game.

2 Related Work

The problem of scenario generation broadly per-
tains to the content generation issue in devel-
oping games and interactive virtual environ-
ments. In recent years, various techniques have
been explored for automatically generating con-
tent of different types, such as agent behav-
iors [9, 10], game levels and maps [11, 12], and
narratives [13, 14]. Compared to other types
of content generation, research in the genera-
tion of scenario (i.e., the flow of events) is still
an emerging area with a limited number of ap-
proaches being proposed.

The research works on offline scenario gen-
eration have focused on how to generate glob-
ally optimized/customized scenarios given dif-
ferent objectives. For example, Hullett and
Mateas [15] described a HTN planning-based
generation system to generate scenarios from
the selected pedagogical goals. Martin et al. [16]
used functional L-systems to specify generation
rules to create scenario elements. Zook et al. [6]
modeled the scenario generation as a combina-
torial optimization process and applied genetic
algorithm to search for scenarios that maximize
a set of evaluation criteria.

Our work also focuses on the offline scenario
generation. But, it differs from the above work
not only in the generation methodology, but also
in the evaluation of scenarios. Our scenario

generation system considers how multiple mis-
sion objectives can be exercised in a single sce-
nario. Besides, the previous approaches use ei-
ther designer-defined goals or heuristics to gov-
ern the generation process. In contrast, our sys-
tem adopts a data-driven approach to evaluating
a scenario with respect to its effects on different
mission objectives. Thus, it does not rely on de-
signer’s intuition to derive the mapping between
a scenario and its fitness.

Some data-driven methods have been applied
to generate content for games. Shaker et al. [11]
applied a data-driven player experience model
for generating game levels of Super Mario Bros
game using neural networks. Yannakakis et
al. [17] proposed a mechanism to generate cam-
era profiles for in-game camera control based on
the player’s affective states models. The models
are trained using neuroevolutionary preference
learning on questionnaire data of players.

Compared to these works, our data-driven ap-
proach does not require collecting data on real
human players. Instead, we design a simulation-
based data collection mechanism, which uses an
artificial agent (i.e., AI player) to play through
the scenarios being evaluated. The AI player is
designed and validated to accurately reflect real
player behaviour in our training game. The use
of the AI player can help to reduce the cost for
involving human players for data collection.

3 Testbed Training Game

As a testbed for our studies, we have devel-
oped a food distribution training game (see Fig-
ure 1). The game is created using DI-Guy1,
which is a state-of-art human simulation soft-
ware for virtual training. The developed game
simulates a food distribution mission in a post-
disaster area, where hundreds of civilians are
queuing for food and water supplies. Figure 1
shows the layout of the environment with color-
coded areas. The environment is composed of
the four main areas: the waiting area for new
civilians (green, top-right), the first part of the
queue (grey, bottom-right), the second part of
the queue (yellow, bottom-left) and the distribu-
tion area (brown, top-left). Each area is guarded
by an infantry force of several soldiers. In or-

1DI-Guy: http://www.diguy.com/diguy/



Figure 1: Screenshot of the food distribution training game.

der to issue commands, a trainee has to switch
to one particular area (i.e., a zoom-in view) by
clicking one of the area buttons (the purple but-
tons on the left side of Figure 1).

The training game is designed to practice
the trainee’s ability to achieve a set of mission
objectives (MOs). Each MO specifies cer-
tain mission-specific task or ability to be prac-
ticed by trainee. In our current food distribu-
tion game, the mission objectives are defined as:
MO1 - to control the crowd anger level, MO2

- to identify instigators, and MO3 - to prevent
civilians from stealing food. In order to exercise
these defined MOs, different types of events
are designed and implemented. Table 1 gives
a list of event types that we have realized in the
current game and their contributions to different
MOs. These events are used to form scenarios
as we will describe in next section.

During the game-play, a trainee has to react
to the crowd violence (i.e., rioting and steal-
ing), caused by the events being injected into the
game. To control the violent crowd, a trainee
has to promptly react to the changing situation
and issue proper commands. A command is is-
sued by right-clicking on an agent and select-
ing a tactical command to execute. Once a tacti-
cal command is selected, a nearby soldier agent
will be assigned to execute the command. In
our game, a trainee can issue three types of tac-
tical commands: the pacify command, which
attempts to calm down an agent; the threaten
command, which stops an agent from perform-
ing stealing behavior; and the arrest command,

which is used to arrest an instigator agent and
escort it to a secure detainment vehicle.

4 Data-driven Framework for
Scenario Generation

In order to conduct effective training, it is nec-
essary to generate a variety of scenarios (i.e.,
flow of events) that can meet different training
objectives and at the same time be customized
for individuals. In our previous work [7, 8],
we have proposed a genetic algorithm (GA)-
based scenario generation system, which can au-
tomatically generate training scenarios based on
trainer’s preferences and trainee’s skill levels.
This work extends previous work by adopting a
data-driven approach to constructing the fitness
function of GA for scenario evaluation. The ar-
tificial neural network (ANN) model is used to
approximate the mapping between the input sce-
narios and scenarios’ training intensities.

Figure 2 presents an overview of our data-
driven scenario generation framework. The
framework comprises three main modules: con-
tent design, scenario generation and data train-
ing. The content design module supports sce-
nario designer in the creation of scenario con-
tent. Here, all the domain-specific content (i.e.,
mission objectives, event types and instances)
are created. The data training module is respon-
sible for training the ANN based on the data
collected from the simulation. After training,
the trained ANN is incorporated into the GA-



Table 1: List of event types.

Event Type Contributed
MOs

Event Description

Instigation MO1, MO2 Inject instigator agents into a specific area. Instigators will move randomly around
the area and try to make crowd angry purposely.

Violence MO1, MO3 Inject violent civilian agents into a specific area. Compared to normal civilians,
violent civilians’ riot and steal behaviors can be triggered more easily.

Rumor
spreading

MO1 Trigger a normal civilian agent to perform rumor spread behavior. The rumor will
be spread among nearby agents and cause massive crowd anger if not controlled.

Jump queue MO1 Trigger civilian agents in the queue to perform jump queue behaviors. The agents
who are affected by queue jumping may become angry.

Unguarded MO3 Temporarily remove the guarding soldiers at the distribution points for a period
of time. This increases the civilian agent’s desire to steal. Note that the guarding
soldiers are not affected by trainee’s commands
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Figure 2: Overview of data-driven scenario gen-
eration framework.

based scenario generator in the scenario genera-
tion module for evaluating scenario fitness. The
scenario generation module is then used to let a
trainer generate the desired scenarios based on
his/her preferences and send the scenarios to the
simulator for training. We detail each module in
the following subsections.

4.1 Content Design

To generate different scenarios for a particular
mission type (e.g., food distribution), a scenario
designer needs to first define the mission objec-
tives (MOs) to be exercised. For example, in
our food distribution mission, three mission ob-
jectives are defined (see section 3). The defined

MOs determine what to be trained in a given
mission. In order to exercise different MOs, the
scenario designer needs to define different types
of events to be simulated (e.g., as in Table 1).
Each type of event can contribute to the exercise
of different MOs. For example, the instigation
event in Table 1 can be used for practicing both
MO1 and MO2 as defined in section 3. Each
event type is characterized by certain parame-
ter(s). By assigning value to the parameter(s),
the event instances of a particular type can be
created. For example, the instigation event type
can create different event instances by setting
the parameter (e.g., the number of instigators)
with different value.

When a scenario designer creates event in-
stances, we also introduce the concept of sce-
nario beat [8] as a higher-level construct to or-
ganize the events. In our design, each sce-
nario beat is formally represented as a tuple:
b =< E,O, δ >, where E is the set of events
contained in the beat, O is the set of ordering
constraints on events in E, δ is the time interval
in which all the events in the beat must be exe-
cuted. The scenario beats are used to represent
some typical situations in real-life, which in-
volve the occurrence of single or multiple events
within a certain period of time. All the scenario
beats created by the scenario designer will be
saved in the scenario beats repository and they
serve as the key building blocks to construct a
scenario. Each scenario is formed as a beat se-
quence, which contains a variable-sized, ordered
set of beats, represented as: S = (b1, b2, ..., bm).



4.2 Data Training

In the data training module, a data-driven,
simulation-based ANN training process is per-
formed. The trained ANNs are used to estimate
the MO intensities of a scenario. The MO in-
tensity is used as a measurement to reflect the
extent to which each defined MO is exercised
in a given scenario. As each type of event is de-
signed to exercise certain MO(s), the MO in-
tensities of a scenario are related to the selec-
tion and arrangement of events in the scenario.
For instance, a scenario with many instigation
events should be attributed to a high MO in-
tensity value for MO2 (as defined in section 3).
As contributed by all the events in a scenario,
we use an aggregated MO intensity vector

−→
Ia

to represent the total MO intensities of the sce-
nario. Formally,

−→
Ia = [xa

1, x
a
2, ..., x

a
n], where

−→
Ia ∈ Rn

≥0, xa
i is the aggregated intensity of

MOi, n is the number of MOs in the scenario.
To train the ANNs for predicting

−→
Ia , we first

collect the player’s performance data by using a
set of sample scenarios. A random scenario gen-
erator, which randomly selects the beats from
the scenario beats repository, is used for gener-
ating the sample scenarios. These sample sce-
narios are then sent to the simulator (i.e., our
training game) for execution and the player per-
formance data with respect to each MO are col-
lected. To enable the large-scale data collection
process, we design an AI player for playing the
sample scenarios, instead of using real human
players. The AI player can automatically issue
commands in response to the events in a sce-
nario and it imitates how human players (i.e.,
trainees) behave when playing scenarios. The
use of the AI player is critical in our design, as
we need to have a large set of sample scenarios
for data training to ensure the prediction accu-
racy and it is generally infeasible to let human
play testers to do this. The details of AI player
design will be described in next section.

The AI player performance data collected at
the end of the simulation are used to map to the
MO intensities of the scenario. For each MO,
we have a corresponding MO performance to
measure the player’s performance with respect
to the MO. For instance, the MO of crowd
anger control (i.e., MO1) is measured by the
number of angry agents being pacified by player

over the number of all angry agents. The MO
performances are used to reflect the MO inten-
sities of a scenario for a given player. Each MO
performance is (inversely) correlated to MO in-
tensity. For instance, a low value of the num-
ber of angry agents being pacified over the num-
ber of all angry agents indicates a high inten-
sity value for MO1 of a scenario for the consid-
ered player. Currently, we assume a linear map-
ping between the MO performance to the corre-
sponding MO intensity (Note that other type of
mapping can be adopted to capture the relation-
ship between the two). The MO performance
is first normalized using min-max normalization
and scaled to the value range of the MO inten-
sity.

Based on the data collected from the simula-
tion, we apply supervised learning to train the
ANNs for estimating the MO intensities of sce-
narios. Each ANN is used to predict the MO
intensity for a particular MO (i.e., each ANN
has one output neuron) and the target outputs for
training are the MO intensities mapped from the
player’s MO performances collected from the
simulation. The input data for each ANN are
the features extracted from the sample scenar-
ios. In the current work, we use the following
set of features as the descriptors to represent a
scenario:

• Event-intensity features: these include
number of instigators, number of agents
turning angry, number of rumors being
spread, number of jumping queue inci-
dences, and number of food steal attempts
in a scenario.

• Occupancy feature: the time period occu-
pied by all the scenario beats (i.e.,

∑m
i=1 δi,

m is the total number of beats in a scenario)
over the total simulation time.

• Event-type feature: number of the distinct
event types in a scenario.

To extract the values of the above scenario
features for all sample scenarios, a feature ex-
tractor is used. The extracted feature values are
fed as the inputs to the ANNs for data train-
ing. Apart from the scenario features, a set of
player features (as described in the next section),
which are used to reflect player’s behaviors dur-
ing the gameplay, is also fed as the inputs to the
ANNs. Given all the inputs of the ANN and the



target outputs, each ANN is trained using back-
propagation algorithm.

4.3 Scenario Generation

After the data training is completed, the sce-
nario generation module is used to generate
the scenarios based on trainer’s inputs. In our
design, a trainer can specify two key inputs
for scenario generation. The first input is a

mission objective MO intensity vector
−→
I in =

[x1, x2, ..., xn], where
−→
I in ∈ Rn

≥0, n is the num-

ber of MOs. By specifying the values in
−→
I in, the

trainer can implicitly control the types of event
instances to be generated, which are related to
the training of different MOs. The second in-

put is a skill level vector
−→
Lin = [l1, l2, ..., ln],

where
−→
Lin ∈ Nn and it represents the trainee’s

estimated skill level with respect to each MO.

The specification of
−→
Lin can be based on a pri-

ori knowledge about the trainee or a player
model built based on the trainee’s previous per-
formance data. When multiple training sessions

are conducted,
−→
Lin of a trainee can be updated

iteratively from one session to another.
Based on the two trainer inputs, the desired

MO intensity vector
−→
Id is derived with the com-

bination of
−→
I in and

−→
Lin. Each element xd

i in
−→
Id is

proportional to the product of the corresponding

element in
−→
I in and

−→
Lin, that is, xd

i ∝ xili. The
purpose of doing this is to compensate the dif-
ference in trainees’ skill levels. Pedagogically, a
trainee should be assigned a scenario, which is
appropriate to her/his existing skill levels. Thus,
given the same MO intensities specified by the
trainer, the desired intensities are adjusted ac-
cording to different trainees’ skill levels.

Once
−→
Id is derived, the GA-based scenario

generator is responsible to search for scenarios

that can best match
−→
Id . The generation pro-

cess starts from a randomly generated popula-
tion of candidate scenarios, iteratively alters the
events in the scenarios (via genetic operators),
and evaluates the scenarios based on a given fit-
ness function. In our design, the fitness function

is defined as the Manhattan distance between
−→
Id

and the aggregated MO intensity vector
−→
Ia as:

ffitness = d(
−→
Id,

−→
Ia) (1)

To obtain the values of
−→
Ia for a candidate sce-

nario, the trained ANNs from the data training
module are used. The feature values of the can-
didate scenario are used as the inputs for the
ANNs, which produce the outputs that predict
the aggregated MO intensities of the scenario
(i.e., the elements in

−→
Ia ). The generation process

terminates, when the best fitness in the popula-
tion does not improve substantially for 20 itera-
tions. The generated scenarios are then sent to
the simulator for trainees to exercise.

5 AI Player Modeling

To automate the data collection procedure in our
scenario generation framework, one important
requirement is the use of AI player. In our train-
ing system, a player (either real or AI) can act as
a commander and issue different types of com-
mands (i.e., pacify, threaten, and arrest) to sol-
diers in the simulation. The soldiers will then
perform the actions according to the issued com-
mand. Depending on the area where the events
have occurred, the player has to switch from one
area to another area in the simulation. Figure 3
shows a case when the AI player switches to
the distribution area (one of the four areas as
described in section 3) and controls the soldier
agent to perform a specific action.

Figure 3: AI player-controlled soldier perform-
ing pacify action in distribution area.

Our design of the AI player intends to imitate
how a real player behaves in our training game.



Specifically, we model a real player’s personal
characteristics with respect to attention, playing
style and skill level. In our AI player model,
the AI player’s behaviors are characterized by a
tuple of three key state variables: < s, c, t >,
where s (switch time) is the time period dur-
ing which the AI player stays in the current area
until switching to the next area, c (issued com-
mand) is the command to be issued next, and t
(action time) is the time to issue the next com-
mand.

The first variable s is used to reflect a player’s
attention characteristics. This means that during
a period of time (i.e., s), a player can only fo-
cus and perform actions at a specific area of the
simulation. After s has elapsed, the AI player
will switch to the next area. The switch time s
is computed as:

s = max(Ta, s
u) +Asεs, (2)

where Ta is the time period for AI player to com-
plete all the actions within the current area a,
su is a user-defined parameter to represent the
average switch time of the AI player, εs is a
random variable drawn from a given distribu-
tion of stochastic shift, with the mean of zero,
and As denotes the strength of such stochastic
influence. The first term in equation 2 implies
that the AI player will switch to another area if
there is no more action needed to perform in the
current area or the time has exceeded the aver-
age switch time of the AI player. In our model,
Ta = tf +∆tidle − ts, where ts is the start time
when the AI player switches to the current area,
tf is the time when the AI player finishes all the
actions in the current area, and ∆tidle is the idle
time threshold value before changing area.

The second variable, issued command, deter-
mines the type of command to choose, given that
the situation (e.g., the presence of both angry
agents and instigators at the same time) requires
the AI player to choose from a set of alterna-
tive commands. Given either two types of com-
mands are applicable to choose at a certain point
of time, the AI player has to choose the type
of command based on its preference. In prac-
tice, such preference reflects the playing style of
a player. For example, some people may pre-
fer to arrest instigators rather than to threaten
the stealing agents, while others may prefer the
opposite. In our model, we use a probability

ratio p(cT1 |cT2) to describe the probability that
the AI player chooses the T1 type command
over the T2 type command. Here, we model
the pair-wise preference. The selection prob-
abilities of p(carrest|cthreaten), p(cthreaten|cpacify)
and p(carrest|cpacify) are thus defined in our cur-
rent design. In the case that all three types of
commands can be chosen at a particular time,
p(carrest|cthreaten) is used as these two types of
commands are considered to be more crucial for
controlling the situation. The issued command
c, given a selection probability p(cT1 |cT2) is de-
termined as:

c =

{
cT1 , if p(cT1 |cT2) ≥ R

cT2 , otherwise
(3)

where R is a random variable drawn from a stan-
dard uniform distribution.

The last variable, action time, controls the
time when the AI player issues a specific action.
For the command of type Ti, the action time ti
is determined as:

ti =

{
tc + tr

i, if Fi(t) = true

null, otherwise
(4)

where Fi(t) is the assertion function to deter-
mine when the AI player decides to issue the
command cTi , tr

i represents the response time
that elapses from the time (i.e., tc) the player
should issue a command cTi to the time the
player actually issues the command. tr

i is used to
reflect the player’s skill level (i.e., how fast the
player can react to issue the command of type
Ti).

To decide when a command cTi needs to be
issued, Fi(t) can be realized differently depend-
ing on the command type. For instance, for the
pacify command, we define the following asser-
tion function as:

Fpacify(t) = Θ[G(t, c)− τp −Apεp(t)] (5)

where G(t, c) measures the number of angry
agents at the time t in the current area c, Θ[x]
is the Heavyside function which is one if x ≥ 0
and zero otherwise, τp is a threshold value that
specifies the number of angry agents for trig-
gering the pacify action, εp(t) adds a stochastic
shift to the threshold value, and Ap denotes the
strength of such stochastic influence.



Table 2: Best MLP topology and its performance using testing set.

MO1 MO2 MO3

Best MLP Topology 24-41-1 24-29-8-1 24-54-27-1
Best Learning Rate 0.2 0.2 0.15

Average RMSE (std) 0.068 (0.006) 0.087 (0.014) 0.065 (0.005)

By adopting the AI player model as described
above, we aim to generate human-like behav-
ior to reflect how a real player actually plays
our training game. Noteworthy, different hu-
man players may exhibit different levels of pro-
ficiency and playing styles when playing the
game. To reflect the player’s difference, we
make the set of parameters {su, p(cT1 |cT2), t

r
i}

as tunable parameters in our model. In our data
collection, these parameters can be varied to rep-
resent different AI players and they are used as
the player features as the part of the inputs of the
ANNs. The value of each parameter is varied to
cover the range from low to high values, which
we observed from the data collected from real
players.

6 Experiment

We evaluate the proposed scenario generation
framework in the testbed training game (as de-
scribed in section 3). In the following subsec-
tions, we will first describe the experiment to
validate the AI player. We will then present
the procedure and results of the ANN-based
data training. Lastly, we will show the com-
parative evaluation of heuristic-based and data-
driven approach.

6.1 AI Player Validation

To validate that our AI player model can reflect
the human player’s behaviors, we conducted ex-
periments to compare the MO performances of
the AI player and real player for playing iden-
tical scenarios. 20 participants (11 males and
9 females) were recruited to play some sample
scenarios. Their MO performances and game-
play features (e.g., average switching time) were
recorded. Each player’s game-play data are
mapped to a corresponding AI player by assign-
ing the appropriate values for the tunable pa-

rameters of the AI player model. The obtained
AI player was then used to play the same sce-
nario and its MO performances were recorded.
We compared the performance difference be-
tween the human player and the corresponding
AI player.

For the three MOs defined in section 3,
three MO performance measures are used:
PMO1=number of pacified civilians/number of
total angry civilians, PMO2=number of arrested
instigators/number of total instigators, and
PMO3=number of steals being stopped/number
of total steal attempts. The value range of
these three MO performance measure is [0, 1].
From our experiments, the average differences
for PMO1, PMO2 and PMO3 between the AI
players and human players are: 0.028, 0.032 and
0.029 respectively. The two-sample two-tailed
t-test was also conducted to check whether the
AI player’s performance is significantly differ-
ent from that of the human player. The results
yield the p-value of 0.68, 0.91, 0.86 for PMO1,
PMO2, PMO3 respectively. This shows that the
AI player’s behaviors are generally consistent
with human player’s in terms of the MO per-
formance.

6.2 ANN Data Training

To train the ANNs for scenario generation, a
data collection process was conducted. 100 ran-
dom scenarios were generated and each random
scenario was played by a set of 10 different AI
players (by varying the tunable parameters of
the AI player model based on the sets of param-
eters of real players). The AI player MO perfor-
mance data were recorded and a dataset of 1000
data points (i.e., 100 × 10) was collected. The
three-way data split was performed on the col-
lected dataset, with 20% of data were used as
the testing set. To train and validate the ANNs,
8-fold cross-validation was used.

Each ANN is implemented using Multi-Layer
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Figure 4: Target and actual MO performance of (a) PMO1, (b)PMO2, and (c) PMO3.

Perceptron (MLP), with its inputs as the sce-
nario and player features and its output as the
predicted MO intensity. The targeted outputs
are the MO intensities mapped from the MO
performance obtained from the collected data.
The inputs and output of MLP are normalized
into [0,1] interval using min-max normalization.
For model selection, MLP topologies of 2 hid-
den layers, with up to 80 and 30 hidden neu-
rons, respectively, were investigated. The small-
est MLPs that achieve the best cross-validation
performance were selected.

Table 2 shows the performance of best MLP
topologies (under best learning rate), based on
the evaluation using testing set. The perfor-
mance is measured by the root mean squared
error (RMSE) between the targeted MO inten-
sity and the predicted MO intensity using the
ANNs. The results in Table 2 show the average
value and standard deviation (in brackets) of 20
runs of data training. It can be seen that, despite
the variation of the best MLP topology for dif-
ferent MOs, the ANNs can produce reasonable
prediction results to match with the targeted val-
ues.

6.3 Heuristic-based vs. Data-driven
Approach

To evaluate the effectiveness of the data-driven
approach, we compare it with the heuristic-
based approach we introduced in our previous
work [8]. The heuristic-based approach utilizes
a heuristic function to estimate the aggregated
MO intensities of a given scenario based on the
MO intensities of individual beats in the sce-
nario. The MO intensities of scenario beats
are pre-defined based on the designer’s experi-
ence. In contrast, the data-driven approach uses

the trained ANNs to do the MO intensity esti-
mation. The evaluation was conducted by com-
paring the scenarios generated by the two ap-
proaches.

To generate a scenario, we first specified a
target performance for each MO. The target
performance describes the desired MO perfor-
mance to be achieved when a trainee plays the
scenario. Each target performance was then
mapped into a MO intensity value. Here, we
use the same mapping as in the ANN data train-
ing to transfer MO performance to MO inten-
sity. The mapped MO intensities were further
scaled by the estimated trainee’ skill levels to

derive the desired MO intensities (i.e.,
−→
Id as

in section 4.3). Given the
−→
Id as the inputs, we

generated scenarios using each approach respec-
tively.

To evaluate a generated scenario, we exam-
ined the actual MO performance obtained from
the simulation against the target performance
being specified. The smaller difference between
the two indicates that the corresponding sce-
nario matches closer to the desired MO inten-
sities. Thus, we compare the two approaches by
checking which approach can generate the sce-
nario that yields smaller difference between the
actual and target performance.

In our experiment, we generated a set of 5
scenarios using each approach with the speci-
fied target performance, as shown in Figure 4.
To obtain the actual MO performance, we used
the same AI player to play the scenarios gener-
ated by the two approaches. For the three types
of MO performance as described in section 6.1,
the target performance and actual performance
of the scenarios generated by heuristic-based
and data-driven approach are shown in Figure 4.



Note that for each scenario, we generated 10 in-
stances of the scenario using the same target per-
formance. Each actual performance shown in
Figure 4 is the average value of ten scenario in-
stances.

Based on the results shown in Figure 4, we
calculated the average difference between the
target and actual performance across all 50 sce-
narios (i.e., 5 sample scenarios × 10 instances
for each sample scenario). The average dif-
ferences for data-driven approach are 0.048,
0.040, and 0.039 for pMO1, pMO2, and pMO3

respectively; whereas the average differences
for heuristic-based approach are 0.072, 0.081,
and 0.085 respectively. The two-sample one-
tailed t-test (with sample size = 50) was also
conducted to check whether the difference be-
tween the target and actual performance using
data-driven approach is lower than the one using
heuristic-based approach. The results yield the
p-value of p < 0.001, p < 0.01, p < 0.001 for
PMO1, PMO2, PMO3 respectively. This shows
that our data-driven approach outperforms the
heuristic-based approach, as it is capable to gen-
erate the scenarios that match closer to the spec-
ified target performance.

7 Conclusion

This paper presents our first step in designing
a data-driven scenario generation framework for
serious games. In the proposed framework, a
data training process is introduced to train the
neural networks based on simulation data for
predicting the scenario’s intensities with respect
to different mission objectives. To facilitate the
data collection from simulation, an AI player
model is also designed to imitate the behav-
iors when human player plays scenarios. While
our experiments show the ANN-based predic-
tion achieves reasonable accuracy, we will con-
tinue to improve our model’s performance by
considering more scenario features in our data
training process. Furthermore, we will conduct
experiments involving human players to demon-
strate the training effectiveness of our system.
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