
Exploring Traffic and QoS Management
Mechanisms to Support Mobile Cloud
Computing using Service Localisation in
Heterogeneous Environments

A thesis submitted to Middlesex University
in partial fulfilment of the requirements for the degree of

Doctor of Philosophy

Fragkiskos Sardis

School of Science and Technology
Middlesex University

August 2014

ii

Abstract

In recent years, mobile devices have evolved to support an amalgam of multimedia

applications and content. However, the small size of these devices poses a limit the

amount of local computing resources. The emergence of Cloud technology has set the

ground for an era of task offloading for mobile devices and we are now seeing the

deployment of applications that make more extensive use of Cloud processing as a

means of augmenting the capabilities of mobiles. Mobile Cloud Computing is the term

used to describe the convergence of these technologies towards applications and

mechanisms that offload tasks from mobile devices to the Cloud.

In order for mobile devices to access Cloud resources and successfully offload tasks

there, a solution for constant and reliable connectivity is required. The proliferation of

wireless technology ensures that networks are available almost everywhere in an urban

environment and mobile devices can stay connected to a network at all times. However,

user mobility is often the cause of intermittent connectivity that affects the performance

of applications and ultimately degrades the user experience. 5th Generation Networks

are introducing mechanisms that enable constant and reliable connectivity through

seamless handovers between networks and provide the foundation for a tighter

coupling between Cloud resources and mobiles.

This convergence of technologies creates new challenges in the areas of traffic

management and QoS provisioning. The constant connectivity to and reliance of mobile

devices on Cloud resources have the potential of creating large traffic flows between

networks. Furthermore, depending on the type of application generating the traffic flow,

very strict QoS may be required from the networks as suboptimal performance may

severely degrade an application’s functionality.

In this thesis, I propose a new service delivery framework, centred on the convergence

of Mobile Cloud Computing and 5G networks for the purpose of optimising service

delivery in a mobile environment. The framework is used as a guideline for identifying

different aspects of service delivery in a mobile environment and for providing a path

for future research in this field. The focus of the thesis is placed on the service delivery

mechanisms that are responsible for optimising the QoS and managing network traffic.

iii

I present a solution for managing traffic through dynamic service localisation according

to user mobility and device connectivity. I implement a prototype of the solution in a

virtualised environment as a proof of concept and demonstrate the functionality and

results gathered from experimentation.

Finally, I present a new approach to modelling network performance by taking into

account user mobility. The model considers the overall performance of a persistent

connection as the mobile node switches between different networks. Results from the

model can be used to determine which networks will negatively affect application

performance and what impact they will have for the duration of the user's movement.

The proposed model is evaluated using an analytical approach.

iv

Dedicated to my family, for their love and patience…

v

Acknowledgements

Among family, I would like to thank my parents for their support during these last four

years and for helping me with organising my wedding in the final year of the PhD. I

would also like to thank my uncle Spiro and his wife Georgia for providing me with a

home to stay and for their continuing support for all the years of my studies. I extend

my gratitude to my wife Alla and her parents Sergei and Rada for the support and

valuable information that they provided and helped me achieve breakthroughs in my

research. Their invaluable knowledge on the structure of the Internet and the

management of traffic and running costs for network operators has made it possible for

me to focus my efforts in the right direction.

I am grateful to Middlesex University for providing me with two scholarships (at MSc

and PhD levels) during my academic years and the opportunity it gave me to gain

teaching experience and through it, improve my understanding of many network

technologies and share this knowledge with future I.T. professionals. Special thanks go

to my supervisor, Dr Glenford Mapp for giving me the opportunity to join the university

as a researcher and for sharing his knowledge with me from the first day of my studies.

Glenford’s friendship has been a blessing for me in life inside and outside of academia.

vi

List of Publications

 Sardis, F., Mapp, G., Loo, J., & Aiash, M. 2014. Dynamic Traffic Management for

Interactive Cloud Services. 7th IEEE/ACM International Conference on Utility and

Cloud Computing.

 Sardis, F., Mapp, G., Loo, J.; Aiash, M., 2014. Dynamic Edge-Caching for Mobile

Users: Minimising Inter-AS traffic by Moving Cloud Services and VMs. Advanced

Information Networking and Applications Workshops (WAINA), 2014 28th

International Conference on, vol., no., pp.144-149.

 Sardis, F., Mapp, G., & Loo, J. (2014). Cloud-Based Service Delivery Architecture

with Service-Populating and Mobility-Aware Mechanisms. In J. Rodrigues, K. Lin, &

J. Lloret (Eds.) Mobile Networks and Cloud Computing Convergence for

Progressive Services and Applications. Hershey, pp. 183-199.

 Sardis, F.; Mapp, G.; Loo, J.; Aiash, M.; Vinel, A, 2013. On the Investigation of

Cloud-Based Mobile Media Environments With Service-Populating and QoS-Aware

Mechanisms. IEEE Transactions on Multimedia, vol.15, no.4, pp.769-777.

 Aiash, M., Mapp, G., Lasebae, A; Loo, J., Sardis, F.; Phan, R.C.-W., Augusto, M.,

Moreira, E., & Vanni, R., 2012. A survey of potential architectures for

communication in heterogeneous networks. Wireless Telecommunications

Symposium (WTS), pp.1-6.

 Sardis, F., Mapp, G., & Loo, J. 2011. On-Demand Service Delivery for Mobile

Networks. In MOBILITY 2011, The First International Conference on Mobile

Services, Resources, and Users, pp. 22-27.

vii

Contents
Chapter 1 Introduction ..1

 Overview ..1 1.1

 Challenges ...3 1.2

 Research Question ..5 1.3

 Limitations of Scope ...5 1.4

 Network Performance in the Context of this Thesis ...6 1.5

 Structure of Thesis ..8 1.6

Chapter 2 Task Offloading and Cloud Technology .. 10

 Task Offloading in Pre-Cloud Era.. 10 2.1

2.1.1 X Window Teleporting – Early Attempts at Remote Execution 10

2.1.2 Cyber Foraging – Remote Execution in a Mobile Environment 12

 Cloud Computing Technology .. 17 2.2

2.2.1 Cloud Infrastructure .. 20

2.2.2 Virtual Machine Migration .. 23

2.2.3 Media-Edge Cloud ... 27

2.2.4 Cloud Interoperability... 29

 Task Offloading in Cloud Computing Era .. 30 2.3

2.3.1 Mobile Cloud Computing ... 30

2.3.2 Supporting the Case for Mobile Thin-Clients in MCC ... 33

2.3.3 Cloud Gaming .. 34

 Critical Summary .. 37 2.4

Chapter 3 The Evolving Internet: Structure, Framework and Implications 39

 Background on Internet Transit and Peering ... 39 3.1

 New Internet, Cycle Peering and Mesh .. 43 3.2

 CDN and Edge-caching ... 44 3.3

 Performance .. 47 3.4

viii

 Software Defined Networking and Network Function Virtualisation 50 3.5

 Economic Traffic Management .. 54 3.6

 5th Generation Networks Y-Comm Framework ... 58 3.7

3.7.1 The Peripheral Framework .. 60

3.7.2 The Core Framework ... 61

3.7.3 Evolution of Core and Wireless Networks .. 62

 Mobility and Application Usage Patterns.. 65 3.8

 Critical Summary and Insights ... 66 3.9

Chapter 4 Service Delivery for Mobile Clients... 70

 Requirements ... 70 4.1

 Introducing the Framework .. 71 4.2

 Framework Implications... 75 4.3

 Relating to Existing Communication Frameworks... 78 4.4

 Critical Summary and Research Focus ... 81 4.5

Chapter 5 Traffic Management ... 83

 Mobility and Network Dwell Time ... 84 5.1

 Mathematical Analysis ... 85 5.2

5.2.1 Scenario A ... 85

5.2.2 Scenario B ... 87

 Flow Chart .. 88 5.3

 Prototype .. 90 5.4

5.4.1 Prototype Platform Specifications .. 90

5.4.2 Script Logic ... 93

5.4.3 Testing Setup and Methodology ... 95

5.4.4 Test Results and Analysis .. 96

 Critical Summary .. 98 5.5

Chapter 6 QoS Management .. 100

ix

 Modelling Network Performance in the Context of Mobility 100 6.1

6.1.1 Geographical Distance and Latency... 101

6.1.2 Summary of Latency Tests ... 106

 QoS Evaluation Model for Mobile Clients ... 106 6.2

6.2.1 Operational Requirements and Limitations .. 110

 Solving the Model .. 111 6.3

 Test Scenarios and Assumptions ... 114 6.4

6.4.1 Measuring Mobility.. 114

6.4.2 A Case of Urban and Fixed-Path Mobility ... 115

6.4.3 A Case of Contextual Mobility ... 120

6.4.4 Scenario-Based Application .. 122

 Critical Summary ... 123 6.5

Chapter 7 Conclusion and Future Work .. 125

 Summary of Work ... 125 7.1

 Contribution to Knowledge .. 126 7.2

 Future Work ... 127 7.3

7.3.1 QoS and Traffic Monitoring ... 127

7.3.2 Resolving Datacentre Locations .. 129

7.3.3 Security ... 129

7.3.4 Scalability ... 130

7.3.5 Saleability ... 131

 Closing Statement .. 132 7.4

x

List of Figures

Figure 2.1 Cloud services and their legacy equivalents. ... 19

Figure 2.2 Cloud network topology... 21

Figure 2.3 Migration process flow diagram. ... 24

Figure 2.4 Classifications of services according to interactivity and complexity. 28

Figure 3.1 Tiered Internet structure and peering/transit connections. 40

Figure 3.2 Regional localisation of web-caches. ... 44

Figure 3.3 CDN topology for Edge-Caching. .. 45

Figure 3.4 Evolution of Internet structure using CDNs and Edge-Caching. 46

Figure 3.5 Service-Oriented architecture based on fixed infrastructure networks. 49

Figure 3.6 Vertical handover scenario between Wi-Fi and LTE networks. 59

Figure 3.7 Y-Comm framework layers. .. 60

Figure 3.8 Envisioned Y-Comm Internet topology. ... 62

Figure 3.9 Structure of SP. .. 64

Figure 3.10 Y-Comm implementation model. .. 64

Figure 4.1 Service delivery framework layers. .. 72

Figure 4.2 Dynamic path formation using the proposed framework and SOA. 75

Figure 4.3 Mapping the proposed service delivery framework to OSI layers. 78

Figure 4.4 Mapping of service delivery framework layers to Y-Comm. 80

Figure 5.1 Assumed topology for dynamic service localisation. ... 83

Figure 5.2 NDT and network connectivity prediction using Y-Comm. 84

Figure 5.3 Simple scenario representation based on two locations. 85

Figure 5.4 Service localisation using multiple locations. .. 87

Figure 5.5 Migration process flow diagram. ... 89

Figure 5.6 Prototype platform network diagram. .. 91

Figure 6.1 London Tube results in ascending distance from the server. 102

Figure 6.2 Public Wi-Fi latency results in Manchester. .. 103

Figure 6.3 Mobile network latency results in multiple locations. 105

Figure 6.4 Markov Chain. .. 107

Figure 6.5 Multichain model in 3x3 configuration. .. 108

Figure 6.6 Multi-dimensional model based on a 3x3 chain configuration. 109

Figure 6.7 2x3 queueing model. ... 111

Figure 6.8 Random urban mobility results. ... 117

xi

Figure 6.9 Random urban mobility results. Both networks have adequate QoS. 118

Figure 6.10 Fixed-path mobility with insufficient QoS on first network. 119

Figure 6.11 Fixed-path mobility with equal QoS on networks. .. 119

Figure 6.12 Contextual mobility results for fixed-path. ... 121

Figure 6.13 Contextual mobility results for multiple networks. .. 122

Figure 6.14 Illustration of multiple scenarios of handovers. ... 123

xii

List of Tables

Table 1.1 Network performance synthesis table. ..6

Table 1.2 Factors affecting interaction in Cloud gaming. ..7

Table 3.1 Sample from LINX and MSK-IX peering records registered in

www.peeringdb.com ... 41

Table 3.2 ETM terminology synthesis table. .. 54

Table 5.1 Prototype platform host specifications. .. 90

Table 5.2 Prototype platform virtualisation configuration. ... 91

Table 5.3 Reactive script migration results. .. 96

Table 5.4 Pre-emptive script migration results. .. 97

Table 6.1 Random urban mobility inputs with one network unable to provide the

required QoS. ... 116

Table 6.2 Random urban mobility with sufficient QoS on both networks. 117

Table 6.3 Fixed-path mobility. The first network has insufficient QoS. 118

Table 6.4 Contextual mobility inputs for fixed-path. .. 120

Table 6.5 Contextual mobility with two probable targets. .. 121

xiii

List of Acronyms

ARP Address Resolution Protocol

AS Autonomous System

ASN Autonomous System Number

CDN Content Delivery Network

CR/TR- Motion Checkpoint Recover, Trace Replay

DNS Domain Name System

ETM Economic Traffic Management

GUI Graphical User Interface

IaaS Infrastructure as a Service

IP Internet Protocol

ISP Internet Service Provider

IXP Internet Exchange Point

LTE Long-Term Evolution

MAC Media Access Control

MCC Mobile Cloud Computing

MEC Media-Edge Cloud

NDT Network Dwell Time

NFV Network Function Virtualisation

PaaS Platform as a Service

PoP Point of Presence

QoE Quality of Experience

QoS Quality of Service

RDC Remote Desktop Connection

RDMA Remote Direct Memory Access

SaaS Software as a Service

SAN Storage Area Network

SDN Software-Defined Networks

TCP Transmission Control Protocol

UDP User Datagram Protocol

xiv

VHD Virtual Hard Disk

VM Virtual Machine

WAN Wide-Area Network

1

Chapter 1 Introduction

 Overview 1.1

Advances in mobile device technology along with the development of faster wireless

connectivity technologies in recent years have given us the ability to access online

content and services in a mobile environment. The capabilities of these devices improve

with each product generation; however, their small size limits the available on-package

resources and ultimately limits the user experience in an era where users demand more

multimedia capabilities and multitasking. Advances in wireless network technologies

now offer faster network access for these devices and satisfy the need for access to

multimedia content and services. Although multimedia content is now available on

mobiles, there is still a limit to their capabilities because most of the processing and

data storage is done on the device and therefore the limitations of their capabilities still

apply when it comes to applications that demand multitasking, processing power and

large storage capacity.

The development of Cloud technology has contributed in expanding the capabilities of

these devices by offering services and resources over the network. At the moment, the

most common example of using the Cloud for expanding the capabilities of mobile

devices is that of online storage, and less commonly, the partial processing of

information such as for voice recognition. As Cloud technology improves and more

sophisticated applications are being developed for the Cloud, we can anticipate a

broader use of task offloading from mobile devices to the Cloud and a tighter coupling

between the two as the former may eventually transform into a thin-client and rely on

Cloud resources for processing and storage. Mobile Cloud Computing (MCC) [14] is the

term used to describe this convergence of mobile technology and the Cloud for the

purpose of augmenting the capabilities of the former.

To achieve constant access to online resources, mobile devices feature multiple network

interfaces of different technologies that increase the chances of acquiring network

connectivity. With a broad availability of Wi-Fi, 3G and LTE networks in urban areas,

modern devices can connect to the Internet from almost any location. However, it is not

yet possible to switch seamlessly between these networks which often results in

2

intermittent connectivity as the device hops from one network to the next. Research in

the field 5th Generation (5G) [39] networks is aimed, among other things, at providing

reliable and constant connectivity by anticipating the user’s moves and proactively

configuring network connections so that communication is not lost when the device

leaves the coverage area of one network and enters another.

By achieving constant connectivity, it will be possible for mobile devices to rely more on

the Cloud for processing and storage and greatly expand their capabilities. However,

even with seamless handover technology, each network has different performance

characteristic resulting in varying network conditions as the user moves. Furthermore,

this raises the problem of managing the additional network traffic generated by these

services since task offloading is not subject to caching due to the highly personalised

nature of it and therefore it is bound to create large amount of inter-Autonomous

System (inter-AS) traffic that congests the Internet on a global scale and ultimately

affects performance.

At the moment, MCC offers general purpose services such as voice and image

recognition. Examples of it are Apple’s Siri, Microsoft’s Cortana and City Lens and

Google’s Voice Recognition for Android. These services do not carry user-specific

content and they are easy to replicate across multiple locations to provide the best

possible performance for each network. However, as MCC technology advances, more

tasks and user-specific content will be offloaded to the Cloud and therefore the mobile

device will tend to become a thin-client with most of the processing and storage done in

the Cloud. Consequently, it will be inefficient to replicate services that carry user-

specific content in multiple locations and therefore network traffic may have to cross

multiple networks to reach the client, thus making it subject to performance

degradation due to latency. Furthermore, with the service residing in a datacentre away

from the user’s network, the traffic generated between the service and the client will

not be localised and will contribute to the congestion of third party networks.

The convergence of 5G networks and MCC offers the opportunity to provide task

offloading services to mobile devices in an environment where connectivity is

guaranteed and the capabilities of mobile devices can be reliably augmented without

having to rely on mobile hardware for complex tasks. However, there are several

challenges that will have to be addressed in order to ensure consistent network

3

performance as per the application’s needs and management of the traffic generated by

offloading tasks.

 Challenges 1.2

When it comes to managing traffic and improving network performance, the long

established method of caching is used. However, when dealing with real-time dynamic

content such as a user’s personal service, caching cannot provide the solution since

most of the content is generated through user interaction from personal content. For

each user, the current set of active applications and data in the memory is unique and

therefore we cannot replicate it across many locations. This means that caching using

existing methods is not applicable to task offloading. However, Cloud technology has the

ability of moving workloads between hosts and datacentres [28, 43] and this capability

may be used to dynamically move a user’s service to locations where traffic will be

localised and network performance will be improved. Therefore, we can investigate a

potential method of dynamically localising services for mobile users based on the

network that the mobile device is attached to.

In order to evaluate if a service should be localised, we first need to gather information

in terms of network performance and user mobility. From a network’s perspective,

moving a service involves transferring a large amount of data between locations and

this adds to the traffic congestion and ultimately degrades network performance.

Furthermore, if a service is not moved quickly enough, the user may roam to a different

network by the time the service transfer completes and thus may create a situation

where a service is moving perpetually in an oscillating manner. This would be a disaster

scenario as the amount of data transferred over the network would escalate as more

services are transferred according to their user’s needs. Hence, the challenge is to

construct a mechanism for service migrations that will only move a service when it is

deemed necessary and would contribute in the overall reduction of Internet traffic by

localising parts of this traffic and ensuring that the user will maintain their connectivity

to a particular network for enough time to make up for the extra traffic generated by the

migration.

More importantly, network performance is another determining factor to the overall

performance of an application when parts of it or as a whole are being offloaded to the

4

Cloud. The Quality of Service (QoS) [35] of a network is determined by several factors

such as packet loss, latency, jitter and bandwidth. As a mobile user moves and the

mobile device’s network attachment changes, QoS may fluctuate resulting in adverse

effects for the service and the user experience. Furthermore, different services may

require different levels of QoS from the network and as a result, service localisation

should consider these requirements instead of naively trying to localise the service to a

location with the best possible QoS. Once again, this is to ensure that services are not in

perpetual migration as the user moves from one network to another which would

ultimately have the opposite effect.

In order to address the above challenges, we must consider a series of parameters to be

used as input for calculating when a service should be migrated and to where. The first

parameter is user mobility and it includes the user location, the speed and direction of

movement as well as the networks that are available on the user’s path. The second

parameter is the amount of traffic that the service is generating which is used along

with the size of the service to be transferred in order to determine if any traffic savings

can be achieved through localisation. To determine this, we have to consider user

mobility as an indicator to the duration of a connection to a particular network and

therefore how it contributes in calculating the total amount of traffic generated by a

service towards a specific network. Finally, we need to consider the QoS of the network

and compare it to the QoS requirements of a service to determine if the networks in the

user’s path satisfy the requirements of the service. In this case we need to model the

overall QoS that the service will receive from all the networks along the user’s path. By

modelling the overall performance of a user’s connection along their path, we are able

to identify networks that do not comply with QoS requirements and either instruct the

mobile device to avoid those or instruct the service to move to a new location where the

QoS conditions will improve for the problematic network.

5

 Research Question 1.3

Targeting the challenges presented above, this thesis attempts to answer the following

question:

How can we achieve traffic management and enhance network QoS through

dynamic service localisation in response to client mobility across heterogeneous

networks in the context of Mobile Cloud Computing?

This can be broken down into the following questions:

 What are the characteristics of a service delivery framework that can assist in optimising

the delivery of Cloud services in a mobile environment?

 What are the traffic management considerations in terms of dynamically localising

services according to a user's mobility characteristics?

 How can we develop a QoS that takes into account user mobility and how can it be used to

optimise service delivery?

 Limitations of Scope 1.4

As this study mainly delves into the migration decision phase of a service which takes

place before a service migration occurs, potential limitations of Cloud technology in

migrating services over Wide-Area Networks (WAN) are not considered as they fall

outside the scope of this thesis. Instead, it assumes that network performance

requirements for service migration over WAN are satisfied and takes into account the

throughput of the network in order to determine how quickly a migration can complete.

When a mobile device switches between networks, it typically involves a change in the

network address of the device. Achieving seamless connectivity as mobile devices

switch networks falls under the research domain of ubiquitous communication.

Similarly, moving a service to a different network will also require a reconfiguration of

network parameters that are akin to a mobile device switching networks. This thesis

assumes that 5G network mechanisms that dynamically and proactively reconfigure the

network are in place and uninterrupted connectivity is achieved at both ends of the

connection.

Although Cloud technology is used and Cloud Interoperability is presented in the

following chapters as an enabling technology for the work proposed in this thesis, the

6

development of actual Cloud Interoperability mechanisms falls outside the scope of this

project. A Service Delivery framework is proposed as part of the solution and it is

structured in a way that conforms with Cloud’s Service-Oriented Architecture, however,

it should not be considered an implementation model or as part of a concrete solution to

the research question. Instead it is presented as guidance for this thesis and for future

work in this topic and in the general context of Service-Oriented Architectures.

 Network Performance in the Context of this Thesis 1.5

When it comes to network performance in the context of Cloud applications, one of the

most demanding scenarios is Cloud gaming which is a paradigm of centralised

processing and user interaction via thin-clients. Researchers in this area focus their

efforts on network bandwidth and latency in order to enhance the audio-visual quality

and minimise interaction delay [7, 60, and 69]. Other factors that affect network

performance and therefore the QoS include jitter and throughput. Table 1.1 presents the

performance metrics that synthesise network QoS.

Table 1.1 Network performance synthesis table.

Network Performance

Bandwidth The theoretical bitrate capacity of a link

Latency
The time interval between the transmission of a signal from a source and its
reception by the destination

Jitter The variation of latency

Roundtrip Time
The time interval between the transmission of a signal from a host and the
reception of a response for that signal from a remote host.

Chen et al. [7] propose a methodology for measuring interaction delay by taking into

account the network delay, the processing delay and the playout delay. They define as

network delay, the time it takes to deliver a player’s command to the server and return

an output to the client. Therefore, the network delay is defined as the roundtrip time

between server and client. Processing delay is defined as the time it takes for the server

to render and output a frame after it has received a command. Hence, the processing

delay is a product of the performance of the server and depends on its software and

hardware configuration. Finally, the playout delay is defined as the time it takes for the

thin client to display a frame on screen after it has received it. In essence, the playout

delay is determined by the processing performance of the thin-client. With all other

factors constant, these three parameters together define the overall response delay of a

7

Cloud gaming platform. This generalised approach can also be applied to any Cloud

application that uses a thin-client paradigm as the three components are the same

regardless of the type of application. Their results show that the OnLive Cloud gaming

platform exhibits a lower processing delay for action/shooting games and conclude that

this must be due to special configuration in the Cloud to accommodate for fast-paced

action games that require a very high level of interaction compared to slower games

such as strategy. However, this highlights that although the performance of the Cloud

may be configured accordingly, the network delay factor is not something that can be

controlled by the user or the Cloud provider and hence it can potentially have a negative

effect on the performance without a means for correcting it in real-time. Table 1.2

presents the factors that affect the overall performance of Cloud gaming applications.

Table 1.2 Factors affecting interaction in Cloud gaming.

Cloud Gaming Interaction Delay

Processing Delay
The time it takes for a Cloud to process a command and produce a
corresponding frame

Network Delay
The time taken by the network to deliver player commands to the server and
return the corresponding frames to the client

Playout Delay
The time difference between the moment the thin-client receives an encoded
frame and the moment it is rendered on screen.

In order to understand how the Quality of Experience (QoE) [34] is affected by the

network latency, Wen P. and Hsiao, H. (2014) [70] set up a Cloud gaming test platform

at the National Chiao Tung University campus in Taiwan. In their experiments among

other things, they artificially limited network bandwidth using a software solution and

evaluated the impact on user experience as the roundtrip delay increased. They tested

three different games representing action, fighting and shooting genres which all

require a quick interaction from the user. They found that for 5Mb/s bandwidth and

above the QoE was not affected with all the gamers in their sample reporting equally

high levels of satisfaction in terms of interaction and video quality. However, for 2Mb/s

and below they found that QoE rapidly declined with their gamer sample reporting very

high interaction delay and low video quality which degraded the overall gameplay

experience. Consequently, they found that roundtrip latency has a very high correlation

to the QoE and that there is a clear bandwidth for each game below which the user

experience severely degrades.

8

Shea et al. (2013) [61] focus their efforts on understanding how OnLive behaves under

different bandwidth and latency conditions. In their experiments they found that OnLive

implements proprietary mechanisms that shape the internal processing delay of the

Cloud to compensate for high network latency. Their findings show that OnLive can

compensate at up to 50ms network latency, while trying to keep overall interaction

delay below 200ms, however for over 50ms latency, the user experience starts to

severely degrade for fast-paced games as the interaction delay goes over 250ms.

Similarly, their experiments with network bandwidth show that OnLive will

compensate for lower bandwidths by increasing the image compression in order to

maintain an acceptable framerate for the user. They compared the Signal-to-Noise Ratio

(SNR) of a locally rendered game to the SNR of the same game played on OnLive at

different bandwidth values. The highest SNR of 30 was found to be that of the locally

rendered game and the SNR from OnLive ranging between 26.70 to 24.41 for bandwidth

values between 10Mb/s and 3Mb/s. Their conclusions indicate that although average

SNR of 25 is not excellent the image quality is acceptable on mobile devices.

In summary, the main network performance characteristics that affect Cloud services

are latency and bandwidth. This thesis does not attempt to define what is "sufficient"

performance of the network for a given application but rather attempts to configure

Clouds and services in such way that satisfies a given application's demands. Different

applications and users can have different needs and consider a different level of

performance from the network as sufficient. It is, therefore, up to the users and service

providers to define the requirements for their services and based on those parameters;

the mechanisms proposed in this thesis will attempt to localise services when the

network cannot satisfy these requirements.

 Structure of Thesis 1.6

The rest of the thesis is structured as follows: Chapter 2 reviews past attempts at

supporting mobility and task offloading in a mobile environment. It continues with the

development of Cloud technology and the subsequent convergence between the Cloud

and mobile devices. Chapter 3 discusses the evolution of the Internet’s structure and

presents new technologies for managing and enhancing the performance of networks. It

continues with presenting insights and challenges for the future Internet. Chapter 4

9

presents a novel service delivery framework centred on 5G networks, Cloud technology

and mobile environments. This chapter also sets the focus for the following chapters of

the thesis which are about traffic management and QoS enhancement for mobile

networks. Chapter 5 presents the mathematical model for managing traffic in a mobile

environment using dynamic localisation of services. The chapter continues with a

presentation of a prototype implementation using a basic virtualisation platform.

Chapter 6 presents and discusses a queueing model which takes into account user

mobility and can be used for evaluating the performance of a persistent connection

across multiple networks in a 5G environment. Chapter 7 concludes the thesis and

presents planned future work. Appendix A contains the script code used in the

prototype system as well as screenshots of the script in operation. Finally, Appendix B

contains the mathematical solution to a queueing model.

10

Chapter 2 Task Offloading and Cloud Technology

This chapter presents related work in the context of this thesis. Task offloading for

mobile devices in pre-Cloud technology era is covered first, followed by an introduction

to Cloud technology and modern techniques for managing tasks in the Cloud. Task

offloading for mobile devices using Cloud technology is introduced and the emphasis is

placed on the performance of network access technologies.

 Task Offloading in Pre-Cloud Era 2.1

This section presents how task offloading was developed in the pre-Cloud era for the

purpose of augmenting the capabilities of mobile devices. Some of the more prominent

technologies for dynamic task deployment are highlighted.

2.1.1 X Window Teleporting – Early Attempts at Remote Execution

One of the earliest attempts at remotely accessing a desktop environment was the X

Window Teleport system developed by Richardson et al. (1994) [55]. The X Window

system uses a client-server model to create a Graphical User Interface (GUI) on the

screen and accepts keyboard and mouse input from the user. The client and server

communicate via network protocols which allow the server and client to operate locally

on the same machine or remotely with each residing on a different physical host. The X

Server is responsible for receiving commands from the Applications (clients) and

rendering the GUI for each running application.

The Teleporting System uses the X Window client-server model to decouple the clients

from a particular X Server by introducing a proxy server between them. The function of

the proxy server is to receive the rendering commands from the clients and forward

them to a user-defined host running X Server, thus giving the user the ability to select in

which terminal they want their applications to appear. The initial setup of the

Teleporting System allowed the configuration of the proxy via a command line and

required from the users to manually enter the target terminal’s hostname. In an attempt

to automate this task and support user mobility, the hostnames of X Server terminals

and their locations within a building were tagged. Infrared transmitters in the form of

badges were given to members of staff, each one transmitting their own unique signal

which identified the user. Rooms in the building featured networked infrared receivers

11

which identified the user’s location and matched it to the hostnames of tagged

equipment in that location. This information was passed to the proxy server and the

user’s session could automatically be teleported to a local terminal.

Unlike traditional Remote Desktop Applications (VNC, Teamviewer, and Microsoft RDC)

where the remote host receives a bitmap image of the source’s desktop environment

and refreshes it in regular intervals or upon user interaction, the Teleporting System

completely offloads the GUI processing tasks to the remote host and only transmits

rendering commands over the network. This approach is more efficient in terms of

processing and network utilisation since the task is distributed and bandwidth-

demanding rendered images are not transmitted over the network. Although the

Teleporting System had its limitations, it performed its main task of providing remote

access and user mobility support successfully.

What Richardson et al. did not realise at the time is that the Teleporting System was also

providing task offload functionality by decoupling the user interface rendering from

where the applications are actually running. This position is also supported by Chen and

Noble (2001) [8] where they argue that Teleporting can be used for centralising the

processing and access to the applications can be achieved via stateless mobile thin-

clients. Using thin-clients as terminals, the Teleporting System provided a solution for

centralising processing resources to be used by demanding applications while giving

access to users through any device that supported the X Window system in any location

where network connectivity was available. This kind of client/service remote execution

in the context of user mobility can be loosely considered as a precursor to Cyber

Foraging for mobile clients.

12

2.1.2 Cyber Foraging – Remote Execution in a Mobile Environment

In the context of task offloading and mobile devices, the main focus is to develop

mechanisms and systems that allow mobile devices to expand their inherently limited

local resources by accessing nearby devices and acquiring processing capabilities from

them. This concept is known as adaptive offloading or Cyber Foraging and it can greatly

expand the capabilities of a mobile device to the extent of carrying out tasks that would

be otherwise impossible to run on these devices as well as enhance the performance of

demanding applications.

In the article “Adaptive Offloading for Pervasive Computing”, Gu et al. (2004) [24] argue

that the limited resources found in mobile devices often require explicit proprietary

programming in order for software to fully utilise their capabilities and achieve

maximum performance. The diversity of these devices means that applications have to

be adapted to each type of device causing a delay in production and increased

development costs. The solution presented assumes that applications can be written in

any object-oriented language and the devices running them are able to connect to

nearby surrogate nodes to where tasks can be offloaded. One of the requirements is that

the mobile node has plentiful wireless bandwidth and has access to surrogates present

in the local network.

Gu at al. designed their foraging system so that applications can offload part of their

memory requirements to a nearby surrogate in order to avoid crashes due to

insufficient memory. The authors experimented with a prototype implementation of

their system, using Java programs and found that memory offloading worked but had an

impact in performance. In the series of tests conducted, they artificially restricted the

amount of memory available to an application running on a PDA. They found that in this

scenario the application crashed; however, with an unrestricted amount of memory the

application would operate normally. When employing memory offloading to a laptop

which served as the surrogate server, the execution time of the application increased,

however the offloading engine guaranteed that an application would continue to run

instead of crashing when reaching the memory limit. Gu et al. [24] state that this small

performance cost is worth the benefit of allowing applications to run normally on a

device that would otherwise be unable to support them. This was particularly true at

the time the article was written, when most PDAs had approximately 128MB of RAM.

13

2.1.2.1 Slingshot

A more advanced Cyber Foraging architecture called Slingshot was presented by Su and

Flinn (2005) [63]. Slingshot uses service replicas that provide processing resources to

mobile applications in order to enhance their performance. Therefore, this architecture

is not only foraging for extra memory but also offloads application tasks to nearby

surrogates for processing. This is achieved by employing a “Home Server” where a first

class replica of a service is instantiated for the purpose of persistent storage and task

offloading and second class replicas which are temporary replicas running on

surrogates local to the user’s network and only deal with processing. With mobility in

mind, second class replicas only keep a soft state of the application and use the Home

Server as persistent storage for creating new replicas when necessary.

In order to support widespread use of surrogates, they have to be easy to manage and

require low maintenance. This means that surrogates can be embedded devices and to

facilitate this, Slingshot runs each replica in its own self-contained virtual machine. A

heavyweight virtualisation platform is used at the surrogate meaning that the operating

system running on the surrogate does not pose any restrictions on the offloaded

processes. This also means that rebooting a surrogate does not interfere with

application behaviour since the surrogate itself only runs a soft state. The only effect to

the offloaded applications in the event of surrogate failure would be performance

degradation to the level that would have been available had the surrogate never been

present.

Slingshot assumes that applications are deterministic, in other words, the result of an

execution starting from the same initial state will be the same between different

surrogates. Replicas are initiated by checkpointing the first class replica, moving its

volatile state to a surrogate and reconstructing the operations that occurred after the

checkpoint. It is also assumed that surrogates are connected to the user’s local network

because Wi-Fi bandwidth is higher and can therefore provide better QoS compared to a

backhaul connection. The user’s mobile device operates as a proxy between the first

class replica and the second class replicas and in some configurations it also serves as

storage for the volatile state of the applications and therefore responsible for

synchronising a newly instantiated second class replica with updated application

14

context. This is arguably easier and more efficient to achieve over a Wi-Fi link with

ample bandwidth than a backhaul link with high latency and less bandwidth.

Slingshot's prototype implementation assumes a single application running at the client

and a single surrogate available. The application is divided into a local component

which runs on the mobile client and a remote service which is replicated at the Home

Server. The resource intensive functionality is ideally allocated to the remote service

and the local component contains the user interface. This way, demanding applications

can run on clients that would otherwise have insufficient resources for them. The Home

Server is assumed to be a machine under the user's administrative control while the

surrogates can be administered by third parties. The similarity with the Teleporting

system is that the client device only renders the interface while complex computational

tasks are carried out remotely.

In the prototype implementation, Su and Flinn experimented using a voice recognition

application as an example of a stateless application and a remote desktop as an example

of stateful application. They used storage compression (Cox et al. 2002) [13] and

content-addressable storage methods (Sapuntzakis et al. 2002 and Tolia et al. 2004)

[57, 65] to reduce the amount of physical space required to store volatile and persistent

application states. They also used caching at the surrogates in combination with

content-addressable storage which reduced the amount of data blocks that needed to be

transferred from a Home Server by allowing multiple users of a surrogate to share

identical blocks. For example, two users occupying a surrogate and both using a

Windows XP VM, will be able to share identical blocks of memory without fetching and

keeping separate copies for each client. Regardless, creating a second-class replica is

considered a slow process because even after compression, the data to be replicated is

in the order of several Megabytes and thus, the transfer time is in the order of several

minutes. The results of the experiments showed improvements in the execution times

for both applications tested with Slingshot performing up to 2.6 times faster when tasks

are offloaded to a nearby surrogate as opposed to remote execution on the Home

Server. The greatest performance advantage comes from eliminating communication

over the backhaul connection.

With regard to the performance of creating second class replicas, the researchers

experimented with storing the service state at the Home Server and at the local client

15

via a Microdrive on the mobile device. For a stateless service, when the service

operations are stored on the mobile device the transfer of data to the surrogate for

creating a second class replica occurs via the wireless interface rather than the backhaul

connection. This results in a much faster instantiation of a replica at the cost of higher

processing cost on the mobile device which results in performance degradation in the

order of 20% slower response time compared to remote execution. In the stateful

service scenario, the performance impact increases to 52% when storing the state on

the mobile device. When storing the state on the Home Server, the average response

time of the application increased by 20% due to the traffic generated by the VNC

connection over the backhaul.

2.1.2.2 Dynamic Service Deployment

In a similar effort to offload processing from mobile devices by means of foraging,

Verbelen et al. (2011) [67] presented a prototype model for dynamic deployment and

quality adaptation for mobile augmented reality applications. Their approach requires

mobile applications to be written in bundles which are then used to adapt the

application to the resources available on the mobile devices and on surrogates near the

device. The advantage of their approach is that it allows for more fine-grained control of

the performance of an application when it is being starved of resources. As an example,

they implemented an augmented reality application which uses the mobile phone’s

camera to identify items via their barcode or their label. When the user is multitasking

on the phone, the application can call the different bundles that comprise it and adjust

its performance to enhance the user’s QoE. Furthermore, if a surrogate is detected on

the network, it can offload some of these bundles and further improve the performance

of the application and hence the user experience. Verbelen et al. experimented with

different configurations by altering the amount of resources available to the device

through multitasking and by adding surrogates to the network. They also experimented

by altering the bandwidth available between the device and the surrogate. In their

conclusion, the framework enhances the application’s performance and the user’s

perceived QoE with only momentary degradation of the experience when the

application is switching between bundles and is being redeployed. They argue that the

redeployment phase can be further improved by employing bundle caching on the

surrogate.

16

2.1.2.3 Cyber Foraging Summary and Challenges

In summary, the concept of foraging offers a dynamic method of allocating resources to

devices that inherently lack them. Performance improvements can be achieved under

certain conditions but there are also several drawbacks. Security is one such drawback

considering that users will be temporarily storing and processing their data on a public

machine administered by a third party over which the user has no control. Security in

virtualised environments is a problem directly affecting foraging but it is not entirely in

the field of foraging to solve. The other notable drawback of foraging is the complexity

of deploying parts of an application to a surrogate when dealing with stateful

applications that need to be synchronised across multiple surrogates. The backhaul

connection may pose a bottleneck when synchronising states or transferring data and

when the synchronisation is driven by the mobile client, the performance penalty may

lead to degradation of the user's experience. Perhaps the most important drawback

when it comes to foraging is that although it is made with mobile devices in mind, it is

not centred on user mobility in an automated and dynamic manner. Slingshot for

example, employs a user-initiated instantiation of replicas which implies that the user is

responsible for evaluating whether or not offloading is required. It also expects the user

to assess for how long they are bound to stay at a location and connected to the native

hotspot and at the same time the user is required to know the signal strength of the

hotspot and if it provides adequate bandwidth (as per the application’s needs) for

offloading. Additionally, the required complexity for creating applications that are

compatible with offloading parts of their operations may create additional development

costs which negates the initial argument of reducing costs by making applications

agnostic to their environment and running them within a Virtual Machine.

Another notable concern with foraging is the amount of traffic it generates on networks.

When dealing with small-footprint applications, replicating parts of their functionality

over the network may not generate a large amount of traffic. However, as technology

progresses and users are becoming accustomed to complex applications on their mobile

devices, this process may consume a lot of bandwidth for an extended amount of time.

For example, when playing a game, image rendering is a complex task that needs to be

remotely executed. This means that the entire application may have to run on a

surrogate and transmit rendered images to the client, thus heavily congesting the

17

network with a traffic flow that has high bandwidth and low latency requirements in

order to sustain a good QoE.

Furthermore, if we assume that surrogates are native to public hotspots used by many

people concurrently, the question of scalability arises. How powerful will surrogates

need to be to support this functionality for tens of people? How much bandwidth will

the hotspot need in order to accommodate each user's needs? Will the backhaul

connection of each hotspot have sufficient throughput for multiple concurrent

synchronisations without affecting performance?

With regards to the amount of available resources and the scalability of deployment, the

development of Cloud technology has provided answers to many of the problems faced

by Cyber Foraging. The next section presents Cloud Computing technology and some of

its latest development.

 Cloud Computing Technology 2.2

Cloud technology has changed the landscape of remote task execution by offering

centralised computing and storage resources to clients. The Cloud has now become and

established paradigm for providing services and content on the Internet. This section

explores Cloud computing and presents some of the latest developments in the

technology.

According to the European Telecommunications Standards Institute (NIST): “Cloud

computing is a model for enabling ubiquitous, convenient, on-demand network access to a

shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction. This cloud model is composed of five

essential characteristics, three service models, and four deployment models.” (NIST, 2011)

According to the NIST, the essential five characteristics of a Cloud are described below:

On-Demand Self Service: Cloud users can unilaterally provision computing capabilities

as needed without having to rely on a third party (technical department) to do it. In other

words, Cloud users are presented with a simple interface which allows them to choose to

which services of the Cloud they wish to subscribe. It also allows them to deploy their own

services and applications on top of Cloud services.

18

Broad Network Access: Cloud capabilities are made available over the

network in a secure and reliable manner using standard mechanisms (e.g., HTML 5) that

can be used by heterogeneous client platforms (e.g., workstations, tablets, mobile phones).

Resource Pooling: A Cloud has a pool of resources (e.g., storage, processing,

network bandwidth, and memory) which is used to serve multiple clients by applying a

multi-tenancy model. The customers are not aware of the exact location of their resources

within the Cloud but they may be able to specify a location at a higher level of abstraction

such as a geographical region or datacentre.

Rapid Elasticity: Cloud resources (physical and virtual) can be dynamically

assigned and reassigned to various services based on client demand. As the demand for a

particular service increases, more resources are allocated to it dynamically. When the

demand decreases, the excess resources are returned to the pool so that other applications

can use them.

Measured Service: Cloud systems must be able to monitor, control and report the

amount of resources used by each tenant of the Cloud. The Cloud provider is able to

measure the cost of resources used by each tenant and charge accordingly.

Cloud technology can offer a wide range of services at different levels of abstraction.

They are most commonly classified by the NIST in the following three categories:

Infrastructure as a Service (IaaS): This is the most basic services provided by a

Cloud. The consumer is presented with a virtual infrastructure which includes processing,

network and storage resources. The infrastructure can be used to implement an entire

virtualised network with hosts, operating systems and applications. The consumer does

not control or manage the underlying Cloud infrastructure.

Platform as a Service (PaaS): Going one level up from IaaS, in PaaS, the

consumer is presented with a complete platform which can be used for deploying

applications or creating applications using various programming languages, libraries,

tools and services. The consumer does not manage the infrastructure of the platform or

anything underlying.

Software as a Service (SaaS): This service type gives consumers the ability to

use the provider’s applications (e.g., web-based email) through a wide range of client

19

devices such as mobile phones, tablets and laptops. The consumer does not manage any of

the underlying infrastructure and the applications are typically presented through a web

browser or a program interface.

Although Cloud computing may sound as a revolutionary approach to service

provisioning, in reality, the types of services it offers have existed for many years before

Cloud became mainstream. Even the method of delivery for some of these services has

not changed. What Cloud technology revolutionised was the platform on which services

are running. It allows us to consolidate hardware resources and efficiently allocate them

to different services and clients based on availability and demand. In Fig. 2.1, below we

present the Cloud services along with their precursors as defined by Rhoton, (2009)

[54].

Pre-Cloud Cloud

Application Service Provider

Web Hosting Service

Managed Hosting Service

Software as a Service

Platform as a Service

Infrastructure as a Service

Figure 2.1 Cloud services and their legacy equivalents.

Clouds can be deployed in four main ways as defined by the NIST. Each deployment type

has different advantages and applications depending on the requirements that an

organisation:

Private Cloud: A Private Cloud is entirely dedicated to a single organisation.

The Cloud infrastructure may be located on or off premises and may be managed by the

organisation, a third party or both. Typically, with on-premises deployment, the

organisation has full control of the datacentre’s infrastructure and networks. Off-premises

private Clouds usually take advantage of existing facilities and expertise of a third-party

which is tasked with hosting and maintaining the datacentre. The advantage of private

Cloud is that the organisation can keep a tight control over it in terms of design,

20

implementation, maintenance and operation. The disadvantage is the high cost involved in

designing, implementing and running it.

Public Cloud: A public Cloud is owned, managed and operated by a

business, academic or government organization, or some combination of them. It exists in

the premises of the organisation and the infrastructure is typically used to sell various

services to the general public.

Community Cloud: A community Cloud is shared by many organisations that

share common concerns such as performance and security. Its infrastructure can be

managed internally by one or many of the organisations in the community, or by a third

party, or by some combination of them. It may exist on or off premises. In essence, it is a

Private Cloud implementation that is shared by a community of organisations which share

some common goals or requirements and wish to have a tighter control over the

infrastructure than a Public Cloud would afford.

Hybrid Cloud: A Hybrid Cloud implementation combines two distinct Cloud

infrastructures, a private and a public, which co-operate and share resources by means of

standardised or proprietary technology that enables data and application portability. In

this deployment model, a Private Cloud can be offloading certain tasks to a Public Cloud

for load balancing or other purposes.

2.2.1 Cloud Infrastructure

In the previous section we explained the basic characteristics of a Cloud, what types of

services it can offer and its main deployment configurations. In this section we will look

at how a Cloud operates and how it offers services. We will start by looking at a basic

Cloud network topology as shown in Fig. 2.2.

21

Portal Servers

Compute Cluster

Storage

Figure 2.2 Cloud network topology.

A Cloud is by itself a network of networks with different servers within it running

different services. Part of the Cloud infrastructure is reserved for storage, typically in

the form of a Storage Area Network (SAN). The SAN on its own is an independent

network with dedicated storage devices and front-end devices that interface with the

rest of the Cloud’s network. Long-term storage for clients and for Cloud operations is

consolidated within this sub-network. Virtual Machine configurations, Virtual Disks,

User Data and Boot Disk Images for the Compute Cluster are stored here. The SAN

presents itself as multiple block-level devices. If we take iSCSI as an example, then a SAN

can present multiple iSCSI targets that are accessed by the Compute Cluster. Since the

iSCSI targets are block-level devices, they appear to the operating system as a hard disk

which can be formatted and used in any way. Boot Disk Images used for Pre-Execution

Environment (PXE), can also be stored in the SAN and used by the Compute Cluster to

deploy a Bare-Metal Hypervisor to new nodes. This allows for fast deployment of new

Compute Nodes which in turn-expands the capabilities of a Cloud. Another advantage of

having a dedicated storage network is that all the compute resources of the Cloud can

be reserved for the clients, while dedicated hardware carries out tasks such as data

backup, archival and retrieval, integrity and parity checks, data migration, caching and

maintenance.

The Compute Cluster gives a Cloud its processing power. The server nodes residing in

this portion of the network are typically configured to boot into a Bare-Metal

Hypervisor via PXE. They are all interconnected and managed by other nodes within the

cluster that are tasked with distributing workloads and allocating resources. Many of

the servers and services that manage the resources of the cluster are themselves

22

virtualised. The Compute Cluster is configured with machines with plenty of memory

and processing power in order to handle client tasks. Long-term storage of data is

achieved via connections to the SAN. This pool of processing resources can be used to

run independent Virtual Machines or virtualised networks of machines. High availability

is achieved through failover clustering which constantly monitors nodes and moves

services or virtual machines among them when needed.

Finally, the Portal Servers provide the front-end of the Cloud where clients connect and

access services. Everything behind the portal is abstracted and the client is presented

with only the information that is relevant to the services he is requesting. Clients are

given the ability to subscribe to different services, change parameters of their services,

calculate the cost of the resources they are consuming and also access their own

personalised environment for developing their own platforms or services. All this

information and functionality is primarily handled within the back-end of the Cloud

which manages the Compute Cluster. This information is accessed by the front-end and

presented to the user in a simple interface that can be accessed by a web browser. The

front-end can also pass instructions to the back-end for configuring new client tasks.

For example, a client can access a VM through the portal and they can gain access to the

operating system installed on the VM, but they can also configure how much memory,

storage and how many processors they want their VM to have. They can also install a

different operating system or new software within the VM. The most common example

on the Internet is the various Cloud Storage services such as Google Drive and SkyDrive

where the user is presented with a graphical representation of their files via their web

browser. Files can be downloaded or uploaded, archived or deleted and they can also be

made available to the general public via special links.

As explained above, a Cloud is ultimately a network comprised of smaller, purpose-built

networks. Nodes within the networks are connected in a loosely coupled fashion using

high bandwidth interconnects that form the fabric of the Cloud. Similarly, those

networks are also interconnected to each other with high bandwidth links. As a result,

we will see in the next section that the performance of the fabric plays a big role in the

overall performance of the Cloud (CISCO, 2014) [10].

23

2.2.2 Virtual Machine Migration

Moving a Virtual Machine involves transferring one or more components from one

physical location to another. This can be done while the VM is not running or while the

VM is live. A live migration of a VM is achieved with minimal or no interruption to its

service via handover mechanisms that we will discuss in this section. There are two

main types of migration that are of interest in the context of this thesis. A “full”

migration of a VM transfers the Virtual Hard Disk (VHD) and the VM to a different host.

The process is typically started by making a copy of the VHD to the new location

followed by a transfer of the VM’s memory contents and the VM configuration and

finally a network-level handover, if the VM is using a network. A “light” migration

transfers only the VM’s memory contents to a new host and performs a network-level

handover afterwards.

For a VM running within a Cloud with its VHD stored in a SAN, we only need to perform

“light” migrations for load balancing or failover scenarios. For a VM running on a

simpler setup of virtualised hosts, without a SAN or a centralised storage solution, a

“full” migration is more common. The difference between the two types of migration is

the time it takes to complete the process. A “full” migration takes a longer time to

complete due to the bulk of data of the VHD that has to be transferred. Additionally, the

storage system often poses a bottleneck in the operation because its throughput is

slower than the network throughput of a Cloud’s fabric. In contrast, a “light” migration

is purely a memory copy operation and is encountering a bottleneck at the network’s

throughput which is many orders of magnitude slower than the memory subsystem of a

server.

2.2.2.1 Live VM Migration Process

In detail, a “light” migration has six phases (Microsoft, 2012 and Hwang, 2012) [48, 30].

In the first phase, the source host sets up a connection to the destination host and

transfers the VM configuration data. At this point, a basic VM is set up at the destination

using the configuration data and memory is allocated to it.

In the second phase, the entire memory (working set) of the migrating VM is copied

over the network from the source to the destination. As the working set is being

migrated, the host monitors which pages were modified since the beginning of the copy

24

operation. Pages that have been modified are added to a list of pages that need to be

recopied. This phase is also known as the pre-copy phase.

In the third phase, the hypervisor synchronises the modified pages between the two

hosts by looking up the list of modified pages and transmitting the changes. As entries in

this list are being transferred, other pages can be modified. It is therefore important to

have high network bandwidth between the source and destination hosts such that the

page transfer rate exceeds the page modification rate. This process is repeated multiple

times until there are no pages left on the list.

In the fourth phase of the migration, any virtual hard disks or other storage associated

with the VM have their control transferred to the new instance. At this point, the

destination host has an up-to-date working set for the new VM and access to the

storage. So in the fifth phase, the new instance of the VM is resumed and brought online.

In the sixth stage, the destination host sends a message to the network switch and

updates the MAC address for the VM in the switch’s Address Resolution Protocol (ARP)

table so that traffic can be forwarded to the correct switch port. The flowchart in Fig.2.3

shows the migration process.

Migration Starts

New VM StartsARP Updates

Working Set Copy

Modified Pages
Transfer Storage

Control
Sync Pages

Yes No

Figure 2.3 Migration process flow diagram.

In the event of a “full” migration, where there is no central infrastructure and storage is

not shared, the process of moving the storage occurs before the “light migration” phases

begin. While storage is being copied, any read/write operations are forwarded to the

source VHD. Following this stage, read/write operations are mirrored on source and

destination while any last changes are being synchronised. At this point, the process of

25

“light” migration starts as described above. Once it completes, the source VHD is

deleted.

In summary, VM migration is achieved by first copying the working set of a VM in a

process that is called pre-copy. Memory pages that were modified during the transfer

are added to a list and are iteratively copied. The last set of pages is copied after

freezing the VM while at the same time; control of the storage is given to the new VM.

The new VM is then brought online and the network is reconfigured to forward the

active connections to the correct port on the switch.

2.2.2.2 Migration Performance Analysis and Enhancements

Typically migration performance is measured in terms of migration time and downtime.

The migration time is the time it takes for all the phases of the process to complete. It

depends on the size of the working data plus the size of the storage data in the event of a

“full” migration. It also depends on the performance of the network that connects the

source and destination hosts as well as the performance of the hardware of the hosts.

The downtime occurs while the last modified pages are synchronised (while the source

VM is paused) and the new instance is coming online and updates the ARP tables of the

network. To achieve optimal migration performance, these two metrics need to be

minimised (Ibrahim et al., 2011) [31].

From the above, it is apparent that “full” migration should be avoided in order to

minimise total migration time. Therefore, in an ideal scenario, migrations will occur

between hosts that share some kind of storage infrastructure. It is also obvious that in

order to complete the migration, the rate of pages being modified at the source should

be smaller than the rate of pages being transferred to the destination. Another way to

present it is that with each repetition of the copy operation, the list of modified pages

should become smaller. Performance of the VM is also impacted during the pre-copy

operation while pages are being synchronised across the physical hosts. This is due to

copy overheads as the physical host has to dedicate resources in the operation, thus

depriving the VM of those resources. An adaptive rate limiting approach can be

employed in order to limit the amount of resources dedicated to the migration but as a

result the migration time is increased (Hwang, 2012) [30]. Moreover, prolonged

migration time means that pages can be modified multiple times during the process

without converging to a small writable working set. Therefore, the maximum number of

26

iterations has to be defined in the rate limiting approach, in order to guarantee that the

migration will complete without entering a contention loop where pages are modified

faster than they can be copied to the destination.

Another approach to improving the performance of live migrations is the Checkpoint

Recovery, Trace Replay (CR/TR-Motion) approach. Proposed by Liu et al. (2009) [40],

this approach is aimed at improving the migration time, reducing the downtime and

minimising the network traffic. It is achieved by taking a “snapshot” or “checkpoint” of

the VM’s working set. At this point the host monitors the VM’s execution and records

events in a log file. The original VM keeps operating normally while the snapshot image

is transferred to the destination host. Log files are then transmitted from the source

host to the destination. These log files are then used to replicate the changes to the VM’s

working set on the destination host. Therefore, the approach of CR/TR-Motion is to

describe the changes that are occurring instead of transmitting the modified pages.

Eventually, the log size becomes small enough to warrant a quick stop-and-copy

operation. The downside of this approach is the same as the pre-copy approach in that

the log replay speed on the destination host must be faster than the log generation on

the source. Otherwise the destination system would end up chasing the source’s state

indefinitely. Because log files typically contain descriptions of the changes, they create

less traffic than moving modified pages. For example, a log file less than 1KB may

describe changes made to a number of pages over 1MB. Therefore, this approach is

successful at reducing the network traffic generated by a migration.

Another method of reducing the downtime and migration time is to compress the

working set before copying it to the destination. This approach makes use of free CPU

resources on the source and destination hosts. The compression/decompression of

pages is not computationally intensive and as a result the migration time is reduced and

the network traffic is also minimised (Finn, 2013) [20]. Finally, Remote Direct Memory

Access (RDMA) can be used with certain types of hypervisors bringing further benefits

to the network throughput of a migration. Xen and Hyper-V support VM migration using

RDMA which completely bypasses the TCP/IP stack processing overheads. Although this

approach requires specialised Network Interfaces on the hosts, it is capable of

transferring the working set of a VM without involving CPU, caches and context

switches. The migration occurs directly from the RAM of the source host to the RAM of

27

the destination with only bottleneck being the network bandwidth between them.

Multiple network interfaces can be teamed together to achieve very high transfer rates

with minimum CPU utilisation on the hosts (Finn, 2013) [20].

2.2.3 Media-Edge Cloud

Zhu et al., (2011) [72] proposed Media-Edge Cloud (MEC) as a platform focusing on

localising certain services within a Cloud in such manner that enhances Cloud

operations and the QoS. MEC is an attempt at more efficient utilisation of Cloud

resources that will give service providers the best performance possible without

requiring costly upgrades on their networks. With MEC, QoS-sensitive services are

located as close to the Cloud’s edge as possible. This means that services such as video

streaming are running on nodes closer to the Cloud’s client-facing front-end and thus

are fewer hops away from the user. The logic behind this approach is that placing these

services close to the Cloud’s Public Portal, reduces the amount of traffic within the

Cloud’s fabric. Routers that are deep into the Cloud’s Compute Cluster are decongested

because the streaming traffic can be passed on directly from the service nodes to the

routers on the Portal network. This in turn enhances the QoS within the Cloud by

releasing network resources to be used for other purposes. The users can enjoy better

interaction with these services and a better QoE due to the decreased latency as a result

of the smaller network distance.

Hobfeld et al. (2012) [27] presented a classification of Cloud services based on their

level of interaction and media content in an attempt to better understand how these

applications are better located within a Cloud in the context of MEC. Services such as

games and operating systems are at the top of complexity and interactivity while

applications such as on-demand video streaming are at a lower place. A chart with some

sample services classified according to this scheme is shown in Figure 2.4Fig. 2.4. Based

on this classification, Hobfeld et al. [27] identify the QoE problems in a Cloud service as

artifacts introduced by the network distance, resource management due to collocation,

geographical distribution of the user base and the number of parties involved in

providing the service.

28

Cloud Gaming

Operating System

HD Telepresence

Remote Desktop

Office Products

Live Video
Streaming

Voice Conferencing
On Demand Video

Streaming

Se
rv

ic
e

C
o

m
p

le
xi

ty

Degree of Interactivity
HighLow

High

Medium

Medium

Figure 2.4 Classifications of services according to interactivity and complexity.

A good example of the complexity of QoS challenges in a Cloud environment is Cloud

gaming. There are two types of Cloud gaming depending on where the actual processing

of the game is being done. In the example of fat-client Cloud gaming, the game runs on

the client’s device while the Cloud distributes game content as needed (Alexander,

2012) [2]. Textures, level architecture, media files and other game content are stored on

the Cloud and the user’s client requests this content as and when needed in order to

minimise the footprint of the application on the client’s machine. On the other hand,

thin-client gaming runs the entire application on the Cloud and the user’s device

receives the rendered image of the game (Alexander, 2012) [3]. User input is

transmitted to the Cloud in order to interact with the game which implies that a very

good connection to the Cloud is necessary. One thin-client gaming example is OnLive

and it is an example of a service that could benefit from the MEC architecture. The

various constituent game services can be distributed in the Cloud with the rendering

and game logic running closest to the edge of the Cloud to improve QoE while storage

may reside deeper in the infrastructure.

However it is worth noting that MEC assumes services to belong to a single class. It does

not consider dynamic deployment of services based on their current level of interaction.

29

Service classification by itself is a static way of dividing services that may not perform

well under some scenarios. For example, a video game can be highly interactive (action

game) but it may also be more passive (puzzle games, turn-based games). Under the

MEC classification, putting a turn-based game on the edge of a Cloud may not be the

most efficient use of resources. A more dynamic solution that monitors the level of

interaction of a service in real-time is needed.

2.2.4 Cloud Interoperability

The concept of Cloud interoperability revolves around standardising certain aspects of

Cloud computing with the aim of achieving portability of workloads and sharing of

resources between heterogeneous Clouds. Each Cloud technology has its own specific

mechanisms, processes, formats and APIs to achieve various functions within the Cloud.

This proprietary approach means that a client workload such as a VM, that is configured

to run on one Cloud, is not portable to a different Cloud. This problem has hurt the

initial adoption of Cloud technology because many corporations did not want to get

locked-in to a specific Cloud technology vendor. Moreover, these differences between

Clouds meant that there can be no co-operation between two heterogeneous Clouds in

terms of sharing resources and offloading tasks to each other if needed. As a result,

hybrid Cloud implementations are forcing the private Cloud deployment to be of the

same technology as the public Cloud which in turn results in less flexibility for a

corporation or individual.

IEEE Standards Association has two projects on the subject of Cloud interoperability

and technology standards. Project 2301 is tasked with advising Cloud ecosystem

participants of standards-based practices and choices in terms of application,

management and portability interfaces, file formats and operation conventions. Project

2302 is developing the Standard for InterCloud Interoperability and Federation. It

defines the topology, functions and governance for Cloud interoperability and

federation which includes topological elements (e.g., roots, exchanges), functional

elements (e.g., name spaces, trust infrastructure) and governance elements (e.g.,

registration, auditing). The standard does not address IntraCloud operations and

proprietary hybrid Cloud implementations.

ETSI has started a Cloud Standards Coordination initiative which has produced a report

aimed at Cloud providers and customers alike, as well as administrators and

30

governmental authorities. It clearly defines the roles and use cases for a Cloud and also

addresses the Interoperability perspective in terms of avoiding vendor lock-in by means

of data portability, standards compliance and common interfaces (Darmois, 2013) [14].

Proprietary Cloud technology vendors such as Microsoft are also creating

Interoperability initiatives addressing issues such as data portability, standards, ease of

migration and informing Cloud application developers on the best practices for creating

platform-agnostic solutions (Microsoft, 2010) [47].

In October 2013, IEEE launched the InterCloud Testbed project (IEEE, 2013) [32, 33]

and announced the founding members which include academic and industry

researchers, Cloud companies and service providers. The aim of this project is to bring

together organisations that have an interest in Cloud Interoperability and develop the

technology necessary to build a testbed platform using technical standards created by

P2302 [68]. The architecture of the testbed is analogous to that of the Internet, with

private Clouds playing to role of intranets while public Clouds play the role of Internet

Service Providers (ISP). The aim is to provide additional resources to private Clouds

from heterogeneous public Clouds, making this testbed the prototype of a global scale

hybrid Cloud implementation.

 Task Offloading in Cloud Computing Era 2.3

This section focuses on the development of Mobile Cloud Computing technology as the

foundation for modern era task offloading in mobile devices. The definition of Mobile

Cloud Computing is given below, along with some of the more popular and

commercially successful technologies for MCC deployment.

2.3.1 Mobile Cloud Computing

According to Dinh et al. (2011) [15] The Mobile Cloud Computing Forum, defines MCC

as:

“Mobile Cloud Computing at its simplest refers to an infrastructure where both the data

storage and the data processing happen outside of the mobile device. Mobile cloud

applications move the computing power and data storage away from mobile phones and

into the cloud, bringing applications and mobile computing to not just Smart Phone users

but a much broader range of mobile subscribers.”

31

In essence, MCC makes use of the Cloud as a means of offloading complex computing

tasks from mobile devices to the Cloud for the purpose of augmenting the capabilities of

these devices. At the NASA IT Summit, Warner and Karman (2010) [69] went one step

further by claiming that when robust connectivity is available on the mobile devices, it

is possible to convert them into thin-clients and carry out all the processing in the

Cloud. Thus the mobile device itself is only used for presentation and caching purposes.

It becomes apparent that if the mobile device becomes a thin-client and all the user’s

applications are running on the Cloud, the performance of networks is a determining

factor to the overall user experience. Huang (2011) [28] argues the need for a

geographically-based distribution of MCC datacentres, such that minimises the distance

between services and clients as much as possible to eliminate performance degradation

from long network paths. However, Bahl et al. (2012) [4], argue that distributing MCC

services to the closest datacentre to the user does not guarantee a good performance

even when a modern network technology such as LTE is used. They highlight the need

for a middle tier where computing resources will be made available closer to the user

than the nearest MCC datacentre and therefore eliminate long connection paths. This

bears similarities with Cyber Foraging with the distinction that Public Clouds serve as

Home Locations while the role of surrogates is played by smaller Clouds located closer

to the user or even within the user’s network.

Satyanarayanan et al. (2009) [59] propose the use of Cloudlets as a middle tier in order

to enhance the performance of Cloud applications by bringing the resources closer to

the user’s network. The proposed solution uses the Cloud as a back-end and uses

Cloudlets for applications that are sensitive to network performance. When a Cloudlet is

not available on the user’s network, the mobile device falls back to using the Cloud for

offloading. When the user changes networks and a Cloudlet is discovered, tasks are

copied over to the Cloudlet using migration techniques in order to improve network

performance. Thus, the idea of Cloudlets also bears has many similarities with Cyber

Foraging presented in the previous section. They both focus on augmenting the

capabilities of mobile devices through task offloading. They both attempt to improve

performance by locating the Cloudlets or Surrogates as close as possible to the mobile

device. Finally, both ideas feature task portability in real-time. However, their main

difference is that Cyber Foraging still relies on the mobile device for most computing

32

tasks while MCC and Cloudlets assume a mobile thin-client and carry out all the

processing and storage on the Cloud. The main drawback of Cyber Foraging is that it

applied to scenarios of limited mobility, as explained previously. Cloudlets may also

have the same drawback since it is implied by Satyanarayanan et al. [59] that a very

fine-grained approach to Cloudlet localisation is required, such that individual LANs will

feature a Cloudlet for serving their clients. It is unlikely that Cloudlets will be deployed

in most LANs in the future and therefore, most of the offloading will be performed in the

Cloud. Furthermore, in scenarios of highly mobile clients, there will be a large amount

of data transferred on the network as services are constantly being replicated between

the Cloud and Cloudlets every time the user is changing networks. Ideally, we need a

less fine-grained approach, such that Cloud datacentres can be localised through the use

of peering with different networks and therefore provide good service to their peers.

Alternatively, we can consider an approach where large scale networks such as Internet

Service Providers have smaller datacentres within their networks for the purposes of

MCC. We are therefore looking at a form of edge-caching such as employed by Content

Delivery Networks (CDN) but applied to MCC datacentres. Instead of replicating

content, in this case services are being migrated depending on the network that the user

is connected to, thus minimising the network distance between the mobile device and

the Cloud.

Bahl et al. (2012) [4] present a set of requirements for moving MCC technology forward.

Their position is that Cloudlets are an integral part of MCC as they can help in localising

services and enhance the performance of applications. In their agenda, they outline two

possible deployment settings for MCC. The first setting involves mobile network

operators deploying Cloudlets within their infrastructure and offering their capabilities

as premium service for subscribers. The second option involves the Cloud providers

forming co-location agreements with mobile network operators for the purpose of

providing Cloudlets within the infrastructure of wireless networks. In both settings, the

outcome is the same and it involves the use of a public Cloud serving as the back-end for

services while Cloudlets deployed within wireless networks act as a middle tier to

improve the performance. The set of requirements as outlined by Bahl et al. [4] is as

follows: The network will have to support high bandwidth and low latency to the

regional datacentres of public Clouds to enable the fast migration of services between

Cloudlets and Clouds. The Cloudlets and the public Cloud will have to support the fast

33

migration of services via mechanisms that manage the available resources.

Furthermore, the Cloudlets and public Clouds should have a common computing

platform and also be aware of service dependencies so that when a service is moved, the

relevant and required services will also move along with it. Finally, the Cloud in addition

to running services, should also serve as a loosely synchronised persistent storage for

services running on Cloudlets. In either of these scenarios, we can see that Cloud

Interoperability will negate the need for a common Cloud platform for Cloudlets and

Public Clouds, thus enabling heterogeneous Clouds to be deployed by providers and co-

operate seamlessly for the provision of services to mobile clients.

2.3.2 Supporting the Case for Mobile Thin-Clients in MCC

Abolfazli et al. (2013) [1], divide MCC into two different approaches. The first approach

uses fixed distant Clouds for providing services to mobile devices. The second approach

uses nearby Clouds for the same purpose. Cloudlets fall in the second category as they

use proximate Clouds to deliver services and Public Clouds to store persistent data.

However, the most complete offloading solution that is currently available falls in the

first category and is offered by OnLive. OnLive uses distant fixed Clouds to offload all the

processing from client devices, thus making it possible to run applications in a

completely virtualised environment. Rendering is also performed on the Cloud and the

client device acts only as a thin-client to display content and transmit user input. OnLive

presents a solution to MCC that removes the complexity of dividing computational tasks

between the client device and the Cloud and thus simplifies the implementation model.

As pointed out by Abolfazli et al., [1] this concept of MCC enhances the visualisation

capability of client devices, promotes cross-platform deployment of applications by

negating the impact of platform and hardware heterogeneity and thus facilitates the

universal access of a computing platform through various devices such as Smart Phones,

laptops and tablets. However, this approach is particularly sensitive to network QoS

parameters and in order to maintain a high level of responsiveness in interactive

multimedia applications, a low latency and high bandwidth is a requirement.

As highlighted by Abolfazli et al., [1] one of the main challenges for MCC lies in achieving

a small Round-Trip latency in order to guarantee good applications performance and

high level of responsiveness. Another challenge to consider is the management of traffic

generated by MCC and more specifically the traffic cost and congestion management.

34

However, the benefits of using thin-clients as terminals far outweigh these two

challenges as a lot of the complexities in developing frameworks for partitioning

processing tasks and applying partial offloading solutions are negated. Therefore, no

special programming techniques need to be employed when developing applications

and there is no need for creating task-offload engines that distribute parts of

applications between the mobile device and the Cloud.

For the reasons outlined above, this thesis supports the idea of MCC and thin clients as

the best solution for consolidating processing in the Cloud, developing platform-

agnostic applications and simplifying the development and deployment of such

applications. However, network performance in this case has a more prominent role to

the user experience and therefore the proximate Cloud approach is preferred as a

solution for localising traffic and enhancing the QoE.

2.3.3 Cloud Gaming

One of the best ways to test the viability of using thin-clients to display content that is

rendered in the Cloud is to examine popular Cloud gaming applications. First

popularised by OnLive and Gaikai, the idea behind Cloud gaming is to put game logic

and rendering on the Cloud and display the rendered images to a thin client. Thus,

gamers need not worry about having the latest hardware capable of playing modern

games and also gain the ability of accessing their personal game data from any client

without having to download the game. For game developers, this means that games can

be made for a Cloud platform without spending development time for optimising them

for different platforms and hardware specifications. Before we introduce mobile thin-

clients to the idea of Cloud gaming, we need to be aware of parameters that affect the

user’s QoE.

One of the first things to understand about Cloud gaming is that all user interaction

occurs over the network and as a result, network latency needs to be taken into account

as well as the processing and rendering latency and finally the image transmission

latency. When dealing with local rendering, even when considering an online

multiplayer game, interaction delay is not immediately apparent to the gamer because

of the low latency between issuing commands and the game engine rendering frames.

Even in the case of an online multiplayer game, as long as the game is rendered locally,

it is only the server and other players that are experiencing interaction delay with each

35

other. For each individual player, their own actions occur instantly on their screen.

However, with Cloud gaming, a player’s own actions occur after a delay. This means that

care has to be taken in minimising this latency, either be reducing the network latency

or rendering latency or both.

Clinch et al. (2012) [11] investigated in a Cloudlet platform, how close to the user, the

service should be located in order to provide a good QoE. They set up a test platform

with Cloudlets distributed in the user’s subnet in the UK and in remote networks within

the EU and the USA. Amazon’s EC2 Cloud was also used as a reference platform. Their

client devices were all located in the UK and connected to the Cloudlets using VNC.

Clinch et al. [11] find that when experimenting on the reaction time of users playing a

whack-a-mole game on the thin-clients, the network distance did play a determining

factor in the accuracy of the user’s interaction with the game. However, they conclude

that there is no definitive answer to how services should be localised as there are

multiple factors affecting the decision such as network latency, host hardware/software

configuration and interaction intensity of the application.

Shea et al. (2013) [61] argue that delay tolerance depends on the game genre. Action

games that require fast reactions can provide a good experience when latency is below

100ms. For role-playing games, the tolerable latency can be up to 500ms and for real-

time strategy games, it can be up to 1000ms. Based on the above, we can also argue that

turn-based games can tolerate in excess of 1000ms latency since interaction between

the players is not happening in real-time. However, the important thing to consider here

is that a good QoE requires low latency. Furthermore, as presented in the same article,

image quality is dependent on bandwidth. More bandwidth provides better Peak Signal

to Noise Ratio and image quality similar to local rendering, while less bandwidth creates

more blurred images with less detail and definition.

Because latency and bandwidth directly affect the QoE in terms of interaction delay and

image quality respectively, we can also deduce that using image compression

techniques to improve image quality over low bandwidth connections will have an

adverse effect on the latency. Similarly, simplifying the rendering and image

transmission may degrade image quality but also reduce latency. Therefore there is a

need for optimised solutions to this problem. OnLive is a Cloud gaming service provider

and in their case, the encoder (H.264/MPEG-4) latency is reported to be 4ms (OnLive,

36

2013) [51]. However, the trade-off as reported by Leadbetter (2010) [38], is that games

cannot run at their best image quality since the encoder takes away a lot of the fine

detail in images. This low latency is also made possible by the relative low resolution of

1280x720 in which games are rendered, however, OnLive claims that once higher

sustainable bandwidth becomes widely available, the games will render at 1920x1080

(OnLive, 2014) [52].

It is also worth noting that OnLive can offer its services to mobile devices making it

possible for demanding games to run on hardware with limited capabilities. However

bandwidth consumption is a problem for mobile devices, especially when using 3G and

LTE connections where data limits are a common practice for preserving network

performance and keeping the network costs low. Traffic management is an ongoing

problem on the Internet and as we recently saw with the Netflix and Comcast peering

agreement, prioritisation of traffic can be costly and network providers may choose to

ask for extra money for enhancing the performance of a service that uses their network.

The focus is therefore placed on modern network technologies and service deployment

models that will enhance the performance of networks through adaptive QoS

provisioning and dynamic traffic management.

37

 Critical Summary 2.4

This chapter presents the evolution of task offloading from mobile devices. While early

solutions for mobile task offloading did not enable the development of thin-client

mobile computing, they set the foundations by providing insights and demonstrating

how certain tasks can be assigned to a local surrogate node in order to speed up the

execution of software on the mobile device or enable the execution of software that

would otherwise be impossible to run on the limited on-package resources of these

devices. One of the main drawbacks of the early offloading technologies was that local

surrogate nodes had to be deployed at the LAN and hence the responsibility for

maintenance and support fell on the administrators of the LAN. In the context of mobile

computing, where such wireless networks could be a free service from shops and small

establishments, the above approach presented challenges and difficulties when

deployed in this new setting. Furthermore, for larger networks, the surrogate would

have to be powerful server-class equipment which further added to the complexity of

deployment and maintenance.

Cloud technology addresses these drawbacks by providing a large amount of resources

that are accessible to everyone albeit not localised and therefore the performance of the

connection between the client and the server plays a significant role to the performance

of a service. Modern network technology makes it possible to run complex applications

on the Cloud and access them remotely via thin-clients. However, such service

provisioning is limited to cases where network connectivity is reliable and adheres to

the minimum requirements of the service. Regionalised Cloud datacentres help alleviate

such problems and deliver high-performance services to their clients, however, when

applications require a very high level of interaction and bandwidth, regionalised

datacentres do not present a solution that is fine-grained enough to support interactive

services in a mobile environment. In such cases, Cloud technology may benefit from the

approach of the earlier attempts for mobile task offloading by employing a solution that

is more fine-grained than existing regional datacentres but also easier to deploy and

manage than localised surrogates within LANs.

In the next chapter, we analyse the structure of the Internet, discuss its evolution and

present some of the newest technologies for managing traffic and improving network

38

performance by distributing content to multiple locations and delivering it to clients

from the datacentres located within or peering with Internet Service Provider networks.

39

Chapter 3 The Evolving Internet: Structure,

Framework and Implications

We often define the Internet as a network of networks which has a mesh structure;

however, this often leads to the misconception that every network is perfectly

interconnected with all the other networks around it. In reality, the Internet is a partial

mesh which has a layered topology where many networks are not directly connected to

each other but instead use third party networks to achieve connectivity. In essence,

point to point connectivity is not always guaranteed for end-to-end communications. In

the following subsections, we analyse how the Internet is structured. We will also look

at modern technologies for content distribution and delivery. Finally, we will examine

the impact of virtualisation technology on the Internet.

 Background on Internet Transit and Peering 3.1

As mentioned previously, the Internet consists of multiple networks that are partially

interconnected. These networks are divided into three tiers, depending on how they

interconnect with other networks and what coverage area they have (Berg, 2008) [5].

Tier 1 networks are those that have very wide coverage areas. They have their own

backhaul connections with multiple Points of Presence (PoP) around the globe. Tier 1

networks peer with each other via their PoP in order to access remote networks. Tier 2

networks may also peer with each other but they also purchase transit connections

from Tier 1 providers. This means that Tier 2 networks have to rely on a Tier 1 and

their peers, to access networks that are not directly accessible to them. Tier 3 networks

have to rely on transit connections with Tier 2 and Tier 1 providers to get all of their

network access. The diagram in Fig. 3.1 illustrates the tier structure of the Internet.

Peering can be either public or private. For public peering, multiple networks converge

at Internet Exchange Points (IXP) where they interconnect with each other. In a single

IXP, one entity can connect to multiple other networks, thus minimising peering costs.

On the other hand, a private peering agreement between two or more entities may be

preferred when dealing with high traffic volumes or when security is important. Private

40

peering costs are higher but the performance is guaranteed and it is a more controlled

environment.

Tier 2
NetworkTier 2 ISP

Tier 1
Network

IXP

PoP A

PoP B PoP C

Tier 3
ISP

Clients

Figure 3.1 Tiered Internet structure and peering/transit connections.

To summarise, peering is the practice of interconnecting networks at public or private

locations with the aim of giving end-to-end access to each other for them and their

clients. As a result, costs can be reduced and performance can be increased by

bypassing higher tier providers that would act as a backbone. However, it is infeasible

to use peering to connect every network with another; therefore, Tier 2 networks will

always have transit connections to Tier 1. Table 3.1 includes some of the peers that can

be found in the London Internet Exchange (LINX) and Moscow Internet Exchange (MSK-

IX) which are two of the largest in the world, to demonstrate how global connectivity is

achieved.

41

Table 3.1 Sample from LINX and MSK-IX peering records registered in www.peeringdb.com

LINX MSK-IX

Peer Traffic Ratio Peer Traffic Ratio

Akamai 1 Tbps
Heavy

Outbound
Microsoft 1+ Tbps Balanced

Facebook 1+ Tbps
Mostly

Outbound
Google N/D

Mostly
Outbound

Janet 100+ Gbps
Mostly

Inbound
Megafon 0.5 - 1 Tbps Balanced

OpenDNS
10-20
Gbps

Balanced Rostelecom 1+ Tbps
Mostly

Inbound

Symantec
Cloud

5-10 Gbps Balanced Yandex
0.1 - 0.2

Tbps
Mostly

Outbound

BT 100+ Gbps
Mostly

Inbound
Verisign N/D Balanced

Transit connections represent a customer-provider relationship in the sense that it is

the lower tiers that use them to get access to networks of the upper tiers and everything

they have access to. A higher tier provider will charge the lower tiers for transit

connections. The cost is calculated on a price/Mbps. Although the transit costs have

steadily been declining for a decade, peering costs are typically lower. It is also the fact

that most IP traffic is asymmetric, meaning that small requests generate large

responses, which makes transit connections expensive. For example, if we imagine a

Tier 3 ISP with a few thousand clients within a city, we can see that their traffic ratio

will most likely be heavily inbound if their clients are homes and small businesses with

very little content published. However, in the opposite scenario, if the clients are

content providers or aggregators, then it makes more sense to create a Tier 2 network

with peers to other Tier 2 networks and transit to Tier 1 for global backbone

connectivity.

To better understand peering and transit as well as the tiers, we can look at the example

of British Telecom (BT) from LINX in Table 3.1 above. BT is considered a Tier 1 provider

with multiple PoP around the world. They are the primary provider for the UK and have

free access to the Internet via their own infrastructure and reciprocal peering

42

agreements. We can see from Table 2.1 that the traffic ratio for BT is mostly inbound.

This means that for BT, most traffic flows terminate in their network. We know that BT

also is an ISP that provides connectivity to homes and businesses in the UK, as well as

the peering and transit agreements they have with other networks. So this tells us that

clients in BT’s network are mostly consuming content or in other words, BT’s network

is not used so much to make content available to other networks. On the other hand, a

network such as Akamai, also present in LINX, has heavy outbound traffic. Akamai, is a

Content Distribution Network and as will be explained in a following section, their main

traffic flows are outbound due to the IP traffic asymmetry (small requests generate

large responses) and because they do not offer ISP services to consumers. Finally, we

see that OpenDNS has balanced traffic flow ratio because the DNS service does not

follow the asymmetry rule. One request gives one response which results in a balance

between inbound and outbound flows. Having looked at the above examples we can see

that networks on the Internet can be classified as content providers/distributors,

transport networks and consumers. Any single network can be a combination of those

three and depending on which role carries more traffic volume, the tier level of the

network can be adjusted by changing their peer and transit connections.

In summary, the Internet’s fabric is only a partial mesh with very distinct hierarchical

tiers. This distinction comes from differences in performance, coverage and peer

connectivity in each tier, with the bottom tiers having the smallest coverage and relying

on transit connections to the upper tiers in order to achieve global connectivity. Peering

can be either public or private, with public IXPs providing managed locations for

networks to deploy their PoP while private locations are used for dedicated, point-to-

point connections between two networks for improved performance and security when

necessary.

43

 New Internet, Cycle Peering and Mesh 3.2

In recent years, the structure of the Internet is changing. As explained by Woodcock,

(2003) [71], from a partial mesh, the topology is changing to a ring formed by Tier 2

networks on the periphery and Tier 1 networks in the centre. Due to this shift in the

topology, the Tier 1 networks in the centre are less utilised due to the abundant peering

connections among Tier 2. Driven by the economics of interconnection, Tier 2 providers

are forming peering agreements with each other in an effort to improve the

performance of their networks and decrease their transit costs from Tier 1 networks

(Cook, 2002) [12]. The result of this trend is that Tier 1 networks, now residing in the

centre of this ring topology are becoming dark areas with less and less traffic going

through them, hence the term cycle peering. This result can be seen from as early as

2008 when the Internet traffic began to slowly bypass the U.S. which until that time was

host to some of the biggest Tier 1 networks (Markoff, 2008) [45]. As we see today, the

U.S. still holds the highest percentage of IPv4 allocation with IPv6 adoption also the

highest for that region; however, emerging markets are showing a change of balance for

the future (CAIDA, 2014) [6].

We are now slowly moving towards a mesh structure on the fabric of the Internet with

Autonomous Systems peering with each other in order to minimise costs and improve

performance (Filippi, 2014) [19]. However, the complexity of mesh networks in terms

of routing and management is slowing down the adoption of this topology. Another

reason for the slow adoption of mesh networks is that despite their resilience against

faults due to their degree of self-healing, it becomes harder to maintain control of traffic

and block unwanted access. Economics also play a role because transit connections

from higher tier networks are revenue generators and some operators have attempted

in the past to restrict traffic through certain routes that will increase their revenue

(Valancius, 2011) [66]. As mentioned previously, the Internet already has a partial mesh

structure with Tier 2 and Tier 1 networks peering with each other while using transit

connections to gain access to networks that are not directly attached. The difference in

the new mesh structure is that as the ring of peripheral networks increases, the peering

interconnects between those networks are becoming more extensive, thus avoiding

transit connections to Tier 1.

44

In summary, as Tier 2 networks are growing in size and numbers and the oligopoly of

Tier 1 networks is becoming redundant, the Internet will slowly evolve into a full mesh

topology with Autonomous Systems peering with each other in various PoP around the

world. The advantages of this evolution include lower costs for the networks, increased

performance and higher reliability. Internet caching technology is using this

connectivity to its advantage by placing content caching datacentres within networks in

order to maximise performance for them and their peers, while at the same time,

building caching Autonomous Systems that peer with multiple networks in order to

better distribute content.

 CDN and Edge-caching 3.3

Web caching technology was created in order to maximise network performance by

reducing the amount of traffic that crosses an Autonomous System’s boundaries

(Huston, 2009) [29]. This also drove down costs for the Autonomous Systems,

especially for content that had to be fetched over transit connections. The performance

advantage comes from the fact that a regional or local cache can reduce the load on a

content publisher’s servers by keeping copies of the content and serving client requests.

It is a form of load balancing by distributing the content and regionalising access

requests. The second factor that improves performance is that regional caches are often

closer to the clients than the content publisher’s servers as illustrated in Fig. 3.2. In

effect, by shortening the path between server and client, the load on routers is reduced,

the transit costs are reduced and as a result, the performance of the network increases.

UK
Cache

FR
Cache

DE
Cache

NL
Cache

Figure 3.2 Regional localisation of web-caches.

45

At present, caching has evolved into what is now called Content Delivery Networks. Like

web caches, CDNs host web content such as text, images and videos. The main

difference with web caches is that a CDN is a distributed system operated by an

organisation with regional PoP. The CDN operator is paid by content publishers to

deliver their content to end-users. Because the CDN is a distributed system, load

balancing is more fine-grained. It can also completely negate the need for servers on the

publisher’s side since the content can be made available directly from the CDN. This

form of distributed caching localised at the edge of an Autonomous Systems is called

Edge-Caching and it is illustrated in Fig. 3.3. The rapid growth of multimedia content

consumption has made caching at the last mile more important and many companies

are now involved in CDNs and Edge-Caching. Finally, the increasing popularity of

heterogeneous devices on the Internet such as laptops, tables and Smart Phones, has

created the need for Mobile CDNs where, among other factors such as client location

and network performance, the capabilities of the client’s device are taken into account

in an effort to deliver customised content suitable for viewing in each device. The

development of CDNs along with the incentive of creating peering connections between

networks has created a new topology map for the Internet, as described by Labovitz et

al. (2011) [37] and presented in Fig. 3.4.

Network C

Network A

Network B

Content
Publisher

Cache B

Cache A

Cache C

Distribution
Cloud

Figure 3.3 CDN topology for Edge-Caching.

46

In summary, web caches have existed for a long time with the purpose of balancing the

load, decreasing the traffic volume that crosses network boundaries and improving the

performance of services. CDNs are now used for more fine-grained caching where

content is hosted at the edge of a network with the purpose of servicinng its own clients

better as well as clients of its peers. The distributed nature of CDNs makes them more

efficient at delivering content and sometimes negates the need for a publisher to own

servers. Another advantage is that the technology is capable of delivering content by

taking into account factors such as the client’s device characteristics and customising

the content to suit the device.

IXP

ISP A

IXP IXP

ISP B

Transit Networks
–�International

Backbone

Content Hosting,
Publishers,

Services, CDNs

Global Internet
Core

Regional Tier 2
Networks

Customer
Networks

Figure 3.4 Evolution of Internet structure using CDNs and Edge-Caching.

47

 Performance 3.4

In analysing the performance aspect of networks it is worth noting the work by

Krishnan et al. (2009) [36]. They present a set of data gathered by Google’s CDN and

explain how Google’s latency-based redirection method is not always effective due to

path inflation resulting in much higher experienced latencies than the reported nominal

for a particular Autonomous System (AS). To achieve the lowest latency possible for a

client within a network, Google usually redirects the requests to the closest CDN

geographically. However, Krishnan et al. discovered that clients in geographical

proximity often experience widely different latencies. They explored the underlying

causes for path inflation and present them as follows:

Lack of peering: When all available paths from an AS to a CDN are via third party

networks despite the AS being geographically close to the CDN.

Limited bandwidth capacity: This can occur either due to circuitous path or lack of

bandwidth availability at the peering facility between the AS and the CDN.

Routing misconfiguration: This occurs when network devices are misconfigured and

although traffic in one direction goes through the lowest latency path, the response

traffic in the opposite direction takes a circuitous path, thus inflating the response time.

Traffic engineering: This occurs when the AS and the CDN do not directly peer and for

traffic engineering reasons the connections from the AS to the CDN are configured to

pass through third-party networks that do not offer the shortest communication path.

These causes can be addressed directly by reconfiguring the networks or by setting up

new peering agreements and new CDN PoP, however they are not something that can be

easily fixed by employing SDN solutions because SDN implementations do not

necessarily extend outside the boundaries of an AS and therefore they can only address

a limited number of these problems.

From a Cloud computing perspective, such network problems can become more

important, especially when considering high-performance, interactive services. Studies

show that networks pose a bottleneck to high-performance Cloud services and

therefore network QoS capabilities are of paramount importance for Cloud computing

(Duan, 2012) [16]. This is not only limited to the service networks that connect a user to

48

the Cloud but also the networks that compose the fabric of the Cloud. Ultimately, a

Cloud service is a composition of both cloud and network services and its performance

is directly affected by them. Consequently, Cloud services that span multiple

datacentres in different geographical locations may experience the problems described

above. To resolve this problem a new perspective to service delivery is necessary.

In the Service-Oriented Architecture (SOA) model, a composition of smaller, simpler and

sometimes heterogeneous services are invoked through their independent interfaces to

provide a larger more complex service (Erl, 2005) [17]. SOA enables the virtualisation

of resources in the form of services and the subsequent interaction of these services in

order to provide a more complex solution to a customer’s requirements. A paradigm of

SOA application is Cloud computing, where various modules and services running on

different parts of the infrastructure, form a complete business solution for a client. The

same service-oriented principle applied to networks, supports the virtualisation of

network resources running on an underlying infrastructure and essentially decouples

the infrastructure from the network services.

This type of network virtualisation applied Internet-wide enables multiple network

providers to compose heterogeneous virtual networks independent of each other while

all sharing the same physical network infrastructure. Therefore, Service-Oriented

Network virtualisation divides the role of an ISP into Infrastructure Provider and

Network Service Provider. On one hand, the Infrastructure Provider is responsible for

building and maintaining the physical plane of the network, while on the other hand, the

Service Provider creates virtual networks that provide end-to-end connectivity. Because

network virtualisation allows a single ISP to control end-to end connectivity, it also

gives them the ability to define QoS provisioning across the path of the communication

and to choose which physical networks will be used to carry the data. Fig. 3.5 illustrates

the SOA environment.

49

In
fr

as
tr

uc
tu

re
 B

In
frastru

ctu
re A

Service Provider 1

Service Provider 2

Figure 3.5 Service-Oriented architecture based on fixed infrastructure networks.

When it comes to composing services over a virtual network, Duan et al. [16] outline are

various schemes that can be employed. A Static Design Composition predefines which

component services will be used by a composite service. Manual Composition relies on

the user to select and compose the services as opposed to Automatic Composition which

requires no user input. Finally, dynamic composition uses a set of runtime parameters

taken by component services to determine which instances are best used for delivering

a composite service to a particular client. Such inputs can be the computing cost,

network cost and service availability. To evaluate a composite service as proposed, we

can use execution time, computing and network cost and composition sustainability in

case of component failure.

Some of the challenges in composing services over wide area networks include QoS in

the network infrastructure, device heterogeneity in the infrastructure, semantic data

modelling such as service discover/selection and semantic metadata such as service

taxonomy. Purely from a networking perspective, the two questions that arise from the

above are: 1) how to create the best possible service path while meeting services QoS

requirements, and 2) how to balance the loads from the services to achieve the best

possible utilisation of resources. There are various frameworks that attempt to address

these two problems. Lee et al. (2013) mainly divide them into those that focus on

service response times and those that focus on load balancing. SATO, proposed by

Cheng et al. (2006) [9] and ContextWare, proposed by Ocampo et al. (2005) [50] are

two examples of response-centric framework, while QUEST, proposed by Gu et al.

50

(2003) [23], is an example of load balancing framework. The state of art in the area of

service path selection is QALB (Lee at al., 2013) [39] which is a framework that balances

response times and network load to achieve the best performance possible. Results

published by Lee et al. show that QALB can achieve better Request Success rates

compared to other path selection schemes. It also achieves lower QoS Violation rates;

however we see that on both cases, as the number of client requests increases, the QoS

Violation rate can reach almost 40%. Therefore, QoS is never guaranteed and the level

of QoS provided is specific to the scheme that a particular service provider has selected.

What is a determining factor for the above is the infrastructure to which the provider

has access and how that infrastructure performs. Therefore, some schemes may

perform better than others but ultimately, the effective QoS for a service depends on the

current load on the infrastructure.

To facilitate some of the network performance requirements of distributed datacentres

and Cloud computing, several technologies have emerged in recent years for the

purpose of improving networks services, managing traffic and using network resources

more efficiently.

 Software Defined Networking and Network Function 3.5

Virtualisation

In this section we will look at how networks are evolving towards Software Defined

Networking (SDN) and Network Function Virtualisation (NFV). Before looking at NFV, it

is best to explain the concepts of Capital and Operation Expenditures (CAPEX and OPEX

respectively) which are the two key-words when discussing NFV, and see how they are

providing a driving force for the deployment of these technologies. A network

operator’s OPEX includes operational costs to run and maintain their network. Included

in these costs are the specialists needed for configuring and maintaining the network as

well as replacement hardware to cover failures or upgrades. The CAPEX includes costs

for expanding a network such as buying new equipment to cover a new region or a

major upgrade of the equipment serving a particular area. The advent of Cloud

technology has provided the ground for virtualising network functions by implementing

proprietary network equipment in software and consolidating it within a Cloud

environment. Industry standard, high volume servers can be used for Cloud deployment

51

thus negating the need for specialised equipment. This drives OPEX costs lower as

specialised hardware maintenance is no longer necessary. This advantage gives the

opportunity to operators to deploy new services faster, at a lower cost and with the

flexibility to scale up or down more easily according to client demand. It also gives

smaller operators a better chance at competing due to the lower risk involved in the

deployment. The above also translates to lower CAPEX for operators wishing to expand

their networks.

In summary, the aims of NFV according to the NFV architectural framework standard

(GS NFV 002) are to increase capital efficiencies compared to dedicated equipment

implementations via the use of Commercial-off-the-shelf hardware, to improve the

scalability and decouple functionality from location by means of deploying virtualised

functions remotely and reusing a pool of resources, to increase the innovation through

software-based service deployment, to improve operational efficiencies by making use

of the elasticity of resources inherent in Clouds and to standardise interfaces between

network functions and infrastructure so that a network provider can choose and mix

decoupled elements from different vendors. Although NFV and SDN are two

technologies complimentary to each other, they do not present a mutual requirement

for deploying one or the other. In other words, it is not necessary to deploy NFV in order

to deploy SND and vice versa.

Software Defined Networking has three different deployment models: Network

Virtualisation, Evolutionary and OpenFlow. The main concept of SDN is the decoupling

of the plane from the physical hardware. In simpler terms, SDN creates a management

layer above the network hardware which is used to adjust traffic routes and the

performance of the network. Virtual LAN (vLAN) is one technology which can be used as

an example of a control plane that defines virtual networks in a switch and allows the

partitioning or grouping of switch ports so that different LANs can use a single switch

without experiencing problems in terms of broadcasting and multicasting packets. In

essence, many LANs can use a single switch and still be isolated from each other. The

main deployment models of SDN are defined as follows (Nolle, 2013) [49]:

Network Virtualisation Model: The network virtualisation model is aimed at

eliminating the problems that exist between physical network partitioning and vLANs.

It achieves this by implementing interfaces at the Hypervisor that create vLANs which

52

operate in tunnels over traditional Ethernet. The advantage of this approach is that the

physical network is unaware of any virtual partitioning while virtual networks within a

Cloud can maintain their isolation. This means that multi-tenant Clouds are supported

without making changes to the networking hardware. One disadvantage is that since the

vLANs operate within tunnels, they appear to the switch as ordinary traffic and leave no

opportunity for traffic prioritisation. Because these virtual networks are created by the

software that runs on the Cloud stack, this implementation can only link virtual

machines with each other and anything outside these tunnels including physical devices

cannot be connected.

The Evolutionary Model: The Evolutionary Model takes the virtualisation

model one step further by allowing the differentiation between vLANs at Layer 3, thus

enabling the routing of vLAN traffic tunnels across different IP networks. The aim is to

extend the connectivity of the virtualisation model so that routers can be used to

interconnect vLANs residing in multiple physical switches at different locations. A

simpler way to look at the Evolutionary Model is to consider it as a Layer 3 extension to

Layer 2 vLANs the same way that IP addresses are a logical extension to the physical

addresses in the OSI. This extension of the virtualisation model is made necessary by

the fact that vLAN address space is limited to 4094 addresses which is not enough in

large Cloud implementations with thousands of tenants and datacentres in different

locations interconnected via IP networks. The Evolutionary Model and more specifically

the Virtual Extensible LAN VXLAN model allows for the encapsulation of vLAN traffic

before it leaves the switching domain of a datacentre and enters the IP network. The

packets leaving a VM with a destination and source IP address as well as a VXLAN ID are

further encapsulated with the IP address of the destination datacentre. On the receiving

end, the gateway decapsulates the packet from the top header IP address and looks at

the VXLAN ID to find in which vLAN the packets should be forwarded to. The packets

are decapsulated again after entering the vLAN at which point normal IP and MAC

addressing is used to reach the destination VM.

OpenFlow Model: Perhaps the most associated model with SDN is the

OpenFlow model. OpenFlow employs a central controller that programs each network

device’s forwarding table as opposed to using discovery mechanisms. This gives a fine-

grained control over how a network is segmented and how traffic is managed. The

53

disadvantage is that network devices have to support the OpenFlow model natively in

order to be compatible with the instructions issued by the central controller. The

advantage is that the central controller has a complete view of the network fabric and is

in position to decide on how traffic should be forwarded and elastically distribute

resources to traffic that requires a high QoS. The achievable results are close to 100%

utilisation of network resources as opposed to near 40% utilisation of the standard

model with minimal risk of network overload as the central controller is able to

dynamically reroute traffic and reallocate resources.

The programmability models employed by SDN can be described as reactive, proactive

and predictive. The reactive model mostly associated with OpenFlow keeps track of

traffic flows on the network and constantly adjusts routes and QoS based on the

observed conditions. The proactive model improves on the reactive one by monitoring

conditions on the network and making predictions on where and when potential

problems may arise. Changes are made to traffic routing before performance problems

arise. The predictive model keeps a record of historical data and identifies trends and

patters in the traffic flows. This makes it possible to provision resources and

reconfigure the network in anticipation of periodic changes in utilisation. The need for

proactive and predictive models stems from the fact that reactive models such as

OpenFlow are incapable of keeping up with rapid traffic changes that often occur in

highly active environments such as datacentres.

To conclude, SDN and NFV technology can assist in traffic management and cost

reduction for network operators and service providers. Both technologies are still

currently in development and in some cases they (such as Google’s CDN), they are

already deployed. Perhaps the most important observation to be made is that we are

moving towards a virtualised world, where even networks are managed using Cloud

technology and network operators are considering Cloud datacentres within their

infrastructure. Looking back at Cloudlet deployment models, we can observe that as

network operators build Cloud datacentres SDN and NFV functions, they may also look

at the possibility of offering some of their Cloud resources to their clients for MCC

purposes. However, before considering localised datacentres as the solution to MCC, we

need to understand the concept of traffic localisation and how traffic could be managed

in such way that constant use of MCC will not congest networks on a global scale.

54

 Economic Traffic Management 3.6

One of the key aspects to investigate within the context of Cloud services is the impact

of the extra traffic generated on the Internet from the client connections, especially

when displaying media-rich content. As explained, network providers are pursuing

peering connections as opposed to transit connections in the backbone networks. They

are also interested in localising traffic as efficiently as possible in order to reduce inter-

AS traffic and decongest peering interfaces. To calculate the costs of inter-AS traffic,

network operators consider the 95th percentile of traffic samples in order to eliminate

traffic spikes during peak times from becoming a major determining factor of the

pricing. The inbound/outbound traffic between two operators is compared at the end of

each month and the operator with the higher inbound traffic is charged.

Economic Traffic Management (ETM) assumes that operators will voluntarily

participate in a scheme that reduces costs incurred by the above billing method, while

at the same time decongesting their networks by employing locality promotion. The

idea behind locality promotion is to contain traffic within a domain. Data that has to be

fetched over multiple networks causes increased costs for all the involved parties,

therefore localising data whenever possible will reduce the amount of traffic exchanged

between domains. The benefit of locality promotion is not restricted to cost reduction.

Connections over long network distances (high hop counts), consume more routing and

switching resources for transmission and this adds to the congestion on the backbone

interfaces. Therefore locality promotion can contribute to enhancing the QoS of a

network and the user's QoE. The main terminologies concerning ETM are presented in

Table 3.2 along with their definitions.

Table 3.2 ETM terminology synthesis table.

Economic Traffic Management

Inbound Traffic
Traffic that enters network boundaries in the form of remote client requests to
local servers or remote server responses to local clients

Outbound Traffic
Traffic that leaves network boundaries in the form of client requests to remote
servers or responses from local servers to remote clients

Traffic Localisation Keeping traffic within a network by caching frequently-requested content locally

Swarm The number of users exchanging data with a particular server

55

There are two ways to deploy ETM. One way is to create an overlay that identifies

where a particular piece of data exists and rank it based on the network distance from

the user requesting it. In a P2P example, if we consider a user downloading a particular

file, parts of this file may reside in nodes on the user's current domain while other parts

may be residing in third party networks. The parts that are local to the user's domain or

to a domain that is a peer receive a higher rank and are preferred as sources compared

to parts that reside in domains reachable over a transit connection. Fetching data from

the local network and its peers results in better QoS for the user's service and also

reduces the transit costs for the provider. The other way is to employ ISP-owned peers,

which is effectively a form of caching this data within a domain. ISP-owned peers

appear to the user as ordinary peers with the difference that it has dedicated resources

for this task and therefore are more effective at seeding data. For a more general

example we can consider CDNs that peer directly to domains and distribute content by

caching it either locally at the providers or via peering at IXPs.

The above information is presented in the article “An Economic Traffic Management

Approach to Enable the TripleWin for Users, ISPs, and Overlay Providers”, where Hobfeld

et al. (2009) [26] also present the results of their study in applying ETM for BitTorrent.

The first identified parameter for making ETM effective is the number of clients within a

domain that engage in data exchanges that are subject to locality promotion. In their

experiment they consider the size of peer swarms using P2P within a domain. They

determine that in order for ETM to be effective in achieving a substantial cost reduction,

it has to tackle swarms of all sizes. In a simulation study, they divided a swarm of 50

users into networks A and B of 35 and 15 peers respectively. In network B, locality

promotion has resulted in 15% reduction of inter-domain traffic and by adding an ISP-

owned peer to network B; the ingress traffic was further reduced by 45%. The addition

of an ISP-owned peer in network B also caused an increase in ingress traffic by 55% for

network A.

But ETM does not always bring benefits for network operators and users. For example,

Piatek et al. (2009) [53] argue that the QoS may actually degrade for a user when

considering traffic localisation applied to P2P traffic within an AS that allocates

asymmetric bandwidth for its users. Additionally, P2P traffic localisation may sound as

a good idea from the perspective of residential ISPs (where end-users connect) but from

56

the perspective of transit networks, it can be quite damaging to the profitability.

Another problem is that P2P clients typically have only a few concurrent peers at any

one time and a very small number of them are found within the same ISP.

Perhaps the most extensive analysis of the impact of P2P traffic localisation on ISP

profitability is presented by Seibert et al. (2012) [60]. They examine different pricing

and charging models along with different localisation models and summarise their

findings in a series of insights. Some of the most significant insights are analysed below:

“Insight #2: Some residential Autonomous Systems will actually lose profit when they

localize traffic. This is due to these Autonomous Systems also being transit providers for

other residential Autonomous Systems. For these Autonomous Systems, P2P traffic that

was previously downloaded from clients in customer Autonomous Systems decreases due

to localization and in turn revenue decreases. Therefore, they have little incentive to

localize traffic.”

Insight #2 is telling us that localising traffic may actually reduce profitability for transit

networks such as Tier-1 and Tier-2. In general, any network that heavily relies on

profits made from its transit function for other networks, will suffer losses if other

networks start using traffic localisation. Since most ISPs are also transit networks, it

makes little sense for them to localise traffic. However, it may be of benefit to smaller

ISP networks.

“Insight #3: Content availability plays a crucial role in determining the effectiveness of

localization. Due to churn, peers will often need to re-download content from outside the

AS. However, when assuming persistent content, most Autonomous Systems can reduce

losses twice as much.”

To make localisation successful, content needs to be available within one network and

its peers. This can be achieved more effectively when the Autonomous Systems have

similar clients in terms of language and culture. This way, we can ensure that content

which is most likely to be requested by clients, is already residing within the network. It

becomes easier to have such content localised when it is persistent (non-dynamic) and

therefore such content can help maximise the benefits of traffic localisation.

“Insight #8: Pricing scheme has a large impact on the effectiveness of savings. As the

maximum pricing model ignores one direction of traffic, reduction in the other direction

57

does not result in a reduction of cost. The average pricing model does consider both

inbound and outbound traffic and thus an AS could benefit both if it or some other AS

localizes traffic.”

“Insight #9: Contrary to the average pricing model, for the maximum pricing model it is

not sufficient that few Autonomous Systems localize traffic to reduce cost. Even if the

largest Autonomous Systems start deploying localization schemes, overall loss reduction

will be very limited.”

This is perhaps one of the most important insights. The pricing model is the key factor

that determines whether or not traffic localisation can reduce costs. There are two

pricing models used to determine monthly charges between network operators. The

“maximum” charging model compares the inbound and outbound traffic for the whole

month and chooses the higher of the two as the determining factor of the monthly bill.

Therefore, reduction in one-way traffic may not always reflect to cost reduction.

However, when the pricing model considers the average of inbound/outbound traffic,

then localisation can have a more immediate effect to the cost.

“Insight #10: Many Autonomous Systems will achieve more profits through preferentially

directing traffic to customers and peers rather than localizing traffic. Therefore, P2P

traffic localization is not always the best choice for all Autonomous Systems.”

Completely localising traffic in a “naïve” and “obsessive” manner does not necessarily

bring any benefits. Profits may actually increase by smarter methods of directing traffic

such as preferring clients from peering networks. Since peering connections are free,

there is no direct cost involved in treating peers as “local” when directing traffic.

Consequentially, each peering ISP will have a much bigger swarm to act as the local

cache.

“Insight #11: While business-relationship based policies may locally be the best strategy

for some Autonomous Systems, they can have a negative external impact on other

Autonomous Systems. Furthermore, as the best local strategy of an individual AS is chosen

in isolation of others it does not turn to be the best possible choice when all Autonomous

Systems deploy their own best local strategy.”

58

Ideally ISPs will have to agree on a common practice that will benefit all of them. This

way traffic localisation may bring benefits to everyone either in the form of cost

reduction or network decongestion.

Perhaps the most important aspect of ETM is not economic from the financial

perspective but rather from the network traffic congestion perspective. As argued by

Piatek et al. (2009) [53] and Seibert et al., (2012) [60], ETM is not particularly effective

at increasing profits or reducing costs in the real world. However, by taking into account

the rapid growth of traffic demand, we see that the economic balance of the Internet is

changing and ETM may be able to offer a long-term solution to sustainable growth

without increased CAPEX and OPEX. Since cyclic peering is becoming a reality and the

peering networks are not bound by billing agreements, ETM can provide a solution for

more efficient management of peering bandwidth rather than cutting costs or

increasing profits. More efficient traffic management across Autonomous Systems along

with technologies such as SDN and NFV can drive down the cost of investment for new

equipment to meet increased traffic demands. Therefore, when it comes to MCC

services, we could consider ETM mechanisms as a means for dynamically deciding when

and where a user’s service may be localised. This way, we ensure that traffic

management aspects are taken into account instead of obsessively localising services

according to user location without considering their impact on the networks.

 5th Generation Networks Y-Comm Framework 3.7

The increasing popularity of mobile devices that feature multiple network interfaces

has driven the progress in the subject of seamless vertical network handovers. A

vertical network handover is the process in which a device switches between two

different network technologies such as Wi-Fi and LTE while maintaining connectivity

and the process is transparent to the user and the applications. A horizontal handover,

on the other hand, is a handover process between two access points of the same

technology. In either case, the handover event may occur either within the same

administrative domain or across two different autonomous domains. Fig. 3.6 illustrates

a vertical handover scenario.

59

LTE Network

Wi-Fi Network

Figure 3.6 Vertical handover scenario between Wi-Fi and LTE networks.

To provide seamless vertical and horizontal handovers, Mapp et al. (2006) [43]

proposed Y-Comm. Y-Comm splits the Internet in two separate entities named Core and

Periphery. The Core network is the part of the Internet where fast connections such as

optical fibre exist and interconnect individual Autonomous Systems. The Peripheral

network consists of slower networks such as Wi-Fi, LTE and ADSL. The two networks

join together at Core End-Points where the Peripheral networks gain access to the Core

networks and their services.

Mapp et al. argue that the OSI model is no longer sufficient for dealing with connectivity

in the modern era of mobile users and devices. The foundation of the argument lies in

that the OSI was created as a theoretical framework for communication between two

end-points in a static network and is inherently incapable of dealing with mobility and

its consequences to the QoS. Although we could argue against this by presenting various

solutions that have been implemented at the network and transport layers of the

framework, it should also be noted that these solutions are often add-ons and

refinements to the OSI layers which is often not the most efficient way of introducing

such functionality. The architectural framework proposed by Mapp et al. (2007) [42]

takes into account user mobility, QoS and security for providing network connectivity as

well as services to users. The framework consists of two parts: one for the Core network

60

and one for the Peripheral networks, both of which join at the two bottom layers

forming a Y-shape hence the name.

Constant mobile connectivity plays an important role within the scope of this thesis and

vertical handover events are in effect trigger events used for the migration of virtualised

services in an attempt to enhance service delivery within each peripheral network. Y-

Comm’s investigation of proactive handovers and mobility prediction are also two

essential parts for the investigation presented in this thesis. The Y-Comm framework is

presented in Fig. 3.7 and its constituent layers are explained below.

Hardware Platform
(Mobile Node)

Hardware Platform
(Base Station)

Network Abstraction
(Mobile Node)

Network Abstraction
(Base Station)

Configuration

Network Management

Core Transport

Network QoS

Service PlatformApplication Environment

QoS

End System Transport

Mobility Management

Handover Management

Figure 3.7 Y-Comm framework layers.

3.7.1 The Peripheral Framework

The Hardware Platform: This layer defines the hardware network interfaces

and underlying access technologies for each medium such as Wireless Interfaces and

Media Access Control protocols.

The Network Abstraction: In this layer Y-Comm specifies a common interface

protocol which must be supported by all networks. As the name suggests, this layer

abstracts the underlying hardware from the upper layers and presents a single interface to

the layers above for all types of networks.

Handover Management and Mobility Management: Mechanisms controlling vertical

handovers are defined in this layer. Y-Comm defines two types of vertical handover. The

network-controlled handover lets the network decide when a handover should occur. The

client-controlled handover makes the client device responsible for controlling handovers.

61

The Mobility Management layer contains policies that define when a handover should

occur and instructs the Handover Management layer to perform a handover.

End-System Transport: This is effectively the end-to-end transport layer of Y-

Comm. Transport protocols that take into account the current state of network connection

are defined to improve the performance of connections.

Quality of Service: This layer constantly reads the QoS parameters

required by applications as well as the QoS offered by network connections and reports it

to the layers below it so that the most appropriate networks for a handover are selected.

Application Environment: In this layer, Y-Comm specifies interfaces and

mechanisms that enable applications to use the layers below.

3.7.2 The Core Framework

Hardware Platform and Network Abstraction: These two layers are similar to

the layers in the peripheral network with the difference that they are on the network side

rather than the mobile node. Hence, the protocols and mechanisms in the Network

Abstraction layer are in this case software that runs on base stations rather than device

drivers.

Configuration: This layer controls the configuration of Core network

elements such as routers and switches and is tasked with reconfiguring networks in the

optimum way in order to maximise efficiency and performance. For example, this layer

contains mechanisms that dynamically and proactively allocate network resources before

a handover occurs.

Network Management: The Network Management layer is the control place of the

Core network, enabling administrative control of different domains through a common

interface. Access control, accounting and charging systems are included in this layer thus

making this layer responsible for presenting what resources are available for a handover

to the Mobility Management layer in the Peripheral framework.

Core Transport: This layer defines transport protocols to be used in the Core

network. Because Y-Comm assumes fast and reliable connections on the Core network, TCP

is considered a sufficient mechanism for the Core network and therefore it is differentiated

from the transport protocols to be used in the Peripheral networks.

62

Network QoS: Network QoS looks at QoS problems within the Core network

while interfacing with the peripheral QoS layer to receive information from the client side.

It passes this information to the layers below in order to optimise QoS for each connection.

Service Platform: The service platform provides an interface for services

deployed in the Core network and their agents in order to use the layers below. One of the

main functions of this layer is to provision services targeted to specific segments of the

Internet such as regional services. This segmentation can offer QoS and security benefits.

3.7.3 Evolution of Core and Wireless Networks

When Y-Comm was originally conceived, the Internet was still a heavily layered

topology with clear boundaries between the different tiers of networks. As discussed in

the previous chapter, the Internet has now evolved to the point where the differences

between tiers are blurred due to the multitude of peering connections. As a result, the Y-

Comm model of the Internet is now becoming relevant as the backbone of the Internet is

becoming less layered and more of a mesh structure of high-speed connections. Multiple

Wireless networks are now available in urban areas with each one connecting to

Autonomous Systems that are part of the Core. There is a very clear separation between

Core and Peripheral networks at present with the Core of the Internet using

technologies such as Gigabit Ethernet and Fibre Channel, while the Periphery uses

technologies such 3G, LTE and Wi-Fi.

LTE
Wi-Fi

Autonomous
Systems

Core End-
Point

Peering

Figure 3.8 Envisioned Y-Comm Internet topology.

Fig. 3.8 shows how the Y-Comm model can now be related to the structure of the

Internet. With this in mind, we can now look at how present day technologies and

63

protocols fit in to framework and how they provide some of the mechanisms necessary

to realise Y-Comm.

Current technologies such as SND and NFV discussed previously are currently in the

phase of implementation and experimentation. These technologies along with new

transport protocols such as the Simple Protocol (SP), proposed by Riley and Mapp, 2012

[56] and Multipath TCP, proposed in Ford et al. 2013 [21], are enabling the

implementation of Y-Comm’s theoretical framework in present day networks. Similar to

how the TCP/IP model is the implementation of OSI, we will now look at the

implementation model of Y-Comm with existing technologies. Before explaining the

model, we will briefly look at SP and explain how it works and how it fits in to Y-Comm.

SP is a transport layer protocol that can provide reliable while running over unreliable

protocols such as UDP or Ethernet. It does this by using control messages that define if

and when reliability is needed. The structure of SP is shown in Fig. 3.9. The driving force

for SP was the divergent path taken between technologies in Peripheral and Core

networks. Peripheral networks are primarily using wireless technologies that are

slower and more unreliable than their wired counterparts which are reaching speeds of

1Gbps and will soon reach 10Gbps. In the Core networks, connections are also reliable

and use fibre that can reach 10Gbps. The developers of SP argue that while TCP is

sufficient for the Core networks, the vast differences between wired and wireless

connections in the Peripheral networks require a more flexible protocol in order to

optimise performance and efficiency. SP presents a transport solution for LAN

environments that is simpler and more flexible than TCP, thus optimising the

performance of wireless and wired networks that a user is directly attached to.

64

Figure 3.9 Structure of SP.

Hardware Platform
(Mobile Node)

Hardware Platform
(Base Station)

Network Abstraction
(Mobile Node)

Network Abstraction
(Base Station)

SDN &NFV

TCPNetwork
QoS

SaaS, PaaS, IaaSApplication Environment

Simple Protocol

Policy Management

Handover Management

Figure 3.10 Y-Comm implementation model.

The implementation model of Y-Comm, presented in Fig. 3.10, shows where SP is

implemented for transport purposes. Owing to SP’s ability to adjust reliability and QoS

requirements, it is in position to send messages to the Mobility Management layer in

order to find the best possible solution for a handover and thus optimise a connection in

terms of the required QoS. In practice this means that SP can inform the Mobility

Management layer about the active connections and their QoS requirements so that

handovers to a more reliable or sufficiently reliable but less costly network can take

place. In effect, this implementation enables client-based handovers for Y-Comm.

On the Core network side, we see that SND and NFV are taking the role of Network

Management and configuration layers. As discussed in the previous section, SDN has the

ability to dynamically configure networks in order to allocate resources where they are

65

most needed. It can receive such information by monitoring QoS parameters in the Core

network where TCP is primarily used as the transport protocol. By putting the two sides

of the model together, we are now in position to see how network management and QoS

can be monitored and adjusted for Peripheral and Core networks in real-time using

these existing mechanisms. To better understand this scenario we envision an example

of a mobile user that is moving away from the coverage of their LTE network and enters

a Wi-Fi network. SP running on the mobile node will evaluate the required QoS

parameters of active connections and the Mobility Management layer will decide if a

vertical handover is desirable. If we assume that the Wi-Fi network offers good

connection characteristics, the mobile node will disconnect from LTE and connect to the

Wi-Fi. Concurrently to this process, on the Core side, SDN will detect that a new client

has connected to the Wi-Fi and attempt to allocate extra WAN connectivity resources in

order to keep the mobile node’s traffic demands satisfied without hindering the

performance of other Wi-Fi clients. The reverse of this process can take place when the

client leaves the Wi-Fi coverage and reconnects to LTE. In conclusion, we see that

current technologies combined with Y-Comm can improve the utilisation of resources

for Peripheral and Core networks alike.

 Mobility and Application Usage Patterns 3.8

To study ETM and network performance in the context of mobility, we need to have a

good understanding of how users behave in their daily routine in terms of mobility

patterns and application usage. Gonzalez et al. (2008) [22] state, that humans exhibit

significant regularity in their mobility patterns because they visit frequent locations

such as home and work. For each individual, it is possible to identify movement patterns

in everyday life and although they are not unique to the individual, it is still hard to

classify users into groups in terms of their mobility patterns. This classification becomes

even harder when considering application usage patterns on mobile devices. For

example we may be able to identify large groups of users that move every morning from

north London to central London, however they do not all go to the same location and

thus we cannot deduce any meaningful granularity in terms of who will connect to each

network available in a large area. Furthermore, it is not possible to classify two users

based on their mobility pattern because even if we assume that two individuals start at

the same location and follow the same path to a single destination, their application

66

usage patterns may differ significantly. The biggest problem, as described by Falaki et al.

(2010) [18], is that user diversity can vary by orders of magnitude between individuals

and thus it is not possible to cluster them in groups. Falaki et al. state that “The diversity

among users that we find stems from the fact that users use their Smart Phones for

different purposes and with different frequencies. For instance, users that use games and

maps applications more often tend to have longer interactions. Our study also shows that

demographic information can be an unreliable predictor of user behaviour, and usage

diversity exists even when the underlying device is identical, as is the case for one of our

datasets.” In regards to traffic consumption, the effect of the above is reflected in the

discovery that traffic sent and received across users differs by almost three orders of

magnitude. Moreover, the volume of traffic exchanged that is considered interactive

dominates by one order of magnitude the volume that is delay-tolerant. For

approximately 90% of the users, over 50% of the traffic is interactive but for the rest,

almost none of it is interactive. We also see that most users have a strong diurnal

behaviour with 80% of them consuming over twice the amount of traffic during their

peak hour. What this means, is that pursuing a classification scheme for mobile users

that categorises them based on mobility and usage patterns is not an effective solution.

Users should be treated as individuals and any traffic and QoS optimisations should

occur for the individual. The consequence of this is that a centrally managed scheme is

not going to be scalable or efficient and instead, a client-centric scheme may provide a

better solution to QoS and traffic management.

 Critical Summary and Insights 3.9

The efficiency of Cloud technology owed to its elastic management of resources has

made it an industry-standard solution for providing services and virtualised

development platforms. Entire infrastructures can be virtualised and various types of

deployment allow tailor-made implementations of Clouds to support the needs of

businesses and individuals. Perhaps the most interesting type of Cloud deployment is

the Hybrid-Cloud where a Private Cloud built and managed by an entity can request

extra resources when necessary from a Public Cloud that is built and managed by a

different entity. However, different Cloud platforms are not able to interoperate due to

lack of standards or loose adherence to them. To resolve this, Cloud interoperability

standards are now in development and testbed platforms are being implemented that

67

will lead to well defined standards for virtualisation technology and enable

interoperability of Clouds.

Clouds are not restricted to providing virtualised applications for end-users and the

technology is now used for Network Function Virtualisation (NFV) that until recently

required specialised, purpose-build and expensive hardware. Network operators can

now build their own datacentres with commercial off-the-shelf hardware and virtualise

parts of their networks thus driving down their CAPEX and OPEX. This desire to drive

the CAPEX and OPEX lower, has led to the development of technology which decouples

the management plane from the hardware and allows for a more efficient and dynamic

allocation of network resources. Equipment that supports SDN functions is controlled

by a centralised entity that has an overview of network operations. QoS and routing

policies defined by administrators are entered in the management place which then

configures the network in real-time in response to traffic demands and QoS changes.

The outcome is a more efficient utilisation of network resources, without the need for

overprovisioning bandwidth in anticipation of high bandwidth demand.

Mobile Cloud Computing provides a platform for augmenting the capabilities of mobile

devices through the use of Cloud resources available on the Internet. This is achieved by

offloading parts of applications from the mobile devices to the Cloud. Perhaps the most

complete solution provided by MCC is the complete virtualisation of mobile applications

and the conversion of mobile devices to thin clients. In this case, the performance of the

network plays a prominent role to the responsiveness of the applications and the

overall user experience. For this reason, the localisation of Clouds is preferred as it has

the potential of enhancing the performance of networks and keeping traffic contained

within Autonomous Systems.

5th Generation networks will provide constant and reliable connectivity to mobile

clients, thus setting the foundation for converting mobile devices to thin-clients and

centralising all the processing in the Cloud. 5G technologies provide a more fine-grained

approach to traffic management and QoS provisioning and give us the opportunity to

use these mechanisms for the dynamic localisation of MCC services depending on

network conditions and user mobility. To achieve this, we need a new service delivery

framework that encompasses the intrinsic characteristics of MCC, 5G networks and

human mobility.

68

Taking into account the information from the previous chapter, we proceed to create a

list of insights that will help us define some of the functional requirements for a Mobile

Service Delivery framework based on Cloud services with Cloud Interoperability and

new network technologies in mind.

Insight #1 Cloud computing is evolving to become a more open platform via

interoperability mechanisms that allows providers to cooperate and form Cloud

federations for load balancing and QoS purposes. Cloud-based services and Service-

Oriented Networks can further enhance the QoS and perform load balancing more

efficiently on a global scale.

Insight #2 The Internet is evolving into a true mesh topology with network

operators striving to peer with each other as much as possible in order to improve the

QoS for their clients and reduce their CAPEX and OPEX by eliminating costly transit

connections. Technologies such as SDN and NFV along with application of ETM in some

cases help accomplish these targets.

Insight #3 Mobile devices are relying on Clouds for extra processing and storage

resources. However constant connectivity is a requirement and mobility issues need to

be addressed. To enable truly mobile thin-clients we must first understand human

mobility patters as well as application usage patterns. This way we can improve the QoS

and QoE and address traffic congestion problems that arise from the constant

connectivity that thin-clients demand.

Insight #4 Web caching and CDNs work well for static content that can be copied to

multiple locations and sourced from there. These technologies work well for generic

content that can be distributed to many people at once without making it personalised

or with small elements of personalisation. A personal VM in an MCC environment is not

something that can be cached and distributed from multiple locations simply because it

is specific to its user and not for the general public.

Insight #5 Seamless vertical handovers for mobiles will ensure constant connectivity

and facilitate a more extended use of Clouds and other online services to the point that

mobile thin-clients may be plausible. However, vertical handovers imply a change of

network provider and consequently, an unpredictable and constantly changing flow of

traffic caused by user mobility. To achieve ETM and QoS improvements via traffic

69

localisation we need a dynamic solution that can migrate services in real-time according

to the user’s location.

Insight #6 Although emerging network technologies focus on improved utilisation of

resources and provide QoS guarantees, the fluctuation of traffic throughput at different

times of the day and during different events can cause a violation of these guarantees. A

device should be able to confirm independently and automatically, that an available

network can provide the QoS their applications require, reliably and consistently.

70

Chapter 4 Service Delivery for Mobile Clients

Offloading tasks from mobile devices to the Cloud is a process that involves several

parties. We have Cloud and Network Operators and Service providers responsible for

setting up and delivering a service and on the client side we have the user and the

mobile device. Taking into account the list of insights from the previous chapter, we

proceed to define some of the functional requirements for a Mobile Service Delivery

framework. This chapter presents the framework and describes the functionality of its

layers. The framework is used as the guideline for moving this investigation forward.

 Requirements 4.1

With the above insights in mind, we can build a set of requirements for a mobile service

delivery framework that makes use of current technology trends and the state of art.

Requirement #1 A service must be identifiable by a unique ID and bound to a set of

parameters that can interoperate with platform providers. Such parameters must

include the minimum requirements in terms of CPU time, storage and memory, network

bandwidth and latency, security protocols, and dependencies on other services.

Requirement #2 Services must allow their users to personalise them in terms of

performance. Each user may choose if they desire a better level of performance from a

service or extra features. Such parameters may include: allocated bandwidth to the user,

maximum latency, amount of storage, security level, and other processing resources.

Requirement #3 Platform providers (Clouds) should be able to accept or reject

services depending on their set of requirements. They should also be able to bill service

providers for processing, network and storage usage for any services and components

running on their Cloud. Additionally, it is up to the Cloud provider to decide which

technology is going to be used for service migrations provided that it meets the service’s

minimum requirements.

Requirement #4 In order to provide maximum benefits to their users, services need

to be aware of their QoS level on a per-client basis. A server should also be aware of the

client’s current location and network provider. Such data may be gathered directly by

the service and its processes, the client’s device or a transport protocol that can report

71

such information. This information can be used to determine when and where to

migrate.

Requirement #5 A service requesting migration must pass information about the

client’s network provider to the platform provider in order to find the best alternative

Cloud to host the service. Preferably a Cloud that is directly peering or local to the

client’s network.

Requirement #6 Any Cloud offering its resources to incoming services must also be

able to report nominal values of network bandwidth and latency to the user’s network

prefix. This is to ensure that an incoming service will not only have sufficient Cloud

resources to run but also adequate network performance to deliver its content at the

QoS requested by the client.

Requirement #7 Service clients should be able to select the best possible network

for handover via a querying mechanism which will confirm that the desired QoS level is

deliverable through the new network. In other words, clients will not rely on reported

nominal values for determining the best network for their service. If a handover to a

network with suboptimal QoS is imminent, the service should migrate to an appropriate

location (if one exists) to improve the QoS.

 Introducing the Framework 4.2

The proposed framework to addresses the above requirements consists of six layers

that are presented in Fig. 4.1. The same figure also shows examples of data and

mechanisms that map to each layer. Before proceeding to analyse the layers and how

they correlate to other existing communication frameworks, it is important to stress

that this is a theoretical framework and not an implementation framework. The layers

represent the components needed to enable mobile service delivery but these

components may be merged together or further divided upon implementation similar to

how the OSI relates to TCP/IP.

72

Service Subscription Client IDs, Client QoS Requiremets

Service Management
Service IDs, Service QoS

Requirements

Service Delivery
QoS Monitoring, Traffic

Management, Service Location

Service Connection
Service-Level Handovers,

Connection Metrics

Service Migration
Cloud Monitoring, Inter-Cloud

Resource Negotiation

Network Abstraction Ethernet, Wi-Fi, Fibre, LTE

Figure 4.1 Service delivery framework layers.

Service Management Layer: This layer deals with how services are deployed and

managed. When a service is introduced to a service-oriented network or federated

Cloud, it needs to have a unique Service ID so that it can be globally identified. Multiple

instances of a service for load balancing or other purposes may also be identified by an

Instance ID. The service provider must also define any dependencies to other services

and access rights to those services if required. In this layer, the service provider must

also define a set of minimum resources and requirements for the service to run. The

amount of network bandwidth allocated, the maximum desirable latency, the number of

virtual processors and memory size and the amount of persistent storage space are

defined here. Finally, the provider must define security parameters for the service such

as storage encryption and network encryption and they must also define if the service is

allowed to migrate to third party Clouds and if so, under what conditions and

requirements.

The set of data and requirements in this layer is what determines where a service may

run and if a Cloud fulfils the requirements to host the service. Additional optional

requirements may be added, such as preference to run on Clouds that use renewable

energy resources or Clouds that provide resources for the smallest cost. In summary,

this layer forms a Service Level Agreement (SLA) between a service provider and a

Cloud provider and it implies the need for mechanisms that advertise the capabilities of

Clouds and determine where a service may be hosted.

73

Service Subscription Layer: After successfully launching a service, clients from

the general public may wish to customise the service to their needs. In this layer we

create an SLA between the service provider and the client. Clients are identified via a

unique Client ID which is also used for billing purposes and location tracking via

mapping it to the user’s network address. Each client is allowed to define a set of service

parameters in their SLA that enhances their QoE compared to the minimum set by the

service provider. For example the user may define in their SLA that they need additional

storage or CPU resources. In the SLA, users may also define if they want to reveal their

location to a service so that service migrations near their location may be enabled. This

would require an additional set of parameters such as maximum desired latency which

will then be used to determine when a migration should occur. Finally, additional

security parameters above the minimum set by the service may be requested such as

fully encrypting user content or restricting service migrations to Clouds with higher

security levels than the minimum required by the service.

Service Delivery Layer: This is perhaps the most complicated layer as it

brings together all the information provided be the layers above it and below it and

determines how a service should behave in order to honour the SLAs of its clients and

the provider. Various mechanisms are part of this layer. One example is a QoS

monitoring mechanism where the network is queried for latency, jitter and throughput

in order to determine if there are sufficient resources available to deliver the service to

an acceptable level. Traffic management mechanisms also monitor traffic and determine

if a service should move to a different location and where, in order to localise its traffic.

Such mechanisms will need to query user devices for metrics and location in order to

determine where the service should move to. Cloud monitoring mechanisms are also

part of this layer and determine if a Cloud is providing the required resources. Once this

layer decides how a service should be delivered and from where, it passes this

information to the migration layer for inter-cloud negotiation of resources. The results

of the negotiation are sent back to this layer for final approval before the service is

moved to a new location.

Service Migration Layer: The service migration layer deals with the

negotiation of resources between Clouds. The mechanisms in this layer reside on the

Clouds and receive instructions from the service delivery layer. These instructions

74

include the data from the service management layer as well as any extra conditions that

are defined in the subscription layer. They also include the location of clients so that the

migration layer can determine which Clouds are closest to the users of the service.

Multiple negotiations may occur, resulting in multiple instances of the service created at

different Clouds if necessary in order to cover a large population. The actual method of

migration is also negotiated at this layer including network throughput guarantees to

ensure that a service replicates within a specified timeframe. In case multiple Clouds

fulfil the requirements for serving a specific user group, this layer may employ auction

mechanisms to determine which Cloud should receive the service based on

cost/performance parameters, or it may pass this information to the service delivery

layer for the mechanisms within it to decide.

Service Connection Layer: This layer deals with how clients connect to the

service and mainly contributes to the framework via transport mechanisms that can

report the state of a connection to the Service Delivery Layer. These mechanisms are

ideally implemented at the transport protocol but they could also be separate processes

that gather data heuristically by monitoring traditional transport protocols such as TCP.

It would not be scalable to implement such mechanisms at the service itself as it would

have to actively gather data from all the clients on top of serving client request, so the

ideal implementation would be for the clients to gather network metrics and report

them to the service via small telemetry packets. This method complies with Y-Comm’s

idea of client-initiated network actions such as handovers and can also make use of Y-

Comm’s QoS monitoring mechanisms. Transport protocols such as the SP are capable of

reporting such metrics for the purposes of this layer.

Network Abstraction Layer: As the name suggests, the main task of this layer is to

mask the underlying network technology from the service and the clients. Once again,

this layer follows the Y-Comm model of abstracting the underlying physical connections

from the services and applications. The purpose of this abstraction is to allow the

protocols at the connection layer to adapt to network conditions and gather

performance metrics without technology-specific considerations.

75

 Framework Implications 4.3

Starting from the last layer of the framework, we will use a bottom-up approach to

understand its implications and how it could be implemented and operated. By

abstracting the physical network from the transport protocols, we are effectively

eliminating any compatibility or performance concerns that may present problems to

mobile users and services. Similarly to service-oriented networks, this framework

completely hides the underlying physical infrastructure from the services and focuses

on how protocols can adapt to changing network conditions rather than adapting to

specific technologies. For example, the applications or services do not have to worry

about handovers between Wi-Fi and LTE and instead can focus on adapting to network

QoS changes. From the perspective of the application, the physical network path is

invisible and the only thing that changes is the characteristics of the connection when a

handover occurs. The handover event itself is transparent to the service and when done

successfully, there is no packet loss and need for data retransmission. The service

communicates with its clients using Client IDs and Service Instance IDs and the

micromanagement of network addressing schemes is left to the network. The only

information that is passed to the upper layers is the user’s current network prefix or ID

so that the service can locate its users. All this, creates a fluid network landscape as

shown in Fig. 4.2, where paths between services and clients are dynamic and it is the

performance characteristics of these paths that determine the best route between

services and clients rather than hop-counts and routing tables.

Service

Virtual NIC

Physical Infrastructure

Virtual Paths

Figure 4.2 Dynamic path formation using the proposed framework and SOA.

76

The second implication stemming from this framework is that services need a transport

mechanism that should be able to read the status of a connection and determine which

network path is more appropriate for the desired QoS. They can then instruct the

network to use the desired path if multiple options are available. This mechanism can

either be implemented naively by querying the network for QoS metrics and therefore

trusting nominal values advertised by a provider, or it can use a smart mechanism that

probes network paths with dummy connections and then uses the gathered metrics to

make a decision. There are arguments for and against each method. The main argument

for the first approach is that it is simpler to implement. SDNs can report values such as

load, latency and bandwidth but the gathered data may not be accurate enough to make

a correct decision. Furthermore, a service may have varying requirements, so this

method would demand from developers to determine various sets of requirements for

each possible scenario that a service may encounter. We can understand this more

clearly if we consider a remote desktop connection to a VM. The user may be processing

a document and therefore, high bandwidth and low latency are not required or the user

may be playing a game where latency and bandwidth requirements will depend on the

type of game as explained in the previous chapter. It would be practically impossible to

make a decision on which network path is best using theoretical requirements for the

service. The second approach allows more flexibility because the service can probe the

network with dummy connections that share the characteristics of its current

connections. We can then make a more accurate decision based on the current state of

the service and network paths. However, this means that dummy connections will

consume some network resources while the service is probing and it also means that

the process will take more time to complete. When considering a mobile device scenario

(which is the focus of this framework), this means that probing has to occur before the

handover (vertical or horizontal) to a new network so that the device will select the best

possible connection (without considering wireless signal strength) in advance. In both

cases, the goal is for the client device to connect not only to the network with the

strongest wireless signal but also to the network with the best backhaul path to the

service. From the service perspective, if this kind of selection fails on the client-side, it

can use the same mechanism to determine a new location to move to.

The third implication of this framework is that service migrations have to occur within a

specific time-frame. Since the user is mobile and the migration time also depends on

77

how quickly the service is accessing and changing its working set, we need to determine

the network resources required to move a service successfully. Since service migrations

over WAN is a challenging problem we can safely assume that in a Federated Cloud

environment, the participating Clouds will be peering with each other at private

facilities to guarantee a certain level of QoS. However, this is not enough to guarantee

adequate resources for migrations across Clouds, so we need a mechanism such as

IntServ that will negotiate, allocate and guarantee network resources as and when

needed for a migration to occur on time and in-line with the user’s mobility and usage

pattern. Factors that can determine the network resources required for a migration

include the size of the service’s working set, the rate at which pages are changed within

the working set, how quickly the user is moving and the throughput of the user’s

connection to the service (for ETM purposes).

Another implication, coming from the top three layers of the framework is that service

delivery mechanisms are aware of network location, mobility and connection

characteristics on a per-user basis and they can use this data to determine the best way

to deliver a service. This raises privacy concerns not only from the aspect of user

location monitoring but also in terms of monitoring the actual usage patterns of a user

as well as migrating their data freely across multiple Clouds that form a Federation. We

can assume that Federated Clouds will have interoperability and security standards in

place, however this does not mean that everyone should trust these standards or that

everyone desires their private VM to move freely to third party Clouds. This problem is

addressed at the top two layers of the framework, where a service provider or a client

has the option to disallow migrations for their service or a personal service instance

respectively.

Finally, the top two layers define the amount of resources that a VM or service requires

to run while also allowing for individual clients to customise these requirements for

their service instances. This fall within one of the Cloud requirements which is the

ability to charge clients based on the resources they used for a period of time. What is

implied in this framework is that a new market economy can be constructed where

multiple Clouds may be competing for hosting services by advertising lower costs or

higher performance. Users and service providers may prioritise cost or performance

depending on the type of service and how they use it and the competition between

78

Cloud providers will offer more resources at lower cost for everyone. Clients will pay

the service providers depending on the level of service they requested, and service

providers will pay Cloud providers based on how many resources their services use.

 Relating to Existing Communication Frameworks 4.4

In order to further examine and understand how this mobile service delivery

framework operates, we will relate it to existing frameworks and relate some of its

functions to their layers. We will start with the OSI model which is a theoretical model

for communication. How the two frameworks are related is presented in Fig. 4.3.

Service
ManagementService

Subscription

Service Delivery

Service Migration

Service Connection

Network Abstraction

Application
Presentation

Session

Transport

Network
Data Link

Physical

Figure 4.3 Mapping the proposed service delivery framework to OSI layers.

Starting from the bottom layers, we see that the network abstraction layer sits slightly

above the network layer of the OSI. Network functions such as selecting an interface,

establishing connectivity and acquiring an address are masked from the higher layers.

However, for the purposes of link selection, the network layer may receive instructions

from the higher layers via the abstraction layer. These instructions will typically include

a set of performance parameters that will satisfy the client’s application requirements.

This is on top of any other link selection algorithms for wireless communication such as

SNR-based binding. Due to this structure, it is up to the abstraction layer to resolve

79

service and client IDs to network addresses and select the appropriate interface based

on the requirements sent to it by the layers above.

Moving up to transport and session layers of the OSI, we relate them to the Service

Connection layer of the framework. As mentioned previously, the main function of the

Service Connection layer is to gather and report performance metrics of established

connections so that the Service Delivery layer can decide how to best deliver the

service. The rest of the layers of the framework sit hierarchically above the OSI since

they are layers that manage the operation and delivery of applications, therefore we

cannot directly map them to any of the OSI layers because the OSI does not provision for

such functionality.

To put it all together in a practical example, we consider mobile node which is using a

service running on a remote network. Let’s assume the device to be connected to LTE

and Wi-Fi concurrently and that the user is mobile and therefore the Wi-Fi connection

may fail. In this scenario, the mobile service delivery framework combined with the OSI,

will behave as follows: The Physical and Data Link layers will detect signal degradation

at the Wi-Fi interface and switch all the communication to the LTE interface. When the

Wi-Fi link fails, the Network Abstraction layer will report that a connection path is lost

and advertise the QoS parameters of the LTE link. The Service connection layer will

detect the network performance degradation and report it to the Service Delivery layer.

The Service Delivery layer will have to compare the information from the Abstraction

layer and the Connection layer to determine if the degradation is due to bad link

conditions or bad backhaul path. At this point it may decide to move the service in a

datacentre inside the LTE network or do nothing if the wireless signal is the cause of the

degradation. Upon detection of new Wi-Fi networks, the abstraction layer will report

their QoS parameters to the Service Delivery layer. At this point, dummy connections

may be established to determine the backhaul capacity and QoS parameters. The best

combination of backhaul capacity and signal strength will be selected. Once the

connection is established and if the Wi-Fi network offers better overall QoS than the

LTE, the Abstraction Layer will switch the flow of data to the Wi-Fi link.

In conclusion, the OSI was constructed as a communication model that does not account

for user mobility or service-oriented networking. Consequently, many of the functions

required for improving the performance of the future Internet are not directly

80

supported by the model and have to be implemented by modifying or replacing existing

mechanisms and protocols. New communication architectures that take into account

user mobility and QoS can provide a better platform for the mobile service delivery

framework.

To examine if this service delivery framework falls in line with modern communication

architectures, we will examine how it relates to Y-Comm. We present how the

framework layers correspond to Y-Comm in Fig. 4.4.

Service Migration

Service Delivery

Service Platform

Core Transport

Configuration

Network Mngmt

Network QoS

Application Environment

End-System QoS

End-System Transport

Policy Mngmt

Handover Mngmt

Service Subscription Service Management

Service Connection

Network Abstraction

Hardware Platform
(Mobile Node)

Hardware Platform
(Base Station)

Figure 4.4 Mapping of service delivery framework layers to Y-Comm.

The first thing to notice when comparing the two frameworks is that a lot of the

functionality expressed in the service delivery model, also exists in Y-Comm albeit at a

different order. The Service Platform layer in the Core network defines the QoS

parameters of services via Service Level Agreements (SLA). This directly relates to the

Service Management layer of the service delivery model, where services define their

QoS requirements via SLA. Similarly, on the Peripheral network, the Application

Environment layer defines interfaces and mechanisms for applications to use the layers

below it which has to do with setting QoS requirements and adapting to network

changes. In this case, the Service Subscription layer defines these QoS requirements on a

per-user basis and extends them not only to the network but also to the service itself,

therefore providing a unified interface for the user to select additional network and

service requirements. Therefore, when combining the top layers of Y-Comm and the

proposed service delivery model, we see that they provide the parameters required for

services to establish agreements with the infrastructure, clients to adjust their service

preferences, and networks to auto-configure.

81

The Service Connection layer, in the case of Y-Comm appears higher than Service

Delivery due to the way Y-Comm layers its functionality, however the tasks performed

in the layer are unaltered. In the case of Y-Comm, the Transport and QoS layers of the

Core and Peripheral networks gather network performance metrics and transport data.

These metrics are passed on to the Management layers where decisions are made on

how to route traffic more efficiently. Therefore the Management layers of Y-Comm

directly relate to the Service Delivery layer of the framework. The biggest difference

identified in the two frameworks comes from the fact that Y-Comm does not consider

service migration and therefore lacks the functionality of dynamically moving services,

however we can loosely relate the Service Migration layer to the Configuration layers of

Y-Comm since these two layers are dealing with the negotiation and allocation of

resources as instructed by the Management layer and it is therefore similar to how the

Migration layer deals with the negotiation and allocation of resources for the migration

of services as instructed by the Service Delivery layer.

In the case of Y-Comm we see that a modern communication framework has more

similarities to the proposed Mobile Service Delivery framework. The need for QoS

monitoring and dynamic allocation of resources is expressed in both frameworks and

they also take into account factors such as per-user customisation of services and

abstraction of the hardware from the layers above as a means of simplifying the

functions of the higher layers. Thus, the proposed Service Delivery framework is best

combined and implemented with Y-Comm because it can borrow many of its functions

directly from the communication model without the need of implementing new

mechanisms for QoS monitoring and network configuration.

 Critical Summary and Research Focus 4.5

The framework presented in this chapter is a novel approach to optimising service

delivery in the context of mobility using Cloud technology capabilities. As such, the

framework takes into account the aspects of Cloud service delivery such as defining

running parameters for a service and allowing a user to customise those parameters,

while it also adds new aspects to service delivery that involve dynamic service

localisation.

82

5G networks start taking into account mobility, especially in MCC scenarios and attempt

to address some of the arising problems with mechanisms that dynamically adapt the

networks to traffic conditions. This makes up for the lack of such mechanisms in current

communication models; however, there is still no direct consideration about how

services are delivered in a mobile environment and how services can be configured so

that their performance will be optimised. The proposed framework combines network

optimisation along with Cloud service optimisation by considering the needs of both

and dynamically deciding how services will be delivered.

Each layer of this framework opens new areas of research both in terms of theoretical

requirements and in terms of implementation mechanisms. In the following chapters,

the focus will be on the Service Delivery layer which contains the mechanisms for

determining when and where to move services for improved QoS and ETM.

83

Chapter 5 Traffic Management

This chapter focuses on the Service Delivery layer of the framework and here we

explore the traffic management aspects for a scenario of a personal service or VM

accessed by a mobile thin-client. The aim is to create a mechanism (reactive or

proactive) that will dynamically move the service or VM based on the traffic being put

through the network and the user’s mobility patterns. A list of assumptions is

presented in the following section.

Assumption #1: The scenario deals with a single service, accessed by a single client

over the network.

Assumption #2: The service is running inside a VM which has a single VHD and

access to the Internet.

Assumption #3: The VM has a “Home” network where the VHD is stored. If the VM

has to contact its VHD over a third party network, then it is considered to be in a

“Remote” network location.

Assumption #4: The client is mobile and the dwell time for the networks he visits is

predicted and reported by the network or the mobile device.

Assumption #5: Networks to which the client is already connected or will connect

in the future, are expected to have a datacentre that accepts incoming VM migrations on

behalf of their clients for the purpose of localising traffic and improving QoS as shown in

Fig. 5.1.

Backbone

Cloud A Cloud B

User Service

Network A Network B

Figure 5.1 Assumed topology for dynamic service localisation.

84

 Mobility and Network Dwell Time 5.1

The Y-Comm framework offers a solution for predicting user mobility alongside

network connectivity and can contribute in making decisions on when to offload tasks

and where. Because Y-Comm is primarily concerned with achieving seamless handovers

across heterogeneous networks, an important trait of the framework is its ability to

detect physical user mobility and consequently map it to potential network mobility

based on which networks the user is likely to pass through. Mapp et al. (2012) [44]

show how the Network Dwell Time (NDT) can be calculated for a single user by

applying the Laws of Cosine in addition to knowing the user’s location and velocity as

well as the coverage areas of networks. They show that NDT in units of time can be

estimated for a given speed and direction and network area coverage. Furthermore, the

NDT for future network locations can be predicted based on the same input as

illustrated in Fig. 5.2. For Y-Comm, the NDT is used to determine if a network is a

potential target for handover. This information can also be picked up at the application

layer and utilised for making applications aware of the user’s mobility and network

connectivity patterns.

Network A

Network B

Network C

User

Figure 5.2 NDT and network connectivity prediction using Y-Comm.

Passing this information to the Application Layer, along with the network location of the

user can facilitate the position of mobile services in a reactive or proactive manner. For

example, a user that is about to enter network B, coming from network A, may

proactively trigger a migration of his Cloud services to a datacentre within network B.

What this means, is that given enough NDT and for specific traffic patterns, promoting

the locality of these services can lead to an overall reduction on Inter-AS traffic. It may

also lead to performance benefits given that hop count will be reduced. The essence of

85

scheme is to apply ETM to mobile thin clients and their Cloud-supported services.

Although ETM primarily deals with how mass traffic can be localised to minimise

operator costs, using NDT we can adopt ETM for the benefit of mobile users and

network operators.

 Mathematical Analysis 5.2

Based on the assumptions above, two scenarios emerge for the migration of VMs. The

first scenario is simpler and considers a VM moving from its home location to a remote

location where the user currently is located. The second scenario, considers a VM that is

already in a remote location and the user has moved on to another remote network

location.

5.2.1 Scenario A

We will start by analysing the amount of traffic put through the network for a given

NDT in the case where the VM is at the home location and the user just moved to a

remote network as shown in Fig. 5.3.

Home Location Target Location

RDCNetwork A Network B

Figure 5.3 Simple scenario representation based on two locations.

In this case the total data that travels over the network is going to be:

𝑇𝑜𝑡𝑎𝑙 𝑏𝑖𝑡𝑠 = 𝑅 × 𝑡𝑁𝐷𝑇

 (5.1)

Where 𝑅 is the throughput of the RDC to the VM and 𝑡𝑁𝐷𝑇 is the user’s predicted NDT at

their new location. Since the bulk of the RDC connection is going to be inbound to the

user, network providers at home and remote locations will have an incentive to move

that VM to minimise the amount of traffic that exits/enters their network. Moving the

VM to the remote location is going to put data over the network, equal to the size of the

86

VM in addition to the RDC connection’s data while the migration is underway. After the

migration completes, the RDC data will be localised but the VHD data will have to be

exchanged between the home and remote locations for the remainder of the user’s NDT.

This gives us the following equation:

𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = 𝐶 + (𝑅 × 𝑡𝑚𝑖𝑔) + 𝐷 × (𝑡𝑁𝐷𝑇 − 𝑡𝑚𝑖𝑔)

 (5.2)

Where, 𝐶 is the capacity of the VM’s RAM, 𝐷 is the throughput of the VHD and 𝑡𝑚𝑖𝑔 is the

time to migrate the VM. To calculate the VM migration time, we divide the size of the VM

by the estimated throughput of the migration as shown below:

𝑡𝑚𝑖𝑔 =
𝐶

𝐵

 (5.3)

Where, 𝐵 is the throughput of the backbone link that will carry the migration traffic

between the two networks. This throughput can be reported by a protocol such as the

SP or it can be agreed upon in advance by the involved parties either with private

peering and guaranteed QoS agreement between the two datacentres or using SDN to

configure the networks so that a channel with guaranteed QoS is created for the

duration of the migration.

We can now combine the equations (5.1), (5.2) and create the following expression:

𝑅 × 𝑡𝑁𝐷𝑇 > 𝐶 + (𝑅 × 𝑡𝑚𝑖𝑔) + 𝐷 × (𝑡𝑁𝐷𝑇 − 𝑡𝑚𝑖𝑔)

 (5.4)

This tells us that if the total amount of bits expected to cross AS boundaries without

migrating the VM is greater than the total amount of bits of the migration and

subsequent VHD traffic, then it will be beneficial to move the VM to the remote location.

Consequently, by sampling the RDC and VHD traffic of the VM we can generate values

that we can put in the equation and along with the NDT reported by the network, we are

in position to know when to migrate a VM.

87

5.2.2 Scenario B

In the second scenario, three networks are involved: Home, VM and User. This scenario

occurs after a VM has already migrated to a remote network but the user has moved

again to a new network away from home. The diagram demonstrating this scenario and

the traffic flows involved is presented in Fig. 5.4.

VM

Home Location VM Location
User Location

(Potential Target)

VHD
RDCNetwork A

Network B
Network C

Figure 5.4 Service localisation using multiple locations.

We see that in this case we have three networks directly involved with delivering the

service to the client (without counting transit or peering networks between them). In

this case, the above equations are slightly modified depending on how the traffic is

balanced between RDC and VHD connections.

When the RDC traffic throughput is equal to the VHD, then we have a choice of

eliminating either the RDC traffic by moving the VM to the new target network, or the

VHD traffic by moving the VM back to the home location. Because in this case the traffic

is balanced, it would be more beneficial to eliminate the VHD traffic and default the VM

to the home location, thus releasing resources from remote Clouds that would have

otherwise hosted the VM. Therefore, the more efficient overall solution in this case, is to

move the VM to the home location and only exchange RDC traffic across the networks.

Therefore, if the total amount of inter-AS traffic for the predicted NDT is larger than the

size of the VM, plus the RDC and VHD throughput during the migration, plus the RDC

traffic for the remainder of NDT after migration, then it will be beneficial to move the

VM back home. The following equation describes this mathematically:

𝑡𝑁𝐷𝑇 × (𝐷 + 𝑅) > 𝐶 + (𝑅 + 𝐷) × 𝑡𝑚𝑖𝑔 + 𝑅 × (𝑡𝑁𝐷𝑇 − 𝑡𝑚𝑖𝑔)

 (5.5)

88

This can be simplified as follows:

𝑡𝑁𝐷𝑇 × 𝐷 > 𝐶 + 𝐷 × 𝑡𝑚𝑖𝑔

 (5.6)

When the RDC throughput is greater than the VHD, then it is beneficial to eliminate the

RDC traffic from crossing inter-AS boundaries and therefore, the aim is to migrate the

VM to the user’s new location. This leaves the VHD connection as the only inter-AS

traffic after the migration occurs. The balance equation in this case becomes:

𝑡𝑁𝐷𝑇 × (𝐷 + 𝑅) > 𝐶 + (𝐷 + 𝑅) × 𝑡𝑚𝑖𝑔 + 𝐷 × (𝑡𝑁𝐷𝑇 − 𝑡𝑚𝑖𝑔)

 (5.7)

This is simplified as follows:

𝑡𝑁𝐷𝑇 × 𝑅 > 𝐶 + 𝑅 × 𝑡𝑚𝑖𝑔

 (5.8)

Finally, when the VHD throughput is greater than the RDC, similar to the first case, we

try to eliminate the VHD traffic by defaulting the VM to the home location and therefore

we are effectively reusing equations (5.5) and (5.6).

 Flow Chart 5.3

Before attempting to put the above scenarios in a flow chart that represents all the

possible migration outcomes, we must also consider proactive migrations as a result of

the network reporting multiple NDTs as a result of a user passing through multiple

networks in their path. For example, if the network is capable of predicting a user's path

and which networks they will encounter in that path, it may also be possible to return

an NDT for each network that the user is likely to join. In such an event, we may use

solve the equations for NDT and migrate the VM to the first network in the user's path

that has sufficient NDT to warrant a migration. However, if it happens that there is

insufficient NDT in any of the forthcoming networks, we can calculate the total NDT and

find out for how long the user will be away from the current location of the VM. This

proves to be useful when the VM is moving away from the home location, as the total

NDT can be used to calculate the amount of data crossing AS boundaries as a result of

89

the VHD connection of the VM. Since we can find no firm target for a migration and

therefore it is inevitable for the RDC traffic to cross AS boundaries, we instead choose to

eliminate VHD traffic based on the total NDT of the user. We use the total NDT for all the

networks as an input in (5.6) and we calculate if there will be traffic savings by

returning the VM to the home location. This has the added benefit of releasing Cloud

resources from the intermediary running the VM and only putting the RDC traffic

through the network as opposed to having VHD and RDC traffic crossing AS boundaries.

One notable quality of the above is that this particular method of pursuing traffic

localisation does not restrict itself to optimising traffic between the two or three

networks involved in delivering the service. Instead, it provides a more general solution

that minimises inter-AS traffic based on a user's predicted mobility patterns and also

releases Cloud resources from networks that need not be involved in delivering the

service. With this in mind, the flow chart for all the possible scenarios of the migration

process is as shown in Fig. 5.5.

VM at HomeYes

Which one is
larger?

No

Which one is
larger?RDCFound target?

VHD

VHD

Total NDT
enough?

RDC

Found target?

Yes

Migrate

Yes

No
NoAbort

Yes

Total NDT
enough for VHD

savings?
No

YesDefault

No

Figure 5.5 Migration process flow diagram.

90

 Prototype 5.4

As a proof of concept, the above equations were used in a PowerShell script that

monitors a VM’s RDC and VHD throughput and automatically moves the VM based on

the results of the equations. The NDT and migration throughput are given by the user

when the script is executed so that the calculations can be performed. The methodology

and experimental platform are described in the following section.

5.4.1 Prototype Platform Specifications

A basic virtualisation platform consisting of two physical nodes in a domain

configuration was used as the basis of the experiment. Details of the two nodes are as

follows:

Table 5.1 Prototype platform host specifications.

Host A Host B

Intel Core i7 920, 16GB RAM Intel Core2Quad Q6600, 4GB RAM

Kingston HyperX SSD 128GB Crucial C300 SSD 128GB

Windows Server 2012 R2 Enterprise x64 Windows Server 2012 R2 Enterprise x64

2x Gigabit NIC on PCIe Bus
Gigabit NIC on PCIe Bus

100Mb/s NIC on PCIe Bus

Both nodes are configured with one Gigabit NIC connected to a gigabit switch acting as

the backhaul connection for VM migrations and for server management. The remaining

NIC of each node is connected to a 100Mb/s switch, acting as the front-end network

where the client connects. The 100Mb/s switch has a built-in wireless access point

which is used for connecting the client.

A virtual machine, acting as the Domain Controller was set up on Host A which has more

RAM and CPU resources available. The Client VM along with its VHD is also initially set

up on Host A which acts as the home location for the VM. This means that the Home

location for both VMs is Host A since it is the host that holds the VHD for each VM. The

details of the two VMs are as follows:

91

Table 5.2 Prototype platform virtualisation configuration.

Domain Controller Client

2 Virtual Cores, 1GB RAM (Dynamic) 4 Virtual Cores, 2GB RAM (Dynamic)

1 virtual NIC connected to the backhaul

network

1 virtual NIC connected to the front-end

network

20GB VHD (Dynamic) on Host A SSD 20GB VHD (Dynamic) on Host A SSD

Windows Server 2012 Enterprise x64 Windows 8.1 Professional x64

A third physical node was connected to the backhaul network for administrative

purposes. A laptop acting as a thin client was connected to the front-end network

wirelessly at 54Mb/s using 802.11g. The network diagram is shown in Fig. 5.6.

Client

BA
Domain Network

C
Admin

Console

Front-End
Network

Figure 5.6 Prototype platform network diagram.

5.4.1.1 Preliminary Testing and Performance Measurements

A set of preliminary tests was carried out and presented by Sardis et al. (2014) [58] for

the purpose of finding some base values to be used as input for the migration

throughput. In these tests, the VM was moved along with its VHD between the two hosts

and the results showed that the determining factor for the migration throughput was

the SSDs on the hosts. The SSD read/write speed was acting as a bottleneck, preventing

the full Gigabit bandwidth from being utilised. However, during the last step of the

migration, when the RAM contents of the VM were copied, the bottleneck was the

92

network throughput. The throughput value for moving the VHD was on average

50MB/s, while the throughput value for moving the VM only was fully saturating the

Gigabit Ethernet link at 117MB/s. This was achieved on an idle VM. Further testing,

showed that when the VM was in use (user playing a game), the throughput was on

average 80MB/s due to the extra time it takes to copy RAM pages that are being

modified by the application. This value was used as the base input for the estimated

migration throughput in the final experiments. Extra tests to identify problems with

migrations over lower capacity links showed that the most detrimental factor to the

process is network latency. Any tests performed with latency over 50ms, caused the

migration to abort. The base latency of the link between the nodes is less than 1ms and

latency was shaped using Connection Emulator (Softperfect, 2014) [62]. Bandwidth had

a linear effect to the migration duration and the process completed successfully at up to

Fast Ethernet speeds as per Microsoft’s documentation. Tackling WAN emulation

problems is not within the scope of this experiment, so the full Gigabit capacity of the

backhaul network was used without any tampering. Any changes to the QoS before the

point where migration is impossible are reflected as a smaller throughput and therefore

longer migration time. This is why it was initially stated that QoS guarantees should be

in place in advance or a mechanism that dynamically probes the link capacity is needed.

93

5.4.2 Script Logic

Two PowerShell scripts were used to perform automatic migrations during the

experiment. The Reactive script, takes as input only one NDT and assumes that the

script will start running at the moment the user connects to a new network, or during

the handover process between two networks. The logic process for the reactive script is

as follows:

1. Read the local hostname.
2. Ask the user for the ServiceID (VM name).
3. Query Hyper-V to find the current size of the VM’s RAM.
4. Ask the user for the estimated migration throughput.
5. Calculate estimated migration time using VM size and migration throughput.
6. Ask the user for the estimated NDT.
7. If user NDT is less than the migration time, abort the script.
8. If NDT is greater than migration time query Hyper-V to find the path to the VM’s VHD and do a

match check between hostname and path to find out if the VM is running on the same host
where the VHD resides (Home location).

9. If the VM is running at Home location, measure VHD throughput via the Hyper-V and RDC
throughput via the front-end NIC.
9.1. Repeat measurement 10 times and report the average throughput for RDC and VHD.
9.2. If RDC is less or equal to VHD, abort the process.
9.3. If RDC is greater than VHD, calculate the minimum NDT required for traffic savings

9.3.1. If NDT is greater than NDT minimum, move the VM to target host.
9.3.2. If NDT is less than NDT minimum, abort the process.

10. If VM is running at remote location, measure VHD throughput via the Backhaul NIC and RDC
throughput via the Front-End NIC.
10.1. Repeat measurements 10 times and report the average throughput for RDC and VHD.
10.2. If RDC=VHD=0, abort the script (VM inactive).
10.3. If RDC less than VHD calculate minimum NDT required for traffic savings.

10.3.1. If NDT greater than minimum NDT, default the VM to Home.
10.3.2. Else, abort.

10.4. If RDC greater than VHD, calculate minimum NDT for traffic savings.
10.4.1. If NDT greater than minimum NDT, move the VM.
10.4.2. Else, abort.

94

The proactive script takes a set of networks and their NDT as input and predicts where

the VM should be moved in advance. The networks and NDT for each one are given to

the script in an array in the order in which the user will connect to them. A second array

maps the networks from the first array to host nodes that can accept migrations. The

proactive script logic is as follows:

1. Read the local hostname.
2. Read the array of networks and NDTs.
3. Read the array of networks and target hosts.
4. Calculate total NDT from the array of NDTs.
5. Ask the user for ServiceID (VM name).
6. Query Hyper-V to find the size of the VM.
7. Ask the user for the estimated migration throughput.
8. Calculate the estimated migration time.
9. If the total NDT is less than the estimated migration time, abort the script.
10. Else, query Hyper-V to find the path to the VM’s VHD and do a match check between hostname

and patch to find out if the VM is running on the same host where the VHD resides.
10.1. If the VM is running at home location, measure VHD throughput via Hyper-V and

RDC throughput via the front-end NIC.
10.1.1. Repeat measurement 10 times and report the average throughput for RDC and VHD.
10.1.2. If RDC is less or equal to VHD, abort the process.
10.1.3. If RDC is greater than VHD, calculate the minimum NDT required for migration.

10.1.3.1. Select the first network in the array with NDT greater or equal to the
minimum NDT.

10.1.3.2. Resolve the network name to a target hostname.
10.1.3.3. Move the VM to target host.
10.1.3.4. If no network has NDT greater or equal to the minimum NDT, abort the

process.
10.2. If the VM is running at remote location, measure VHD throughput via the backhaul

NIC and RDC via the front-end NIC.
10.2.1. Repeat measurement 10 times and report the average throughput for RDC and VHD.
10.2.2. If RDC=VHD=0, abort the script (VM inactive).
10.2.3. If RDC greater than VHD, calculate NDT minimum for migrating VM to a target host.

10.2.3.1. Select the first network in the array with NDT greater or equal to the
minimum NDT.

10.2.3.2. Resolve the network name to a target hostname.
10.2.3.3. Move the VM to the target host.
10.2.3.4. If no network has NDT greater or equal to the minimum NDT, calculate new

minimum NDT based on VHD traffic for moving the VM home.
10.2.3.4.1. If the new minimum NDT is less than the total NDT in the array of

networks, move the VM to the home location.
10.2.3.4.2. Else, abort the script.

10.2.4. If RDC less or equal to VHD and RDC greater than 0, calculate the minimum NDT for
moving the VM home.

10.2.4.1. If total NDT in network array is greater than minimum NDT, move the VM
home.

10.2.4.2. Else, abort the script.

95

5.4.3 Testing Setup and Methodology

In order to evaluate the applicability of dynamic service localisation based on user

mobility and ETM strategies, two sets of tests were conducted. In the first set of tests,

the user launched a game on the VM while accessing it via the front-end network using

RDC. A casual game was selected as a representative sample of what a user might play

on a mobile device. Pinball FX (available on Windows Store) is a 3D pinball game that

features colourful rapid-changing effects and requires quick reaction times from the

user and therefore low latency on the network. The colourful and dynamic interface of

the game makes it a good application for stressing the RDC session. The RDC resolution

was set to Full HD (1920x1080) because it is a representative screen resolution of

current technology Smart Phones.

For the first set of tests, the user launched the game and the PowerShell script was

executed manually via the Admin node on Host A (home location). The same test was

repeated with the VM residing on Host B (remote location). The game was then closed

and the VM was allowed to idle while the same scripts were again used to evaluate how

they would respond to an idling VM. No measurements were recorded during this test

as it was only used to confirm that the scripts behave as expected when the VM is idle.

For the second set of tests, the user launches ATTO Disk Benchmark, as a means for

creating VHD throughput to simulate an application with frequent disk access. The

script first runs with the VM residing on Host A and the test is repeated with the VM

running on Host B. The benchmark software is closed and the machine is allowed to idle

for a minute. The user then opens a word processing application, browses to a plain text

file and opens it. The script is executed again during this process. Finally, the user

closes the word processor, launches a web browser and navigates to a news website.

The script is executed again during this process. The tests are concluded with the user

locking the VM and disconnecting from the RDC session.

The two sets of tests were designed to shift the balance of throughput between RDC and

VHD connection in order to identify any problems in the logic of the scripts. They were

also designed to be representative examples of what a user might do on a mobile device,

ranging from playing a casual game to editing a text file and reading the news. The

chosen resolution is quite common on modern mobile devices such as Smart Phones

96

and tablets as well as laptops. To simplify the prototype setup and focus on

investigating the functionality of the proposed solution, real user mobility is not

addressed but instead, the client is always connected to the same type of network

through one network provider and mobility is simulated by changing the NDT. In a

more complex prototype setup, a client could connect via different access networks and

network addressing mechanisms as proposed by Harney et al. (2007) [25] can be used

to dynamically update the VM and client addresses. This, however, is outside the scope

of ETM and this thesis does not focus on address-related network issues.

5.4.4 Test Results and Analysis

The results of the experiments are presented in the below along with the NDT values

used in each case. The migration throughput was pre-set to 80Mb/s as explained in the

previous section.

Table 5.3 Reactive script migration results.

VM at Home (Host A) - Reactive Script

VM
(MB)

NDT
(sec)

RDC
(MB/s)

VHD
(MB/s)

Result

1858 700 4.440 0.600 Moved to user's network

2048 500 4.400 1.500
Aborted: Insufficient.
NDT

1292 500 0.000 63.320 Aborted: VHD>RDC

VM at Remote (Host B) - Reactive Script

VM
(MB)

NDT
(sec)

RDC
(MB/s)

VHD
(MB/s)

Result

2048 500 2.265 0.200
Aborted: Insufficient
NDT

2048 1500 2.110 0.540 Moved to user's network

1924 500 0.000 5.460 Moved home

Table 5.3 of the results shows how the reactive script behaved under different

scenarios. With the VM running on Host A, migration occurred only when the NDT was

sufficient (700 sec) and the RDC traffic was greater than VHD. When the VHD traffic was

greater than RDC or when the NDT was below the threshold, the operation was aborted.

After the VM was moved to Host B, the gaming and disk benchmark experiment was run

again and this time the VM was moved back home when the VHD traffic was greater

97

than the RDC traffic. When the RDC traffic was greater than the VHD, the script aborted

the operation when there was no sufficient NDT for the migration. The migration

completed successfully and the VM was moved to the user’s target location when an

NDT of 1500 seconds was given. There are two things to note in this set of results: Host

B always generated less RDC traffic while gaming compared to Host A. The cause of this

was identified to be the hardware of Host B. While gaming on the VM, Host A reported

45% CPU utilisation from the VM, however when the VM ran from Host B, the reported

CPU utilisation was 95%. The number of virtual CPUs of the VM did not change between

hosts and therefore this difference in utilisation is narrowed down to the processing

power of the CPU. The CPU in Host B is from an older generation and the same

processing load translates to higher CPU utilisation. This in turn resulted in the VM

adapting its RDC connection to lower image quality that generates less traffic towards

the client and hence the lower RDC throughput. The level of interaction with the game

was not affected but the image quality was. One way to tackle this problem is to enable

3D graphics acceleration on the VM but this requires special hardware which was not

available at the time of testing. The game is using software rendering performed on the

CPU and therefore the CPU poses a performance bottleneck in this case. Moving the VM

back to Host A, always resulted in better image quality and higher RDC throughput. The

front-end NIC on Host B is ruled out as a potential bottleneck because even at 4.4MB/s

throughput, the Fast Ethernet is only operating at 50% capacity.

Table 5.4 Pre-emptive script migration results.

VM at Home (Host A) - Pre-Emptive Script

VM
(MB)

NDT (sec)
RDC
(MB/s)

VHD
(MB/s)

Result

1538 Multiple, Total 359 4.500 0.260
Aborted: No target with
sufficient NDT

1638
Multiple, Total
2299

4.540 0.010
Found target with sufficient
NDT and moved the VM

1176
Multiple, Total
1399

0.000 25.840 Aborted: VHD>RDC.

 VM at Remote (Host B) - Pre-Emptive Script

VM
(MB)

NDT (sec)
RDC
(MB/s)

VHD
(MB/s)

Result

1544 Multiple, Total 36 2.350 0.050
Aborted: No target found
and insufficient Total NDT for
moving Home

98

1544
Multiple, Total
1650

2.330 0.250
Moved the VM to target with
sufficient NDT

1100 Multiple, Total 36 0.000 15.930
Aborted: Insufficient Total
NDT

1070
Multiple, Total
1399

0.000 15.000 Moved Home

The pre-emptive script differentiates from the reactive by taking an array of NDTs and

target networks. The calculations for the migrations are performed first by checking if a

migration to a target network is possible. If no network in the array has enough NDT for

migration, the pre-emtpive script sums up the total NDT for each network and then uses

that as input to determine if there will by any traffic savings on the VHD side by moving

the VM back to its home location if it is not already there. If a target network is found,

the pre-emptive script also differentiates from the original by using a second array

which resolves network names to nodes that can accept migrations. In the test setup

this aspect of the script could not be fully tested as there were only two available nodes,

however by setting the hostname of Host B into the array, the script correctly resolved

the network name to the hostname and moved the VM successfully, thus proving that

this approach can also work.

As shown in Table 5.4, during the gaming tests, the script successfully moved the VM

when sufficient NDT was given in one of the networks in the array while it aborted the

operation when none of the networks has enough NDT and the total NDT in the array

was not enough to move the VM home and eliminate VHD traffic. During the disk

benchmark tests, the focus is not on finding a target network but rather on eliminating

VHD traffic from the network. As such, when the total NDT was sufficient the VM was

returned home while in the opposite case, the operation was aborted.

 Critical Summary 5.5

This chapter investigates how Economic Traffic Management rules for traffic

localisation can be applied to personalised services for thin-client devices that use MCC

technology. In the presented example of a VM accessed by a single client, this approach

to ETM provides a mechanism that can reduce inter-AS traffic by eliminating the traffic

flows with the highest required throughput and therefore induce the highest cost both

in economic sense and in resource management. The weakness of this approach stems

99

from the fact that user mobility can be unpredictable and therefore the estimated NDT

may change at any time of the user changes their speed and direction of movement. The

probability of a false prediction increases when a user is moving at walking speed and is

free to go in any direction, therefore exiting or entering networks in an unpredictable

manner. NDT prediction is more accurate when the user has a predefined path from

which they cannot deviate such as when driving a car and have to follow traffic rules or

when they are on a train or bus.

The main advantage of the proposed solution is that unlike other ETM proposals, it is

more fine grained and considers traffic on a per-user basis as opposed to using user

clusters or swarms and trying to predict the probability of localised data on a network

and its peers. Furthermore, it is a novel solution to studying the viability of WAN

migrations from an ETM perspective by taking into account factors such as the

migration throughput, the size of the VM and the network throughput of a service.

The prototype demonstrates that ETM-based migrations are possible and with the use

of modern technologies and transport protocols (SDN, SP), they can become a reality.

The prototype uses NDT albeit without real user mobility. This simplifies the testing by

eliminating handover problems and focusing on the traffic management aspect of the

experiment. In the LAN environment, the handover process after the migration is a

simple ARP update issued by the hypervisor. In a WAN environment, the process would

be more complex involving DNS and router updates and possibly an IP address update.

However these problems have already been identified and are investigated by

researchers trying to provide solutions for WAN migrations. For example, Harney et al.

(2007) [25] have proposed the use of Mobile IPv6 for rerouting packets to the VM after

is has moved.

The reduction of inter-AS traffic is mathematically proven when certain conditions are

met and the experimental results prove that it is possible to be implemented with the

deployment of traffic monitoring, network reconfiguration and mobility prediction

mechanisms. However, it should also be noted, that due to unpredictability in human

behaviour, one of the weaknesses of this solution is that VM migrations may be

triggered based on conditions that may change shortly after the decision is made.

100

Chapter 6 QoS Management

This chapter investigates QoS provisioning in the context of user mobility. A novel

queuing model is presented, where network performance and user mobility are among

the determining factors for the overall QoS that a mobile device will receive from

networks along a user’s path. The methodology for solving the queuing model is

presented along with two examples of how it can be applied. Finally, the implications of

this model are outlined along with some advantages and disadvantages.

 Modelling Network Performance in the Context of Mobility 6.1

Due to the structural complexities of the Internet and the vast amount of diverse

interconnections between Autonomous Systems, the performance of connections can

vary depending on the amount of traffic, geographical distance and routing distance

between clients and services. As discussed previously, network performance and more

importantly latency is a determining factor to the QoE in an MCC scenario. 5G network

technologies are responsible for providing constant connectivity to mobile devices,

however, this means that as users move and their devices switch between networks,

there is a potential for experiencing a greatly varying QoS.

One way to mitigate this is by dynamically localising MCC services in such manner that

the user is always served by the closest datacentre, thus minimising latency. As

explained in Chapter 2, one of the deployment models for MCC is to use Public Clouds as

persistent storage and task offloading platforms while also using localised datacentres

for enhancing the QoS when possible. As also explained in Chapter 3, the closest

datacentre is not necessarily the best option for varying reasons that mainly revolve

around the Internet’s structure. Furthermore, there may be cases where the QoS

delivered by a Public Cloud satisfies the user’s application’s demands and therefore a

migration of services to a local datacentre may be redundant.

Therefore, the goal is to identify when a service should be localised based on QoS

parameters akin to the method presented in the previous chapter for the purpose of

traffic management. To achieve this, we can use a queueing model that takes into

account the performance of various networks as well as user mobility and determines

when service localisation is desirable in order to enhance the QoS. Before introducing

101

the model, a set of experimental results is presented in the next section. The results

were gathered by performing latency tests to a fixed server from various locations in

order to determine the relationship between hop-counts, geographical distance and

overall latency.

6.1.1 Geographical Distance and Latency

The latency tests were carried out using public Wi-Fi hotspots and mobile networks

from Vodafone and EE. To access the mobile networks, a Smartphone was used in Wi-Fi

hotspot mode and shared its mobile network connection with the client device.

Measurements were taken from a laptop using the PsPing utility for latency

measurements and traceroute for recording the routing path between the laptop and

the server. The target server was installed at Middlesex University’s Hendon Campus

and connected to the Internet via the Joint Academic Network (JANET). The purpose of

this experiment is to study end-to-end network performance rather than prefix-to-

prefix or node-to-prefix. This way, we can look at the entire path of the connection and

identify where performance bottlenecks are occurring.

6.1.1.1 London Tube Wi-Fi Latencies

The first test involved the client using the Wi-Fi network in London’s tube service which

is provided by Virgin. Starting from Hendon Central and moving south on the Northern

Line, tests were conducted at each station that has free Wi-Fi available. PsPing was

configured to perform TCP ping and measure the bandwidth. In total, 20,000 packets

were used for latency measurements and 20,000 for bandwidth measurement. TCP

ping was chosen because it is more representative of the connection between service

and client compared to ICMP pings. Furthermore, the packet size was set to 1024 Bytes

so as not to overwhelm the server and the network. Results are presented in Fig. 6.1 in

ascending order based on geographical distance from the campus.

102

Figure 6.1 London Tube results in ascending distance from the server.

In the first test, the jitter was negligible with less than 1% of packets deviating by more

than 1ms from the mean latency. We see that as the geographical distance increases, the

latency is slowly increasing as well but we also have to take into account network traffic

which is not shown in the chart. As we move near the centre of London, the stations

were busier with more people on the platform using their mobile devices. Until Chalk

Farm, the latency and throughput are fairly constant but the big increase to the latency

was found at London Bridge. Consequently, the throughput is also reduced. During the

whole phase of the experiment, the traceroute showed a constant hop count of 12 hops

with only the first hop (access point) changing at each station. This experiment did not

provide conclusive results but it can be argued that as we move towards the centre of

the city, networks are busier and the QoS drops. The nearly 2ms increase in latency

between Chalk Farm and London Bridge cannot be considered a product solely of

geographical distance since the distance between Chalk Farm and the server is

approximately 5.1 miles while the distance between the server and London Bridge is 9.5

miles. If distance was the primary factor, the latency would have almost doubled. So in

fact, we see that within metropolitan networks, the performance is not defined only by

the distance but also by the load on the network. To better understand the structure of

Virgin’s network, a separate test was performed using a Virgin Home Broadband

hotspot in Tufnell Park which is 5 miles away from the campus. In this test, the hop

count was the same (albeit with different routers in the first 4 hops), as in the Tube’s

Wi-Fi but the latency was 17ms and the throughput was only 0.3MB/s. Traceroute

H/stead Bellsize Chalk Lndn Br E. Castle

Th/put (MB/s) 1.79 1.83 1.77 1.39 1.31

Latency (ms) 7.96 8.05 8.17 9.94 9.84

Hops 12 12 12 12 12

0

2

4

6

8

10

12

14

103

results show that the higher latency for Virgin Home Broadband was caused by the first

4 hops that formed a different routing path to the one used by the Virgin’s Wi-Fi in the

Tube. We conclude that although the network is the same in both cases, the point of

attachment is different and hence the subnets within the network that serve the client

in each case, can exhibit different performance characteristics. This performance

distinction between different points of attachment within the same network,

demonstrates that there are determining factors that outweigh the geographical

distance.

6.1.1.2 Manchester Wi-Fi Latency

To confirm the findings of the first experiment, a second series of tests was conducted

from Manchester in order to study the effects of longer distances. The same

methodology was used for the experiments but this time emphasis was given to latency

and jitter. This time public Wi-Fi hotspots on BT’s backhaul were used to connect to the

Internet. The findings are presented in Fig. 6.2. The traceroute from each location is

almost identical, and differentiated only by three routers which form the transit

connection between JANET and BT’s network. In all cases the total hop count was 17.

Figure 6.2 Public Wi-Fi latency results in Manchester.

Once again, the results of the experiments do not show a linear relationship between

latency and geographical distance. Manchester city centre is approximately 172 miles

away from the server but under normal network conditions, the mean latency only

increased 5 times. There are two locations in Manchester where the Wi-Fi network

Loc.1 Loc.2 Loc.3 Loc.4

Mean (ms) 51 546 46 399

Jitter (ms) 14 278 6 174

Hops 17 17 17 17

0

100

200

300

400

500

600

104

performed poorly and according to traceroute results, it was the metropolitan network

at Manchester that caused the increased latency rather than Wi-Fi hotspot or BT’s

backbone that connects to JANET.

To clarify the causes of the increased hop count and latency between London and

Manchester, another test was carried out using BT’s network in order to understand the

structure and the factors that are affecting performance. The test was conducted at

Marble Arch in London and a latency of 19ms with a hop count of 15 was recorded.

Between this test and the ones from Manchester, the only difference was the first 8

hops. While the connection from Marble Arch passed through London’s Metropolitan

network and reached the core of BT’s network within 6 hops, the same connection from

Manchester had to go through 8 hops before reaching BT’s core. So although there is a

small hop count increase to cover the extra distance, the excess latency was found to be

caused by the metropolitan network in Manchester and more specifically, was caused

by the first few hops of the connection. It is also interesting to note that the latency from

Marble Arch using BT’s network is higher than the latency from Virgin’s network at

London Bridge Tube Station despite Marble Arch being 3 miles closer to the server.

Further tests performed by Middlesex University students using BT broadband also

show that different points of attachment to the network exhibit different performance.

The results are available for review but they are not included in this thesis.

6.1.1.3 International Wi-Fi Latencies

To further understand the impact of distance and different networks on the latency, the

same test was conducted at two locations in Greece. The first location was in Piraeus,

using a home broadband package from a local ISP and returned a latency of 90ms and a

hop count of 14. This result is of particular interest since it returned latency higher than

from Manchester but also returned a hop count smaller than the connection from

Marble Arch. The second location was at the island of Aegina using a home broadband

connection from the same ISP as in Piraeus. This test returned a hop count of 11 (which

is even smaller than the free Wi-Fi in London’s tube) and a latency of 99ms. Although

the ISP was the same on both locations, the route to the server was vastly different with

the route from the island using a different transit connection in the intercontinental

backbone to reach JANET. Another interesting finding was that the route from Piraeus

105

experienced path inflation by going through London, reaching Manchester and then

going back to London to reach the server.

6.1.1.4 Mobile Network Latencies

After concluding the fixed broadband tests, a second series of tests was conducted using

LTE and 3G in London in order to find out how mobile networks were structured and if

there is any relationship between distance, hop count and latency. Due to data

allowance constraints on mobile networks, it was impossible to use the same

methodology as in the previous tests. Instead, the packet size remained at 1024 Bytes

but only 1,000 tests were performed for a total of 1MB per test.

Figure 6.3 Mobile network latency results in multiple locations.

The first series of test was conducted using Vodafone’s 3G network by converting a

Smart Phone to a Wi-Fi hotspot. Measurements were taken at Marble Arch, Oxford

Circus and Piccadilly Circus. The hop count was constant in all locations as shown in Fig.

6.3. Although Marble Arch is geographically closest to the server, the lowest recorded

latency was at Piccadilly Circus. More interestingly, the first 4 hops of the routing path

at Piccadilly Circus was different to that of the other locations. However, due to very

high jitter and incomplete traceroute results due to some routers not responding to

pings, it is not possible to determine how and why the performance improved so

drastically at Piccadilly.

The second series of tests was conducting using EE’s LTE network, once again by

converting a Smart Phone to a Wi-Fi hotspot. The LTE network displayed much less

3G MA 3G OC 3G PC LTE MA LTE OC LTE PC LTE TP

Latency (ms) 756 942 204 52 50 51 51

Hop 17 17 17 19 19 19 22

0

100

200

300

400

500

600

700

800

900

1000

106

jitter and more consistent performance compared to 3G. The hop count was also

constant across the three locations in central London, and the latencies recorded in each

location only differ by 2ms. The routing path was also consistent in those three

locations. An extra test was conducted using LTE, at Tufnell Park for comparison with

Virgin’s Home Broadband from the same location. Once again, the LTE network

recorded latency consistent with the locations in central London; however, the routing

path changed and increased to 22 hops as shown in Fig. 5.3. Compared to Virgin

Broadband results from Tufnell Park, the LTE connection has 10 more hops (22 vs 12)

in the routing path to the server and three times the latency (51ms vs 17ms).

6.1.2 Summary of Latency Tests

What the above results show is that the Internet is a fluid landscape and the

performance of networks cannot be easily determined by making associations with

geographical distances and hops. In fact, even when using one network, different points

of attachment to that network can offer greatly varying performance with only minor

changes in the routing path. Therefore, what is needed to satisfy QoS demands for MCC

is a mechanism for taking real-time measurements from networks and a model which

we can use to determine if the offered QoS can satisfy the client’s needs. Furthermore,

since the main characteristic of 5G networks is constant connectivity via heterogeneous

handovers, mobility has to be taken into account when modelling the performance of

multiple networks along a user’s path. The following section presents such a model.

 QoS Evaluation Model for Mobile Clients 6.2

To evaluate the QoS of a single connection, a simple Markov chain can be used where

the service request rate is defined as the number of service request sent by the client to

the server such that satisfies the needs for the application without performance

degradation. Therefore, the service request rate can be defined as the desirable flow of

data in order to provide the desired level of performance from the application. The

service rate is defined as the perceived rate of service responses that the client is

receiving. Hence, the service rate is a factor of the Cloud’s performance and the

network’s performance. Ideally, we want the service rate to be high enough so that it

satisfies the request rate from the client. When this condition is not satisfied, requests

are being queued by the network and consequently, the response time increases and

107

application performance degrades. Fig. 6.4 visualises the Markov chain with a maximum

buffer depth of 3 requests. The buffer depth can be scaled to any desired number to

reflect different scenarios. We represent the service rate as μ and the request rate as λ.

P(0) P(1) P(2)

Client

Service

λ

μ

λ

μ

Figure 6.4 Markov Chain.

This model is currently employed as a method for evaluating the performance of

networks and services at different service and request rates and buffer depths.

However, in a mobility scenario, this model cannot be used to evaluate the performance

of a connection because the network may change at any time as the user moves and thus

λ may remain the same but μ can vary.

To describe a mobility scenario, we can consider a new queueing model, where multiple

chains represent the different networks along the user’s path. As the client moves and

the device switches between networks, each chain represents the performance that the

client experiences at their location. The client’s movement can be expressed as a

probability of “hopping” from one chain to another. This new model is illustrated in Fig.

6.5 in a 3x3 configuration. Each chain has its own service rate μn and also different

probabilities for the client to leave the chain by moving to a chain upwards or

downwards. We represent these probabilities as Mun and Mdn where n is always the

originating chain. The general form of the model can be described as (N x M), where N

defines the number of networks and M defines the buffer depth.

108

P(2,0) P(2,1) P(2,2)

P(1,0) P(1,1) P(1,2)

P(0,0) P(0,1) P(0,2)

Client

λ

μ2

λ

λ λ

λ λ

μ2

μ1 μ1

μ0 μ0

Mu0

Md1

Md2

Mu1

Service

Figure 6.5 Multichain model in 3x3 configuration.

The probabilities of moving between chains can be derived by overlaying a map of

wireless networks on the user’s path as described in the previous chapter for the

purposes of NDT. Different settings of the queueing model can be constructed for the

user’s path, with each one representing a different set of probabilities and combination

of networks to which the mobile node may connect. Networks that demonstrate a high

amount of queued requests present a potential problem for the QoE and in these cases,

we can attempt to localise the MCC service to a datacentre within those networks so

that performance may be improved by reducing the routing distance.

The different combinations of network and movement probabilities along a client’s path

can be represented as a multidimensional model, as shown in Fig. 6.6, with multiple

planes, each one representing a different scenario and all of them intersecting at the

location of the server. Alternatively, another way to use the model is to consider a set of

chains as representing different points of attachment to the same network. This offers a

more fine-grained approach as it gives us the ability to evaluate the performance of a

single network from different points of attachment. For a real world example, we could

consider this model applicable to an LTE network where each chain represents different

base stations and potentially different subnets of the network. A vertical handover

would be represented as a different set of chains and as long as the user remains within

an administrative domain, the different points of attachment are represented as chains

within the same set.

109

Client

Service

Figure 6.6 Multi-dimensional model based on a 3x3 chain configuration.

This model can be used in two different modes of operation in the context of MCC and

5G networks. The first mode is to use the model for making network selection decisions.

This way we can evaluate the performance of networks along a user’s path and create a

list of preferred networks that the mobile node will prioritise in the selection process.

The second mode of operation is to use this model as a mechanism for dynamically

localising services when a network is insufficient performance is found on the user’s

path and presents the only available connectivity option. This approach heavily depends

on measuring the latency of networks as well as identifying where most of the latency is

caused. If caused by the user’s access point or another router within the user’s network,

localising the service would marginally improve the QoE. This mode mostly applies to

scenarios where the backbone (i.e. transit and peer connections) is the cause of latency

and hence, localising a service would bypass the problematic networks and improve the

performance. However, we can also consider an extreme case where the latency does

originate from the user’s network but the performance is so low that as an emergency

110

action, the service is localised in order to reduce as much latency as possible from other

networks.

6.2.1 Operational Requirements and Limitations

In either mode of operation, in order for this model to function, a set of requirements

has to be satisfied. The first requirement is that the application of the user can define

the required service rate. This is not necessarily in terms of bandwidth of latency and it

can be in terms of frame-rate so that different applications can define their desired level

of responsiveness. In this case, the estimated size of each frame in terms of data will

have to be reported as well so that the network can determine if the latency and

throughput are adequate.

The second requirement is that network QoS can be reported in advance (i.e. before the

client connects to each network) so that the model can evaluate the total performance

of different networks along the user’s path. This requires a set of mechanisms that

probe networks and gather performance information for the current location of the

user’s service.

The third requirement is that the networks can report the user’s path so that

probabilities of handovers can be calculated in advance along with the user’s NDT for

each network.

This model does not take into account any performance degradation due to handovers.

For instance, any additional latency induced by the process of the handover, is not

considered as a factor in the performance of the networks. Therefore, the results

presented here may be different to those from a real world scenario.

Due to the large number of variables introduced to the model when it is being scaled to

NxM, it is very difficult to derive a closed-form solution. This means that we cannot take

this model and apply it as a general solution to multiple networks. Each network, will

need to solve the model for the amount of NxM that they desire, depending on how far

into the future they want to predict a user’s path and how big a buffer they desire. After

the model is solved for any NxM values, the user’s mobility rate and performance inputs

can be applied to the equations to model the performance of a connection.

111

 Solving the Model 6.3

The queueing model can be solved mathematically for any (NxM) configuration,

however, as the size of the model increases, the number variables also increases,

making it very hard to derive a closed-form solution. In this section, we will look at the

methodology used for solving the queueing model in a 2x3 configuration as presented in

Fig. 6.7.

1,0 1,1 1,2

0,0 0,1 0,2

Mu0

μ1

μ0 μ0

μ1

Md1

Figure 6.7 2x3 queueing model.

The balance equations:

We start by constructing the balance equations. In this process, we express a balance

between anything going in and anything going out of each state of the mode. Thus for

each state, we have:

(𝑀𝑢0 + 𝜆)𝑃0,0 = 𝜇0𝑃0,1 + 𝑀𝑑1𝑃1,0

 (6.1)

(Mu0 + λ + μ0)P0,1 = Md1P1,1 + μ0P0,2 + λP0,0

 (6.2)

(𝑀𝑢0 + 𝜇0)𝑃0,2 = 𝑀𝑑1𝑃1,2 + 𝜆𝑃0,1

 (6.3)

(𝑀𝑑1 + 𝜆)𝑃1,0 = 𝑀𝑢0𝑃0,0 + 𝜇1𝑃1,1

 (6.4)

112

(𝑀𝑑1 + 𝜆 + 𝜇1)𝑃1,1 = 𝑀𝑢0𝑃0,1 + 𝜇1𝑃1,2 + 𝜆𝑃1,0

 (6.5)

(𝑀𝑑1 + 𝜇1)𝑃1,2 = 𝑀𝑢0𝑃0,2 + 𝜆𝑃1,1

 (6.6)

We then proceed to unzip the model by expressing each state as a function of its

adjacent states. Starting from P2,2, we have:

𝑃1,2 = 𝑎1,2𝑃0,2 + 𝑏1,2𝑃1,1

𝑀𝑢0

(𝑀𝑑1+𝜇1)
= 𝑎1,2

𝜆

(𝑀𝑑1+𝜇1)
= 𝑏1,2

Now we can express P1,1 by substituting P1,2:

𝑷𝟏,𝟏 = 𝑎1,1𝑃0,1 + 𝑏1,1𝑃0,2 + 𝑐1,1𝑃1,0

𝑀𝑢0

(𝑀𝑑1+𝜆+𝜇1−𝜇1𝑏1,2)
= 𝑎1,1

𝜇1𝑎1,2

(𝑀𝑑1+𝜆+𝜇1−𝜇1𝑏1,2)
= 𝑏1,1

𝜆

(𝑀𝑑1+𝜆+𝜇1−𝜇1𝑏1,2)
= 𝑐1,1

We rewrite P1,2 by substituting the value for P1,1:

𝑃1,2 = (𝑎1,2 + 𝑏1,2𝑏1,1)𝑃0,2 + 𝑏1,2𝑎1,1𝑃0,1 + 𝑏1,2𝑐1,1𝑃1,0

Same process for P1,0:

𝑷𝟏,𝟎 = 𝑎1,0𝑃0,0 + 𝑏1,0𝑃0,1 + 𝑐1,0𝑃0,2

𝑀𝑢0

(𝑀𝑑1+𝜆−𝜇1𝑐1,1)
= 𝑎1,0

𝜇1𝑎1,1

(𝑀𝑑1+𝜆−𝜇1𝑐1,1)
= 𝑏1,0

𝜇1𝑏1,1

(𝑀𝑑1+𝜆−𝜇1𝑐1,1)
= 𝑐1,0

We rewrite P1,1 and P1,2 once more using the new substitute equations:

𝑷𝟏,𝟏 = (𝑎1,1 + 𝑐1,1𝑏1,0)𝑃0,1 + (𝑏1,1 + 𝑐1,1𝑐1,0)𝑃0,2 + 𝑐1,1𝑎1,0𝑃0,0

𝑷𝟏,𝟐 = (𝑎1,2 + 𝑏1,2𝑏1,1 + 𝑏1,2𝑐1,1𝑐1,0)𝑃0,2 + (𝑏1,2𝑎1,1 + 𝑏1,2𝑐1,1𝑏1,0)𝑃0,1 + 𝑏1,2𝑐1,1𝑎1,0𝑃0,0

We now move to the lower chain, starting from P0,2, we create the following expression

by substituting P1,2:

𝑃0,2 = 𝑎0,2𝑃0,1 + 𝑏0,2𝑃0,0

(𝑀𝑑1𝑏1,2𝑎1,1+𝑀𝑑1𝑏1,2𝑐1,1𝑏1,0+𝜆)

(𝑀𝑢0+𝜇0−𝑀𝑑1𝑎1,2−𝑀𝑑1𝑏1,2𝑏1,1−𝑀𝑑1𝑏1,2𝑐1,1𝑐1,0)
= 𝑎0,2

𝑀𝑑1𝑏1,2𝑐1,1𝑎1,0

(𝑀𝑢0+𝜇0−𝑀𝑑1𝑎1,2−𝑀𝑑1𝑏1,2𝑏1,1−𝑀𝑑1𝑏1,2𝑐1,1𝑐1,0)
= 𝑏0,2

113

We can now go back and substitute P0,2 in the upper chain:

𝑷𝟏,𝟎 = (𝑎1,0 + 𝑐1,0𝑏0,2)𝑃0,0 + (𝑏1,0 + 𝑐1,0𝑎0,2)𝑃0,1

𝑷𝟏,𝟏 = (𝑎1,1 + 𝑐1,1𝑏1,0 + 𝑎0,2𝑏1,1 + 𝑎0,2𝑐1,1𝑐1,0)𝑃0,1 + (𝑏1,1𝑏0,2 + 𝑏0,2𝑐1,1𝑐1,0 + 𝑐1,1𝑎1,0)𝑃0,0

𝑷𝟏,𝟐 = (𝑎1,2𝑎0,2 + 𝑏1,2𝑏1,1𝑎0,2 + 𝑎0,2𝑏1,2𝑐1,1𝑐1,0 + 𝑏1,2𝑎1,1 + 𝑏1,2𝑐1,1𝑏1,0)𝑃0,1 +

(𝑎1,2𝑏0,2 + 𝑏1,2𝑏1,1𝑏0,2 + 𝑏1,2𝑐1,1𝑐1,0𝑏0,2 + 𝑏1,2𝑐1,1𝑎1,0)

We can now express P0,1 as follows:

𝑷𝟎,𝟏 = 𝑢𝑃0,0

 (6.7)

(𝑀𝑑1𝑏1,1𝑏0,2+𝑀𝑑1𝑏0,2𝑐1,1𝑐1,0+𝑀𝑑1𝑐1,1𝑎1,0+𝜇0𝑏0,2+𝜆)

(𝑀𝑢0+𝜆+𝜇0−𝑀𝑑1𝑎1,1−𝑀𝑑1𝑐1,1𝑏1,0−𝑀𝑑1𝑎0,2𝑏1,1−𝑀𝑑1𝑎0,2𝑐1,1𝑐1,0−𝜇0𝑎0,2)
= 𝑢

And thus, we can write the final form for each state as a function of P0,0:

𝑷𝟏,𝟐 = (𝑢𝑎1,2𝑎0,2 + 𝑢𝑏1,2𝑏1,1𝑎0,2 + 𝑢𝑎0,2𝑏1,2𝑐1,1𝑐1,0 + 𝑢𝑏1,2𝑎1,1 + 𝑢𝑏1,2𝑐1,1𝑏1,0

+ 𝑎1,2𝑏0,2 + 𝑏1,2𝑏1,1𝑏0,2 + 𝑏1,2𝑐1,1𝑐1,0𝑏0,2 + 𝑏1,2𝑐1,1𝑎1,0)𝑃0,0

 (6.8)

𝑷𝟏,𝟏 = (𝑢𝑎1,1 + 𝑢𝑐1,1𝑏1,0 + 𝑢𝑎0,2𝑏1,1 + 𝑢𝑎0,2𝑐1,1𝑐1,0

+ 𝑏1,1𝑏0,2 + 𝑏0,2𝑐1,1𝑐1,0 + 𝑐1,1𝑎1,0)𝑃0,0

 (6.9)

𝑷𝟏,𝟎 = (𝑎1,0 + 𝑐1,0𝑏0,2 + 𝑏1,0𝑢 + 𝑢𝑐1,0𝑎0,2)𝑃0,0

 (6.10)

𝑷𝟎,𝟐 = (𝑎0,2𝑢 + 𝑏0,2)𝑃0,0

 (6.11)

Finally, the sum of all probabilities is equal to 1 and therefore we have:

𝟏 = 𝑷𝟎,𝟎 + 𝑷𝟎,𝟏 + 𝑷𝟎,𝟐 + 𝑷𝟏,𝟎 + 𝑷𝟏,𝟏 + 𝑷𝟏,𝟐

 (6.12)

114

𝟏 = 𝑷𝟎,𝟎 + 𝑢𝑷𝟎,𝟎 + (𝑎0,2𝑢 + 𝑏0,2)𝑷𝟎,𝟎 + (𝑎1,0 + 𝑐1,0𝑏0,2 + 𝑏1,0𝑢 + 𝑢𝑐1,0𝑎0,2)𝑷𝟎,𝟎 +

(𝑢𝑎1,1 + u𝑐1,1𝑏1,0 + 𝑢𝑎0,2𝑏1,1 + 𝑢𝑎0,2𝑐1,1𝑐1,0 + 𝑏1,1𝑏0,2 + 𝑏0,2𝑐1,1𝑐1,0 + 𝑐1,1𝑎1,0)𝑷𝟎,𝟎 +

(𝑢𝑎1,2𝑎0,2 + 𝑢𝑏1,2𝑏1,1𝑎0,2 + 𝑢𝑎0,2𝑏1,2𝑐1,1𝑐1,0 + 𝑢𝑏1,2𝑎1,1 + u𝑏1,2𝑐1,1𝑏1,0 + 𝑎1,2𝑏0,2 +

𝑏1,2𝑏1,1𝑏0,2 + 𝑏1,2𝑐1,1𝑐1,0𝑏0,2 + 𝑏1,2𝑐1,1𝑎1,0)𝑷𝟎,𝟎

𝑷𝟎,𝟎 = 𝟏/(1 + 𝑢 + 𝑎0,2𝑢 + 𝑏0,2 + 𝑎1,0 + 𝑐1,0𝑏0,2 + 𝑏1,0𝑢 + 𝑢𝑐1,0𝑎0,2 + 𝑢𝑎1,1 + u𝑐1,1𝑏1,0 +

𝑢𝑎0,2𝑏1,1 + 𝑢𝑎0,2𝑐1,1𝑐1,0 + 𝑏1,1𝑏0,2 + 𝑏0,2𝑐1,1𝑐1,0 + 𝑐1,1𝑎1,0 + 𝑢𝑎1,2𝑎0,2 + 𝑢𝑏1,2𝑏1,1𝑎0,2 +

𝑢𝑎0,2𝑏1,2𝑐1,1𝑐1,0 + 𝑢𝑏1,2𝑎1,1 + 𝑢𝑏1,2𝑐1,1𝑏1,0 + 𝑎1,2𝑏0,2 + 𝑏1,2𝑏1,1𝑏0,2 + 𝑏1,2𝑐1,1𝑐1,0𝑏0,2 +

𝑏1,2𝑐1,1𝑎1,0)

P0,0 is now expressed as a function of all the variables we can input. Every other state

probability is calculated based on P0,0. The sum of all probabilities for any input values

will always be equal to 1.

 Test Scenarios and Assumptions 6.4

To help understand how the model may be applied, this section presents two different

mobility scenarios that can be studied using the 3x3 model. The two scenarios analyse

Random and Fixed-Path mobility which are the two prominent types of mobility. Before

analysing the scenarios, we will look at some of the prominent methods for determining

user mobility which is one of the main inputs for the model.

6.4.1 Measuring Mobility

For the purposes of traffic management, we introduced NDT as a method of calculating

the time that a user will stay within a network and at the same time, as an indication of

the probability of joining other networks under the right conditions. Because the

queueing model takes the rate of mobility as input, NDT does not apply directly. In this

section, we introduce a method for measuring the rate of mobility and a proposed

solution for determining the sequence of networks along a user’s path.

A cell’s outgoing rate can be expressed as a function of the radius, the circumference

and the area of the cell and the average velocity of the user (Liu et al. 2006) [41]. This is

expressed as follows:

115

𝑀𝑐𝑑𝑤𝑒𝑙𝑙 =
𝐸(𝑣)𝐿

𝜋𝐴

 (6.13)

Where, 𝐸(𝑣) is the average velocity of the user, L is the length of the cell’s perimeter and

A is the area of the cell. We can substitute L and A with 2πR and πR2 respectively, where

R is the radius of the circle. We can now rewrite the expression as follows:

𝑀𝑐𝑑𝑤𝑒𝑙𝑙 =
2𝐸(𝑣)

𝜋𝑅

 (6.14)

In addition to measuring the mobility rate, we also need to identify which network the

user will move to next. As explained before, we can predict this based on NDT

calculations and an overlay map of networks. An alternative method, which would more

accurately predict upcoming network connections, is described by Mapp et al. (2012)

[44]. They investigate the use of a service that monitors a user’s mobile device

connectivity and gathers information about each network that the device joins. The

information is stored on a server along with contextual information about user mobility,

such as which network the device was connected to previously and to which network it

handed over afterwards. This Wireless Footprint method can provide mobility

information based on a user’s past mobility patterns. Therefore, we can use this method

for estimating the next network that the user may join and thus create a proactive

system for determining the QoS. The following subsections present three different

mobility scenarios as representative examples of different types of mobility which help

demonstrate the functionality of the proposed model. Real life human mobility would be

characterised as a combination of these scenarios, however the exact characteristics

would be the outcome of a study dedicated on the subject and therefore are outside the

context of this chapter.

6.4.2 A Case of Urban and Fixed-Path Mobility

In the case of urban and fixed-path mobility, we can use this simple 2x3 model to

evaluate the performance of networks as the user passes through them. We will assume

that Wireless Footprinting is not used and therefore, the 2x3 model is preferable in this

case as it is easier to predict the next location of the user based on their position and

116

movement. A buffer depth of 3 was chosen for this particular case as it easy to solve and

can give a good example of how the model works.

Urban Mobility (Random Movement)

We start with an urban mobility example, where the user has equal probability of

moving back or forward and therefore the device may be switching between two

networks at an equal rate. Another way of viewing this example, is to consider that the

user may not be moving back and forth, however, in his direction of movement, there

are alternating network areas of two different providers. Therefore, from the network’s

perspective, the user exhibits a palindromic movement between two networks, or in

other words, the user may have a fixed direction but the device hops between two

networks in an alternating manner. The inputs to the model are presented in Table 6.1.

We choose unequal service rate between networks to visualise the impact to the overall

performance when the device handovers between networks of different QoS. The

mobility rates were derived from equation (6.14) using a radius of 50 metres for the

network and a human walking speed of 5km/h.

Table 6.1 Random urban mobility inputs with one network unable to provide
the required QoS.

λ μ0 μ1 Mu0 Md1

60.0000 30.0000 60.0000 0.0177 0.0177

117

Figure 6.8 Random urban mobility results.

In this scenario, we see that the first network (μ0) has half the service rate of the second

network (μ1). What is interesting in this case, is that the model tells us that the low

performance of the first network has a detrimental effect on the performance of the

second network. Under normal conditions, the second network would have equal

probabilities across all its states (P1,M), however, we see that there is a slightly elevated

probability of being in the queue. This is a result of queued requests from the first

network, coming through to the second network. When the mobility is random and the

user is switching between these two networks at an equal rate, the performance of the

first network improves slightly due to requests being served by the second network, but

the performance of the second network degrades slightly due to the extra requests that

were pending on the first network. We now look at the same scenario but with

networks of adequate performance as shown in Table 6.2.

Table 6.2 Random urban mobility with sufficient QoS on both networks.

λ μ0 μ1 Mu0 Md1

60.0000 65.0000 80.0000 0.0176 0.0176

0.071462

0.142869

0.285668

0.166636 0.166664 0.166699

0.000000

0.050000

0.100000

0.150000

0.200000

0.250000

0.300000

P0,0 P0,1 P0,2 P1,0 P1,1 P1,2

P
ro

b
a

b
ili

ty

States

118

Figure 6.9 Random urban mobility results. Both networks have adequate QoS.

We see from Fig. 6.9 that both networks have adequate performance meaning that there

is a higher probability of having an empty queue (P0,0 and P1,0) as opposed to having

queued requests. In this case, the model tells us that both networks can successfully

provide the requested services at very high performance levels.

Urban Mobility (Fixed Path)

Next, we look at a fixed-path mobility example where the user is moving in one

direction and therefore there is a very small chance of returning to a previous network.

The inputs for this scenario are presented in Table 6.3. Once again, we start with a case

where one of the networks has insufficient QoS. The values to derive the upwards

mobility rate were set to 80km/h for velocity and 500 metres cell radius

Table 6.3 Fixed-path mobility. The first network has insufficient QoS.

λ μ0 μ1 Mu0 Md1

60.0000 30.0000 60.0000 0.0283 0.0001

In this scenario, we would expect the second network to have equal probabilities across

all the states since μ1�equals λ. However, as shown in Fig. 6.10, the performance of the

second network is once again slightly affected by the first network. We find the

0.180180
0.166311

0.153509

0.216207

0.162163

0.121629

0.000000

0.050000

0.100000

0.150000

0.200000

0.250000

P0,0 P0,1 P0,2 P1,0 P1,1 P1,2

P
ro

b
ab

ili
ty

States

119

probability of being idle (P1,0) to be lower than being in the queue. This does not happen

when we equalise μ0�and μ1 while leaving all the other values as in Table 6.3. Fig. 6.11

illustrates this.

Figure 6.10 Fixed-path mobility with insufficient QoS on first network.

Figure 6.11 Fixed-path mobility with equal QoS on networks.

We see from these scenarios that mobility plays a role to the overall QoS even when

ignoring performance degradation from the handover events. Therefore, when

modelling the performance of MCC services, user mobility has to be taken into account,

and where possible, network performance should be adjusted to compensate, either via

0.000503 0.001006 0.002012

0.332159 0.332160 0.332160

0.000000

0.050000

0.100000

0.150000

0.200000

0.250000

0.300000

0.350000

0.400000

P0,0 P0,1 P0,2 P1,0 P1,1 P1,2

P
ro

b
ab

ili
ty

States

0.001174 0.001174 0.001174

0.332160 0.332160 0.332160

0.000000

0.050000

0.100000

0.150000

0.200000

0.250000

0.300000

0.350000

P0,0 P0,1 P0,2 P1,0 P1,1 P1,2

P
ro

b
ab

ili
ty

States

120

network selection mechanisms or via service localisation. In the next section, we look at

an example where Wireless Footprinting can provide information about a sequence of

networks.

6.4.3 A Case of Contextual Mobility

Wireless Footprinting gives us the ability to determine the sequence of networks that to

which a device will attach. Consequently, we can predict with a certain level of

confidence, how service requests will be distributed across multiple networks along a

user’s path. Therefore, we can expand the 2x3 model by adding an extra chain to

represent a network further down the user’s path. So in this case, let us investigate the

performance of the 3x3 model in a scenario of contextual mobility. The solution for the

3x3 model can be found in Appendix B. The input values are presented in Table 6.4 and

the representation of the model is in Fig. 6.5. For this scenario, we consider a speed of

50km/h for the user and a cell radius of 1km, this representing motorway mobility.

Table 6.4 Contextual mobility inputs for fixed-path.

λ μ0 μ1 μ2 Mu0 Md1 Mu1 Md2

60.0000 80.0000 40.0000 20.0000 0.0088 0.0001 0.0088 0.0001

As we see from the results in Fig. 6.12, the user is bound to end up on the third network

which has insufficient service rate and consequently, the performance of their

connection will degrade as the requests will be queued. At the same time, we also see

from the results that the first network had better performance since the probability of

being idle is higher than having any queued requests. Finally, the second network also

shows higher probability of queueing requests and therefore the performance there is

also insufficient.

121

Figure 6.12 Contextual mobility results for fixed-path.

Another potential use case for the 3x3 model using Wireless Footprinting would involve

a scenario where a user has equal probability of joining two different networks. We can

envision such a scenario by considering a user currently connected to an LTE networks

and moving towards an area where multiple overlapping Wi-Fi networks can be found.

From past records, Wireless Footprinting may report that the device has equal

probability of joining either network, so in this case, we want to use the model to select

the network with adequate performance for the user’s applications. So let us consider a

person walking while their device is streaming music. We set the walking speed to

5km/h and the radius of the Wi-Fi and LTE network to 60 and 500 metres respectively.

Table 6.5 contains the inputs for this scenario.

Table 6.5 Contextual mobility with two probable targets.

λ μ0 μ1 μ2 Mu0 Md1 Mu1 Md2

40.0000 55.0000 45.0000 65.0000 0.0150 0.0018 0.0018 0.0150

0.00006 0.00004 0.00003 0.00236 0.00355 0.00532

0.07605

0.22815

0.68444

0.00000

0.10000

0.20000

0.30000

0.40000

0.50000

0.60000

0.70000

0.80000

P00 P01 P02 P10 P11 P12 P20 P21 P22

P
ro

b
ab

ili
ty

States

122

Figure 6.13 Contextual mobility results for multiple networks.

In this case, we consider the user to be starting from the middle chain and based on the

probabilities given by Wireless Footprinting and the movement rate of the user, we

discover that they may move either to the top or the bottom chain of the model. So in

this case the movement rate is equal for going up or down in the chain but it is also very

likely that the user will return to the LTE network upon leaving the range of the Wi-Fi

networks. Fig. 6.13 shows the results from this scenario and we see that the

performance of the top network is better than the performance of the other two. The

LTE network is the least capable of maintaining a high QoS so the mobile device could

choose to hop to either of the Wi-Fi networks. Since we want to achieve efficient

utilisation of resources, there are two options: the first option is to move to the first

network (bottom chain) and temporarily stream music from there. The second option is

to move to the second network (top chain) and stream music from there while also

trying buffer as much music as possible so that upon returning to the LTE network,

some of the queueing delays may be absorbed by the cached music. This scenario

demonstrates how this model can be used as a network selection mechanism.

6.4.4 Scenario-Based Application

In order to apply this model to a real world scenario, we need to construct multiple

scenarios that represent different mobility estimations. For example, if we wish to apply

the 2x3 model to a case where the device may have the option of performing a handover

0.04289
0.03119 0.02269

0.30103

0.26758

0.23784

0.04853
0.02987

0.01838

0.00000

0.05000

0.10000

0.15000

0.20000

0.25000

0.30000

0.35000

P00 P01 P02 P10 P11 P12 P20 P21 P22

P
ro

b
ab

ili
ty

States

123

between multiple networks, we would need to construct a scenario for each network

such that the bottom chain of the model represents the current network of the user and

the top chain represents a potential target. We can then apply different probabilities via

Wireless Footprinting to each scenario to find out where the handover is more

probable. Fig. 6.14 demonstrates how various scenarios may be constructed.

Additionally, we can use the model to analyse the overall performance of each scenario

so that when multiple scenarios are equally likely, the network will automatically select

the scenario with better performance or more efficient utilisation of resources. Thus, we

can apply this model as a network selection mechanism.

1,0 1,1 1,2

0,0 0,1 0,2

Mu0

μ1

μ0 μ0

μ1
Md1

Base
Network

Target
Network A

1,0 1,1 1,2

0,0 0,1 0,2

Mu0

μ1

μ0 μ0

μ1
Md1

Base
Network

Target
Network B

1,0 1,1 1,2

0,0 0,1 0,2

Mu0

μ1

μ0 μ0

μ1
Md1

Base
Network

Target
Network C

Figure 6.14 Illustration of multiple scenarios of handovers.

Alternatively, after performing the above calculations, if the highest probability applies

to a scenario with suboptimal performance, we could calculate the user’s NDT for the

target network in that particular scenario and use that to determine if there is enough

time to localise the service to that network. Ultimately this scenario is limited by how

far into the future, the location of the user can be predicted but what is also important

to consider is that localising a service to achieve good performance within one network,

may actually have negative effects on the performance of other networks. This is

particularly applicable if the network where the service was localised, does not have

adequate peering resources to other networks.

 Critical Summary 6.5

Looking back at the proposed service delivery framework, this mechanism falls in the

service delivery layer along with the traffic management mechanism. Considering the

above scenarios and the information presented about the structure of the Internet, we

can potentially envision particular scenarios where traffic management and QoS

124

provisioning may be in conflict. For example, the QoS management system may suggest

a service localisation because it thinks that it is necessary and the user’s NDT may be

adequate to perform the migration, but the traffic management system may object the

decision by claiming that the NDT may be adequate for localising a service but

insufficient for creating any traffic savings, thus adding load to the network.

The proposed model does not appear to have a general closed-form solution because

the different networks have different service rates and arrival rates as well as different

mobility rates; therefore, this limits the applicability of the model to real-life scenarios.

Practically, this limits the model to using a small number of networks simultaneously

and hence an interactive approach would be needed for a more complete solution.

Finally, this model raises the issue of identifying a target datacentre for a user’s mobility

pattern. Mechanisms to identify target datacentres need to consider the performance

that the datacentre can achieve as well as the performance of the network that connects

the datacentre to the client. Furthermore, it would be beneficial if the selection

mechanism would take into account the peering relationship between the datacentre

and other networks that the user will encounter along their path. The datacentre

selection mechanism is therefore more complex in the context of QoS than in the

context of traffic localisation within an AS.

The relationship between the traffic and QoS management systems explored in this

thesis has to be ultimately determined by the user and the network operators. Some

users may wish to give priority to QoS, while users without preference may default to

pre-assigned traffic management heuristics. These details can be defined in the Service

Management and Service Subscription layers of the framework. In conclusion, the

relative weight of each mechanism in the decision-making process has to be determined

by the users, the network operators or the service providers and it will be driven by

factors such as costs and resource utilisation.

125

Chapter 7 Conclusion and Future Work

In this chapter, a summary of the completed work is presented and the major

contributions to knowledge are highlighted. This is followed by the proposed future

work as well as work currently undertaken to create a traffic monitoring mechanism.

The chapter concludes with a closing statement of the author’s views on future Internet

and Cloud technology.

 Summary of Work 7.1

This thesis presents the evolution of thin-client computing by focusing on examples of

task offloading in a mobile environment for the purpose of expanding and enhancing

the built-in capabilities of mobile devices. Chapter 2 investigated this evolution from

early attempts at offloading mobile tasks on localised surrogate nodes to modern

Mobile Cloud Computing technology. It was highlighted that although Cloud technology

can be a more powerful and efficient solution for supporting mobile devices, network

performance issues that are not prominent in localised surrogate approaches became

more important when offloading tasks to a remote Cloud.

Chapter 3 presented the evolution of the Internet and how modern technologies as well

as the modern highly interconnected structure of the Internet are helping to deliver

lower latencies and higher bandwidths. Focus was placed on mobile networks and

problems that arise from user mobility as devices switch between different network

providers and therefore experience different network performance. The chapter

concluded that in order to better support modern mobile devices on the Internet, a

framework that takes into account network performance and user mobility is necessary.

Chapter 4 proposed a new service delivery framework focused on improving service

delivery for mobile clients using Cloud technology. This framework takes into account

recent efforts in the area of seamless connectivity across heterogeneous networks, as

well as capabilities of Cloud technology. In compliance with the definition of Cloud

technology, the framework allows for on-demand resource allocation after a negotiation

process between Cloud datacentres and also allows elastic and dynamic resource

pooling based on application requirements and user demands.

126

Using this framework as a guide, the thesis explored the dynamic localisation of

personalised Cloud services for the purpose of traffic management in a mobile

environment. The experimental results from the prototype solution as presented in

Chapter 5 show that it is possible from the network’s perspective to create mechanisms

for service localisation based on user mobility and network traffic throughput and such

mechanisms can achieve considerable gains in the aspect of traffic management under

heavy application usage scenarios such as Cloud gaming.

Chapter 6 investigated a model for estimating the overall performance of networks

along a mobile user’s path and uses it to determine when a service should be moved to a

different network when QoS demands are not satisfied. The two proposed solutions in

chapters 5 and 6 can be used in tandem as part of the proposed service delivery model

in order to maximise QoS and localise traffic.

 Contribution to Knowledge 7.2

This thesis presents and explores service localisation for mobile users as a means of

improving the QoS and managing network traffic. The proposed Service Delivery

framework takes into account user and service requirements and characteristics and

combines them with network conditions and user mobility to determine the best way to

deliver a service. The novelty of the presented framework lies in the convergence of

Cloud technology, 5th generation networks and user mobility.

For the purposes of traffic management, a set of mathematical equations was developed

as part of a mechanism that estimates the minimum NDT required to achieve traffic

savings through localisation. The equations are implemented as part of a prototype

system that dynamically moves a VM based on traffic throughput. The experimental

prototype is a novel approach to service orchestration based on Economic Traffic

Management rules and user mobility.

For the purposes of QoS provisioning, this thesis proposed a multi-dimensional queuing

model that takes into account user mobility and models the overall QoS of multiple

networks in the user’s path. Existing queueing models take into account user mobility

from the perspective of each network and consider mobility only to the extent it affects

the performance of a single network. The proposed network considers the overall end-

to-end performance across multiple networks depending on how user mobility affects

127

the rate of network handovers and weighs the impact that each network has according

to how long the device will remain connected to it. This model can be used either as a

network selection mechanism for 5G networks or as a mechanism for localising a

service to networks where QoS demands are not met, as an attempt to improve their

performance.

 Future Work 7.3

The work in this thesis highlights a few areas that are subject to future research. This

section proposes future work and work currently in progress in the fields of QoS and

Traffic Monitoring, Datacentre Selection and Security.

7.3.1 QoS and Traffic Monitoring

The developed solution for QoS and traffic monitoring assumes that this data is made

available when needed by establishing probe connections or taking samples of the

network traffic from the network interfaces of the Datacentre. However, the process of

gathering this data upon initiation of the mechanisms poses a delay to the execution

time. An improved solution to acquiring this information is by taking samples at

frequent intervals and maintaining a record of the network utilisation and QoS. Ideally

this should be done on the client-side in order to avoid centralising this process to a

datacentre that serves thousands of users. A rudimentary script in PowerShell has

already been developed for sampling network latency at frequent intervals. The user

can input the latency allowance as well as set a threshold to the amount of packets

observed over the latency allowance. Such scripts are commonly used within

datacentres to monitor the availability of hosts and network conditions. When the

threshold is exceeded, the script moves the VM to an alternative host defined by the

user. This script can be used as the basis for the development of a more complex

mechanism.

A mechanism that monitors network QoS through latency measurements is currently in

development for the SP. This mechanism sends echo packets at frequent intervals and

maintains a record of the average roundtrip time. The recorded latency, along with the

packet size can be used to estimate the characteristics of a connection in terms of

bandwidth, roundtrip time and jitter. This information can then be used to calculate the

service rate of a network and use it as input to the proposed QoS model. Furthermore, in

128

order to maintain up-to-date information on the performance of third-party networks

that a user might join along their path, a separate service is proposed that will use

either SP or Internet Control Message Protocol (ICMP) echo packets to probe the

network conditions of remote datacentres and networks thus providing information

that can be used to model the QoS along a user’s entire path. With these mechanisms

gathering network metrics at frequent intervals, the required information to determine

the time and target of a service migration will be available at the moment that the

service requires it and negate the need for the service to include these mechanisms.

This will result in a shorter execution time which will allow the service to respond more

quickly to user mobility and network changes. Ideally, network performance

information could be retrieved directly from the network using SDN technology, thus

negating the need for performing any measurements on the client or server side,

however, this solution implies that all the networks in the Internet use the same SDN

solution and co-operate in providing this information to the end-users and service

providers.

It is also possible to modify the SP to provide information on actual network throughput

generated by the service. This calculation can also be performed on the client-side along

with the QoS monitoring. Alternatively, samples of network throughput can be taken at

frequent intervals from the network card of the client device using the host operating

system. However, this presents a less accurate measurement method because some of

the traffic may not be related to the service in question. The prototype presented in this

thesis only runs a single service and therefore there is no other traffic that might skew

the results, however in a real datacentre environment or client device, there may be

multiple services using a single network interface. It would be more accurate to perform

the measurement at the transport layer where it is possible to distinguish which service

generates the network traffic. The development of this mechanism for the Simple

Protocol has been proposed and is planned for future implementation. The aim is to

maintain a log on the client device which describes the current usage as well as historic

data that may be used to determine usage patterns at different times of the day and help

identifying when a service should be localised.

129

7.3.2 Resolving Datacentre Locations

One of the challenges emerging from this thesis is the identification of datacentres that

peer with the user’s network attachment. While many datacentres may peer with many

networks, this does not necessarily mean that QoS will be equal in every scenario. When

localising a service, the first information required is the user’s network ID. The

Autonomous System Number (ASN) is the term used to describe the unique ID for each

network on the Internet and it can be derived by querying online services created for

this purpose (Team-Cymru, 2014) [64]. Using the ASN, it is possible to identify peering

relationships between networks but it first requires building a database that contains

all the ASNs on the Internet, as well as their peering relationships. In addition, the

database should contain datacentre IDs that peer with each network. This information

is not readily available but it can be constructed using information from online public

databases. The challenge is to build a mechanism that looks up the user’s ASN and

determines peering datacentres. The peering datacentres serve as potential targets for

the migration. By gathering QoS metrics between each of the peering datacentre’s and

the user’s ASN, it is possible to determine the best host for the service. For this purpose,

a PowerShell script was created as a side-project and as a template for future work. The

script identifies the user’s public IP address, and resolves it to the ASN of the user’s

current network. This information can then be used in conjunction with the

aforementioned peering database to identify target datacentres and request QoS data

from each one.

7.3.3 Security

Although the security specifics of migrating services using Cloud Interoperability

mechanisms fall outside the scope of this thesis and are currently explored by Cloud

Interoperability researchers, there are several other aspects of the proposed system

that present potential security weaknesses. The main security concern is that of

ensuring that performance data for an individual client and service are exchanged in a

way that prevents impersonation or tampering. Establishing and securing a telemetry

channel between the client device and the service is a necessity for preventing malicious

users from feeding false data into the system and triggering false migrations. There are

several different attacks that can be used against the system involving false prevention

or triggering of a migration, tampering with the destination of the migration by giving

130

false user location and overloading a Cloud by a co-ordinated attack that forces services

to migrate to it. To prevent such attacks there are three proposed directions for future

research. The first direction is to secure the communication channel between the device

and the service so that man-in-the-middle attacks cannot be used to alter the

performance data. The second direction is to validate the mechanisms that handle this

data on the client and Cloud side so that a malicious programmer will not alter them

and tamper with the data at the point where it is gathered and processed. Finally,

security mechanisms on the Cloud should prevent any services from migrating in or out

without first establishing an agreement between the source and destination Clouds.

This is partially covered in the proposed service delivery framework as part of the

migration layer which receives information from the Service Management layer to

establish which services can move depending on their requirements and the capabilities

of the target Cloud.

7.3.4 Scalability

The prototype solution proposed in Chapter 5 does not take into account scalability

problems that will arise when the mechanisms are deployed in large-scale networks

with a large number of users. Although problems such as migration time and

throughput measurement become apparent, the exact approach to collecting this

information and calculating in advance whether or not a migration is possible, can only

be identified via simulation. The particular areas of interest are the calculation of

throughput between Cloud hosts which defines the migration time of a service, the

collection of throughput metrics between services and clients/Cloud back-end and the

monitoring of user mobility. Centralising data collection to the Cloud will add to the cost

of deploying services because there will be additional processing that has to be done on

the Cloud but has the advantage of releasing resources from the thin-client and

removing the need to transmit such telemetry over the network. The alternative

approach of calculating throughput on the client, may affect the performance and

battery life of a mobile device and it will also add to the network traffic between the

client and the Cloud. In either approach, it should be up to the service to gather its own

telemetry data rather than implement a global mechanism on each Cloud that performs

the measurements and reports them to the applications. The main argument behind this

approach is that ultimately, services will have to be decoupled from any particular

131

Cloud provider and should be able to make their own decisions on when and where to

move. A simulation of such a solution deployed in a large scale network with thousands

of clients will offer insights into how much traffic is generated by telemetry information,

what is the added computation load on Clouds and services and in the case of hundreds

or thousands of concurrent migrations, what level of bandwidth is required between

participating datacentres. Similarly, the approach proposed in Chapter 6 for measuring

the overall QoS of a connection over multiple networks, a simulation on a large scale

network will reveal what the additional bandwidth requirements are for probing

remote networks to report on their QoS, how much bandwidth it will cost the network

to transmit telemetry information between clients and services and how the system

would perform under a scenario of hundreds of concurrent migrations. Lastly, user

mobility detection and reporting will require the deployment of additional network

mechanisms that can track a device and report its movement. Furthermore, a global

map that describes the coverage of networks as well as their peering relationships with

datacentres will also need to be used as reference for the system to find the appropriate

location for services. From a QoS perspective, a service migration is more complex in

terms of finding a target datacentre because a local datacentre may not always provide

the best performance. Therefore, it would be necessary for a client to query a list of

datacentres that are internal or external to their network and then inform the service

on which one offers the best performance. Once again, these mechanisms will have to be

defined and tested in a simulation in order to gain a better understanding of the

complexity and consequences on the Internet.

7.3.5 Saleability

If scalability issues are addressed for the mechanisms proposed in this thesis, the

deployment of these solutions can assist in delivering MCC services more efficiently and

with consistent performance. Cloud providers will gain a business opportunity in

localising their datacentres and acquiring additional sources of incomes from service

providers whose services use resources from different Clouds as they migrate according

to user mobility. Furthermore, network and service providers can create additional

streams of revenue by employing new charging models for customers who wish higher

levels of performance. Finally, users will gain the ability to customise the performance

132

of their Cloud applications according to their personal requirements in order to reduce

their cost or maximise their performance.

 Closing Statement 7.4

In conclusion, this thesis has demonstrated the need to take into account user mobility

and service traffic characteristics for the purposes of traffic management and QoS

provisioning in the future Internet. The proposed solutions for managing traffic and QoS

on a per-user basis answer the research question and also highlight the need for real-

time dynamic monitoring of network utilisation and QoS for each user. The

development of personalised Cloud services, in tandem with Cloud Interoperability

standards and faster network access technologies, constitute the ground for facilitating

traffic localisation and QoS management through the use of service portability. The

focus for the future Internet is on the real-time dynamic adaptation of networks based

on traffic requirements and user mobility. The work presented in this thesis is a small

step towards developing some of the required mechanisms.

i

Bibliography

1. Abolfazli, S., Sanaei, Z., Ahmed, E., Gani, A, Buyya, R. 2014. Cloud-Based
Augmentation for Mobile Devices: Motivation, Taxonomies, and Open Challenges.
Communications Surveys & Tutorials, IEEE, vol.16, no.1, pp.337-368.

2. Alexander, K. 2012. Fat Client Game Streaming or Cloud Gaming. [online]
Available at: https://blogs.akamai.com/2012/08/part-2-fat-client-game-
streaming-or-cloud-gaming.html [Accessed: 08/08/2014]

3. Alexander, K. 2012. The Future of Cloud Gaming is Still Cloudy. [online] Available
at: https://blogs.akamai.com/2012/08/the-future-of-cloud-gaming-isstill-
cloudy.html [Accessed: 08/08/2014]

4. Bahl, P., Han, R. Y., Li, L. E., & Satyanarayanan, M. 2012. Advancing the state of
mobile cloud computing. In the Proceedings of the third ACM workshop on Mobile
cloud computing and services pp. 21-28.

5. Berg, R. V. D. 2008. How the ‘Net’ works: an introduction to peering and transit.
[online] Available at: http://arstechnica.com/features/2008/09/peering-and-
transit/ [Accessed: 06/08/2014].

6. CAIDA. (2014). IPv4 and IPv6 AS Core: Visualizing IPv4 and IPv6 Internet Topology
at a Macroscopic Scale. Center for Applied Internet Data Analysis [online]
Available at: http://www.caida.org/research/topology/as_core_network
[Accessed: 06/08/2014].

7. Chen, K. T., Chang, Y. C., Tseng, P. H., Huang, C. Y., & Lei, C. L. (2011, November).
Measuring the latency of cloud gaming systems. In Proceedings of the 19th ACM
international conference on Multimedia (pp. 1269-1272). ACM.

8. Chen, P. M., & Noble, B. D. 2001. When virtual is better than real (operating system
relocation to virtual machines). In the Proceedings of the Eighth Workshop on
Hot Topics in Operating Systems, pp. 133-138.

9. Cheng, L., Jean, K., Ocampo, R., & Galis, A. 2006. Service-aware Overlay Adaptation
in Ambient Networks. IEEE International Multi-Conference on Computing in the
Global Information Technology, Bucharest, Romania, pp. 21.

10. CISCO. (2014). Unified Data Center Fabric: Reduce Costs and Improve Flexibility.
[online] Available at:
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5020-
switch/white_paper_c11-462181.html [Accessed: 06/08/2014].

11. Clinch, S., Harkes, J., Friday, A., Davies, N., Satyanarayanan, M. 2012. How close is
close enough? Understanding the role of cloudlets in supporting display
appropriation by mobile users. IEEE International Conference on Pervasive
Computing and Communications (PerCom), pp.122-127.

12. Cook Network, Consultants. 2002. Changing Role of Peering & Transit in IP
Network Interconnection Economics. [online] Available at:
http://cookreport.com/newsletter-sp-542240406/pdf?download=135:pdf-
back-issues&start=120 [Accessed: 06/08/2014].

13. Cox, L. P., Murray, C. D., & Noble, B. D. 2002. Pastiche: Making backup cheap and
easy. ACM SIGOPS Operating Systems Review, vol.36, pp.285-298.

14. Darmois, E. 2013. “Cloud Standards Coordination” Final Report v1.0. [online]
Available at:
http://csc.etsi.org/Application/documentApp/documentinfo/?documentId=204&fromList=Y

[Accessed: 06/08/2014]

https://blogs.akamai.com/2012/08/part-2-fat-client-game-streaming-or-cloud-gaming.html
https://blogs.akamai.com/2012/08/part-2-fat-client-game-streaming-or-cloud-gaming.html
https://blogs.akamai.com/2012/08/the-future-of-cloud-gaming-isstill-cloudy.html
https://blogs.akamai.com/2012/08/the-future-of-cloud-gaming-isstill-cloudy.html
http://arstechnica.com/features/2008/09/peering-and-transit/
http://arstechnica.com/features/2008/09/peering-and-transit/
http://www.caida.org/research/topology/as_core_network/
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5020-switch/white_paper_c11-462181.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-5020-switch/white_paper_c11-462181.html
http://cookreport.com/newsletter-sp-542240406/pdf?download=135:pdf-back-issues&start=120
http://cookreport.com/newsletter-sp-542240406/pdf?download=135:pdf-back-issues&start=120
http://csc.etsi.org/Application/documentApp/documentinfo/?documentId=204&fromList=Y

ii

15. Dinh, T. H., Lee, C., Niyato, D. & Wang, P. 2011. A Survey of Mobile Cloud
Computing: Architecture, Applications, and Approaches. Wireless Communications
and Mobile Computing, Wiley, pp.1–38.

16. Duan, Q., Yuhong Y., & Vasilakos, A. V. 2012. A Survey on Service-Oriented Network
Virtualization Toward Convergence of Networking and Cloud Computing. IEEE
Transactions on Network and Service Management, vol.9, no.4, pp.373-392.

17. Erl, T. 2005. Service-Oriented Architecture – Concepts, Technology, and Design.
Prentice Hall.

18. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., & Estrin, D.
2010. Diversity in smartphone usage. In Proceedings of the 8th international
conference on Mobile systems, applications, and services, pp. 179-194.

19. Filippi, P. 2014. It’s Time to Take Mesh Networks Seriously (And Not Just for the
Reasons You Think). [online] Available at: http://www.wired.com/2014/01/its-
time-to-take-mesh-networks-seriously-and-not-just-for-the-reasons-you-think
[Accessed: 06/08/2014]

20. Finn, A. 2013. Windows Server 2012 R2 Hyper-V Live Migration Improvements.
[online] Available at: http://www.aidanfinn.com/?p=14907 [Accessed:
06/08/2014]

21. Ford, A., Raiciu, C., Handley, M., Bonaventure, O. TCP Extensions for Multipath
Operation with Multiple Addresses. [online] Available at:
http://tools.ietf.org/html/rfc6824 [Accessed: 15/08/2014].

22. Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual
human mobility patterns. Nature, vol., 453, no., 7196 pp. 779-782.

23. Gu, X., Nahrstedt, K., Chang, N., & Ward, C. 2003. QoS-Assured Service Composition
in Managed Service Overlay Networks. 23rd International Conference on
Distributed Computing Systems, Providence, Rhode Island, USA, pp.194-201.

24. Gu, X., Nahrstedt, K., Messer, A. Greenberg, I., Milojicic, D., 2004. Adaptive
offloading for pervasive computing. Pervasive Computing, IEEE, vol.3, no.3, pp.66-
73.

25. Harney, E., Goasguen, S., Martin, J., Murphy, M., & Westall, M. 2007. The Efficacy of
Live Virtual Machine Migrations over the Internet. In Proceedings of the 3rd VTDC.

26. Hobfeld, T., Hausheer, D., Hecht, F. V., Lehrieder, F., Oechsner, S., Papafili, I., &
Stiller, B. 2009. An Economic Traffic Management Approach to Enable the
TripleWin for Users, ISPs, and Overlay Providers. In Future Internet Assembly pp.
24-34.

27. Hobfeld, T.; Schatz, R.; Varela, M.; Timmerer, C., 2012. Challenges of QoE
management for cloud applications. Communications Magazine, IEEE, vol.50,
no.4, pp.28-36.

28. Huang, D. 2011. Mobile Cloud Computing. IEEE COMSOC Multimedia
Communications Technical Committee (MMTC) E-Letter, vol.6, no.10, pp.27-31.

29. Huston, G. 1999. Web caching. The Internet Protocol Journal, Vol. 2, Issue 3, pp. 2-
20. Also available online at:
http://www.cisco.com/web/about/ac123/ac147/ac174/ac199/about_cisco_ipj_
archive_article09186a00800c8903.html [Accessed 09/08/2014].

30. Hwang, K., Dongarra, J., & Fox, G. C. 2012. Distributed and Cloud Computing: From
Parallel Processing to the Internet of Things. Elsevier Science, pp. 160-161, 163-
165.

31. Ibrahim, K. Z., Hofmeyr, S., Iancu, C., & Roman, E. 2011. Optimized pre-copy live
migration for memory intensive applications. At the Proceedings of 2011

http://www.wired.com/2014/01/its-time-to-take-mesh-networks-seriously-and-not-just-for-the-reasons-you-think
http://www.wired.com/2014/01/its-time-to-take-mesh-networks-seriously-and-not-just-for-the-reasons-you-think
http://www.aidanfinn.com/?p=14907
http://tools.ietf.org/html/rfc6824
http://www.cisco.com/web/about/ac123/ac147/ac174/ac199/about_cisco_ipj_archive_article09186a00800c8903.html
http://www.cisco.com/web/about/ac123/ac147/ac174/ac199/about_cisco_ipj_archive_article09186a00800c8903.html

iii

International Conference for High Performance Computing, Networking, Storage
and Analysis, no.40.

32. IEEE Cloud Computing. 2013. IEEE Intercloud Testbed An Open, Global, Cloud
Interoperability Project. [online] Available at:
http://cloudcomputing.ieee.org/intercloud#sthash.AUB3acEU.dpuf . [Accessed:
06/08/2014].

33. IEEE Cloud Computing. 2013. IEEE Intercloud testbed project announces founding
members. [online] Available at:
http://cloudcomputing.ieee.org/intercloud/press-release [Accessed:
06/08/2014]

34. ITU. 2007. Recommendation P.10: New Appendix I – Definition of Quality of
Experience (QoE) [online] Available at: http://www.itu.int/rec/T-REC-P.10-
200701-S!Amd1 [Accessed: 06/02/2015]

35. ITU. 2008. Recommendation E.800: Terms and definitions related to quality of
service and network performance including dependability. [online] Available at:
http://www.itu.int/rec/T-REC-E.800/en [Accessed: 06/02/2015]

36. Krishnan, R., Madhyastha, H. V., Srinivasan, S., Jain, S., Krishnamurthy, A.,
Anderson, T., & Gao, J. 2009. Moving beyond end-to-end path information to
optimize CDN performance. In the Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement, pp. 190-201.

37. Labovitz, C., Iekel-Johnson, S., McPherson, D., Oberheide, J., & Jahanian, F. 2011.
Internet inter-domain traffic. ACM SIGCOMM Computer Communication Review,
vol.41, no.4, pp.75-86.

38. Leadbetter, R. 2010. In Theory: Is this how OnLive works? [online] Available at:
http://www.eurogamer.net/articles/digitalfoundry-onlive-beta-article
[Accessed: 09/08/2014].

39. Lee, K., Yoon, H., & Park, S. 2013. A Service Path Selection and Adaptation
Algorithm in Service-Oriented Network Virtualization Architecture. International
Conference on Parallel and Distributed Systems (ICPADS), pp.516-521.

40. Liu, H., Jin, H., Liao, X., Hu, L., & Yu, C. 2009. Live migration of virtual machine
based on full system trace and replay. In the Proceedings of the 18th ACM
international symposium on High performance distributed computing, pp.101-
110.

41. Liu, H., Xu, Y., & Zeng, Q. A. 2006. Modelling and performance analysis of a channel
reservation handoff scheme for multimedia wireless and mobile networks using
smart antennas. International Journal of High Performance Computing and
Networking, pp.13–22.

42. Mapp, G. E., Shaikh, F., Cottingham, D., Crowcroft, J., & Baliosian, J. 2007. Y-Comm:
a global architecture for heterogeneous networking. In the Proceedings of the 3rd
international conference on Wireless Internet, no.22.

43. Mapp, G., and Cottingham, D., Shaikh, F., Vidales, P., Patanapongpibul, L.,
Baliosian, J., & Crowcroft, J. 2006. An architectural framework for heterogeneous
networking. In the Proceedings of the International Conference on Wireless
Information Networks and Systems.

44. Mapp, G., Katsriku, F., Aiash, M., Chinnam, N., Lopes, R., Moreira, E., Augusto, M.
2012. Exploiting location and contextual information to develop a comprehensive
framework for proactive handover in heterogeneous environments. Journal of
Computer Networks and Communications, vol.2012, no. 748163.

http://cloudcomputing.ieee.org/intercloud#sthash.AUB3acEU.dpuf
http://cloudcomputing.ieee.org/intercloud/press-release
http://www.itu.int/rec/T-REC-P.10-200701-S!Amd1
http://www.itu.int/rec/T-REC-P.10-200701-S!Amd1
http://www.itu.int/rec/T-REC-E.800/en
http://www.eurogamer.net/articles/digitalfoundry-onlive-beta-article

iv

45. Markoff, J. 2008. Internet Traffic Begins to Bypass the U.S. [online] Available at:
http://www.nytimes.com/2008/08/30/business/30pipes.html?pagewanted=all
&_r=1& [Accessed: 08/08/2014]

46. Mell, P., Grace, T. 2011. The NIST Definition of Cloud Computing [online]
Available at: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-
145.pdf [Accessed: 06/02/2015]

47. Microsoft 2010. Interoperability Elements of Cloud Platform. [online] Available at:
http://www.microsoft.com/cloud/interop/ [Accessed: 06/08/2014].

48. Microsoft. 2012. Virtual Machine Live Migration Overview. [online] Available at:
http://technet.microsoft.com/en-us/library/hh831435.aspx [Accessed:
09/08/2014]

49. Nolle, T. 2013. Three models of SDN explained. [online] Available at:
http://searchtelecom.techtarget.com/tip/Three-models-of-SDN-explained
[Accessed: 15/08/2014].

50. Ocampo, R., Cheng, L., Lai, Z., & Galis, A. 2005. ContextWare support for Network
and service composition and Self-adaptation. 2nd International Workshop on
Mobility Aware Technologies and Applications, pp.84-95.

51. OnLive Team. 2013. Fun Facts [online] Available at:
http://www.onlive.com/careers/fun_facts [Accessed: 09/08/2014].

52. OnLive Team. 2014. Computer Display Resolution and the OnLive Game Service.
[online] Available at: https://support.onlive.com/hc/en-us/articles/201229150-
Computer-Display-Resolution-and-the-OnLive-Game-Service [Accessed:
08/08/2014]

53. Piatek, M., Madhyastha, H. V., John, J. P., Krishnamurthy, A., & Anderson, T. E.
2009. Pitfalls for ISP-friendly P2P design. In Eighth ACM Worskhop on Hot Topics
in Networks (HotNets).

54. Rhoton, J. 2009. Cloud Computing Explained: Implementation Handbook For
Enterprises. Recursive Press, pp.21.

55. Richardson, T., Bennett, F., Mapp, G. & Hopper, A. 1994. A ubiquitous, personalized
computing environment for all: Teleporting in an X Window System Environment.
Personal Communications, IEEE, vol.1, no.3, pp.6.

56. Riley, L. and Mapp, G. 2014. yRFC3: The Simple Protocol Lite (SP-Lite)
Specification [online] Available at:
http://www.mdx.ac.uk/__data/assets/pdf_file/0003/176592/yrfc3-SP-Lite.pdf
[Accessed: 30/03/2015]

57. Sapuntzakis, C. P., Chandra, R., Pfaff, B., Chow, J., Lam, M. S., & Rosenblum, M.
2002. Optimizing the migration of virtual computers. ACM SIGOPS Operating
Systems Review, vol.36, pp.377-390.

58. Sardis, F., Mapp, G., Loo, J., & Aiash, M., 2014. Dynamic Edge-Caching for Mobile
Users: Minimising Inter-AS traffic by Moving Cloud Services and VMs. Advanced
Information Networking and Applications Workshops (WAINA), 2014 28th
International Conference on, pp.144-149.

59. Satyanarayanan, M., Bahl, P., Caceres, R., & Davies, N. 2009. The case for VM-based
cloudlets in mobile computing. Pervasive Computing, IEEE, vol.8, no.4, pp.14-23.

60. Seibert, J., Torres, R., Mellia, M., Munafo, M. M., Nita-Rotaru, C., & Rao, S. 2012. The
Internet-Wide Impact of P2P Traffic Localization on ISP Profitability. IEEE/ACM
Transactions on Networking, vol.20, no.6, pp.1910-1923.

61. Shea, R., Jiangchuan L., Ngai, E.C., & Yong, C. 2013. Cloud gaming: architecture and
performance. Network, IEEE, vol.27, no.4, pp.16-21.

http://www.nytimes.com/2008/08/30/business/30pipes.html?pagewanted=all&_r=1&
http://www.nytimes.com/2008/08/30/business/30pipes.html?pagewanted=all&_r=1&
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://www.microsoft.com/cloud/interop/
http://technet.microsoft.com/en-us/library/hh831435.aspx
http://searchtelecom.techtarget.com/tip/Three-models-of-SDN-explained
http://www.onlive.com/careers/fun_facts
https://support.onlive.com/hc/en-us/articles/201229150-Computer-Display-Resolution-and-the-OnLive-Game-Service
https://support.onlive.com/hc/en-us/articles/201229150-Computer-Display-Resolution-and-the-OnLive-Game-Service
http://www.mdx.ac.uk/__data/assets/pdf_file/0003/176592/yrfc3-SP-Lite.pdf

v

62. Softperfect, 2014. Connection Emulator [Computer Programme] Available at:
http://www.softperfect.com/products/connectionemulator/ [Accessed:
08/08/2014]

63. Su, Y. Y., & Flinn, J. 2005. Slingshot: deploying stateful services in wireless hotspots.
In Proceedings of the 3rd international conference on Mobile systems,
applications, and services, pp. 79-92.

64. Team Cymru, 2014. Internet Security Research and Insight. [online] Available at
http://www.team-cymru.com/ [Accessed: 06/08/2014]

65. Tolia, N., Harkes, J., Kozuch, M., & Satyanarayanan, M. 2004. Integrating Portable
and Distributed Storage. In FAST, Vol. 4, pp. 227-238.

66. Valancius, V., Lumezanu, C., Feamster, N., Johari, R., & Vazirani, V. V. 2011. How
many tiers?: pricing in the internet transit market. ACM SIGCOMM Computer
Communication Review, vol.41, no.4, pp.194-205.

67. Verbelen, T., Stevens, T., Simoens, P., De Turck, F., & Dhoedt, B. 2011. Dynamic
deployment and quality adaptation for mobile augmented reality applications.
Journal of Systems and Software, vol.84, no.11, pp.1871-1882.

68. Vij, D. K. & Bernstein, D. 2012. Draft Standard for Intercloud Interoperability and
Federation (SSIF). [online] Available at: https://www.oasis-
open.org/committees/download.php/46205/p2302-12-0002-00-DRFT-
intercloud-p2302-draft-0-2.pdf [Accessed: 06/08/2014].

69. Warner, A. S., & Karman, F. A. 2010. Defining the Mobile Cloud. NASA I.T. Summit.
[Presentation] Available at:
www.nasa.gov/ppt/482352main_2010_Monday_1_Warner.Steven_r5.ppt
[Accessed 15/08/2014]

70. Wen, Z. Y., & Hsiao, H. F. (2014, September). QoE-driven performance analysis of
cloud gaming services. In Multimedia Signal Processing (MMSP), 2014 IEEE 16th
International Workshop on (pp. 1-6). IEEE.

71. Woodcock, B. 2003. Internet Topology and Economics: How Supply and Demand
Influence the Changing Shape of the Global Network. [Lecture] Available at:
http://www.pch.net/resources/papers/topology-and-economics/Topology-and-
Economics.ppt [Accessed 15/08/2014]

72. Zhu, W., Luo, C., Wang, J., & Li, S. 2011. Multimedia cloud computing. Signal
Processing Magazine, IEEE, vol.28, no.3, pp.59-69.

http://www.softperfect.com/products/connectionemulator/
http://www.team-cymru.com/
https://www.oasis-open.org/committees/download.php/46205/p2302-12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf
https://www.oasis-open.org/committees/download.php/46205/p2302-12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf
https://www.oasis-open.org/committees/download.php/46205/p2302-12-0002-00-DRFT-intercloud-p2302-draft-0-2.pdf
http://www.nasa.gov/ppt/482352main_2010_Monday_1_Warner.Steven_r5.ppt
http://www.pch.net/resources/papers/topology-and-economics/Topology-and-Economics.ppt
http://www.pch.net/resources/papers/topology-and-economics/Topology-and-Economics.ppt

vi

Appendix A

Reactive Script Code

#Find local host name. Used later to find if the VHD is local or remote.

$hostname = hostname

#Set VM name.

$vmname = "client" #read-Host "What is the VM's name?"

#Find the VHD location for the VM. Used later to find if the VHD is local or

remote.

$getvm = Get-vm -name $vmname | Select -ExpandProperty HardDrives

$vhdloc = $getvm.Path

#Check the VM RAM size. First we have to enable VM resource metering which is off

by default.

Enable-VMResourceMetering -VMName $vmname

$vmstats = Get-VM -Name $vmname

[int]$vm = (($vmstats.memoryassigned/1024)/1024)

#Set estimated migration throughput.

[int]$mthr = read-host "What is the migration throughput? (MB/s)"

#Calculate the estimated migration time.

[int]$mtime = [int]$vm / [int]$mthr

"-------------------"

"VM size: $vm MB"

"Estimated Migration Time: $mtime seconds"

"-------------------"

#Set the user's estimated NDT.

[int]$ndt = read-host "What is the user's NDT? (seconds)"

#Check if there is enough time to migrate. If not, abort.

if ([int]$ndt -le [int]$mtime) {"Migration time for the VM is greater than NDT.

Aborting."}

else {"Sufficient NDT for migration. Calculating migration parameters."

 #Initialise varibles for counting RDC and VHD throughput.

 [int]$count = 0

 [int]$totalrdc = 0

vii

 [int]$totalvhd = 0

#Measure RDC and VHD when VHD is at the same location as the VM

if ($vhdloc -match $hostname){"VHD local, measuring VHD throughput from Hyper-V

counters"

#Take measurements of throughput for RDC and VHD.

 while ($count -lt 20){

 #Select NIC. We select bytesSent from the NIC because that represents data

sent to RDC as opposed to received data which could be web activity.

 $interface = Get-WmiObject -class

Win32_PerfFormattedData_Tcpip_NetworkInterface |select Name, BytesSentPersec |where

{$_.Name -eq "Realtek PCIe GBE Family Controller"}

 [int]$rdcactivity = $interface.BytesSentPersec

 #Measure VHD from Hyper-V Counters

 $write = get-counter '\\host0\hyper-v virtual storage device(--?-unc-

host0.latency.local-public-documents-hyper-v-virtual hard disks-rfx.vhdx)\write

bytes/sec'

 [int]$writevalue = $write.CounterSamples[0].CookedValue

 $read = get-counter '\\host0\hyper-v virtual storage device(--?-unc-

host0.latency.local-public-documents-hyper-v-virtual hard disks-rfx.vhdx)\read

bytes/sec'

 [int]$readvalue = $read.CounterSamples[0].CookedValue

 #Sum of read/write operations

 [int]$vhdactivity = $readvalue + $writevalue

 #Total RDC and VHD activity

 [int]$totalrdc = [int]$totalrdc + $rdcactivity

 [int]$totalvhd = [int]$totalvhd + $vhdactivity

 Write-Host "RDC Throughput: $rdcactivity B/s"

 Write-Host "VHD Throughput: $vhdactivity B/s"

 $count++

 #We don't want to issue too many WMI queries too quickly on a production

machine so we wait a while before sampling again

 Start-Sleep -milliseconds 300

 }

 #Average RDC and VHD traffic in MB/s

 [single]$rdc = "{0:N2}" -f ((([int]$totalrdc / 1024) / 1024) / [int]$count)

viii

 [single]$vhd = "{0:N2}" -f ((([int]$totalvhd / 1024) / 1024) / [int]$count)

 "-------------------"

 "RDC Avg: $rdc MB/s"

 "VHD Avg: $vhd MB/s"

 "-------------------"

 if ([single]$rdc -le [single]$vhd) {"RDC is equal to or less than VHD. Or VM

inactive. No migration possible"}

 if ([single]$rdc -gt [single]$vhd) {[int]$ndtmin = ([int]$vm + ([single]$rdc *

[int]$mtime) + ([single]$vhd * ([int]$ndt - [int]$mtime))) / [single]$rdc

 "Min NDT: $ndtmin seconds"

 if ([int]$ndt -gt [int]$ndtmin) {"Migrating the VM to the user's

location."}

 else {"No sufficient NDT for traffic savings at current usage."}

 }

 }

#Measure RDC and VHD when VHD is in a remote location to the VM

If ($vhdloc -notmatch $hostname) {"VHD in remote location, measuring VHD throughput

from backbone NIC"

 #Take 10 measurements of throughput for RDC and VHD.

 while ($count -lt 20){

 #Select NIC. We select BytesSent from the NIC because that represents data

sent to RDC as opposed to received data which could be web activity.

 $interface = Get-WmiObject -class

Win32_PerfFormattedData_Tcpip_NetworkInterface |select Name, BytesSentPersec |where

{$_.Name -eq "Qualcomm Atheros AR8152 PCI-E Fast Ethernet Controller [NDIS 6.30]"}

 [int]$rdcactivity = [double]$interface.BytesSentPersec

 #Select NIC for VHD. We select BytesTotal because we are interested in VHD

read/write

 $interface2 = Get-WmiObject -class

Win32_PerfFormattedData_Tcpip_NetworkInterface |select Name, BytesTotalPersec|where

{$_.Name -eq "Realtek PCI GBE Family Controller"}

 [int]$vhdactivity = $interface2.BytesTotalPersec

 [int]$totalrdc = [int]$totalrdc + $rdcactivity

 [int]$totalvhd = [int]$totalvhd + $vhdactivity

 Write-Host "RDC Throughput: $rdcactivity B/s"

 Write-Host "VHD Throughput: $vhdactivity B/s"

ix

 $count++

 #We don't want to issue too many WMI queries too quickly on a production

machine so we wait a while before sampling again

 Start-Sleep -milliseconds 300

 }

 #Average RDC and VHD traffic.

 [single]$rdc = "{0:N2}" -f (([int]$totalrdc / 1024) / 1024) / [int]$count

 [single]$vhd = "{0:N2}" -f (([int]$totalvhd / 1024) / 1024) / [int]$count

 "-------------------"

 "RDC Avg: $rdc MB/s"

 "VHD Avg: $vhd MB/s"

 "-------------------"

 #If RDC = VHD = 0, VM inactive.

 if ($rdc -eq 0 -and $vhd -eq 0) {"VM inactive. Aborting."}

 #If RDC less than or equal to VHD and both larger than 0.

 elseif ($rdc -le $vhd) {[int]$ndtmin = ([int]$vm + ([single]$vhd *

[int]$mtime)) / [single]$vhd

 "Min NDT: $ndtmin seconds"

 if ($ndt -gt $ndtmin) {"Defaulting the VM to eliminate VHD traffic."}

 else {"No sufficient NDT for traffic savings at current usage."}

 }

 elseif ($rdc -gt $vhd) {[int]$ndtmin = ([int]$vm + ([single]$rdc *

[int]$mtime)) / [single]$rdc

 "Min NDT: $ndtmin seconds"

 if ($ndt -gt $ndtmin) {"Migrating the VM to the user's location."}

 else {"No sufficient NDT for traffic savings at current usage."}

 }

 }

}

x

Pre-emptive Script Code

#Get name of VM host

[string]$hostname = hostname

#Table of NDT reported by the client in order of path priority. We calculate to sum

of NDT for later use.

$net=@{"Net-A" = 100 ; "Net-B" = 800 ; "Net-C" = 600 ; "Net-D" = 150}

[int]$ndttot = 0

$ndtvalues = $net.GetEnumerator() | Select Value

[int]$ndttot = ($ndtvalues | Measure-Object 'Value' -Sum).Sum

"Total NDT in current path is $ndttot"

#Table of hosts connected to each network.

$hosts=@{"Net-A" = "Host-A" ; "Net-B" = "Host-B" ; "Net-C" = "Host-C" ; "Net-D" =

"Host-D"}

#Set VM name.

$vmname = "client" #read-Host "What is the VM's name?"

#Set estimated migration throughput.

[int]$mthr = read-host "what is the migration throughput? (MB/s)"

#Check the VHD location for the VM.

$getvm = Get-vm -name $vmname | Select -ExpandProperty HardDrives

$vhdloc = $getvm.Path

#Check the VM RAM size and convert to MB. First we have to enable VM resource

metering which is off by default.

Enable-VMResourceMetering -VMName $vmname

$vmstats = Get-VM -Name $vmname

[int]$vm = (($vmstats.memoryassigned/1024)/1024)

#Calculate the estimated migration time.

[int]$mtime = [int]$vm / [int]$mthr

"-------------------"

"VM size: $vm MB"

"Estimated Migration Time: $mtime seconds"

"-------------------"

#Check if enough ndttot to migrate. if not abort.

if ([int]$ndttot -le [int]$mtime) {"Migration time for the VM is greater than total

xi

NDT. Aborting."}

else {

 #Initialise varibles for counting RDC and VHD throughput.

 [int]$count = 0

 [int]$totalrdc = 0

 [int]$totalvhd = 0

#Measure RDC and VHD when VHD is at the same location as the VM

if ($vhdloc -match $hostname){"VHD local, measuring VHD throughput from Hyper-V

counters"

 #Take 20 measurements of throughput for RDC and VHD.

 while ($count -lt 20){

 #Select NIC. We select bytesSent from the NIC because that represents data sent

to RDC as opposed to received data which could be web activity.

 $interface = Get-WmiObject -class

Win32_PerfFormattedData_Tcpip_NetworkInterface |select Name, BytesSentPersec |where

{$_.Name -eq "Realtek PCIe GBE Family Controller"}

 [int]$rdcactivity = $interface.BytesSentPersec

 #Measure VHD from Hyper-V Counters

 $write = get-counter '\\host0\hyper-v virtual storage device(--?-unc-

host0.latency.local-public-documents-hyper-v-virtual hard disks-rfx.vhdx)\write

bytes/sec'

 [int]$writevalue = $write.CounterSamples[0].CookedValue

 $read = get-counter '\\host0\hyper-v virtual storage device(--?-unc-

host0.latency.local-public-documents-hyper-v-virtual hard disks-rfx.vhdx)\read

bytes/sec'

 [int]$readvalue = $read.CounterSamples[0].CookedValue

 #Sum of read/write operations

 [int]$vhdactivity = $readvalue + $writevalue

 #Total RDC and VHD activity

 [int]$totalrdc = [int]$totalrdc + $rdcactivity

 [int]$totalvhd = [int]$totalvhd + $vhdactivity

 Write-Host "RDC Throughput: $rdcactivity B/s"

 Write-Host "VHD Throughput: $vhdactivity B/s"

 $count++

xii

 #We don't want to issue too many WMI queries too quickly on a production

machine so we wait a while before sampling again

 Start-Sleep -milliseconds 300

 }

 #Average RDC and VHD traffic in MB/s

 [single]$rdc = "{0:N2}" -f ((([int]$totalrdc / 1024) / 1024) / [int]$count)

 [single]$vhd = "{0:N2}" -f ((([int]$totalvhd / 1024) / 1024) / [int]$count)

 "-------------------"

 "RDC Avg: $rdc MB/s"

 "VHD Avg: $vhd MB/s"

 "-------------------"

 if ($rdc -le $vhd){"RDC is equal to or less than VHD. Or VM inactive. Do

nothing."}

 #If VHD local and RDC>VHD, calculate minimum NDT and look for target:

 if ($rdc -gt $vhd) {[int]$ndtmin = ([int]$vm + ([single]$rdc * [int]$mtime) +

([single]$vhd * ([int]$ndt - [int]$mtime))) / [single]$rdc

 "Min NDT: $ndtmin seconds"

 $newnet = $net.GetEnumerator() | select Name, Value |where {$_.Value -ge

$ndtmin} |Sort-Object Name |Select -First 1

 $tloc = $newnet.Name

 $filterhost = $hosts.GetEnumerator() |Select Name, Value |where {$_.Name -

like $tloc}

 $thost = $filterhost.Value

 #If no target is found, abort.

 if ($thost -like "") {"No valid target network found for migration.

Aborting."}

 else {"Migrating to $thost."}

 }

}

#Measure RDC and VHD when VHD is in a remote location to the VM

If ($vhdloc -notmatch $hostname) {"VHD in remote location, measuring VHD throughput

from backbone NIC"

 #Take 10 measurements of throughput for RDC and VHD.

 while ($count -lt 20){

xiii

 #Select NIC. We select BytesSent from the NIC because that represents data

sent to RDC as opposed to received data which could be web activity.

 $interface = Get-WmiObject -class

Win32_PerfFormattedData_Tcpip_NetworkInterface |select Name, BytesSentPersec |where

{$_.Name -eq "Qualcomm Atheros AR8152 PCI-E Fast Ethernet Controller [NDIS 6.30]"}

 [int]$rdcactivity = $interface.BytesSentPersec

 #Select NIC for VHD. We select BytesTotal because we are interested in VHD

read/write

 $interface2 = Get-WmiObject -class

Win32_PerfFormattedData_Tcpip_NetworkInterface |select Name, BytesTotalPersec|where

{$_.Name -eq "Realtek PCI GBE Family Controller"}

 [int]$vhdactivity = $interface2.BytesTotalPersec

 [int]$totalrdc = [int]$totalrdc + $rdcactivity

 [int]$totalvhd = [int]$totalvhd + $vhdactivity

 Write-Host "RDC Throughput: $rdcactivity B/s"

 Write-Host "VHD Throughput: $vhdactivity B/s"

 $count++

 #We don't want to issue too many WMI queries too quickly on a production

machine so we wait a while before sampling again

 Start-Sleep -milliseconds 300

 }

 #Average RDC and VHD traffic.

 [single]$rdc = "{0:N2}" -f ((([int]$totalrdc / 1024) / 1024) / [int]$count)

 [single]$vhd = "{0:N2}" -f ((([int]$totalvhd / 1024) / 1024) / [int]$count)

 "-------------------"

 "RDC Avg: $rdc MB/s"

 "VHD Avg: $vhd MB/s"

 "-------------------"

 #If RDC = VHD = 0, VM inactive.

 if ($rdc -eq 0 -and $vhd -eq 0) {Write-Host "VM inactive. Aborting."}

 #If RDC greater than VHD

 elseif ($rdc -gt $vhd) {

 #calculate minimum NDT for eliminating RDC and for eliminating VHD. We need

to know both to decide what to do.

 [int]$ndtmin = ([int]$vm + ([single]$rdc * [int]$mtime)) / [single]$rdc

xiv

 [int]$ndtmin2 = ([int]$vm + ([single]$vhd * [int]$mtime)) / [single]$vhd

 $newnet = $net.GetEnumerator() | select Name, Value |where {$_.Value -ge

$ndtmin} |Sort-Object Name |Select -First 1

 $tloc = $newnet.Name

 $filterhost = $hosts.GetEnumerator() |Select Name, Value |where {$_.Name -

like $tloc}

 $thost = $filterhost.Value

 #If no target is found based on minimum NDT for RDC reduction, examine if

total NDT is sufficient for VHD reduction instead.

 if ($thost -like "" -and $ndttot -gt $ndtmin2) {"No target found for

migration. Eliminating VHD traffic instead. Returning VM to default location."}

 elseif($thost -like"" -and $ndttot -le $ndtmin2) {"No target found for

migration. Not possible to eliminate VHD traffic. Aborting."}

 else {"Migrating to $thost."}

 }

 #If RDC less or equal to VHD try to default the VM to eliminate VHD.

 elseif ($rdc -le $vhd) {[int]$ndtmin = ([int]$vm + ([single]$vhd *

[int]$mtime)) / [single]$vhd

 "Min NDT: $ndtmin seconds"

 if ($ndttot -gt $ndtmin) {"Defaulting the VM."}

 else {"Do nothing."}

 }

}

}

xv

ASN-Resolution Script Code

$IPAddress = Invoke-WebRequest ifconfig.me/ip

$IPAddressParts = $IPAddress.Content.Split('.')

$RIPAddress =

"$($IPAddressParts[3].Trim()).$($IPAddressParts[2]).$($IPAddressParts[1]).$($IPAddr

essParts[0])"

##Services we're getting the ASN information from.

$OriginService= ".origin.asn.cymru.com"

$ASNService = ".asn.cymru.com"

##Resolve the name against the ASN-IP service

$NameToResolve = "$RIPAddress" + "$OriginService"

try{

 $DNSRecords = Resolve-DnsName $NameToResolve -Type TXT -ErrorAction Stop

 }

 catch{

 throw "Could not find AS information for $NameToResolve"

 exit

 }

foreach ($Record in $DNSRecords)

{

 $Result = New-Object System.Object

 $Result | Add-Member -Type NoteProperty -Name IPAddress -Value $IPAddress

 $Result | Add-Member -Type NoteProperty -Name ASNumber -Value

$Record.Strings.Split("|")[0].Trim()

 $Result | Add-Member -Type NoteProperty -Name ASPrefix -Value

$Record.Strings.Split("|")[1].Trim()

 $Result | Add-Member -Type NoteProperty -Name Locale -Value

$Record.Strings.Split("|")[2].Trim()

 $NameToResolve = "AS" +$Result.ASNumber + $ASNService

 try{

 $DNSRecords = Resolve-DnsName $NameToResolve -Type TXT

 }

xvi

 catch{

 throw "Could not resolve detailed infromation for AS" +$Result.ASNumber

 exit

 }

 $Result | Add-Member -Type NoteProperty -Name Description -Value

$DNSRecords.Strings.Split("|")[4].Trim()

 $Result

}

xvii

Traffic Management Prototype Screenshots

Screenshot 1 Migration from remote location to the home location using the Reactive script

xviii

Screenshot 2 Migration from remote location�to�user’s�new�location�using�the�Reactive�script

xix

Screenshot 3 VM�migration�from�Home�location�to�the�user’s�current�location�using�the�Reactive�Script

xx

Screenshot 4 VM returned to Home location using the Pre-Emptive script.

xxi

Screenshot 5 VM migrating from remote location to a target network using the Pre-emptive script.

xxii

Screenshot 6 Pre-emptive script aborting the migration process due to insufficient NDT.

xxiii

Appendix B

3x3 Queueing Model Solution

(𝑀𝑢0 + 𝜆)𝑃0,0 = 𝜇0𝑃0,1 + 𝑀𝑑1𝑃1,0

(𝑀𝑢0 + 𝜆 + 𝜇0)𝑃0,1 = 𝑀𝑑1𝑃1,1 + 𝜇0𝑃0,2 + 𝜆𝑃0,0

(𝑀𝑢0 + 𝜇0)𝑃0,2 = 𝑀𝑑1𝑃1,2 + 𝜆𝑃0,1

(𝑀𝑢1 + 𝑀𝑑1 + 𝜆)𝑃1,0 = 𝑀𝑢0𝑃0,0 + 𝑀𝑑2𝑃2,0 + 𝜇1𝑃1,1

(𝑀𝑢1 + 𝑀𝑑1 + 𝜆 + 𝜇1)𝑃1,1 = 𝑀𝑢0𝑃0,1 + 𝑀𝑑2𝑃2,1 + 𝜇1𝑃1,2 + 𝜆𝑃1,0

(𝑀𝑢1 + 𝑀𝑑1 + 𝜇1)𝑃1,2 = 𝑀𝑢0𝑃0,2 + 𝑀𝑑2𝑃2,2 + 𝜆𝑃1,1

(𝑀𝑑2 + 𝜆)𝑃2,0 = 𝑀𝑢1𝑃1,0 + 𝜇2𝑃2,1

(𝑀𝑑2 + 𝜆 + 𝜇2)𝑃2,1 = 𝑀𝑢1𝑃1,1 + 𝜇2𝑃2,2 + 𝜆𝑃2,0

(𝑀𝑑2 + 𝜇2)𝑃2,2 = 𝑀𝑢1𝑃1,2 + 𝜆𝑃2,1

Starting from Chain 0:

𝑃0,2 = 𝑎0,2𝑃1,2 + 𝑏0,2𝑃0,1
𝑀𝑑1

(𝑀𝑢0+𝜇0)
= 𝑎0,2

𝜆

(𝑀𝑢0+𝜇0)
= 𝑏0,2

𝑃0,0 = 𝑎0,0𝑃0,1 + 𝑏0,0𝑃1,0
𝜇0

(𝑀𝑢0+𝜆)
= 𝑎0,0

𝑀𝑑1

(𝑀𝑢0+𝜆)
= 𝑏0,0

𝑃0,1 = 𝑎0,1𝑃1,1 + 𝑏0,1𝑃1,2 + 𝑐0,1𝑃1,0

𝑀𝑑1

(𝑀𝑢0+𝜆+𝜇0−𝜇0𝑏0,2−𝜆𝑎0,0)
= 𝑎0,1

𝜇0𝑎0,2

(𝑀𝑢0+𝜆+𝜇0−𝜇0𝑏0,2−𝜆𝑎0,0)
= 𝑏0,1

𝜆𝑏0,0

(𝑀𝑢0+𝜆+𝜇0−𝜇0𝑏0,2−𝜆𝑎0,0)
= 𝑐0,1

𝑃0,0 = 𝑎0,0𝑎0,1𝑃1,1 + 𝑎0,0𝑏0,1𝑃1,2 + (𝑎0,0𝑐0,1 + 𝑏0,0)𝑃1,0

𝑃0,2 = (𝑎0,2 + 𝑏0,2𝑏0,1)𝑃1,2 + 𝑏0,2𝑎0,1𝑃1,1 + 𝑏0,2𝑐0,1𝑃1,0

Chain 2:

𝑃2,2 = 𝑎2,2𝑃1,2 + 𝑏2,2𝑃2,1
𝑀𝑢1

(𝑀𝑑2+𝜇2)
= 𝑎2,2

𝜆

(𝑀𝑑2+𝜇2)
= 𝑏2,2

𝑃2,0 = 𝑎2,0𝑃1,0 + 𝑏2,0𝑃2,1
𝑀𝑢1

(𝑀𝑑2+𝜆)
= 𝑎2,0

𝜇2

(𝑀𝑑2+𝜆)
= 𝑏2,0

𝑃2,1 = 𝑎2,1𝑃1,1 + 𝑏2,1𝑃1,2 + 𝑐2,1𝑃1,0

2,0 2,1 2,2

μ2 μ2

1,0 1,1 1,2

0,0 0,1 0,2

λ λ

Mu1

Mu0

μ1

μ0 μ0

μ1

Md1

Md2

xxiv

𝑀𝑢1

(𝑀𝑑2+𝜆+𝜇2−𝜆𝑏2,0−𝜇2𝑏2,2)
= 𝑎2,1

𝜇2𝑎2,2

(𝑀𝑑2+𝜆+𝜇2−𝜆𝑏2,0−𝜇2𝑏2,2)
= 𝑏2,1

𝜆𝑎2,0

(𝑀𝑑2+𝜆+𝜇2−𝜆𝑏2,0−𝜇2𝑏2,2)
= 𝑐2,1

𝑃2,0 = (𝑎2,0 + 𝑏2,0𝑐2,1)𝑃1,0 + 𝑏2,0𝑎2,1𝑃1,1 + 𝑏2,0𝑏2,1𝑃1,2

𝑃2,2 = (𝑎2,2 + 𝑏2,2𝑏2,1)𝑃1,2 + 𝑏2,2𝑎2,1𝑃1,1 + 𝑏2,2𝑐2,1𝑃1,0

Chain 1:

𝑃1,2 = 𝑎1,2𝑃1,1 + 𝑏1,2𝑃1,0

(𝑀𝑢0𝑏0,2𝑎0,1+𝑀𝑑2𝑏2,2𝑎2,1+𝜆)

(𝑀𝑢1+𝑀𝑑1+𝜇1−𝑀𝑑2𝑎2,2−𝑀𝑑2𝑏2,2𝑏2,1−𝑀𝑢0𝑎0,2−𝑀𝑢0𝑏0,2𝑏0,1)
= 𝑎1,2

(𝑀𝑢0𝑏0,2𝑐0,1+𝑀𝑑2𝑏2,2𝑐2,1)

(𝑀𝑢1+𝑀𝑑1+𝜇1−𝑀𝑑2𝑎2,2−𝑀𝑑2𝑏2,2𝑏2,1−𝑀𝑢0𝑎0,2−𝑀𝑢0𝑏0,2𝑏0,1)
= 𝑏1,2

Revisit previous chains to substitute P1,2:

𝑃2,2 = (𝑎2,2𝑎1,2 + 𝑏2,2𝑏2,1𝑎1,2 + 𝑏2,2𝑎2,1)𝑃1,1 + (𝑎2,2𝑏1,2 + 𝑏2,2𝑏2,1𝑏1,2 + 𝑏2,2𝑐2,1)𝑃1,0

𝑃2,0 = (𝑎2,0 + 𝑏2,0𝑐2,1 + 𝑏2,0𝑏2,1𝑏1,2)𝑃1,0 + (𝑏2,0𝑎2,1 + 𝑏2,0𝑏2,1𝑎1,2)𝑃1,1

𝑃2,1 = (𝑎2,1 + 𝑏2,1𝑎1,2)𝑃1,1 + (𝑏2,1𝑏1,2 + 𝑐2,1)𝑃1,0

𝑃0,0 = (𝑎0,0𝑎0,1 + 𝑎0,0𝑏0,1𝑎1,2)𝑃1,1 + (𝑎0,0𝑐0,1 + 𝑏0,0 + 𝑎0,0𝑏0,1𝑏1,2)𝑃1,0

𝑃0,2 = (𝑎0,2𝑎1,2 + 𝑏0,2𝑏0,1𝑎1,2 + 𝑏0,2𝑎0,1)𝑃1,1 + (𝑏0,2𝑏0,1𝑏1,2 + 𝑏0,2𝑐0,1 + 𝑎0,2𝑏1,2)𝑃1,0

𝑃0,1 = (𝑎0,1 + 𝑏0,1𝑎1,2)𝑃1,1 + (𝑐0,1 + 𝑏0,1𝑏1,2)𝑃1,0

Back to chain 1:

𝑃1,0 = u𝑃1,1

(𝑀𝑢0𝑎0,0𝑎0,1+𝑀𝑢0𝑎0,0𝑏0,1𝑎1,2+𝜇1+𝑀𝑑2𝑏2,0𝑎2,1+𝑀𝑑2𝑏2,0𝑏2,1𝑎1,2)

(𝑀𝑢1+𝑀𝑑1+𝜆−𝑀𝑢0𝑎0,0𝑐0,1−𝑀𝑢0𝑏0,0−𝑀𝑢0𝑎0,0𝑏0,1𝑏1,2−𝑀𝑑2𝑎2,0−𝑀𝑑2𝑏2,0𝑐2,1−𝑀𝑑2𝑏2,0𝑏2,1𝑏1,2)
= 𝑢

Back to previous probabilities and substitute for P1,0:

𝑃2,2 = (𝑎2,2𝑎1,2 + 𝑏2,2𝑏2,1𝑎1,2 + 𝑏2,2𝑎2,1 + 𝑎2,2𝑏1,2u + 𝑏2,2𝑏2,1𝑏1,2u + 𝑏2,2𝑐2,1u)𝑃1,1

𝑃2,0 = (𝑏2,0𝑎2,1 + 𝑏2,0𝑏2,1𝑎1,2 + u𝑎2,0 + u𝑏2,0𝑐2,1 + u𝑏2,0𝑏2,1𝑏1,2)𝑃1,1

𝑃2,1 = (𝑎2,1 + 𝑏2,1𝑎1,2 + u𝑏2,1𝑏1,2 + u𝑐2,1)𝑃1,1

𝑃0,0 = (𝑎0,0𝑎0,1 + 𝑎0,0𝑏0,1𝑎1,2 + u𝑎0,0𝑐0,1 + u𝑏0,0 + u𝑎0,0𝑏0,1𝑏1,2)𝑃1,1

xxv

𝑃0,2 = (𝑎0,2𝑎1,2 + 𝑏0,2𝑏0,1𝑎1,2 + 𝑏0,2𝑎0,1 + 𝑏0,2𝑏0,1𝑏1,2𝑢 + 𝑏0,2𝑐0,1𝑢 + 𝑎0,2𝑏1,2𝑢)𝑃1,1

𝑃0,1 = (𝑎0,1 + 𝑏0,1𝑎1,2 + u𝑐0,1 + u𝑏0,1𝑏1,2)𝑃1,1

𝑃1,2 = (𝑎1,2 + 𝑏1,2u)𝑃1,1

Sum of all:

1 = 𝑃0,0 + 𝑃0,1 + 𝑃0,2 + 𝑃1,0 + 𝑃1,1 + 𝑃1,2 + 𝑃2,0 + 𝑃2,1 + 𝑃2,2

