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Abstract. We study the (non-uniform) quantified constraint satisfac-
tion problem QCSP(H) as H ranges over semicomplete digraphs. We
obtain a complexity-theoretic trichotomy: QCSP(H) is either in P, is
NP-complete or is Pspace-complete. The largest part of our work is the
algebraic classification of precisely which semicompletes enjoy only es-
sentially unary polymorphisms, which is combinatorially interesting in
its own right.

1 Introduction

The quantified constraint satisfaction problem QCSP(B), for a fixed template
(structure) B, is a popular generalisation of the constraint satisfaction problem
CSP(B). In the latter, one asks if a primitive positive sentence (the existential
quantification of a conjunction of atoms) Φ is true on B, while in the former this
sentence may be positive Horn (where universal quantification is also permitted).
Much of the theoretical research into CSPs is in respect of a large complexity
classification project – it is conjectured that CSP(B) is always either in P or NP-
complete [11]. This dichotomy conjecture remains unsettled, although dichotomy
is now known on substantial classes (e.g. structures of size ≤ 3 [19, 6] and smooth
digraphs [12, 2]). Various methods, combinatorial (graph-theoretic), logical and
universal-algebraic have been brought to bear on this classification project, with
many remarkable consequences. A conjectured delineation for the dichotomy was
given in the algebraic language in [7].

Complexity classifications for QCSPs appear to be harder than for CSPs.
Indeed, a classification for QCSPs will give a fortiori a classification for CSPs (if
B ]K1 is the disjoint union of B with an isolated element, then QCSP(B ]K1)
and CSP(B) are polynomially equivalent). Just as CSP(B) is always in NP, so
QCSP(B) is always in Pspace. However, no overarching polychotomy has been
conjectured for the complexities of QCSP(B), as B ranges over finite structures,
but the only known complexities are P, NP-complete and Pspace-complete. It
seems plausible that these complexities are the only ones that can be so obtained
(for more on this see [9]).
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In this paper we study the complexity of QCSP(H), where H is a semicom-
plete digraph, i.e. an irreflexive graph so that for each distinct vertices xi and
xj at least one of xixj or xjxi (and possibly both) is in E(H). We prove that
each such problem is either in P, is NP-complete or is Pspace-complete. In some
respects, our paper is a companion to the classifications for partially reflexive
forests [16] and partially reflexive cycles [14], however our work here differs in
two important ways. Firstly, this classification is a complete trichotomy instead
of a partial classification between P and NP-hard. Secondly, this classification
uses the algebraic method to derive hardness results, whereas in [16, 14] surjec-
tive polymorphisms appear only for tractability. Indeed, we believe our use of
the algebraic method here is the most complex so far for any QCSP trichotomy
complexity classification. The first published QCSP trichotomy appeared in (the
preprints of) [5] and used relatively straightforward application of the algebraic
method pioneered in the same paper. Subsequently, a combinatorial QCSP tri-
chotomy appeared, essentially for irreflexive pseudoforests, in [17]. The task to
unite [17, 16, 14], with the spirit of [10], to a QCSP trichotomy for partially
reflexive pseudoforests, remains open-ended and ambitious. Two other notable
trichotomies have appeared in the QCSP literature in the form of [3] and [4],
though both are slightly unorthodox. The former deals with a variant of the
QCSP, which allows for relativisation of the universal quantifier, and the latter
deals with infinite equality languages.

Our work follows in the spirit of the CSP dichotomy for semicomplete di-
graphs given long ago in [1]. What we uncover is that the semicompletes with
at most one cycle, whose CSPs are in P as per [1], beget QCSPs which remain
in P. However, of the semicompletes with more than one cycle, whose CSPs are
NP-complete, some produce QCSPs of maximal complexity while others remain
no more than NP-complete. Our classification is as follows.

Theorem 1. Let H be a semicomplete digraph.

– If H contains at most one cycle then QCSP(H) is in P, else
– H contains a source and a sink and QCSP(H) is NP-complete, else
– QCSP(H) is Pspace-complete.

The tractability results, membership for both P and NP, are relatively straight-
forward and date back to the last author’s 2006 Ph.D. [15]. The natural conjec-
ture was made (not in print) for the trichotomy but repeated efforts to settle
it combinatorially failed. The present work arose from a discussion in Dagstuhl
about two conjectures involving an algebraic approach, which had always been
deemed appropriate as semicomplete digraphs are cores for which all polymor-
phisms are surjective. The first of these conjectures sought to deal with a large
subclass of the semicompletes conjectured to be Pspace-complete, those with
neither source nor sink (termed smooth). If it could be proved that all polymor-
phisms of smooth semicompletes with multiple (i.e. more than one) cycles are
essentially unary, then it would be known from [5] that the corresponding QCSP
is Pspace-complete. The largest part of this paper is in proving this result. The
remaining cases are where there is more than only one cycle and no source (du-
ally resp., sink) but there is a sink (dually resp., source). Suppose then, w.l.o.g,



that H+m is built from a smooth semicomplete with multiple cycles H by iter-
atively adding m sinks. Suppose Kn is the irreflexive n-clique and let K+m

n be
the same graph with m sinks iteratively added. The second Dagstuhl conjecture
held that, just as the polymorphisms Pol(H) should be contained in Pol(Kn), i.e.
be only essentially unary, perhaps Pol(H+m) should be contained in Pol(K+m

n ),
and that would be enough to prove Pspace-completeness for the corresponding
QCSP. This conjecture turned out to be false, but some substitute digraphs for
Kn in this position were found and so the complexity result follows nonetheless.

As previously stated, the bulk of our work is in proving all smooth semicom-
plete digraphs with multiple cycles have only essentially unary polymorphisms.
It is easy to see this is not true of any of the other semicompletes, for each of
which a simple ternary essential polymorphism (i.e. one that is not essentially
unary) may be given. Thus, we in fact give another, algebraic, classification.

Theorem 2. Let H be a semicomplete digraph. If H is smooth and not itself a
cycle, then H admits only essentially unary polymorphisms; otherwise H has an
essential polymorphism.

This may be seen as the first part of a larger research program, beginning with
semicomplete digraphs, which may continue eventually to larger classes. For ex-
ample, it is known precisely which smooth digraphs have a weak near unanimity
polymorphism [2] and which digraphs enjoy Mal’cev [8]

This paper is organised as follows. After the preliminaries we deal with upper
bounds and essential polymorphisms in Section 3. We then deal with the central
topic of those semicompletes which have only essentially unary polymorphisms
in Section 4. Finally, we deal with the remaining cases of source-without-sink and
sink-without-source in Section 5. For reasons of space most proofs are omitted.

2 Preliminaries

Let [n] := {1, . . . , n}. All graphs in what follows are directed, that is just a binary
relation on a set. We denote digraphs by G, H, etc. and their vertex and edge sets
by V (.) and E(.) (or →, ⇒; where ↔, ⇔ indicates double edge), respectively,
where we might omit the (.) if this is clear. We switch rather freely between
postfix notations, such as xy ∈ E, and infix notations such as x→ y. If v ∈ H,
then v+ := {x ∈ V (H) : vx ∈ E(H)} and v− := {x ∈ V (H) : xv ∈ E(H)}.

A digraph H is semicomplete if it is irreflexive (loopless) and for any two
vertices i and j, at least one of ij and ji is an edge of H. If H never has both ij
and ji, then it is furthermore a tournament. For technical reasons we deny the
trivial tournament with a single vertex and no edges. The equivalence relation
of strong connectedness is defined in the usual way and its equivalence classes
will be called strong components. If the strong component has one element, it
is trivial, otherwise nontrivial. We start by noting that, just like in the case of
tournaments, in semicomplete graphs the strong components can be linearly or-
dered, so that there is an edge out of every vertex in a smaller strong component



into every vertex of a larger strong component (but never an edge going the
other way, obviously).

The problems CSP(H) and QCSP(H) each take as input a sentence Φ, and
ask whether this sentence is true on H. For the former, the sentence involves the
existential quantification of a conjunction of atoms – primitive positive (pp) logic.
For the latter, the sentence involves the arbitrary quantification of a conjunction
of atoms – positive Horn (pH) logic. It is well-known, for finite H, that CSP(H)
and QCSP(H) are in NP and Pspace, respectively.

The direct product G ×H of two digraphs G and H has vertex set {(x, y) :
x ∈ V (G), y ∈ V (H)} and edge set {(x, u)(y, v) : x, y ∈ V (G), u, v ∈ V (H), xy ∈
E(G), uv ∈ E(H)}. Direct products are (up to isomorphism) associative and
commutative. The kth power Gk of a graph G is G × . . . × G (k times). A
homomorphism from a graph G to a graph H is a function h : G → H such
that, if xy ∈ E(G), then h(x)h(y) ∈ E(H). A k-ary polymorphism of a graph H
is a homomorphism from Hk to H. A polymorphism f is idempotent when, for
all x, f(x, . . . , x) = x. An operation f : Hk to H is termed essentially unary if
there is a unary operation g and co-ordinate i so that f(x1, . . . , xk) = g(xi). If
f is not essentially unary then we describe f as essential.

A digraph is a core if all of its endomorphisms are automorphisms. All finite
semicomplete digraphs are cores, for which all polymorphisms are surjective. For
cores it is well-known the constants are pp-definable up to automorphism. That
is, if Hc is H with all constants named, and H is a core, then CSP(H) and
CSP(Hc) are poly time equivalent; and the same applies to the QCSP. A similar
argument may be given in the algebraic language and the implication is that
we may as well assume all the polymorphisms of a semicomplete digraph H are
idempotent (because this is true for Hc which is actually the structure we will
be working on).

The now-celebrated algebraic approach to CSP rests on one half of a Galois
correspondence, where it is observed that the relations that are invariant un-
der (preserved by) the polymorphisms of H are precisely the relations that are
pp-definable in H. For QCSP, we obtain a similar characterisation substituting
surjective polymorphisms for polymorphisms and pH for pp. The consequence
of this is that if the polymorphisms (resp., surjective polymorphisms) of H are
contained as a subset of those of H ′, then there is a poly time reduction from
CSP(H ′) to CSP(H) (resp., QCSP(H ′) to QCSP(H)); that is, the polymor-
phisms control the complexity.

If Φ is an input for QCSP(H) with quantifier-free part ϕ, then with this we
associate the digraph Dϕ whose vertices are variables of ϕ and edges are given
by the atoms in ϕ. If Φ is existential, i.e. also an input to CSP(H), then the
relationship between Φ and DΦ is that of canonical query to canonical database
[13].

In a digraph, a source (resp., sink) is a vertex with in-degree (resp. out-
degree) 0. A digraph with no sources or sinks is called smooth. In a semicomplete
graph, a source s (resp., sink t) satisfies, for all x 6= s (resp., x 6= t), xs /∈ E(H)
and sx ∈ E(H) (resp., tx /∈ E(H) and xt ∈ E(H)). A digraph may have multiple



sources or sinks, but a semicomplete may have at most one of each. If H is a
digraph, then let H+j be H with, iteratively, j sinks added (i.e. each time we add
a sink we make it forward-adjacent to each existing vertex). Let us label these
added sinks, in order, t1, . . . , tj (thus tj is the unique sink of H+j). Similarly, let
H−j be H with j sources added. When the j is omitted it is presumed to be 1.

We mention some special semicomplete graphs that will appear in the paper.
Kn is the irreflexive complete graph (clique) on vertex set [n]. For i 6= j ∈ [n],
Kn has both edges ij and ji. DC3 is the directed 3-cycle. Let Tn be the transitive
tournament on [n] with the natural order < corresponding to the edge relation
(i.e. ij ∈ E(Tn) iff i < j).

3 Complexity upper bounds and Essential polymorphisms

The main results of this section date back to the third author’s Ph.D. [15] (avail-
able from his website) and are presented there combinatorially and in much fuller
detail. The first is very straightforward.

Proposition 1. Let H be a digraph with both a source s and a sink t, then
QCSP(H) is in NP.

Proof. Let Φ be an input to QCSP(H) with quantifier-free part ϕ. Suppose ϕ
has an atom vivj so that Φ quantifies vi universally, then Φ is a no-instance since
ϕ will never be satisfied when vi is evaluated as t. Dually, we may assume ϕ has
no atom vivj so that Φ quantifies vj universally; and we find that Φ can not
contain universally quantified variables involved in atoms of ϕ. Thus, we may
ignore universally quantified variables and evaluate Φ as an input to CSP(H) in
NP.

We now turn our attention to the poly time cases.

Proposition 2. For all n ≥ 1, QCSP(Tn) is in P.

Proof. The ternary median function f(x, y, z) = med(x, y, z) is a polymorphism
of Tn which is a majority operation. The tractability of QCSP(Tn) follows from
[5].

It is well-known that QCSP(K2) and QCSP(DC3) admit a majority polymor-
phism and are therefore in P (see [5]). We are now interested in the semicomplete
graphs K+j

2 , K−j2 , DC+j
3 and DC−j3 (for j > 0). Proof of the following appears

in the appendix.

Proposition 3. For j ≥ 0, each of QCSP(K+j
2 ), QCSP(K−j2 ), QCSP (DC+j

3 )

and QCSP(DC−j3 ) are in P.

We now deal with the semicompletes that admit essential polymorphisms.

Proposition 4. If H is a semicomplete digraph with at most one cycle or a
source or a sink, then H admits an essential polymorphism.



Proof. It was noted in the proof of Proposition 2 that the transitive tournaments
admit a median polymorphism. Afterwards it was noted further that K2 and
DC3 admit majority polymorphisms (and indeed the median may be used here).

Let H be a semicomplete digraph and recall H+ to be the same digraph with
a sink t added, to which all other vertices have a forward edge. Then H has the
polymorphism f(x, y, z) = x, unless (y = t or z = t) in which case f(x, y, z) = t.
It follows that semicompletes with sink admit an essential polymorphism. The
result for semicompletes with a source is symmetric and the result follows.

4 Semicompletes with essentially unary polymorphisms

Theorem 3. Let H be a smooth semicomplete digraph with precisely two strong
components. Then all idempotent polymorphisms of H are projections.

Theorem 4. Let H be a smooth semicomplete digraph with two non-trivial
strong components. Then all idempotent polymorphisms of H are projections.

Theorem 5. Let H be a smooth semicomplete digraph with more than two
strong components. Then all idempotent polymorphisms of H are projections.

We sum these up in the following corollary.

Corollary 1. Let H be a smooth semicomplete digraph that is not strongly con-
nected. Then all idempotent polymorphisms of H are projections.

4.1 The strongly connected case

Definition 1. A subset L ⊂ V is nice if the induced subgraph on L is strongly
connected and all idempotent polymorphisms of G restrict to L as projections.

Lemma 1. Let L be a nice subset of V and let v be a vertex such that v+ ∩L 6=
∅ 6= v− ∩ L. Then L ∪ {v} is nice.

Lemma 2. Let L = {a, b} be compatible with (i. e. closed under) the idempotent
polymorphisms of G and let a→ b→ a. If v ∈ V \ L is such that v+ ∩ L 6= ∅ 6=
v− ∩ L and f is an n-ary idempotent polymorphism of G, then there exists i,
1 ≤ i ≤ n, such that on the subset {a, b, v} the restriction of f is equal to the ith
projection.

A congruence of a tournament (V,→) is an equivalence relation ρ on V such
that for all (x1, x2), (y1, y2) ∈ ρ such that (x1, y1) /∈ ρ, x1 → y1 iff x2 → y2. If ρ
is a congruence of the tournament T = (V,→), then the factor tournament T/ρ
is the tournament (V/ρ,⇒), where a/ρ⇒ b/ρ iff a/ρ 6= b/ρ and a→ b.

We also introduce the interval notation for a digraphG = ({a1, a2, . . . , an},→
) with the fixed Hamiltonian cycle a1 → a2 → . . . → an → a1: [ai, aj ] is the
set of all vertices that are traversed by shortest path starting at ai, ending
at aj and which uses only the directed edges of the Hamiltonian cycle. For
instance, [a2, a1] = {a1, a2, . . . , an}, while [a1, a2] = {a1, a2}. We also define
[ai, aj) := [ai, aj ] \ {aj}, (ai, aj ] := [ai, aj ] \ {ai} and (ai, aj) := [ai, aj ] \ {ai, aj}.



Definition 2. Let T = ({a1, . . . , an},→) be a strongly connected tournament
with the fixed Hamiltonian cycle C = a1 → a2 → . . . → an → a1, where n ≥ 3.
T is locally transitive with respect to the cycle C iff there exists a function
ϕT : {1, . . . , n} → {1, . . . , n} such that:

1. ϕT (i) 6∈ {i− 1, i} and ϕT (1) 6∈ {1, n},
2. a+i = (ai, aϕT (i)] and
3. aϕT (i+1) ∈ [aϕT (i), ai) and aϕT (1) ∈ [aϕT (n), an).

In particular, since the locally transitive tournament T is semicomplete, we get
that aϕT (i)+1 → ai and from the definition above follows that

(4) ai → ai+1, (ai+1 → aϕT (i) or ai+1 = aϕT (i)) and a+i \{ai+1} ⊆ a+i+1

(where the addition here is modulo n, so n + 1 = 1). Note also that local tran-
sitivity depends on the fixed Hamiltonian cycle C. It is easy to construct five-
element Hamiltonian tournament which is locally transitive with respect to one
of its Hamiltonian cycles, but not with respect to another.

We will use the easier notation for a locally transitive tournament T when
the vertex set is {1, 2, . . . , n}, where we will understand, unless otherwise stated,
that the fixed Hamiltonian cycle is 1→ 2→ . . .→ n→ 1, and ai = i, so we will
have (ϕT (i) + 1)→ i instead of aϕT (i)+1 → ai et cetera.

Definition 3. A locally transitive tournament T = ({1, . . . , n},→) is regular iff
n = 2k + 1 for some positive integer k and for all 1 ≤ i < j ≤ 2k + 1, i→ j iff
j−i ≤ k+1 (otherwise j → i). In other words, in the unique (up to isomorphism)
regular locally transitive tournament with 2k+1 vertices, ϕT (i) = i+k if i ≤ k+1,
and ϕT (i) = i− k − 1 if i > k + 1.

Lemma 3. Let T = ({1, . . . , n},→) be a locally transitive tournament such that
ϕT is a permutation of {1, . . . , n}. Then T is regular.

Definition 4. The semicomplete graph GT = (V,E) will be called a P-graph
parametrized by the locally transitive tournament T = ({1, . . . , n},→) if there
exists a partition ρ of the vertex set V into nonempty subsets A1, . . . , An such
that for all i 6= j and all a ∈ Ai and b ∈ Aj, ab ∈ E iff i→ j in T .

Theorem 6. Every idempotent polymorphism f of a P-graph GT parametrized
by the locally transitive tournament T is a projection, except when GT is the
3-cycle.

Lemma 4. Let G = (V,→) be a strongly connected semicomplete graph which
contains at least one 2-cycle. Then for each 2-cycle a ↔ b in G, the set {a, b}
is closed with respect to all idempotent polymorphisms of G and each binary
idempotent polymorphism of G restricted to {a, b} is a projection.

Definition 5. Let G = (V,→) be a strongly connected semicomplete graph. We
say that L splits G if ∅ 6= L ( V is a subset with the following properties:



1. {L,L+, L−} is a partition of V and
2. for any 2-cycle a↔ b in G, {a, b} is contained in one of L, L− or L+.

Lemma 5. Let G = (V,→) be a strongly connected semicomplete graph which
is not a cycle. Let L0 be either a 2-cycle or a nice subset of V . Then either all
idempotent polymorphisms of G are projections, or there exists a subset L ⊂ V
such that L splits G, L0 ⊂ L and either the induced subgraph on L is a 2-cycle,
or L is nice.

Lemma 6. Let G = (V,→) be a strongly connected semicomplete graph which
is not a P -graph and let L split G. Then there exist vertices a0, a1, b0 ∈ V such
that a1 ← a0 → b0 → a1 and that either

1. b0 ∈ L− and a0, a1 are in the same strong component, or two consecutive
strong components, of the induced subgraph on L+, or

2. b0 ∈ L+ and a0, a1 are in the same strong component, or two consecutive
strong components, of the induced subgraph on L−.

Lemma 7. If a strongly connected tournament G = (V,→) is not a P-graph
and for all v ∈ V , all strong components of the induced subgraphs on v+ and on
v− are of sizes 1 or 3, then there is a 3-cycle a→ b→ c→ a in G such that all
idempotent polymorphisms of G restrict to {a, b, c} as projections.

Theorem 7. A strongly connected semicomplete digraph which is not a cycle
has all its idempotent polymorphisms being projections.

Proof. We prove it by an induction on |V | = n. By Theorem 6, if G is a P-
graph, we are done, so we assume that G is not a P-graph. For n = 2 the only
semicomplete digraph must be a cycle. If n = 3 and G is not a cycle, then there
is a 2-cycle a↔ b in G, and the third vertex c must satisfy either a→ c→ b or
b → c → a (possibly even both!), so by Lemma 4 and Lemma 2 all idempotent
polymorphisms are projections. Also, if n = 4, then G is a P-graph parametrized
by the 3-cycle if G is the only 4-element strongly connected tournament or in
the case when V = {a, b, c, d} has exactly one 2-cycle a ↔ b, c ∈ {a, b}+ and
d ∈ {a, b}−. Otherwise, from Lemmas 4, 2 and 1 follows that all idempotent
polymorphisms of G are projections.

Now assume that n > 4 and that the Theorem holds in all strongly connected
semicomplete graphs with fewer than n vertices. If there exists a 2-cycle a↔ b,
then we set L0 = {a, b}. Otherwise, G is a tournament, and if there exists any
vertex v ∈ V and a strong component L0 of the induced subgraph on v− or on
v+ such that |L0| > 3, then L0 is clearly pp-definable with constants in G, so L0

must be nice by the inductive assumption. Finally, if G is a tournament and for
all v ∈ V all strong components of the induced subgraphs on v− and on v+ have
at most three elements, then by Lemma 7 follows that there is a three element
subset L0 which is nice.

Let L be a maximal nice subset of V such that L0 ⊂ L. If L 6= V , then by
Lemma 5, L splits G. Now from Lemma 6 follows that either a strong component
L′ of the induced subgraph on a+0 contains L∪{a1, b0} (if (1) of Lemma 6 holds),



or that a strong component L′ of the induced subgraph on a−1 contains L∪{a0, b0}
(if (2) of Lemma 6 holds). Either way, L′ is pp-definable with constants in G,
L ( L′ ( V and the induced subgraph on L′ is strongly connected, so by the
inductive assumption L′ is nice. This contradicts the assumed maximality of L.
So, the only alternative is L = V , but then the Theorem holds by niceness of L.

Our main complexity result now follows from [5].

Corollary 2. If H is a smooth semicomplete digraph with more than one cycle,
then QCSP(H) is Pspace-complete.

5 Remaining semicomplete digraphs

Recall Tn to be the transitive tournament on [n] with the natural order < cor-
responding to the edge relation. Let Tn be Tn with the extant edge E(1, n)
augmented by E(n, 1), i.e. this becomes a double-edge. Let K2→2 be the semi-
complete graph built from disjoint copies H1 and H2 of K2 with all edges added
from H1 to H2. More generally, let K2→1k→2 be the semicomplete graph built
from disjoint copiesH1 andH2 of K2 with a transitive tournament Tk inbetween.

5.1 Some Pspace-hardness results

Proposition 5. For each k > 0, QCSP(K2→2) and QCSP(K+
2→2) are Pspace-

complete.

Corollary 3. Let G = (V,→) be a finite digraph without loops. Let G contain
either

1. a copy of K2→2 such that a↔ b→ c↔ d such that any automorphism of this
copy extends by the identity map to an automorphism of G and moreover,
a+ ∪ b+ = V , or

2. a copy of K3, a↔ b↔ c↔ a such that any permutation of {a, b, c} extends
by the identity map to an automorphism of G and moreover a+ ∪ b+ =
a+ ∪ c+ = b+ ∪ c+ = V ,

then QCSP(G) is Pspace-complete.

Proposition 6. For n ≥ 3, both QCSP(Tn) and QCSP(T
+

n ) are Pspace-complete.

Proposition 7. For any digraph H, QCSP(H+) and QCSP[∃/H](H
+) are equiv-

alent.

For H a subset of the domain of the structure H ′, let QCSP[∃/H](H
′) be the

variant of QCSP(H ′) in which the existential variables are restricted to being
chosen from H.

Proposition 8. Let H be a digraph. For each j > 1 there exists a polytime
reduction from QCSP[∃/H](H

+) to QCSP(H+j).

Corollary 4. For any digraph H and each j > 1, QCSP(H+) reduces to QCSP(H+j).

Corollary 5. For each j > 0, QCSP(T
+j

n ) and QCSP(K+j
2→2) are both Pspace-

complete.



5.2 The algebraic part

Definition 6. Let G = (V,→) be a directed graph. We define the relation �G
on V by x �G y iff x− ⊆ y−.

Proposition 9. Assume that G is semicomplete. Then �G is a partial order,
�G has the largest element t iff t is a sink, and dually for least elements and
sources.

Lemma 8. Let G = (V,→) be a semicomplete graph without sources, but with
the sink t. Let f : V m → V be any idempotent mapping such that its restriction to
V \{t} is the first projection. f is a polymorphism of G iff for all b1, b2, . . . , bm ∈
V , b1 �G f(b1, b2, . . . , bm).

Definition 7. Let G = (V,E) be a digraph. We define the partition of the vertex
set V into V Gmin, V Gmax, V Gboth and V Gnone so that all vertices in V Gmax are minimal,
but not maximal, in the order �G, all vertices in V Gmin are maximal, but not
minimal, in the order �G, all vertices in V Gboth are both minimal and maximal in
the order �G, while vertices in V Gnone are neither minimal nor maximal in the
order �G. When the digraph G is understood, we will omit the superscript G.

Definition 8. Let G = (V,E) be a digraph. We define the digraph S(G) =
(V,→) by:

1. For all x, y ∈ Vmax ∪ Vboth, x↔ y,
2. For all x, y ∈ Vmin, x↔ y,
3. For all x, y ∈ Vnone, x→ y iff E(x, y).
4. For all x ∈ Vmin and y ∈ Vnone ∪ Vmax, x→ y, but ¬y → x,
5. For all x ∈ Vnone and y ∈ Vmax, x→ y, but ¬y → x,
6. For all x ∈ Vboth and y ∈ Vnone ∪ Vmin, x→ y, but ¬y → x.

Proposition 10. V
S(G)
min = V Gmin, V

S(G)
max = V Gmax, V

S(G)
both = V Gboth and V

S(G)
none =

V Gnone. Consequently, S(S(G)) = S(G).

Proposition 11. A permutation α of the vertex set V of the digraph G = (V,→)
(more generally, universe A of a finite relational structure) is an automorphism
iff it is structure-preserving.

Lemma 9. The following statements hold for any digraph G:

1. Aut(G) ⊆ Aut(V,�G),
2. Aut(G) ⊆ Aut(S(G)),
3. �G⊆�S(G) and
4. If G is smooth and semicomplete, then so is S(G).
5. If G is not a cycle and semicomplete, then neither is S(G).

Corollary 6. Let G = (V,E) be a smooth semicomplete digraph which is not a
cycle. Then Pol(G+) ⊆ Pol(S(G)+).



Definition 9. Let G = (V,E) be a digraph. We define the digraph L(G) on the
set V in the following way:

1. For all x ∈ Vboth ∪ Vmin and y ∈ Vnone ∪ Vmax, x→ y, but ¬y → x,
2. For all x ∈ Vnone and y ∈ Vmax, x→ y, but ¬y → x,
3. For all x, y ∈ Vmin ∪ Vboth, x↔ y,
4. For all x, y ∈ Vnone, x→ y iff E(x, y),
5. For all x, y ∈ Vmax, x↔ y.

The next Lemma follows directly from Definition 9.

Lemma 10. Let G be a digraph. Either V = V Gboth = V
L(G)
both , or V

L(G)
min = V Gboth∪

V Gmin, V
L(G)
none = V Gnone, V

L(G)
max = V Gmax and V

L(G)
both = ∅.

Corollary 7. Let G = (V,E) be a smooth semicomplete digraph which is not a
cycle. Then Pol(S(G)+) ⊆ Pol(L(G)+).

Theorem 8. Let G = (V,E) be a smooth semicomplete digraph which is not a
cycle. Then QCSP(G+j) is Pspace complete for all j > 0.

Corollary 8. If H is semicomplete with more than one cycle and either: 1.)
a sink but no source, or 2.) a source but no sink, then QCSP(H) is Pspace-
complete.

Proof. Case 1 is taken care of by Theorem 8 and Case 2 is symmetric.

6 Conclusion

We can now piece together proofs of our central theorems.

Proof (of Theorem 1). The cases in P follow from Propositions 2 and 3. The NP
upper bound follows from Proposition 1 and the NP lower bound follows from
[1]. All (finite-domain) QCSPs are in Pspace so, finally, the Pspace-hard cases
follow from Corollaries 2 and 8.

Proof (of Theorem 2). From Proposition 4 and Theorem 7.
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