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Abstract 

Keratinases are a group of proteolytic enzymes that can catalyse the cleavage and 

hydrolysis of the highly stable and fibrous proteins: keratins. A diverse range of 

microorganisms, including fungi, actinomycetes and bacteria, have been reported to produce 

keratinases that have biotechnological applications and potential. These keratinases have 

been usefully applied in agricultural, pharmaceutical, leather and textile processes as well as 

within environmentally friendly waste management solutions. Potential uses of keratinases 

include the fields of biomedicine, cosmetics, biological control and the generation of green 

energy. Herein we aim to provide an overview of the properties of this group of versatile 

enzymes, including the mechanisms of keratin degradation. The diversity of microbial 

sources of keratinases is discussed and the optimisation of keratianse production examined. 

We conclude with an assessment of the established biotechnological applications of 

keratinases in different industries and current research that highlights other promising 

potential uses. 

1 Introduction 

Keratinases are key proteolytic enzymes produced by dermaptophytes; they hydrolyse both 

‘soft’ (cytoskeletal materials in epithelial tissues, containing up to 1% sulphur) and ‘hard’ 

(protective tissues in hairs and nails, containing up to 5% sulphur) keratins (Karthikeyan et 

al. 2007). Hence, in the past few decades, a number of research projects have focused on 

the activities of keratinases and their role in the virulence of dermatophytes such as 

Trichopyton and Microsporum (Siesenop and Bohm 1995; Monod 2008). The potential of 
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keratinases in the biotechnological context has gained substantial and significant recognition 

since the beginning of the 21st Century: their substrate specificity and ability to attack highly 

cross-linked and recalcitrant structural proteins that resist common known proteolytic 

enzymes, such as trypsin and pepsin, make them valuable biocatalysts in industries that 

deal with keratinous materials. Novel applications of keratinases are continuously being 

discovered (see section  6). A number of excellent reviews have been published charting the 

progress of our understanding of keratinases and their microbial sources, providing excellent 

overviews on the ecology, physiology and mechanisms of keratinolytic microorganisms 

(Korniłłowicz and Bohacz 2011) and the applications of keratinases (Onifade et al. 1998; 

Gupta and Ramnani 2006; Karthikeyan et al. 2007; Brandelli et al. 2010; Guptaet al. 2013a, 

b). This article aims to consolidate and update the information to provide a comprehensive 

review of this remarkable biocatalyst. 

2 Characteristics and Properties of Keratinases 

Keratinases are proteolytic enzymes that can hydrolyse keratins. Keratins belong to a super 

family of intermediate filaments. They are stable, insoluble and fibrous structural proteins 

that are found in epithelial tissues (soft epitheria keratins) and protective tissues such as 

hair, nails and horns (hard trichocytic keratins). Coulombe and Omary (2002) have 

developed a set of principles for defining the structures, functions and regulations of keratin. 

The primary function of keratins is to protect cells from mechanical and non-mechanical 

stress; they also have other roles such as cell signalling, regulating the availability of other 

abundant cellular proteins and as a stress protein. 

In general, keratins can be classified as Type I (acidic keratins) or Type II (basic keratins). 

The strength and robustness of keratin is derived from the highly stable, tightly packed α-

helix (in α-keratins such as hair) and/or β-sheet (in β-keratins such as horn and hooves) 

configurations. The keratin micro- and macro-filaments in these pleated sheets are 

supercoiled to form a highly stable left-handed superhelical motif (Voet and Voet 1995) 

sustained by strong inter- and intramolecular hydrogen bonds and hydrophobic reaction of 

the polypeptides (Bradbury 1973). In addition, all keratins contain a high degree of cysteine 

which confers rigidity and chemical resistance via the crosslinking of thermally-stable 

disulphide bonds. The amount of cystine plays a significant role in determining the nature of 

the keratin; in soft keratin, the amount of cystine present (up to 2%) was much lower than 

the hard keratin (∼ 22%; Korniłłowicz-Kowalska and Bohacz, 2011). Table 1 lists the cystine 

content in different types of keratins. 
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Keratinases are predominantly secreted extracellularly into the growth medium containing 

keratin (Monod et al. 2002; Gupta and Ramnani 2006; Brandelli et al. 2010). However, 

Wawrzkiewicz et al. (1987) noted that Trichophyton gallinae only produced intracellular 

keratinase, whilst Korniłłowicz-Kowalska (1999) and Al-Musallam et al. (2013) observed the 

production of both extracellular and intracellular keratinase in geophilic microscopic fungi  

namely Arthroderma quadrifidum, A. curreyi and Chrysosporium pruinosum) and 

macroscopic fungi (Coprinopsis sp.) respectively. Gessesse et al. (2003) and Manczinger et 

al. (2003) reported the production of constitutive keratinase by Nesterenkonia sp. AL20 and 

Bacillus licheniformis respectively, whereas Apodaca and Mckerrow (1989) discovered that 

keratinase may be constitutively produced in Trichophyton rubrum in the absence of keratin. 

The classification and nomenclature of all proteolytic enzymes are available in the MEROPS 

database (http://merops.sanger.ac.uk/cgi-bin/family_index?type=P#S). These proteases are 

grouped into: aspartic, cystein, glutamic, asperagine, metallo, mixed, serine, threonine 

peptidases and those that are of unknown catalytic mechanisms. Microbial keratinases are 

predominantly of the metallo, serine or serine-metallo type (Brandelli 2008) with the 

exception of keratinase from yeast which belongs to aspartic protease (Negi et al. 1984; Lin 

et al. 1993; Koelsch et al. 2000). Both metallo and serine peptidases are endoproteases that 

cleave peptide bonds internally within a polypeptide. 

Metalloproteases are highly diverse, having more than 90 families. A common feature of this 

type of enzyme is the involvement of a divalent ion (such as Zn2+) for their catalytic activities 

which are inhibited by metal chelating agents, transition or heavy metals (Gupta and 

Ramnani 2006; Riffel et al. 2003; Nam et al. 2002; Thys et al. 2004). Serine proteases fall 

into two broad categories based on their structure: chymotrypsin-like (trypsin-like) 

or subtilisin-like. The subtilisin subfamily are completely inhibited by PMSF 

(phenylmethanesulfonylfluoride), antipain and chymostatin (Tyndall et al. 2005). 

2.1 Optimal pH and Temperature 

Keratinases belonging to the metallopeptidase group work best in neutral to mildly alkaline 

conditions (pH 7-8.5; Bach et al. 2011; Sousa et al. 2007; Lee et al. 2002; Tork et al. 2013; 

Riffel et al. 2007; Han et al. 2012) with the exception of the keratinase produced by Bacillus 

thuringiensis TS2 (Sivakumar et al. 2013) where the optimal pH was 10 and one of the two 

metalloproteases isolated from an endophytic and keratinolytic Penicillium spp. Morsy 1 

which also has an optimum working pH range of 10-11 (El-Gendy, 2010). 
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Keratinases belonging to the serine peptidase group are mainly alkaline proteases that have 

pH optima in the alkaline range (pH 8-11; Habbeche et al. 2014; Yoshioka et al. 2007 

Fakhfakh et al. 2009; Lv et al. 2010; Jeong et al. 2010; Cao et al. 2009). Some alkalophilic 

actinomyces such as Nocardiopsis sp. strain TOA-1 (Mitsuiki et al. 2004) and Streptomycces 

AB1 (Jaouadi et al. 2010); and alkalophilic bacteria Bacillus circulans (Benkiar et al., 2013) 

and Bacillus halodurans AH-101 (Takami et al. 1999) have been found to produce 

keratinases that perform best in a highly alkaline environment (pH >11.5). Atypically, the 

serine keratinases produced by two fungal strains have an acidic optimal pH range: 

Trichophyton mentagrophytesat pH4.5 (Tsuboi et al. 1989) and Purpureocillium lilacinum at 

pH 6 (Cavello et al. 2013). 

Only a few keratinases belonged to the group serine-metalloprotenase have been isolated: 

Bacillus sp. 50-3 (Zhang et al. 2009), Stenotrophomonas maltophilia BBE11-1 (Fang et al. 

2013), Streptomyces gulbargensis (Syed et al. 2009), Streptomyces SK1-02 (Letourneau et 

al. 1998) and Streptomyces sp. 7 (Tatineni et al. 2008). This group of keratinases also have 

alkaline optimum pH range (9-11). 

In general, microbial keratinases have a broad, thermally stable range where they can 

function and the optimal temperature is along the thermophilic range of 45-60 °C (Kim 2007; 

Lateef et al. 2010; Xu et al. 2009; Kojima et al. 2006; Tork et al. 2013; Rai et al. 2009; 

Sivakumar et al. 2013; Jaouadi et al. 2013; Riffel et al. 2007; Bernal et al. 2006a; Cavello et 

al. 2012; Sye et al. 2009, Cao et al. 2008; Chao et al. 2007). A number of organisms such as 

Actinomadura keratinilytica Cpt29 (Habbeche et al. 2014), B. circulans (Benkiar et al. 2013), 

Thermoactinymces candidus (Ignatova et al. 1999), Thermoanaerobacter keratinoplilus 

(Riessen and Antranikian 2001), Fervidobacterium pennavorans (Friedrich and Antranikian 

1996; Kluskens et al. 2002) and F. islandicum (Gödde et al. 2005) produce keratinases that 

work best at temperature at or above 70 °C.The highest optimal temperature (100 °C) was 

recorded by Nam et al. (2002) from a serine keratinase, produced by F. islandicum AW1, 

isolated from a geothermal hot spring. Mesophilic keratinses with lower optimal temperature 

range (20-45 °C) are predominately produced by pathogenic organisms including Kocuria 

rosea (Bernal et al. 2006a), Myrothecium verrucaria (Moreira-Gasparin et al. 2009), 

Scopulariopsis brevicaulis (Malviya et al. 1992), Serratia marcescens P3 (Bach et al. 2012), 

S. maltophilia (Fang et al. 2013; Cao et al. 2009; Jeong et al. 2010; Yamamura et al. 2002) 

and Trichophyton sp. (Anbu et al. 2008; Ismail et al. 2012) is which probably indicative of the 

ecological niches they occupy. 
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2.2 Biochemical Properties of Keratinases 

The majority of keratinases reported are monomeric enzymes with a diverse range of 

molecular weights (14-240 kDa; see section  3). The keratinase produced by Bacillus pumilus 

A1 has the lowest molecular weight (Fakhfakh et al. 2013), whereas K. rosea produced 

keratinase of the highest molecular weight (Bernal et al 2006a). Although less common, 

multimeric kerainases have also been isolated in a number of microorganisms. Keratinase 

from fungal isolates of Coccidioides immitis produced seven distinct polypeptides ranging 

from 15 to 65 kDa (Lopes et al 2008), S. brevicaulis and Penicillium spp. Morsy 1 both 

produced two fractions when purified by SDS-PAGE (sodium dodecyl sulphate 

polyaccylamide gel electrophoresis) ranging from 24-45 kDa and19-40 kDa respectively 

(Malviya et al. 1992; El-Gendy 2010). Actinomycetous isolates of Steptomyces sp. strain 16 

produce keratinase comprised of four active polypeptides varying from 19 to 50 kDa (Xie et 

al. 2010). Multimeric keratinases were also detected in bacterial strains such as Bacillus sp. 

MTS (three fractions ranging from 16-50 kDa; Rahayu et al. 2012); Chryseobacterium sp. 

kr6 (three active fractions at 20-64 kDa; Riffel et al. 2007; Silveira et al. 2010); and C. 

indologenes TKU014 (three active fractions, 40-56 kDa; Wang et al. 2008); Kytococcus 

sedentarius M17C (two fractions at 30 and 50 kDa; Longshaw et al. 2002) and B. 

licheniformis ER-15 (28 and 30 kDa; Tiwary and Gupta 2010). 

Keratinase produced by B. licheniformis PWD-1 is the best studied and the entire nucleotide 

sequence of the coding and flanking regions of the keratinase structure gene, kerA, was 

determined (Lin et al. 1997). Although many microorganisms are able to produce keratinase 

(see section  3) and many have been sequenced (Gupta et al. 2013b), few keratinase 

encoding genes have been cloned and expressed in heterologous systems (Radha and 

Gunasekaran 2007; Porres et al 2002) except for Bacillus megaterium, which is a stable host 

to clone and express keratinase genes from heterologous origin (Radha and Gunasekaran 

2007). In contrast, in a comparative study using Escherichia coli, B. subtilis, and Pichia 

pastoris as cloning hosts to express the keratinase gene from B. licheniformis BBE11-1, B. 

subtilis appeared to be the ideal host for keratinase production (Liu et al. 2014). 

2.3 Chemical Properties of Keratinases 

The N-terminal sequences of a number of keratinases have been comprehensively analysed 

and reviewed by Gupta and Ramnani (2006) and Brandelli et al. (2010). Depending on the 

microbial source, keratinases produced by each class and group share a high degree of 

similarity in their N-terminal sequences (Table 2). Most keratinases isolated from the Bacillus 

sp. belong to the subtilisin group and have very high (>90%) N-terminal sequence homology 
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with the subtilisin Carlsberg produced by B. licheniformis. Keratinases A (kerA) and RP 

(kerRP) from B. licheniformis PDW-1 and RPk respectively are almost identical to subtilisin 

Carlsberg (Lin et al. 1995; Fakhfakh et al. 2009; Jacobs et al. 1985). The deduced amino 

acid sequence revealed that the keratinase kerRP differs from kerA, subtilisin Carlsberg, and 

a keratinase of B. licheniformis by 2, 4, and 62 amino acids, respectively but conserving the 

active site residues D32, H63 and S220 (Fakhfakh et al. 2009). Keratinases from B. 

licheniformis MKU3 and MSK103 have over 99% and 87% similarity with kerA respectively 

(Radha and Gunasekaran 2007; Yoshioka et al. 2007) and the keratinase from B. circulans 

showed more than 80% homology with B. pumilus K12 and B. pumilus CBS (Benkiar et al. 

2013).The N-terminal amino acid of keratinase KERUS of Brevibacillus brevis US575 differs 

from B. pumilus A1, B. pumilus CBS and subtilisin Carlsberg by only one amino acid - the 

Gln13 residue in KERUS was an Ala13 in the other enzymes. Similarly, keratinase isolated 

from Streptomyces griseus, S. albidolavus K1-02 and Streptomyces fradiae share 

comparable N-terminal sequences, but are distinct from keratinases produced by other 

bacterial and fungal strains (Table 2). 

A number of chemicals have been shown to inhibit keratianses (Table 3). Keratinases 

belonging to the metalloproteases group are inhibited by metal chelating agents [e.g. 

ethylenediaminetetraacetic acid (EDTA)], organic ligands (e.g.1,10-phenanthroline)and a 

number of heavy metals including Cu2+,Hg2+, Pb2+, Ni2+, Zn2+, Co2+ and Mn2+ (Riffel et al. 

2007; Thys et al. 2006; Farag and Hassan 2004; Daroit et al. 2011; Sivakumar et al. 2013). 

Serine proteases are generally inhibited by PMSF (Benkiar et al. 2013; Jaouadi et al. 2013; 

Xie et al. 2010; Shrinivas et al. 2012) and some are also susceptible to Cd2+ and Hg2+ 

inhibition (Anitha and Palanivelu 2013; Benkiar et al. 2013; Chaudhari et al. 2013; Li et al. 

2007). Keratinases that are serine-metalloproteases are sensitive to both chelating agents 

and PMSF (Tork et al. 2013; Tatineni et al. 2008; Fang et al. 2013). The presence of Ca2+ 

and Mg2+ appeared to enhance keratinase activities in all protease groups (Farag and 

Hassan 2004; Benkiar et al. 2013; Sivakumar et al. 2013; Jaouadi et al. 2013; Riffel et al. 

2007). Interestingly, whilst Co2+ and Cu2+ are inhibitory to the metalloproteases produced by 

Bacillus sp. P45 (Dozie et al. 1994), Bacillus subtilis NRC 3 (Tork et al. 2013), B. 

thuringiensis (Sivakumar et al. 2013) and some Chryseobacterium sp. (Chaudhari et al. 

2013; Riffel et al. 2007), they improved the serine protease activities in B. circulans DZ100 

(Benkiar et al. 2013), B. brevis US575 (Jaouadi et al. 2013), B. licheniformis BBE11-1 (Liu et 

al. 2013) and S. fradiae var k11 (Li et al. 2007). A small number of keratinases are 

stimulated by the presence of surfactants and detergents; metalloproteases of 

Chryseobacterium gleum (Chaudhari et al. 2013), serine proteases of Aspergillus parasiticus 

(Anitha and Palanivelu 2013), Brevibacillus sp. AS-S10-II (Mukherjee et al. 2011) and S. 
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maltophilia BBE11-1 (Fang et al. 2013) are augmented by Triton X-100, Tween 20, Tween 

80 and non-ionic surfactants. 

Keratinases that are either active or stable in the presence of organic solvents, surfactants, 

and bleaching agents have potential industrial applications. A keratinolytic serine protease 

secreted by P. lilacinum is found to demonstrate stable keratinolytic activities with dimethyl 

sulfoxide (DMSO), methanol, and isopropanol; Triton X-100, SDS, Tween 85 or hydrogen 

peroxide (Cavello et al. 2012). The keratinase produced by B. pumilus KS12 was found to 

exhibit both high detergent compatibility and oxidation stability with an eight- and five-fold 

enhancement of enzymatic activities in the presence of Triton X-100 and saponin 

respectively (Rajput et al. 2010). The keratinolytic proteases of Meiothermus ruber H328 

was able to tolerate SDS at 30 % (w/v) and organic solvents (methanol, ethanol, acetonitrile, 

acetone, and chloroform) at 40 % (v/v) at 60 °C (Kataoka et al. 2014). Similarly, the 

thermally stable keratinase isolated from Meiothermus sp. I40 also exhibited good stability in 

the presence of DMSO, ethanol, isopropanol and acetonitrile (Kuo et al. 2012) and the 

keratinase produced by B. halodurans PPKS-2 was not inhibited by SDS, EDTA, H2O2 (15%) 

or other commercial detergents (Prakash et al. 2010a). 

It has been reported that reducing agents such as dithiothreitol (DTT), β-mercaptoethanol, 

cysteine and sodium sulphite stimulated keratinase activity as the thiol groups activate the 

keratinolytic enzymes (see section  2.5; Gupta and Ramnani 2006; Fang et al 2013; Tatineni 

et al. 2008; Xie et al. 2010). However, this phenomenon was not universal and did not apply 

to the keratianses isolated from Brevibacillus sp. AS-S10-II (Mukherjee et al. 2011) and 

Chryseobacterium sp. kr6 (Riffel et al. 2007); probably resulting from the chelation of 

essential ions that are necessary to maintain the structure and activity of the keratinase by 

DTT (Riffel et al. 2007). 

2.4 Keratinous Substrates and their Specificities 

Microbial keratinases can be isolated in a number of sources and have diverse properties 

depending on the producer organisms (Brandelli et al. 2010; see section  3 for details). For 

example, keratinases from fungi, actinomycetes and bacteria have a wide range of 

substrates: from soft keratin such as stratum corneum (Błyskal 2009) to hard keratin such as 

feather keratin (Mazotto et al. 2013; Gousterova et al. 2005; Frie Friedrich and Antranikian, 

1996; Ichida et al. 2001), sheep’s wool (Farag and Hassan, 2004; Xie et al. 2010; Riessen 

and Antranikian 2001; Han et al. 2012), human and animal hairs (Chen et al. 2011; Desai et 

al. 2010; Gurav and Jadhav 2013; Jaoudai et al. 2013), nail, hoof and horn (Mohorčič et al. 

2007; Friedrich and Kern 2003; Tiwary and Gupta 2010; Błyskal 2009) and azokeratin (Bach 
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et al. 2011; Kim 2007). Other substrates that are susceptible to keratinase degradation 

include: collagen (Fang et al. 2013; Bernal et al. 2006a; Farag and Hassan 2004); elastin 

(Brandelli et al. 2010; Bressollier et al. 1999); gelatine (Tork et al. 2013; Lopes et al. 2008); 

albumin and haemoglobin (Benkiar et al. 2013; Lopes et al. 2008), fibrin (Tiwary and Gupta 

2010; Tork et al. 2013). 

In addition to substrates listed above, keratinase is also able to degrade unusual recalcitrant 

animal proteins such as prions (Suzuki et al. 2006; Tsiroulnikov et al. 2004; Langeveld et al. 

2003). Prions are fatal neurodegenerative transmissible agents causing several incurable 

illnesses in humans and animals. Prion diseases are caused by the structural conversion of 

the cellular prion protein, PrPC, into its misfoldedoligomeric form, known as PrPSc (Abskharon 

et al. 2014). The normal prion protein PrPC consists of approximately 45% α-helix and only 

3% β-sheet, but the abnormal conformer PrPSC consists of approximately 30% α-helix and 

45% β-sheet (Pan et al. 1993). This structure shares a high degree of similarity with feather 

keratin. The feather keratin molecule contains a 32-residue segment that is believed to form 

the framework of the filament that has a helical structure with four repeating units per turn; 

each repeating unit consists of a pair of twisted β-sheets related by a perpendicular diad 

(Fraser and Parry 2007). 

The substrate specificity of keratinases is strongly influenced by the chemical properties of 

their substrates. As keratin is composed of 50-60% hydrophobic and aromatic amino acids 

(Gradišar et al. 2005; Brandelli et al. 2010), keratinases appear to cleave preferentially 

hydrophobic and aromatic amino acid residues at the P1 position (Gradišar et al. 2005; 

Silveira et al. 2009; Brandelli et al. 2010; Gupta et al. 2013a). Hydrolysis studies using 

oxidised insulin B as the substrate showed that phenylalanine, valine, tyrosine and leucine 

were selectively cleaved by keratinases of Thermoanaerobacter sp. (Kublanov et al. 2009a), 

B. pumilus KS12 (Rajput et al. 2010), Nesterenkonnia sp. AL20 (Bakhtiar et al. 2005), 

Pseudomonas aeruginosa KP1 and KP 2 (Sharma and Gupta, 2010a,b) and Streptomyces 

sp. (Tsiroulnikov et al. 2004). Studies using synthetic amino acid p-nitroanilide (pNA), p-

nitrophile ester (ONp) or 7-amino-4-methylcoumarin (AMC) as substrates (Table 3) 

demonstrated the substrate specificity of these keratinases. The residues in the P2 and P3 

positions also play a role in the substrate specificity. N-Succinyl-Ala-Ala-Phe-pNa was 

susceptible to degradation by keratinases of B. pumilus, but not its analogue N-Succinyl-Gly-

Gly-Phe-pNa (Rajput et al. 2010). Macedo et al. (2008) showed that the keratinase KerS14 

of B.subtilus preferred to cleave Arg at the P1 position, small amino acid residues at the P2 

position, and Gln or Glu at the P3 position. Keratianses also seemed to prefer utilisation of 

longer substrates which may be indicative that the presence of amino acids further along the 
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cleavage site residue is important to the substrate specificity. This is probably due to the 

availability of additional active sites (Böckle et al. 1995; Bressollier et al. 1999; Mitsuiki et al. 

2004). 

2.5 Mechanism of Keratinolysis 

Over the years, a number of hypotheses have been proposed to explain the mechanism of 

keratin degradation by microbial keratinases (Korniłłowicz-Kowalska and Bohacz 2011). 

Broadly speaking, it is agreed that keratin degradation encompasses two main stages: 

deamination and keratinolysis (Kunert 1976, 1989; Kaul and Sumbali 1997). Deamination 

creates an alkaline environment for optimal enzymatic reaction by the alkaline proteases 

(Kunert, 1989, 1992, 2000; Kaul and Sumbali, 1997). The complex mechanism of 

keratinolysis that follows involves the cooperative action of sulphitolytic and proteolytic 

enzymes (Yamamura et al. 2002). Rahayu et al. (2012) noted the degradation activities on 

natural keratin substrates by purified keratinase from Bacillus sp. MTS was enhanced by the 

purified disulfide reductase, compared to activity of each enzyme alone. This is further 

supported by the observations of Fang et al. (2013) in which three kertinolytic enzymes (a 

serine protease, serine-metalloprotease and disulfide reductase) were isolated from S. 

maltophilia BBE11-1and none of these enzymes showed keratinolytic activity independently.  

During sulphitolysis, disulphide bonds between polypeptide keratin chains are cleaved and 

thiol groups liberated. Kunert (1972) showed that, in the presence of sulphite, disulphide 

bonds of the keratin substrate are directly cleaved to cysteine and S-sulfocysteine. 

Sulphitolysis changes the conformation of keratin and exposes more active sites, making 

them accessible for further digestion by alkaline protease and resulting in the release of 

soluble peptides and amino acids (Yamamura et al. 2002; Kunert 1992; Gradišar et al. 2005; 

Cao et al. 2008; Böckle et al. 1995; Monod 2008). 

It is believed that keratin degradation in keratinolytic fungi also includes an additional 

mechanical step involving the frond myceliain dermatophytes (Kanbe and Tanaka 1982) and 

boring hyphae in non-dermatophytes that penetrate the substrate surface (Kanbe et al. 

1986). The keratinolytic activities of dermatophytes are higher than the non-dermatophytes 

(Filipello Marchisio 2000). Amongst non-dermatophytic fungi, soft keratin degraders are 

likely to produce thin boring hyphae and hard keratin degraders tend to form swollen boring 

hyphae (Korniłłowicz-Kowalska and Bohacz 2011). 

In prokaryotic cells, sulphitolysis can be achieved by the production of disulphide 

reductases, release of sulphite and thiosulphate (Kunert 1989; Ramnani et al. 2005) or a 
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cell-bound redox system (Brandelli et al. 2010; Sharma and Gupta 2010a). Disulphide 

reductases produced by a number of microbes have been shown to effectively reduce the 

disulphide bonds, specifically: Streptomyces pactum (Böckle et al. 1995), Vibrio Kr 2 

(Sangali and Brandelli 2000), StenotrophomonasD-1 and S. maltophilia BBE11-1 sp. 

(Yamamura et al. 2002; Fang et al. 2013), Bacillus sp. MTS (Rahayu et al. 2012) and B. 

halodurans PPKS-2 (Prakash et al. 2010a). It is noted that purified keratinases are generally 

less effective in hydrolysing native keratin, probably due to the removal of disulphide bond 

reduction components during the purification process (Nam et al. 2002; Cao et al. 2008; 

Brandelli et al. 2010). A suitable redox environment may be necessary for effective 

degradation of keratin. The presence of reducing agents (Böckle et al. 1995; Gradisar et al. 

2005; Thys and Brandelli 2006; Cao et al. 2008) or a cell-bound redox system (Ramnani et 

al. 2005; Ramnani and Gupta 2007; Moreira-Gasparin et al. 2009) stimulate keratin 

hydrolysis by purified keratinase. In a cell-bound redox system, the bacterial cells probably 

provide a continuous supply of reductant (e.g. sulphite) to break disulfide bridges (Ramnani 

et al. 2005; Sharma and Gupta 2010a). 

In addition to sulphur-containing amino acids, sulphite is also produced by dermatophytes 

from environmental cysteine, a process that is governed by the key enzyme cysteine 

dioxygenase Cdo1, which is then secreted by the sulphite efflux pump Ssu1. As keratin is 

rich in cysteine, the mechanism of cysteine conversion and sulfite efflux may also play a role 

in keratin degradation (Grumbt et al. 2013). Kasperova et al. (2013) also suggested that Cdo 

is a virulence factor, crucial for keratin degradation, as it is involved in the oxidation of 

cysteine to cysteine sulphinic acid during disulphide bridges cleavage. 

3 Sources of Microbial Keratinases 

Keratinolytic degraders can be found in diverse groups of microorganisms: from fungi, 

actinomycetes to bacteria. The origin and substrates of a number of notable keratinase 

producers are listed in Tables 5-7b. These microorganisms are frequently isolated from 

keratin-rich environments such as soil and wastewater associated with the poultry industry 

and tannery wastes. 

Dematophytic fungi are amongst the most recognised keratin degraders. Their virulence and 

pathogenicity have been linked to their ability to degrade both soft and hard keratin (Monod 

et al. 2002; Brouta et al. 2002; Giudice et al. 2012). However, due to the potential risks of 

infection, biotechnological applications of these fungi have not been widely explored 

(Brandelli et al. 2010; Błyskal 2009). A comprehensive review of nearly 300 fungi species 
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(both pathogenic and non-pathogenic) has been published by Błyskal (2009) detailing their 

ability to degrade different keratinous substrates. The number of strains that were able to 

utilise the keratinous substrates were: hair>>wool>feather>textile>hedgehog 

spine>nail>human plantar callus>hoof>horn (ibid).  A number of keratinases produced by 

non-pathogenic fungi have been isolated and characterised (Table 5); these enzymes 

showed promising potential applications for a number of industries (see section  5). 

Aspergillus (Kim 2007; Mazotto et al 2013; Anitha and Palnivelu 2013; Farag and Hassan 

2004), Coprinopsis (Al-Musallam et al. 2013), Doratomyces (Friedrich et al. 2005) 

Paecilomyces (Gradišar et al. 2005; Mohorčič et al. 2007; Veselá and Friedrich 2009) 

Penicillium (El-Gendy 2010) and Purpureocillium (Cavello et al. 2012) are the most common 

non-pathogenic fungi that produced keratinolytic activities. 

Actinomyces are also known to be a rich source of keratinase (Table 6). A number of 

mesophilic Streptomyces (Böckle et al. 1995; Jaouadi et al. 2010; Bressollier et al. 1999; 

Gushterova et al. 2005; Szabo et al. 2000; Letourneau et al. 1998; Xie et al. 2010; Tatineni 

et al. 2008) and thermophic Streptomyces sp. (Chitte et al. 1999; Gushterova et al. 2005, 

2012; Syed et al. 2009; Ignatova et al. 1999; Vasileva-Tonkova et al. 2009a) produced 

keratinases that break down keratin. Another promising keratinase was isolated from 

Nocardiopsis sp. TOA-1 and has been demonstrated to degrade synthetic keratin substrate 

(Mitsuiki et al. 2004), as well as scrapie prion (Mitsuiki et al. 2006). 

A number of Gram-positive and Gram-negative bacteria are also found to be important 

keratinase producers. From the Gram-positive category, members of the Bacillus genus are 

the most prominent and prolific of the keratin degraders (Tables 7a-7b). In particular, 

keratinases from B. licheniformis are capable in degrading feathers (Ichida et al. 2001; 

Okoroma et al. 2012; Langeveld et al. 2003; Fakhfakh et al. 2009), wool and animal hide 

(Tiwary and Gupta 2010; Desai et al. 2010) and PrPSC prion (Langeveld et al. 2003; 

Yoshioka et al. 2007; Okoroma et al. 2013). From the Gram-negative category, keratinases 

produced by members of the Chryseobacterium or Stenotrophomonas genera have been 

widely studied and shown to degrade feather (Chaudhari et al. 2013; Gurav amd Jadhav 

2013; Cao et al. 2009; Jeong et al. 2010), animal hair (Gurav and Jadhav 2013; Cao et al 

2009), wool (Fang et al. 2013; Cao et al. 2009), hoof and horn (Cao et al. 2009; Yamamura 

et al. 2002).Some thermophilic anaerobic bacteria also demonstrated an ability to produce 

serine type keratinases. Fervidobacterium pennavorans (Friedrich and Antranikian 1996) 

and F. islandicum (Nam et al. 2002; Kluskens et al. 2002) were isolated from hot springs and 

produced keratinases that can degrade feathers efficiently. A novel new species of 
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thermophilic anaerobic bacterium with keratinolytic activities, Keratinibaculum paraultunense 

gen. nov. sp. Nov KD-1, was isolated by Huang et al. (2013) from grassy marshland. 

Other less common microbial sources that produce keratinases include several 

hyperthermophilic archaeons. Thermoanaerobacter keratinophilus (Riessen and Antranikian 

2001), Thermoanaerobacter sp. strains 1004-09 (Kublano et al. 2009a) and VC13 

(Tsiroulnikov et al. 2004) are effective in hydrolysing both  α and β keratins. In addition, 

Thermococcus kodakarensis produces keratinolytic proteases that degrade PrPSC prion 

(Hirata et al. 2013; Koga et al. 2014) and Desulfurococcus kamchatkensis sp. Nov 1221nT 

was able to utilise α keratin (Kublanov et al. 2009b). A small number of lichens including 

Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria were also found to produce 

serine keratinases that could degrade hamster PrPTSC prion (Johnson et al. 2011). 

4 Optimisation of Keratinase Production 

Production of keratinase from a commercial perspective requires an integrated approach 

that combines optimal fermentation conditions, operational optimisation and effective 

downstream processing. Medium composition and culture conditions are the two important 

factors that affect the yield of an enzyme in a fermentation process. The keratin source 

usually serves as the sole carbon and nitrogen sources in a growth medium. The addition of 

separate carbon and nitrogen sources have been shown to increase enzyme production in 

some microorganisms (Brandelli et al. 2010; Ramnani and Gupta 2004), but suppress 

production in others (Brandelli and Riffel 2005; Brandelli et al. 2010). It is suggested that as 

each microorganism has its own optimal set of growth parameters; these conditions should 

be treated on a case-by-case basis (Cai and Zheng 2009; Brandelli et al. 2010). The most 

significant parameters that affect keratinase production can be investigated using a one-

factor-at-a-time method. Optimisation of the selected components can be achieved using a 

statistical approach such as employing the Plackett-Burman design and response surface 

methodology (RSM) to develop a mathematical model to identify the optimum conditions for 

higher keratinase production (Tiwary and Gupta, 2010; Pillai et al. 2011; Rai and Mukerjee 

2011; Haddar et al. 2010; Bernal et al. 2006b; Tatineni et al. 2007; Embaby et al. 2010)). 

Alternatively, the optimal components concentration can be deduced using a central 

composite design (CCD), followed by analysis using the RSM (Harde et al. 2011; Daroit et 

al. 2011; Bach et al. 2012). 

Investigations carried out on keratinase production methods have focused predominantly on 

submerged fermentations (SF; De Azeredo et al. 2006; Brandelli et al. 2010). However, the 
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use of solid-state fermentation (SSF) has gained prominence as it has a number of 

advantages over SF, including: lower production expense, smaller water and energy 

demand, less effluent production and more stable products.Therefore, SSF technology holds 

a tremendous promise, especially in developing countries(Hölker and Lenz 2005; Mukherjee 

et al. 2008; Rai et al. 2009). A number of researchers have demonstrated the potential of 

SSF: De Azeredo et al. (2006) reported higher keratinase activity in Streptomyces sp. 594 

cultured in SSF than SF. Similarly, keratinolytic activity produced by Aspergillus niger strain 

3T5B8 using SSF was found to be seven times higher than those recorded in SF (Mazotto et 

al. 2013). Mukerjee et al. (2008) successfully produced keratinase from B. subtilis DM-04 

using Imperata cylindrical grass and potato peelings (in a ratio of 1:1) as a low-cost medium. 

Likewise, Rai et al. (2009) obtained β-keratinase from B. subtilis strain RM-01 in SSF using 

a chicken-feather substrate; and Kumar et al. (2010) reported B. subtilis MTCC9102 was 

able to produce a significant amount of keratinase under optimized conditions in SSF using a 

horn-meal substrate. Da Gioppo et al. (2009) recorded comparable enzymatic activities from 

keratinase produced by M. verrucaria grown in SF and SSF using poultry feather 

powder and cassava bagasse as substrates. Paenibacillus woosongensis TKB2 cultured in 

SSF conditions using chicken feather as substrate, with rice straw (2:1), moistened with 

distilled water (1:5, w/v adjusted to pH 8.5) and fermented for 72h, increased the production 

of a keratinase that can dehair goat hides within 14 h without the addition of lime (Paul et al. 

2013a).  

The use of immobilised microorganisms as well as purified enzymes has also been 

investigated. Prakash et al. (2010b) demonstrated that whole-cell immobilization was useful 

for continuous production of keratinase and feather degradation by B. halodurans PPKS-2. A 

number of materials have been employed to immobilise cell-free keratinase successfully 

including sintered glass beads, chitin, chitosan beads, biotinylated acrylic beads and 

nanoparticles. Keratinase of Aspergillus oryzae immobilised on sintered glass beads showed 

a higher thermal stability at 70 °C and longer half-life than the free enzyme (Farag and 

Hassen 2004). Rajput and Gupta (2013) reported increased enzymatic stability at 70 °C 

when the keratinase produced by B. subtilis immobilised on chitin by covalent crosslinking. 

Similarly, keratinase of B. subtilis immobilised on poly(ethylene glycol)-supported Fe3O4 

superparamagnetic nanoparticles showed a fourfold increase in the enzymatic activity over 

the free enzyme; and enhanced thermal stability, storage stability and recyclability were also 

observed (Konwarh et al. 2009).The thermal stability of the keratinase from 

Chryseobacterium sp. kr6 immobilised on glutaraldehyde-activated chitosan beads also 

improved around two-fold when compared to the free enzyme at 65 °C, and the immobilised 

enzyme remained active after several uses (Silveira et al. 2012). Aspergillus flavus K-03 also 
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displayed a higher level of heat stability and an increased tolerance toward alkaline pHs 

compared with the free keratinase and retained 48% of the original enzyme after 7 days of 

incubation (Kim 2007). Improved thermal stability and pH tolerance was also observed in a 

fusion protein of keratinase and streptavidin immobilised on biotinylated acrylic beads, 

although its rate of reaction were lower than those of the free enzyme (Wang et al. 2003). 

5 Established Applications of Keratinases 

The ability of microbial keratinases to degrade keratin and other recalcitrant materials holds 

much biotechnological potential and has generated a significant amount of research interest 

in the last couple of decades. One of the earliest reviews on the biotechnological 

applications of keratinases, written by Onifade et al. (1998), documented the potential of 

these enzymes in producing livestock feeds. Subsequently, other potential biotechnological 

applications of keratinases have been identified. A number of excellent reviews have 

extensively examined the use of keratinases in the waste management industry, 

agroindustry, pharmaceutical and biomedical industries, leather and bioenergy industries 

(Thanikaivelan et al. 2004; Gupta and Ramnani 2006; Karthikeyan et al. 2007; Brandelli 

2008; Brandelli et al. 2010; Korniłłowicz-Kowalska and Bohacz 2011; Gupta et al. 2013b). In 

their review on the biotechnological applications and market potential, Gupta et al. (2013a) 

provided a detailed survey of keratinases applications, highlighted their uses and provided a 

list of commercial products involving the use of keratinases.  

5.1 Waste Management 

A large number of keratinous wastes are generated every year mainly from poultry 

production and processing, as well as leather and textile industries (Suzuki et al. 2006; 

Korniłłowicz-Kowalska and Bohacz 2011). Approximately 8.5 million metric tonnes of poultry 

waste was produced worldwide annually; India contributes about 3.5 million tonnes (Gupta et 

al. 2013a), the United State 1.8 million tonnes and the United Kingdom 1.5 million tonnes 

(Okoroma et al. 2012). Livestock and poultry farms and slaughter houses also produce a 

significant number of keratinous wastes in the form of feather, bristles, hair, down, horns and 

hooves (Braikova et al. 2007; Korniłłowicz-Kowalska and Bohacz 2011). Since the outbreak 

of Bovine Spongiform Encephalopathy (BSE) in the United Kingdom, the European Union 

and United States have imposed strict guidelines on the use of animal by-products. In the 

EU, animal by-products are grouped into three categories based on the level of risk in 

transmitting the pathogens and toxic substances. Only category 3 keratinous wastes can be 
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processed and used for livestock, pet and fish food, and for composting (Lasekan et al. 

2013). 

Currently, the poultry industry manages their waste via a number of disposal methods. 

Carcass and feather wastes are generally rendered into bone, meat and feather meal and 

then burnt in cement kilns and disposed of in landfill sites (Cascarosa et al. 2012). Diseased 

mortalities are disposed in disposal pits or incinerated (Nayaka and Vidyasagar 2013). 

Composting has been championed as an environmentally friendly alternative to manage 

keratinous wastes (Ichida et al. 2001; Nayaka and Vidyasagar 2013), where organic 

keratinous wastes are ultimately degraded and converted to inorganic nitrogen (ammonium 

and nitrate) and sulphurs (sulphates) that can be easily absorbed by plants. Nevertheless, 

the rate of degradation in compost may be slow due to the recalcitrant nature of keratins and 

their resistance to normal proteolytic enzymes. Within the compost, the succession is 

dominated by bacteria and actinomycetes during the first two to four weeks of composting; 

this is then gradually replaced by fungi. Cellulolytic meso- and thermophilic fungi are the first 

to emerge while keratinolytic strains are detected in the compost biomass at the sixth week 

of the process (Korniłłowicz-Kowalska and Bohacz 2010). The growth of keratoinolytic fungi 

is found to correlate with the mineralisation of organic nitrogen and sulphur in the composted 

mass (Bohacz and Korniłłowicz-Kowalska, 2009). The addition of keratinase producing 

microorganisms as an inoculum could, in theory, accelerate and enhance the process. Ichida 

et al. (2001) showed that by adding B. licheniformis and a Streptomyces sp. isolated from 

the plumage of wild birds to compost bioreaction vessels, the bacteria-soaked feathers 

degraded more quickly and more completely than the controls.  Nayaka and Vidyasagar 

(2013) also demonstrated that the addition of Streptomyces albus helped to enhance 

degradation of chicken feather compost and the release of valuable byproducts acceptable 

in land use applications. However, Tiquia et al. (2005) failed to observe significant changes 

in the rate of feather degradation when B. licheneformis (OWU 1411T) and Streptomyces sp. 

(OWU 1441) were co-composted with poultry litter and straw; the microbial community 

structure over time was found to be very similar in inoculated and uninoculated waste feather 

composts (ibid). 

Under laboratory conditions, a number of microbial strains demonstrated their abilities to 

degrade feathers and other keratins. Chaudhari et al. (2013) observed the dissolution of 

whole chicken feathers in 72h at 30 °C by C. gleum. Thermophilc B. licheniformis strain N22 

was able to degrade completely melanised feathers in 48 h in the absence of any reducing 

agent (Okoroma et al. 2012). Complete disintegration of intact feathers into soluble proteins 
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by keratins was achieved within 7 days at 30 °C by Serratia sp. HPC 1383 (Khardenavis et 

al. 2009) and in 3 days by Streptomyces AB1 (Jaouadi et al. 2010).B. brevis US575 was 

able to degrade a range of keratins including whole chicken feathers, rabbit fur and goat hair 

in 10h at 37 °C. These observations, amongst many others, suggest the potential of using 

keratinolytic microorganisms in keratinous waste management. The commercial products 

Versazyme® and Valkerase® manufactured by BioResource International (BRI) both contain 

keratinases from B. licheniformis and are marketed for recycling of keratin waste (Gupta et 

al. 2013a) 

5.2 Agroindustry 

In many ways, keratinous waste management is closely associated to its valorisation; 

keratinous wastes are rich in protein and can be converted to valuable amino acids by 

hydrolysis, the resulting hydrolysate is a valuable agricultural resource. 

5.2.1 Animal Feed and Feed Supplements 

Feather waste contains large amounts of amino acids such as cystine, glycine, arginine and 

phenylalanine (Onifade et al. 1998), but they have to be hydrolysed to release these 

valuable amino acids. The processing methods commonly employed to hydrolyse feather 

waste include thermal, chemical and enzymatic treatments (Papadopoulos 1985). 

Thermohydrolysis involves heating feather waste at high temperature (80-140 °C) and 

pressure (10-15 psi). The treatment is energy intensive, causes the destruction of essential 

amino acids such as methionine, lysine and tryptophan and creates an additional pollution 

burden (Papadopoulos 1989; Wang and Parsons 1997). It is thought that the loss in the 

nutritional value is brought about by the combined effects of the destruction of certain 

essential amino acids and the reduction in amino acids availability. The latter is caused by 

the formation of cross-linkages that reduced the rate of protein digestion, possibly by 

preventing enzyme penetration or by blocking the sites of enzyme attack (Papadopoulos 

1989). Physicochemical treatments incorporate organic solvents such as DMSO and 

dimethyl formamide (DMF), acid or alkali in the keratinous waste to facilitate disulphide bond 

cleavage, which in turn encourages solubilisation of keratin and the release of amino acids 

(Coward-Kelly et al. 2006a; Korniłłowicz-Kowalska and Bohacz 2011). However, the amino 

acid composition of these products are low in arginine, histidine, lysine, methionine and 

threonine; and, especially for hair waste, the composition compares poorly with the essential 

amino acid requirements for various monogastric domestic animals (Coward-Kelly et al. 

2006b). Digestion experiments carried out on young chicks also showed that sodium 

hydroxide added during thermal treatment may have a negative effect on the digestibility of 
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the feed (Papadopoulos 1989). The use of keratinases or keratinolytic microorganisms in the 

treatment of feather meal overcomes some of the limitations posed by thermal and chemical 

treatments. Keratinase PWD1 is found to improve the digestibility of keratin and significantly 

enhance the growth of poultry (Odetallah et al. 2003). The application of K. rosea in the 

production of feather meal has shown to: improve the digestibility of the fermented 

production; increase the lysine, histidine and methionine content and boost the availability of 

these amino acids (Bertsch and Coello 2005). The commercial products Versazyme 

produced by BBI and Cibenza DP100™ by Novus International have been marketed as 

additives to feed to improve their nutritional values (Gupta et al. 2013a). 

The nutritional value of animal feeds can also be enriched by the introduction of a 

hydrolysate supplement, produced by keratinolytic microorganisms (Gupta and Ramnani 

2006; Brandelli 2008; Brandelli et al. 2010). Wool protein hydrolysate from B. pumilus A1 

also presented a very high in vitro digestibility (97%) as compared with that of the untreated 

wool (3%; Fakhfakh et al. 2013). Similarly, the feather protein hydrolysate of B. pumilus A1 

presents a signicantly higher digestibility (98%) compared with that of the untreated feathers 

(2%) as well as possesses antioxidant activity, thus it may be useful as supplementary 

protein and antioxidants in animal feed formulations (Fakhfakh et al. 2011). The alkaline 

keratinase produced by Brevibacillus sp. strain AS-S10-II converted feather-keratin to at 

least seven volatile amino acids (cystenine, valine, threonine, lysine, isoleucine, 

phenylalanine and methionine; Mukherjee et al. 2011). Similarly, feather hydrolysate from 

Vibrio sp. Strain kr2 (Grazziotin et al. 2006) and Streptomyces sp. (Ramakrishnan et al. 

2011) were found to be effective in improving the nutritional value of feather meals. It has 

been suggested that since keratin is naturally low in some essential amino acids such as 

methionine and phenylalanine, the use of keratinolytic microbial cultures may further enrich 

the hydrolysate by the presence of microbial proteins and biomass (Brandelli et al. 2010; 

Vasileva-Tonkova et al. 2009a,b; Grazziotin et al. 2006).  

5.2.2 Fertilizers 

Hydrolysates produced by keratinolytic microorganisms are also ideal as fertilisers or soil 

amendments due to their high nitrogen and amino acid contents (Brandelli et al. 2010; 

Vasileva-Tonkova et al. 2009a). Alkaline hydrolyzed sheep’s wool (Gousterova et al. 2008) 

and thermally degraded wool waste (Nustorova et al. 2006) have been shown to be 

beneficial to both plants and soil microbes as the hydrolyzed product could be readily utilized 

by the soil microorganisms. Rice seeds treated with feather hydrolysate from Bacillus sp. 

AJ4 and AJ9 demonstrated a 30% increase in vigour index as well as improvement in feed 

conversion ratio and plant growth (Arasu et al. 2009). Hydrolysates from bovine hooves and 
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horns using Paecilomyces marquandii is also a good source of fertiliser as they contain large 

quantities of amino acids (except for proline and tryptophan) and compared favourably to 

other fertilisers in promoting plant growth (Veselá and Friedrich 2009). The filter-sterilised 

hydrolysate of P. woosongensis TKB2, using raw feather as the sole substrate, can promote 

the germination of seeds and growth of Cicer arietinu seedlings significantly; improve nodule 

formation and increase the soil fertility and can be exploited as a useful biological fertiliser 

(Paul et al. 2013b). 

5.3 Leather and Textile Industry 

Leather processing involves three major processes: pre-tanning (beamhouse operation) 

where hides or skins are cleaned using sodium sulphate (Na2S) and lime; tanning where the 

leather materials are stabilised with chromium sulphate (CrSO4), solvent and lime; and post-

tanning and finishing where aesthetic value is added. 

During the conventional lime-sulphide dehairing process, large amount of Na2S is involved 

and the waste generated by this operation causes serious environmental and waste disposal 

problems. Thanikaivelan et al. (2004) provided a detailed review on a number of biocatalysts 

that have used in: cleansing and rehydration (soaking); removal of unwanted hair 

(dehairing); removal of undesirable proteins (bating) and eliminating fat (degreasing). The 

use of kertinlolytic microorganisms with good dehairing action has been hailed as a 

promising and viable alternative to chemical dehairing (ibid; Dettmer et al. 2011, 2013).  A 

histological study of porcine skin degradation by Dormatomyces microsporus revealed that 

keratinase first attacked the proteins in the frontiers between the stratum corneum and the 

rest of epidermis as well as along the border; this is followed by the attack on the epidermal 

layers beneath the stratum corneum and the outer sheath of hair roots (Friedrich et al. 

2005). B. brevis US575 has been shown to be effective in removing hair from rabbit, goat, 

sheep and bovine hides (Rai and Mukerjee, 2011; Jaouadi et al. 2013) and P. aeruginosa 

A2, grown in shrimp shell powder, demonstrated a powerful dehairing capability on bovine 

hide (Ghorbel-Bellaaj et al. 2012).  Enzymatic depilation generally only requires small 

quantities of Na2S and could be an eco-friendly alternative to the chemical process. 

Keratinases from B. subtilis S14 (Macedo et al. 2005) and Trichoderma harzianum MH-20 

(Ismail et al. 2012) could even be applied in the absence of Na2S. Thus the use of a 

keratinase-assisted tanning process can significantly reduce the impact of dehairing waste in 

the environment. 

Keratinases produced by a number of Bacillus strains (Macedo et al. 2005; Cai et al. 2011; 

Prakash et al. 2010b; Benkiar et al. 2013), the Brevibacillus sp. AS-S10-II strain (Rai and 
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Mukerhjee 2011), Microbacterium sp. kr10 (Thys and Brandeli 2006), Aspergillus nodulans 

(Gupta et al. 2013a), P. woosongensis TKB2 (Paul et al. 2013c) and T. harzianum MH-20 

lack collagenolytic activities. These enzymes are of interest in the bating process as 

conventional bating enzymes containing collagenase causes physico-chemical changes in 

the leather (Thanikaivelan et al. 2004). Application of keratinases with low collagenolytic 

properties can breakdown keratin tissue in the follicle without affecting the tensile strength of 

the leather (Macedo et al. 2005). 

Keratin hydrolysates have also been applied successfully to the tanning and retanning 

processes. In the conventional chrome tanning process, large amount of unused Cr is 

discharged into the effluent causing a major pollution concern. The permissible level of Cr in 

the waste stream is less than 2 mg/L in most countries (Buljan 1996), thus there is a need to 

improve the Cr uptake in the tanning process. The addition of ketain hydrolysate (2-3% w/w) 

from horn meal (using B. subtilis) helps to reduce the Cr level in the wastewater from 35% to 

10% (Karthikeyan et al. 2007). The low molecular weight keratin peptides present in the 

hydrolysates react with Cr to form a Cr-keratin complex which upon interacting with collagen 

in the leather enhances the uptake of Cr (Ramamurthy et al. 1989). Keratin hydrolysates are 

used in the retanning process to improve the properties of leathers; they are used as a filling 

agent to enhance poor substance skin, grain smoothness and softness (Karthikeyan et al. 

2007). 

Keratinases also have important applications in the textile industry. A number of microbial 

keratinases including those from: B. licheniforms (Liu et al 2013), B. cereus (Sousa et al. 

2007), Chryseobacterium L99 (Lv et al. 2010) and Pseudomonas sp. (Cai et al. 2011) are 

able to improve felt-shrink resistance and dyeing characteristics with no loss of fibre weight. 

It is reported that keratinase - acting in combination with other enzymes such as cutinase, 

lipase and transgultaminase - can be used to further improve the wool processing (Gupta et 

al. 2013a).  

5.4 Consumer Products 

A number of consumer products have been known to involve keratinases, from formulation 

of detergents to personal care products such as shampoo, cosmetics and acne treatment 

(Brandelli et al. 2010; Gupta et al. 2013b). 

5.4.1 Detergent 

The application of keratinases in the detergent industry has been most promising as many of 

these alkaline proteases are thermally stable at wash temperature and tolerant of surfactants 
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(Rai et al. 2009; Cavello et al. 2012; Prakash et al. 2010a; Rajput et al. 2010). Table 4 

presents a number of keratinases that are stimulated by the presence of surfactants and 

reducing agents which make them ideal candidates for detergent formulation, notably: A. 

keratinilytica Cpt29 (Habbeche et al. 2014), A. parasiticus (Anitha and Palanivelu 2013), 

Brevibacillus sp. AS-S10-II (Mukherjee et al. 2011), C. gleum (Chaudhari et al. 2013) and S. 

maltophilia BE11-1 (Fang et al. 2013). Due to their substrate specificity, keratinases can 

clean within a short period of time without damaging the fibre strength and structure (Paul et 

al. 2014) and a number of keratinases are shown to be capable at hydrolysing keratinous 

materials that fix on soiled collars and cuffs (Gupta and Ramnani 2006). The alkaline 

keratinase of P. woosongensis TKB2 is effective at removing blood stains from surgical 

garments and composite stains of blood, egg yolk and chocolate from conventional clothes 

in a short period without changing the texture of the cloth and cloth fibres (Paul et al. 2014). 

Similarly, keratinase of B. thuringiensis TS2 are also effective in the removal of blood and 

egg stains as well as depilation of goat hide (Sivakumar et al. 2013). Another application of 

keratinases in the detergent industry involves their uses in cleaning up drains that are 

clogged with keratinous waste and keratinous dirt associated with laundry (Brandelli 2008; 

Farag and Hasan 2004; Itsune et al. 2002).  A commercial product, BioGuard Plus, is 

manufactured by RuShay Inc and marketed for drain pipe and septic tank cleaning (Gupta et 

al. 2013a). 

5.4.2 Personal Care Products 

Hair comprises mainly of keratin protein (90%) and a small amount of lipid (1–9%). Keratin 

hydrolysates are efficient restorers in hair care processes, they contain active peptides that 

repair and condition the hair (Villa et al. 2013). Most keratin hydrolysates for hair care 

products are obtained from nails, horns and wool via chemical hydrolysis and hydrothermal 

methods (Barba et al 2008). However, using microbial keratinases to obtain keratin 

hydrolysis is also gaining popularity (also see section  5.2). Crude chicken feather hydrolyse 

produced by S. maltophilia is found to be protective to hair, as evidenced by the improved 

flexibility and strength for both normal and damaged hair (Cao et al. 2012). Villa et al. (2013) 

successfully formulated a mild shampoo and a rinse off conditioner with the enzymatic 

hydrolysate which appeared to increase the brightness and softness of hair.  

Keratinases also found applications in other personal care products (Gupta et al. 2013a) 

including: cosmetic skin whitening and bleaching (Yang 2012); exfoliation and removal of 

stratum corneum (Ding and Sun 2009); removal of corns and calluses (Encarna and Elena 

2011); treatment of acne (Spyros 2003) due to the build-up of sebum caused by blockage of 

hair-shafts by excess keratin; and anti-dandruff shampoo (Selvam and Vishnupriya 2012). 
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Proteos Biotech produces two types of commercial products: Keratoclean® Hydra PB and 

Pure100 Keratinase, for the removal of corns and calluses; and Keratoclean Sensitive PB 

and Keatopeel PB for the treatment of acne (Gupta et al. 2013a). 

5.5 Pharmaceutical Industry 

The two most common diseases affecting the nail unit are onychomycosis (fungal infections 

of the nail plate and/or nail bed) and psoriasis (an immune-meidated disease causing nail 

pitting and onycholysis detachment of the nail from the nail bed; Murdan 2002). The nail 

plate consists mainly of 80% ‘hard’ keratin and 20% soft keratin (Lynch et al. 1986). In order 

to deliver an effective topical treatment for nail disease, it is necessary for the hard keratin of 

nail plate to be weakened or compromised. A number of keratinolytic microorganisms are 

able to utilise keratin filaments and keratinous tissues as substrates, including: native human 

foot skin by Streptomyces sp. (Xie et al. 2010); native callus and extracted keratin 

polypeptides by Kytococcus (Longshaw et al. 2002) and human nail plates and clippings by 

P. marquandii  (Gradišas et al. 2005; Mohorčič et al. 2007). Using modified Franz diffusion 

cells and bovine hoof membranes as a model, Selvam and Vishnupriya (2012) demonstrated 

keratinases increase the permeability, partition co-efficient and the drug reflux of the 

membrane. In addition, keratinase from P. marquandii has been demonstrated to enhance 

drug delivery by partially hydrolysing the nail plates (Gradišar et al. 2005; Mohoričič et al. 

2007). Keratinases are effective instruments to hydrolyse the nail keratins as they cleave the 

disulphide linkage to increase the access of drug treatment, thus they can act as ungula 

enhancers (Gupta et al. 2013b). Commercial products involving keratinases for the treatment 

of nail disorders include FixaFungus™ by FixaFungus and Kernail-Soft PB by Preteos 

Biotech (Gupta et al 2013a). 

The ability of keratinases to hydrolyse keratin can also be applied in wound healing. In third-

degree burns, the avascular nature of the wound eschar may prevent effective diffusion of 

systemic antimicrobial agents to the wound where the amount of microorganisms is usually 

very high (Manafi et al. 2008). Enzymatic debridement of the wound will enhance penetration 

of the topically administered antibiotics and encourage wound healing (Krieger et al. 2012). 

Martínez et al. (2013) developed a gel matrix from enrofloxacin and the keratinase produced 

by P. lilacinus LPS #876, based on a cryogel of PolyVinyl Alcohol–Pectin (PVA–P), for the 

treatment of wounds and eschars and to regulate the controlled release of antibiotics. 

As dermatophytes are prolific keratinase producers, recombinant keratinases have been 

proposed by a number of researchers as potential candidates for the production of vaccines 

against dematophytes. A purified recombinant keratinolytic metalloprotease (r-MEP3) was 
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tested as a subunit vaccine in experimentally infected guinea pigs in order to identify 

protective immunogens against Microsporum canis (Brouta et al. 2003). Although the 

vaccination induced a strong antibody response, the protocol did not prevent fungal invasion 

or development of dermatophytic lesions (Vermout et al. 2004). In another investigation, a 

recombinant keratinase (SUB3) was produced by expressing the virulence factor of M. canis 

in the Pichia pstoris expression system. It was found to be non-antigenic to guinea pigs; it 

elicited specific lymphoproliferative response, but not specific humoral immune response, 

suggesting SUB3 could be a tool for future vaccination trials in cats (Descamps et al. 2003). 

Serine proteases produced by Dermatophilus congolensis has also been cloned for inclusion 

in a vaccine to prevent lumpy wool disease (dermatophilosis) using degenerate primers and 

polymerase chain reaction (Mine and Carnegie, 1997). A novel subtilisin homologue, derived 

from Penicillium citrinum, with IgE antibody binding properties has been identified and 

demonstrated to have a high degree of homology in the amino acid sequence with the 

allergen Tri r 2 in Trichophyton; this presents the potential of developing a vaccine against 

Trichophyton asthma (Woodfolk 2005). 

5.6 Prion Decontamination 

PrPSc has less α-helical content than PrPC and is rich in β-sheet structure (Pan et al. 1993). It 

is the cause of all neurodegenerative prion diseases (Colby and Prusiner 2011). Infectious 

prion can be introduced to the environment via a number of routes including: improper 

disposal of mortalities, shedding of biological materials, effluents from slaughterhouses and 

hospitals (Bartelt-Hunt and Bartz 2013) and recycling waste products such as bone meal of 

infected animals (Johnson et al. 2011). Storage and disposal of these clinical and biological 

wastes is a major public health concern. 

Incineration, thermal hydrolysis and alkaline hydrolysis are the common treatments 

employed to destroy prions. These methods are harsh and energy intensive, they cause 

irreversible damage to delicate medical instruments and prevent the capture of any 

recoverable materials (Okoroma et al. 2013). The ability of keratinases to degrade the β-

keratin of feathers provides an environmentally friendly and sustainable alternative to 

degrade prion. Since the earliest report of enzymatic degradation of scrapie prion by Cho 

(1983), a number of studies have been carried out to explore the applications of microbial 

keratinases to treat and degrade prion from a number of microbial sources, including 

proteases from Bacillus sp. (Langeveld et al. 2003; Yoshioka et al. 2007; Okoroma et al. 

2013), Streptomyces sp. (Hui et al. 2004; Tsiroulnikov et al. 2004), T. kodakarensis (Hirata 

et al. 2013), Nocardiopsis sp. TOA-1 (Mitsuiki et al. 2006), lichens (Johnson et al. 2011) and 

other thermophilic organisms such as Thermoanaerobacter, Thermosipho and 
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Thermococcus sp. (Suzuki et al. 2006). The keratinase produced by B. licheniformis PWD-1 

is able to degrade brain stem tissue from cattle infected with bovine spongiform 

encephalopathy (BSE) and sheep infected with scrapie in the presence of detergent and at 

elevated temperature (>100 °C; Langeveld et al. 2003). B. licheniformis N22 can produce a 

keratinase that degrades scrapie prion to undetectable levels in the presence of a 

biosurfactant using Western Blot and cell culture assay within 10 min at 65 °C (Okoroma et 

al. 2013). Similarly, keratinases from Thermoanaerobacter subsp. S290 and Streptomyces 

subsp. S6 have been shown to degrade brain homogenates of mice infected with the 6PB1 

BSE strain (Tsiroulnikov et al. 2004). The keratinase E77 from Streptomyces sp. (Hui et al. 

2004) and NAPase from Nocardiopsis (Mitsuiki et al. 2006) can degrade hamster brain 

homogenate containing scrapie prions. The enzymes extracted from P. sulcata, C. 

rangiferina and L. pulmonaria are able to reduce prion protein from transmissible spongiform 

encephalopathies (TSEs) infected hamsters, mice and deer (Johnson et al. 2011). 

Three commercial keratinase-based enzymes are marketed for degradation of infectious 

prion proteins: Versazyme® is manufactured by BRI, Pure100 Keratinase™ is produced by 

Proteos Biotech and Prionzyme™ produced by Genencor International (Gupta et al. 2013a). 

Coll et al. (2007) measured the effectiveness of Versazyme® in degrading BSE prion in 

meat and bone meal (MBM). They found that the enzyme catalysed the hydrolysis of MBM 

to improve the solubility of insoluble proteins, and it was more effective against bone than 

soft tissue particles. Prionzyme™ is currently the only effective enzyme-based 

decontamination technology that demonstrates significant removal of prion from medical and 

dental instruments (Gupta et al. 2013a). 

Composting may also serve as a practical and economical means of disposing of specified 

risk materials or animal mortalities potentially infected with prion diseases. A thermophilic 

condition and alkaline environment is highly conducive for microbial keratinase activity (see 

section  5.1 5.1). A number of studies have demonstrated biodegradation of prion protein 

using compost (Huang et al. 2007; Xu et al. 2013). In a field trial, Xu et al. (2014) also 

observed that composting reduced PrPTSE, resulting in one 50% infectious dose (ID50) 

remaining in every 5,600 kg of final compost for land application. 

6 Potential Applications of Keratinases 

In addition to the established biotechnological applications, there are a number of potential 

applications that utilise the ability and stability of keratinase to hydrolyse keratin over a range 

of temperature and pH and in the presence of alkaline or reducing agents. 
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6.1 Biological Control 

The potential for keratinases to act as a biological control agent has been explored by 

several research groups recently. Keratinase produced by S. maltophilia R13 is effective 

against several fungal pathogens including Fusarium solani, F. oxysprum, Mucor sp. and A. 

nigar that cause diseases in valuable plants and crops (Jeong et al. 2010). Similarly, 

keratinase produced by Thermoactinomyces also showed antifungal properties against 

these plant pathogens (Gousterova et al. 2012). Yue et al (2011) reported that the 

keratinase produced by Bacillus sp. 50-3 has the ability to work effectively against 

agricultural pests such as toot-knot nematodes (Meloidogyne incognita).  

In insects, the tracheae are found on the exoskeleton and each tracheal tube is lined with a 

thin strip of cuticle called the taenidia which reinforces the tracheae to maintain the structure 

of the tracheal walls. As insect tracheal taenidia contains a protein similar to the vertebrate 

keratins (Baccetti et al. 1984), this protein may present a possible target for keratinase 

hydrolysis to control harmful insects such as mosquitoes that are the major vectors of a 

number of serious tropical diseases. The use of two recombinant baculoviruses containing 

the ScathL gene from Sarcophaga cylindric (vSynScathL) and the keratinase gene from 

Aspergillus fumigatus (vSynKerat) has been successful in destroying the larvae of an 

agricultural pest, Spodoptera frugiperda, by degrading extracellular matrix proteins and 

interfering with the phenoloxidase activity of the insect host (Gramkow et al. 2010). 

Tangentially, keratinase hydrolysate can be used as a substrate for pesticide production. 

Poopathi and Abidha (2007) found that poultry waste is a low-cost and effective substrate to 

cultivate Bacillus sphaericus and B. thuringiensis serovar israelensis to produce 

mosquitocidal toxin. 

6.2 Green Energy 

Conversion of keratinous waste into biofuel is a promising application to generate green 

energy that may address some of the global demand for energy. In a two-step formation 

process, keratinous waste was first hydrolysed by B. lichenifomis and the hydrolysate was 

subsequently utilised by Thermococcus litoralis to produce biohydrogen gas (Bálint et al. 

2005). In a comparison study, bacteria from Thermoanaerobacterales are found to be more 

efficient in substrate conversion than Clostridiaceae and Enterobacteriaceae (Rittmann and 

Herwig 2012). Production of methane can also be achieved by combining the biological 

degradation of keratin-rich waste with keratinase in an anaerobic digester. Chicken feather 

waste pre-treated with a recombinant B. megaterium strain showing keratinase activity prior 
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to biogas production, was able to produce methane in the order of 0.35 Nm3/kg dry feathers, 

corresponding to 80% of the theoretical value on proteins (Forgács et al. 2011, 2013). 

6.3 Silk Degumming 

Keratinases also hold potential for degumming silk. Natural raw silk is composed primarily of 

fibroin (62.5–67%) and sericin (22–25%; Mahmoodi et al. 2010). Sericin is a fibrous protein 

that binds the fibroin fibres together; it renders the raw silk harsh and stiff and reduces the 

effectiveness of dye uptake by the material. During the degumming process, sericin is 

hydroblised and solubilised in degumming agents and media (Chopra and Gulrajani 1994). A 

number of proteases have examined for their ability to degum silk (Arami et al. 2007), but 

some appeared to be only suitable for treating Murshidabad silk (Chopra and Gulrajani 

1994.) and many appeared to be low in specificity towards sericin (Freddi et al. 2003). The 

use of proteases combined with ultrasonic treatment is found to improve the effectiveness of 

the degumming process and improve the properties of silk yarn such as strength and 

elongation (Mahmoodi et al. 2010). The application of a more substrate specific enzyme, 

such as keratinase from B. subtilus (Cai et al. 2008) that does not hydrolyse silk, may further 

improvement of the process. 

6.4 Other Applications 

As keratinase is a specific type of alkaline protease, it may find applications in areas that are 

currently the domain of other alkaline proteases. For example, alkaline proteases of B. 

pumilus and Staphylococcus auricularis are able to inhibit biofilm formation by 86% and 50% 

respectively as well as recover 0.4013 g and 0.3823 g of silver from 1 g of X-ray and 

photographic films respectively (Bholay et al. 2012). Alkaline proteases from Aspergillus 

versicolor (Choudhary 2013) and B. subtilis ATCC 6633 (Nakiboglu et al. 2001) also provide 

good Ag recovery from X-ray films. Other novel and emerging applications of keratinases 

include removal of cerumen (earwax), pearl bleaching and processing of edible bird’s nests 

(Gupta et al 2013a).  

7 Conclusion 

Keratinases are versatile and valuable enzymes that degrade keratins and similar 

recalcitrant proteins. Increased awareness of their biotechnological applications and 

potential has provided strong impetus to study this group of alkaline proteases. Diverse 

groups of microorganisms are able to produce keratinases and more are being discovered 

every year. Knowledge of their chemical and biochemical characteristics improves the 
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understanding that is needed to fully explore their value. Of the more established 

biotechnological applications, keratinases have proven to be highly effective in management 

and valorisation of keratinous wastes and nutritional improvement of animal feed. Keratinase 

hydrolysates offer eco-friendly alternatives to improve the dehairing, tanning and retanning 

processes and reduce damage to the environment caused by the chemical discharge of the 

leather industry. Within the laundry and pharmaceutical industries, keratinases are used in 

improved detergent formulations, prion decontamination, enhanced drug delivery and 

personal care products such as nail and acne treatments. Other biotechnological prospects 

for keratinases are continuously being explored and investigated. The use of keratinases as 

biological control agents is an exciting prospect for the agroindustry and the public health 

domain. The involvement of keratinases and their hydrolysates in bioenergy production may 

help to alleviate some of the global energy demand from unsustainable sources. Microbial 

keratinases also promise to improve silk degumming and recovery of valuable resources 

such as silver from X-ray films. Novel applications of keratinases continue to emerge as 

research advances. Further understanding of the molecular characteristics, enzyme kinetics 

and the use of recombinant technology may help to broaden the substrate specificity and the 

applications of this important group of enzymes.
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Table 1.Cystine content of keratin 

Types of keratin Cystine content Example Reference 

Soft keratin Up to 2% Epithelial cells – low chemical resistance and 

mechanical strength 

Korniisłłowicz-Kowalska and Bohacz 2011 

Hard keratin    

α (40-68 kDa) 10-17% Wool and hair Robbins 2012 

Filipello Marchisio 2000 

β (10-22 kDa) 5-10% Scales and claws -  Dalla Valle et al 2010 

γ (amporphic keratin) ∼22% Outer layer of hair cuticle; globular, about 15 

kDa, high in sulphur content and acts as 

disulphide crosslinkers 

Robbins 2012; Hill et al 2010 

 

Feather (contain both α-helix 

and β-sheet* 

8% Feather Akhatar and Edwards 1997 

*feather mainly consists of feather-specific β-keratins, cellular and biochemical studies have shown that α-keratin plays an important role in the early formation of rachides, 

barbs, and barbules (Alibardi and Toni 2008) 
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Table 2. N-terminal amino acid sequences of a number of keratinases and their microbial sources. 

Microorganism Keratinase N-terminal sequence Reference 

Bacteria    
Bacillus circulans DZ100 Keratinase SAPDZ AQTVPYGMAQIKDPAVHGQGYKGAN Benkiar et al 2013 
Bacillus licheniformis Subtilisin Carlsberg AQTVPYGIPLIKADK Jacobs et al. 1985 
Bacillus licheniformis PWD-1 Keratinase A AQTVPYGIPLIKADK Lin et al. 1995 
Bacillus licheniformis RPk Keratinase RP AQTVPYGIPLIKADK Fakhfakh et al. 2009 
Bacillus licheniformis MP1 Alkaline protease AQTVPYGIPLIKAD Jellouli et al. 2011 
Bacillus mojavensis A21 Serine proteases BM1 

Serine proteases BM2 
AQSVPYGISQIKA 
AIPDQAATTLL 

Haddar et al. 2009 

Bacillus pumilus Keratinase A1 AQTVPYGIPQI Fakhfakh-Zouari et al. 2010a,b 
B. pumilus  Keratinase CBS AQTVPYGIPQIKAPAVHAQGY Jaouadi et al. 2008 
Bacillus subtilis Keratinase S14 AQSVPYGISQIKAPA Macedo et al. 2005 
Bacillus subtilis Subtilisin E AQSVPYGISQIKAPA Stahl and Ferrari 1984 
Bacillus subtilus Keratinase KS-1 AZPVEWGISZ Suh and Lee 2001 
Bacillus halodurans Keratinase  AH-101 SQTVPWGISFISTQQ Takami et al. 1999 
Bacillus pseudofirmus Keratinase FA30-01 XQTVPXGIPYIYSDD Kojima et al. 2006  
Brevibacillus brevis US575 Keratinase KERUS AQTVPYGIPQIKEPAVHAQGYKGANVK Jaouadi et al. 2013 
Pseudomonas aeruginosa Keratinase Pa AEAGGPGG Lin et al. 2009 
Fervidobacterium pennivorans Fervidolysin STARDYGEELSN Kluskens et al. 2002 
Vibrio  metschnikovii J1 Serine protease AQQTPYGIRMVQADQLSDVY Jellouli et al. 2009 
Actinomyces    
Streptomyces griseus Protease B (SGPB) ISGGDAIYSSTGRCS Jurasek et al. 1974 
Streptomyces fradiae Keratinase Sfase-2 IAGGEAIYAAGGGRC Kitadokoro et al. 1994 
Streptomyces albidoflavus Serine protease SAKase XXGGDAIYSSXXRXS Bressollier et al. 1999 
Norcardiopsis TOA-1 NAPase ADIIGGLAXYTMGGX Mitsuiki et al. 2004 
Fungi    
Paecilomyces marquandii  Keratinase Pm ALTQQPGAPWGLG Gradisăr et al. 2005 
Doratomyces microsporus Keratinase Dm ATVTQNNAPWGLG Gradisăr et al. 2005 
Aspergillus fumigatus Kertainase Af ALTTQKGAPWGLGSI Noronha et al. 2002 
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Table 3. Substrate specificity of some keratinases using synthetic substrate 

Microbial source Substrate References 

Bacillus licheniformis 
 

 ↓ 
N-sccinyl-Ala-Ala-Pro-Phe-pNA 

Rozs et al. 2001 

Bacillus licheniformis PWD-1 Evans et al. 2000 
Bacillus pumilus KS12 Rajput et al 2010 
Bacillus pumilus A1 Fakhfakh-Zouari et al. 2010b 
Paecilomyces marquandii and Doratomyces microsporus Gradišar et al. 2005 
Pseudomonas aeruginosa Lin et al. 2009 
Streptomyces fradiaevar k11 Li et al. 2007 
Thermoanaerobacter sp. Kublanov et al. 2009a 
Trichophyton vanbreuseghemii Moallaei et al. 2006 

Bacillus pumilusKS12  ↓ 
N-sccinyl-Ala-Ala-Pro-Leu-pNA 

Rajput et al 2010 

Bacillus licheniformis  ↓ 
N-sccinyl-Ala-Ala-Ala—pNA 

Rozs et al. 2001 
Bacillus pumilus KS12 Rajput et al 2010 

Lysobacter sp. AL10  ↓ 
CBz-Phe-pNa 

Allpress et al. 2002 
Microbacterium sp. kr10 Thys and Brandelli 2006 

Bacillus licheniformis  ↓ 
Bz-Phe-Val-Arg-pNa 

Rozs et al. 2001 

Baciilus subtilis  ↓ 
Bz-Ile-Glu-Gly-Arg-pNa 

Macedo et al. 2008 

Streptomyces pactum DSM 40530  ↓ 
CBz-Phe-oNp 

Böckle et al. 1995 

Nesterenkonia sp. AL20  ↓ 
N-Suscinyl-Leu-Leu-Val-Tyr-AMC 

Bakhtiar et al. 2005 

Chryseobacterium sp.   ↓ 
L-Leu-AMC 

Silveira et al. 2009 

↓ - cleavage; P1 position 

CBz – Carboxylbenzoyl group; Bz – Benzoyl group; AMC — 7-Amido-4-methylcoumarin 
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Table 4. Some chemical compounds that attenuate keratinase activities 

Microbial source Protease type Inhibitors  Stimulators Referecnes 
Actinomadura keratinilytica Cpt29 Serine PMSF, DFP, Ni

2+
, Cd

2+
, Hg

2+
, Ba

2
+, 

Fe
2+

 
H2O2, Tween 20, Tween 80, Triton X-100, Ca

2+
, 

Mn
2+

 
Habbeche et al. 2014 

Aspergillus parasiticus serine PMSF; Cd
2+

, Cu
2+

and Zn
2+

  Ca
2+

, Mg
2+

 and Mn
2+

 , non-ionic detergents and 
urea 

Anitha and Palanivelu 
2013 

Aspergills oryzae metallo EDTA, Pb
2+

; Cd
2+ 

and Hg
2+

  Ca
2+

, Ba
2+

, Cu
2+

, Na
+
, K

+
, Mg

2+
 Farag and Hassan 2004 

Bacillus sp. P45 metallo EDTA, SDS, Zn
2+

, Cu
2+

, Co
2+

 Ca
2+

, Mg
2+

 Daroit et al. 2011 
Bacillus circulans DZ100 serine PMSF, DFP, Ni

2+
, Cd

2+
, Hg

2+
 Ca

2+
, Mg

2+
, Mn

2+
, Zn

2+
, Co

2+
, Cu

2+
 Benkiar et al. 2013 

Bacillus halodurans JB 99  serine PMSF,   Shrinivas et al. 2012 
Bacillus licheniformis BBE11-1 serine  PMSF Mg

2+
, Co

2+
 Liu et al. 2013 

Bacillus pumilus serine PMSF  Kumar et al. 2008 
Bacillus subtilis NRC 3 serine-metallo PMSF, EDTA, citric acid, 1-10-PA, Zn

2+
, 

Cu
2+

, Co
2+

, Mn
2+

 
Na

+
, K

+
, Mg

2+
 Tork et al. 2013 

Bacillus thuringiensis metallo EDTA; Cu
2+

, Zn
2+

, Co
2+

, Mn
2+

, Ni
2+

 Ca
2+

, Mg
2+

 Sivakumar et al. 2013 
Brevibacillus brevis US575 serine PMSF, DFP, Cd

2+
, Hg

2+
, Ni

2+
 Ca

2+
, Mg

2+
, Mn

2+
, Zn

2+
, Co

2+
, Cu

2+
 Jaouadi et al. 2013 

Brevibacillus sp. AS-S10-II Serine PMSF, IAA, DTT  SDS, Triton X-100, Tween-20, H2O2 Mukherjee et al. 2011 
Chryseobacterium gleum metallo EDTA, Cu

2+
, Hg

2+
 Triton X-100, Tween 80, MCE, Fe

2+
, Fe

3+
 Chaudhari et al. 2013 

Chryseobacterium sp. kr6 metallo EDTA, EGTA, PHEN, MCE, DTT, SDS, 
Cu

2+
, Zn

2+
 

Ca
2+

, Mg
2+

, Cd
2+

 Riffel et al. 2007 

Lysobacter NCIMB 9497 metallo EDTA  Allpress et al. 2002 
Microbacterium sp. strain kr10 metallo EDTA, PHEN, CMB, Cu

2+
, Hg

2+
, Zn

2+
, 

Mn
2+

 
 Thys et al. 2006 

Streptomyces fradiae var k11 serine PMSF; Co
2+

 and Cr
3+

  Ni
2+

 and Cu
2+

 Li et al. 2007 
Streptomyces sp. 16 4 x serine PMSF;  EDAC, DTT,  Na

2+
 Xie et al. 2010 

Streptomyces sp. S7 serine-metallo PMSF, EDTA, SDS DTT Tatineni et al. 2008 
Stenotrophomonas maltophilia BE11-1 K1: serine-metallo  

K2: serine  
K3: disulphide reductase 

K1: EDTA, PMSF, SDS, Fe
3+

 
K2: PMSF; SDS; Fe

3+
 

K3: Fe
3+

, Cu
2+

; Mn
2+

, Zn
2+

 
 

K1: Na
2+

; Tween 20 
K2: Ca

2+
, Na

+
, DTT, Tween 20 

K3: EDTA, Na
2+

, DTT, Triton X-100, Tween 20, 
DMSO 

Fang et al. 2013 

p-chloromercuribenzoic acid (CMB); diisopropyl fluorophosphates (DFP); dimethyl sulphoxide (DMSO); iodoacetate (IAA); dithiothreitol (DTT); 1- Ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDAC)ethylenediaminetetraacetic acid (EDTA); ethylene glycol tetraacetic acid (EGTA); β-mercaptoethanol (MCE); 1,10-phenanthroline (PHEN); phenylmethanesulfonyl fluoride (PMSF); 

sodium dodecyl sulphare (SDS) 
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Table 5. Notable fungal keratinase producers, their origins, properties of the keratinases and their substrates 

Microorganism Origin Protease Type Molecular 
weight (kDa) 

Optimal pH 
(range) 

Optimal 
temperature 
(range) °C 

Substrate References 

Aspergillus flavus K-03 soil serine 31 8 (7-10) 45 (30-70) azokeratin, azocasein Kim 2007 
Aspergillus niger mutated 

laboratory strains: 
3T5B8, 9D40, 
9D80, and 11D40 

3T5B8 and  9D80: serine 
9D40 and 11D40: 
metallo- 

All strains: 60 
and 9D80 also 
produced a 
band at 130 

5 - casein, bovine serum 
albumin (BSA), ovalbumin, 
feather meal, feather 
keratin, human hair, 
sheep’s wool 

Mazotto et al. 2013 

Aspergillus parasiticus soil serine 36 7 50 keratin Anitha and 
Palanivelu 2013 

Aspergillus oryzae marine sediment metallo 60 Immobilised: 7.0-
7.4 
Free enzyme: 8 

immobilised: 60 
free enzyme: 50 

BSA and casein keratin, 
chicken feathers, collagen, 
duck feathers, sheep wool 

Farag and Hassan 
2004 

Candida parapsilosis feather waste serine 60 - - native feather Vermelho et al. 2010 
Doratomyces microspores 
MZKI B-399 

type strain serine 30 8-9 
 

50 porcine skin 
skin keratins, nail keratins, 
hair keratins 

Friedrich et al. 2005 
Friedrich and Kern 
2003 

Paecilomyces marquandii 
MZKI B-639 

type strain:  serine 33 8 (6-11) 60-65  
 

human nail plates and 
clippings 

Gradišar et al. 2005; 
Mohorčič et al. 2007 

Penicillium spp. Morsy 1 marine soft coral 
Dendronephthya 
hemprichii 

metallo I:19 
II:40 

I:7-8 
II:10-11 

I:50 
II:60-65 

poultry waste El-Gendy, 2010 

Purpureocillium lilacinum  
(formerly Paecilomyces 
lilacinus) 

soil serine 37 6 (4-9) 60 (20-65) hair waste, blood Cavello et al. 2012, 
2013 

Scopulariopsis brevicaulis - serine KI: 40-45 
KII: 24-29 

KI:40 
KII: 35 

7.8 human hair Malviya et al. 1992 

Scopulariopsis brevicaulis marine sponge - 28 7-7.5 (4-11) 50 (30-80) soluble keratin from 
chicken feathers 

Sankar et al. 2014 

Trichoderma atroviride F6 decayed feather serine 21 8-9 (4-11) 50-60 (26–70) casein, gelatin, BSA, 
feather, synthetic 
substrates  

Cao et al. 2008 

Trichopyton sp. HA-2 soil serine 34 8 35 chicken feathers Anbu et al. 2008 
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Table 6. Notable actinomyces keratinase producers, their origins, properties of the keratinases and their substrates 

Microorganism Origin Protease Type Molecular 
weight (kDa) 

Optimal pH 
(range) 

Optimal 
temperature 
(range) °C 

Substrate References 

Actinomadura 
keratinilytica strain Cpt29 

poultry compost serine 29.2 10 (3-10) 70 keratin 
keratin azure 

Habbeche et al. 
2014 

Nocardiopsis sp. strain 
TOA-1 

tile-joint - 19.1 12.5 60 synthetic substrate  
 

Mitsuiki et al. 2004, 
2006 

Steptomyces pactum DSM 
40530 

type strain serine 30 7-10 40-75 keratin azure, feather 
meal and chicken feather 

Böckle et al. 1995 

Streptomyces AB1 soil serine 30 11.5 75 keratin azure Jaouadi et al. 2010 
Streptomyces albidoflavus soil (hen house) serine 18 40-70 6-9.5 fibrous keratin, collagen, 

soluble keratin, gelatin, 
elastin, orcein 

Bressollier et al. 
1999 

Streptomyces 
gulbargensis 

soil serine- metallo 46 8 (7-9) 
 

45 (30-60) 
 

feather meal Syed et al. 2009 

Streptomyces S.K1-02 naturally degraded 
feather 

serine -metallo    casein, keratin Letourneau et al. 
1998 

Streptomyces sp. soil 4 x serines I: 25 
II:50 
III:34 
IV:19 

(7.5-10)  
III: 50 (40-55) 
IV:60-84 

keratin 
azure, human hair, cock 
feather, and collagen 

Chao et al. 2007; 
Xie et al. 2010 

Streptomyces sp.7 soil from slaughter 
house 

serine -metallo 44 11 45 
 

keratin azure Tatineni et al. 2008 

Thermoactinomyces 
candidus 

degrading sheep 
wool 

serine 30 8.6 70 native keratins Ignatova et al. 1999 
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Table 7a. Notable Gram-positive bacterial keratinase producers, their origins, properties of the keratinases and their substrates 

Microorganism Origin Protease Type Molecular 
weight (kDa) 

Optimal pH 
(range) 

Optimal 
temperature 
(range) °C 

Substrate References 

Bacillus sp. soil from slaughter 
house and poultry 
farm 

- 32 8 37 azokeratin Deivasigamani et 
al. 2008 

Bacillus sp. 50-3  faeces of Agamid 
lizard Calotes 
versicolor 

serine-metallo - 10 60 azokeratin Zhang et al. 2009 

Bacillus sp. P7  fish intestine Serine - 9 (8-12) 55 feather keratin Corrêa et al. 2010 
Bacillus sp. SCB-3 soybean waste metallo 134 7 40 - Lee et al. 2002 
Bacillus cereus wool samples metallo 45.6 7 45 azocasein, azocoll, keratin 

azure and wool 
Sousa et al. 2007 

Bacillus circulans slaughter house 
wastewater  

serine 32 12,.5 85 keratin, casein, albumin, 
haemoglobin 

Benkiar et al. 2013 

Bacillus halodurans PPKS-2 rice mill effluents serine, 
disulphide 
reductase 

30 
66 

11 (7-13) 60-70 hair from goat hide Prakash et al. 
2010a 

Bacillus licheniformis ER-15 soil serine dimeric 58 
(30+28) 

11 (7-12) 70 (30-80) feather, haemoglobin, 
hooves, fibrin and meat 
protein, buffalo hide 

Tiwary and Gupta, 
2010 

Bacillus licheniformis KI8102 soil from poultry farm - 32 7.5 50 human hair, bovine hair, 
wool 

Desai et al. 2010 

Bacillus licheniformis MSK103  serine 26 9-10 60-70 prion-infected bovine brain 
homogenate 

Yoshioka et al. 
2007 

Bacillus licheniformis N22 primary effluent and 
poultry waste 

- 28 8.5 (7-10) 50 melanised feather Okoroma et al. 
2012, 2013 

Bacillus licheniformis PWD-1 type strain  33 7.5 50 feather keratin, azokeratin Lin et al. 1992 
Langeveld et al. 
2003 

Bacillus pseudofirmus FA30-
01 

  27.5  8.8-10.3 (5.1-11.5) 60 (30-80) azokeratin Kojima et al. 2006 

Bacillus pumilus cow hide serine 65 8 (7.5-10) 35 (25-45) bovine hair Kumar et al. 2008 
Bacillus pumilus A1 slaughter house 

wastewater 
 14 10 45 feather Fakhfakh-Zouari et 

al. 2010a,b; 
Fakhfakh et al. 
2013 

Bacillu pumilus SK12 soil serine 45 10 60 azo-casein, casein, 
gelatin, haemoglobin, 
elastin, feather keratin, 
fibrin, keratin azure, and 
α-keratin 

Rajput et al. 2010 

Bacillus subtilis poultry waste 3 x serines 54-100 
 

9 50 human hair; 
Feathers 

Mazotto et al. 2010; 
Villa et al. 2013 
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Bacillus subtilis NRC-3 compost waste, soil metallo 32 7.5-8 (5-10) 40-50 (20-60) gelatine, casein, 
haemogobin, albumin, 
collagen and fibrin  

Tork et al. 2013 

Bacillus subtilis RM-01 soil serine 20.1 8 (5-8)  50 (25-55) chicken feather Rai et al. 2009 
Bacillus subtilis SLC soil serine - 10 (2-12) 60 keratin, gelatin, casein, 

and haemoglobin 
Cedrola et al. 2012 

B. subtilis 1271, B. 
licheniformis 1269 and B. 
cereus 1268 

agroindustrial 
residues from a 
poultry farm 

serine B. subtilis and B. 
licheniformis: 
peptidases and 
keratinases in 
the 15-140 kDa 
range 
B. cereus: 
keratinase: 200 

10 40-50 
 

chicken feather Mazotto et al. 2011 

Bacillus thuringiensis soil from feather 
dumping site 

metallo- - 10 (4-11) 50 (30-80) azokeratin Sivakumar et al. 
2013 

Brevibacillus Soil - 83.2 12.5  45 goat skin Rai and Mukherjee 
2011 

Brevibacillus sp. Strain AS-
S10-II 

mutated strain serine 55 9-10 (5-11) 37 (25-55) chicken feather Mukherjee et al. 
2011 

Brevibacillus brevis US575 soil serine 29.1 8 (5-11) 40 (20-55) feather meal, chicken 
feather, rabit hair, goat 
hair, bovine hair 

Jaouadi et al. 2013 

Clostridium sporogenes bv. 
Pennavorans bv. Nov. 

muds near the 
Solfatara volcano 

- 28.7 8 55 collagen, elastin and 
feather keratin 

Ionata et al. 2008 

Keratinibaculum 
paraultunense gen. nov. sp. 
Nov KD-1 (anaerobic) 

grassy marchland serine  8.0-8.5 (6.0-10.5) 70 - Huang et al. 2013 

Kocuria rosea soil serine 240 10 (8-11) 40 (10-60) keratin, collagen, gelatine 
and casein 

Bernal et al. 2006a; 
Bertsch and Coello, 
2005 
 

Kytococcus sedentarius M17C 
(formerly Micrococcus) 

type strain serine P1:30 
P2:50 

P1:7.1 
P2:7.5 

P1:40 
P2:50 

natural, insoluble human 
callus 

Longshaw et al. 
2002 

Meiothermus sp. 140 hot spring serine 76 8 70 chicken feather, dove 
feather, duck feather, 
human hair, wool, and hog 
bristle 

Kuo et al. 2012 

Microbacterium sp. kr10 decomposed chicken 
feather 

metallo 42 7.5 50 feather, casein, gelatin, 
keratin, BSA and 
haemoglobin 

Thys and Brandelli 
2006 

Nesternkonia sp. AL20 soil Serine 23 10 (4-11) 70 (40-80) casein Gessesse et al. 
2003 

Thermoanaerobacter 
keratinophilus (anaerobic) 

soil serine 135 Intracellular: 7 
Extracellular: 8 

Intracellular:60 
Extracellular: 85 

native keratin Riessen and 
Antranikian, 2001 

Thermoanaerobacter sp. 
Strain 1004-09 (anaerobic) 

hot spring Serine 150 9.3 60 albumin, gelatin, casein, α 
and β keratin 

Kublano  et al. 
2009 
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Table 7b. Notable Gram-negative bacterial keratinase producers, their origins, properties of the keratinases and their substrates 

Microorganism Origin Protease Type Molecular 
weight (kDa) 

Optimal pH 
(range) 

Optimal 
temperature 
(range) °C 

Substrate References 

Chryseobacterium gleum type strain metallo 36 8 30 keather Chaudhari et al. 2013 
Chryseobacterium 
indologenes TKU014 

soil 3 x metallo 40-56 5-11 30–50 °C keratin Wang et al. 2008 

Chryseobacterium L99 sp. nov.  - serine 33 8 40 keratin azure Lv et al. 2010 
Chryseobacterium sp. kr6 feather metallo 64, 38, 20 

 
8.5 50-60 keratin azure Riffel et al. 2007; 

Silveira et al. 2010, 
2012; Brandelli 2005 

Chryseobacterium sp. RBT  soil from poultry 
waste site 

  8.6 50 chicken feathers 
goat’s hair 

Gurav and Jadhav 
2013 

Fervidobacterium pennavorans hot spring serine 130 10 80 feathers Friedrich and 
Antranikian, 1996 

Fervidobacterium islandicum 
AW1 

geothermal hot 
spring 

serine >200 (97 
subunits) 

9 100 soluble keratin; casein Nam et al. 2002 

Fervidobacterium islandicum 
DSMZ 5733 

hot spring serine 76 8 (6-8.5) 80 (60-80) feather Kluskens et al. 2002 

Lysobacter A03, Arthrobacter A08 
and Chryseobacterium A17U 
psychrotolerant 

Penguin feather A03: serine 
A08 and A17U: 
metallo 

- 7-8.5 15-20 feather Pereira et al. 2014 

Lysobacter NCIMB 9497 type strain metallo 148  50 keratin azure Allpress et al. 2002 
Paracocuss sp WJ-98 soil metallo 50 6.8 (6-8)  - Lee et al. 2004 
Psuedomonas aeruginosa marine water metallo 34 8 60 shrimp waste 

bovine skin 
Ghorbel-Bellaaj et al 
2012 

Psuedomonas aeruginosa C11 soil metallo 33 7.5 (5-10) 60 feather, collagen, 
gelatin, casin 

Han et al. 2012 

Psuedomonas aeruginosa SK1 soil serine 45 9 60 
 

feather, fibrin, inoculum 
and meat protein 

Sharma and Gupta 
2010a 

Serratia sp. HPC 1383 tannery sludge serine - 10 60 feather Khardenavis et al. 
2009 

Stenotrophomonas maltophilia 
BBE11-1  

poultry farm soil K1:serine-metallo; 
K2:serine; 
K3:sisulphide 
reductase 

K1: 48 
K2: 36 
K3: 17 

K1 & K2: 9 (7-11) 
K3: 8 

K1: 40-60 
K2 & K3: 40 

casein, BSA, feather, 
wool, collagen 

Fang et al. 2013 

Stenotrophomonas maltophilia L1 decomposed 
poultry 

serine 35.2 7.8 40 feather, hair, wool, horn Cao et al. 2009 

Stenotrophomonas sp. deer fur serine and disulphide 
reductase 

40 and 15 8 and 8 30 casein, human hair, 
bovine hoof, collagen 

Yamamura et al. 2002 

Xanthomonas maltophilia strain 
POA-1 

- serine 36 9 60 keratin De Toni et al. 2002 
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