
Constraint Satisfaction
with Counting Quantifiers 2

Barnaby Martin1? and Juraj Stacho2

1 School of Science and Technology, Middlesex University
The Burroughs, Hendon, London NW4 4BT, U.K.

2 IEOR Department, Columbia University,
500 West 120th Street, New York, NY 10027, United States

Abstract. We study constraint satisfaction problems (CSPs) in the
presence of counting quantifiers ∃≥j , asserting the existence of j distinct
witnesses for the variable in question. As a continuation of our previous
(CSR 2012) paper [11], we focus on the complexity of undirected graph
templates. As our main contribution, we settle the two principal open
questions proposed in [11]. Firstly, we complete the classification of clique
templates by proving a full trichotomy for all possible combinations of
counting quantifiers and clique sizes, placing each case either in P, NP-
complete or PSPACE-complete. This involves resolution of the cases in
which we have the single quantifier ∃≥j on the clique K2j . Secondly, we
confirm a conjecture from [11], which proposes a full dichotomy for ∃ and
∃≥2 on all finite undirected graphs. The main thrust of this second result
is the solution of the complexity for the infinite path which we prove is
a polynomial-time solvable problem. By adapting the algorithm for the
infinite path we are then able to solve the problem for finite paths, and
then trees and forests. Thus as a corollary to this work, combining with
the other cases from [11], we obtain a full dichotomy for ∃ and ∃≥2 quan-
tifiers on finite graphs, each such problem being either in P or NP-hard.
Finally, we persevere with the work of [11] in exploring cases in which
there is dichotomy between P and PSPACE-complete, and contrast this
with situations in which the intermediate NP-completeness may appear.

1 Introduction

The constraint satisfaction problem CSP(B), much studied in artificial intelli-
gence, is known to admit several equivalent formulations, two of the best known
of which are the query evaluation of primitive positive (pp) sentences – those
involving only existential quantification and conjunction – on B, and the homo-
morphism problem to B (see, e.g., [9]). The problem CSP(B) is NP-complete in
general, and a great deal of effort has been expended in classifying its complexity
for certain restricted cases. Notably it is conjectured [7, 4] that for all fixed B,
the problem CSP(B) is in P or NP-complete. While this has not been settled
in general, a number of partial results are known – e.g. over structures of size

? The author was supported by EPSRC grant EP/L005654/1.

at most three [13, 3] and over smooth digraphs [8, 1]. A popular generalization
of the CSP involves considering the query evaluation problem for positive Horn
logic – involving only the two quantifiers, ∃ and ∀, together with conjunction.
The resulting quantified constraint satisfaction problems QCSP(B) allow for a
broader class, used in artificial intelligence to capture non-monotonic reasoning,
whose complexities rise to PSPACE-completeness.

In this paper, we continue the project begun in [11] to study counting quanti-
fiers of the form ∃≥j , which allow one to assert the existence of at least j elements
such that the ensuing property holds. Thus on a structure B with domain of size
n, the quantifiers ∃≥1 and ∃≥n are precisely ∃ and ∀, respectively.

We study variants of CSP(B) in which the input sentence to be evaluated
on B (of size |B|) remains positive conjunctive in its quantifier-free part, but is
quantified by various counting quantifiers.

For X ⊆ {1, . . . , |B|}, X 6= ∅, the X-CSP(B) takes as input a sentence given
by a conjunction of atoms quantified by quantifiers of the form ∃≥j for j ∈ X.
It then asks whether this sentence is true on B.

In [11], it was shown that X-CSP(B) exhibits trichotomy as B ranges over
undirected, irreflexive cycles, with each problem being in either L, NP-complete
or PSPACE-complete. The following classification was given for cliques.

Theorem 1. [11] For n ∈ N and X ⊆ {1, . . . , n}:

(i) X-CSP(Kn) is in L if n ≤ 2 or X ∩
{

1, . . . , bn/2c
}

= ∅.
(ii) X-CSP(Kn) is NP-complete if n > 2 and X = {1}.

(iii) X-CSP(Kn) is PSPACE-complete if n > 2 and either j ∈ X for 1 < j <
n/2 or {1, j} ⊆ X for j ∈

{
dn/2e, . . . , n

}
.

Precisely the cases {j}-CSP(K2j) are left open here. Of course, {1}-CSP(K2)
is graph 2-colorability and is in L, but for j > 1 the situation was very unclear,
and the referees noted specifically this lacuna.

In this paper we settle this question, and find the surprising situation that
{2}-CSP(K4) is in P while {j}-CSP(K2j) is PSPACE-complete for j ≥ 3. The
algorithm for the case {2}-CSP(K4) is specialized and non-trivial, and consists
in iteratively constructing a collection of forcing triples where we proceed to look
for a contradiction.

As a second focus of the paper, we continue the study of {1, 2}-CSP(H).
In particular, we focus on finite undirected graphs for which a dichotomy was
proposed in [11]. As a fundamental step towards this, we first investigate the
complexity of {1, 2}-CSP(P∞), where P∞ denotes the infinite undirected path.
We find tractability here in describing a particular unique obstruction, which
takes the form of a special walk, whose presence or absence yields the answer to
the problem. Again the algorithm is specialized and non-trivial, and in carefully
augmenting it, we construct another polynomial-time algorithm, this time for
all finite paths. This then proves the following theorem.

Theorem 2. {1, 2}-CSP(Pn) is in P, for each n ∈ N.

2

A corollary of this is the following key result.

Corollary 1. {1, 2}-CSP(H) is in P, for each forest H.

Combined with the results from [8, 11], this allows us to observe a dichotomy
for {1, 2}-CSP(H) as H ranges over undirected graphs, each problem being either
in P or NP-hard, in turn settling a conjecture proposed in [11].

Corollary 2. Let H be a graph.

(i) {1, 2}-CSP(H) is in P if H is a forest or is bipartite with a 4-cycle,
(ii) {1, 2}-CSP(H) is NP-hard in all other cases.

In [11], the main preoccupation was in the distinction between P and NP-
hard. Here we concentrate our observations to show situations in which we have
sharp dichotomies between P and PSPACE-complete. In particular, for bipar-
tite graphs, we are able to strengthen the above results in the following manner.

Theorem 3. Let H be a bipartite graph.

(i) {1, 2}-CSP(H) is in P if H is a forest or is bipartite with a 4-cycle,
(ii) {1, 2}-CSP(H) is PSPACE-complete in all other cases.

Note that this cannot be strengthened further for non-bipartite graphs, since
there are NP-complete cases (for instance when H is the octahedron K2,2,2)
and the situation regarding the NP-complete cases is less clear.

Taken together, our work seems to indicate a rich and largely uncharted
complexity landscape that these types of problems constitute. The associated
combinatorics to this landscape appears quite complex and the absence of a
simple algebraic approach is telling. We will return to the question of algebra in
the final remarks of the paper.

The paper is structured as follows. In §2, we describe a characterization
and a polynomial time algorithm for {2}-CSP(K4). In §3, we show PSPACE-
hardness for {n}-CSP(K2n) for n ≥ 3. In §4, we characterize {1, 2}-CSP for the
infinite path P∞ and describe the resulting polynomial algorithm. Then, in §5,
we generalize this to finite paths and prove Theorem 2 and associated corollaries.
Subsequently, in §6, we discuss the P/PSPACE-complete dichotomy of bipartite
graphs, under {1, 2}-CSP. Finally in §7, we illustrate some situations in which the
intermediate NP-completeness arises by discussing cases with loops on vertices.
We conclude the paper in §8 by giving some final thoughts.

1.1 Preliminaries

Our proofs use the game characterization and structural interpretation from [11].
For completeness, we summarize it here. This is as follows.

Given an input Ψ for X-CSP(B), we define the following game G (Ψ,B):

3

Definition 1. Let Ψ := Q1x1Q2x2 . . . Qmxm ψ(x1, x2, . . . , xm). Working from
the outside in, coming to a quantified variable ∃≥jx, the Prover (female) picks
a subset Bx of j elements of B as witnesses for x, and an Adversary (male)
chooses one of these, say bx, to be the value of x, denoted by f(x).

Prover wins if f is a homomorphism to B, i.e., if B |= ψ(f(x1), f(x2), . . . , f(xm)).

Lemma 1. Prover has a winning strategy in the game G (Ψ,B) iff B |= Ψ .

Definition 2. Let H be a graph. For an instance Ψ of X-CSP(H):

– define Dψ to be the graph whose vertices are the variables of Ψ and edges are
between variables vi, vj for which E(vi, vj) appears in Ψ .

– denote ≺ the total order of variables of Ψ as they are quantified in the formula
(from left to right).

We follow the customary graph-theoretical notation with V (G), E(G) denot-
ing the vertex set and edge set of a graph G, and Kn, Cn, and Pn denoting
respectively the complete graph (clique), the cycle, and the path on n vertices.

2 Algorithm for {2}-CSP(K4)

Theorem 4. {2}-CSP(K4) is decidable in polynomial time.

The template K4 has vertices {1, 2, 3, 4} and all possible edges between dis-
tinct vertices. Consider the instance Ψ of {2}-CSP(K4) as a graph G = Dψ
together with a linear ordering ≺ on V (G) (see Definition 2).

We iteratively construct the following three sets: R+, R−, and F . The set F
will be a collection of unordered pairs of vertices of G, while R+ and R− will
consist of unordered triples of vertices. (For simplicity we write xy ∈ F in place
of {x, y} ∈ F , and write xyz ∈ R+ or R− in place of {x, y, z} ∈ R+ or R−.)

The meaning of these sets is as follows. A pair xy ∈ F where x ≺ y indicates
that Prover in order to win must offer values so that the value f(x) chosen by
Adversary for x is different from the value f(y) chosen for y. A triple xyz ∈ R+

where x ≺ y ≺ z indicates that if Adversary chose f(x) 6= f(y), then Prover
must offer one (or both) of f(x), f(y) for z. A triple xyz ∈ R− where x ≺ y ≺ z
tells us that Prover must offer values different from f(x), f(y) if f(x) 6= f(y).

With this, we describe how to iteratively compute the three sets F , R+, R−.
We start by initializing the sets as follows: F = E(G) and R+ = R− = ∅. Then
we perform the following rules as long as possible:

(X1) If there are x, y, z ∈ V (G) such that {x, y} ≺ z where xz, yz ∈ F , then
add xyz into R−.

(X2) If there are vertices x, y, w, z ∈ V (G) such that {x, y, w} ≺ z with wz ∈ F
and xyz ∈ R−, then add xyw into R+.

4

(X3) If there are x, y, w, z ∈ V (G) such that {x, y, w} ≺ z with wz ∈ F and
xyz ∈ R+, then if {x, y} ≺ w, then add xyw into R−

else add xw and yw into F .

(X4) If there are vertices x, y, w, z ∈ V (G) such that {x,w} ≺ y ≺ z with
xyz ∈ R+ and wyz ∈ R−, then add xw into F , and add xwy into R+.

(X5) If there are vertices x, y, w, z ∈ V (G) such that {x, y, w} ≺ z where either
xyz, wyz ∈ R+, or xyz, wyz ∈ R−, then add xyw into R+.

(X6) If there are vertices x, y, q, w, z ∈ V (G) such that {x, y, w} ≺ q ≺ z where
either xyz, wqz ∈ R+, or xyz, wqz ∈ R−, then add xyw and xyq into R+.

(X7) If there are vertices x, y, q, w, z ∈ V (G) such that {x, y, w} ≺ q ≺ z where
either xyz ∈ R+ and wqz ∈ R−, or xyz ∈ R− and wqz ∈ R+, then add
xyq into R−, and if {x, y} ≺ w, also add xyw into R−,

else add xw and yw into F .

Theorem 5. The following are equivalent:

(i) K4 |= Ψ

(ii) Prover has a winning strategy in G (Ψ,K4).

(iii) Prover can play so that in every instance of the game, the resulting mapping
f : V (G)→ {1, 2, 3, 4} satisfies the following properties:

(S1) For every xy ∈ F , we have: f(x) 6= f(y).
(S2) For every xyz ∈ R+ such that x ≺ y ≺ z:

if f(x) 6= f(y), then f(z) ∈
{
f(x), f(y)

}
.

(S3) For every xyz ∈ R− such that x ≺ y ≺ z:
if f(x) 6= f(y), then f(z) 6∈

{
f(x), f(y)

}
.

(iv) there is no triple xyz in R+ such that x ≺ y ≺ z and (see Fig. 1)
– xz ∈ F or yz ∈ F ,
– or xwz ∈ R− for some w ≺ z (possibly w = y),
– or ywz ∈ R− for some y ≺ w ≺ z.

x y z x y z x y zw

x

y

w

z x y zw

≺ = left-to-right order

x y
xy ∈ F

x y z
xyz ∈ R+

x y z
xyz ∈ R−

Fig. 1. Forbidden configurations from item (iv) of Theorem 5.

Proof. (Sketch) (i)⇐⇒ (ii) is by definition. (iii)⇒(ii) is implied by the fact
that F ⊇ E(G), and that by (iii) Prover can play to satisfy (S1). Thus in every
instance of the game the mapping f is a homomorphism of G to K4 ⇒ (ii).

5

Then to complete the proof, we show the implications (ii)⇒(iii), (iii)⇒(iv),
and (iv)⇒(iii). This is done by analysis of possible cases.

For (iii)⇒(iv), we show that in the presence of the obstruction from (iv),
Adversary can play to violate (iii). For (iv)⇒(iii), we let Prover make choices
to satisfy (iii), first for triples in R+, then triples in R−, and finally edges in F .
Assuming (iv), this will be a winning strategy. For (ii)⇒(iii), we consider the
vertex v where (iii) fails and choose v to be largest with respect to the order ≺.
Assuming (ii) will imply an earlier such a vertex and lead to a contradiction. �

With this characterization, we can now prove Theorem 4 as follows.

Proof. (Theorem 4) By Theorem 5, it suffices to construct the sets F , R+,
and R−, and check the conditions of item (iv) of the said theorem. This can
clearly be accomplished in polynomial time, since each of the three sets contains
at most n3 elements, where n is the number of variables in the input formula,
and elements are only added (never removed) from the sets. Thus either a new
pair (triple) needs to be added as follows from one of the rules (X1)-(X7), or we
can stop and the output the resulting sets. �

3 Hardness of {n}-CSP(K2n) for n ≥ 3

Theorem 6. {n}-CSP(K2n) is PSPACE-complete for all n ≥ 3.

The template K2n consists of vertices {1, 2, . . . , 2n} and all possible edges
between distinct vertices. We shall call these vertices colours. We describe a re-
duction from the PSPACE-complete [2] problem QCSP(Kn)={1, n}-CSP(Kn)
to {n}-CSP(K2n). Consider an instance of QCSP(Kn), namely a formula Ψ where

Ψ = ∃≥b1 v1 ∃≥b2 v2 . . . ∃≥bN vN ψ
where each bi ∈ {1, n}. As usual (see Definition 2), let G denote the graph Dψ
with vertex set {v1, . . . , vN} and edge set {vivj | E(vi, vj) appears in ψ}.

We construct an instance Φ of {n}-CSP(K2n) with the property that Ψ is a
yes-instance of QCSP(Kn) if and only if Φ is a yes-instance of {n}-CSP(K2n).

In short, we shall model the n-colouring using 2n− 1 colours, n− 1 of which
will treated as don’t care colours (vertices coloured using any of such colours will
be ignored). We make sure that the colourings where no vertex is assigned a
don’t-care colour precisely model all colourings that we need to check to verify
that Ψ is a yes-instance.

We describe Φ by giving a graph H together with a total order of its vertices
with the usual interpretation that the vertices are the variables of Φ, the total
order is the order of quantification of the variables, and the edges of H define
the conjunction of predicates E(·, ·) which forms the quantifier-free part φ of Φ.

We start constructing H by adding the vertices v1, v2, . . . , vN and no edges.
Then we add new vertices u1, u2, . . . , un and make them pairwise adjacent.

We make each vi adjacent to u1, and if bi = n (i.e. if vi was quantified ∀),
then we also make vi adjacent to u2, u3, . . . , un.

We complete H by introducing for each edge xy ∈ E(G), a gadget consisting
of new vertices w, q, z, a, b, c with edges wa,wb, qb, qc, za, zb, and we connect this

6

gadget to the rest of the graph as follows: we make x adjacent to a, make y
adjacent to b, make a adjacent to u1, make c adjacent to u1, u2, u3, and make
each of a, b, c adjacent to u4, . . . , un. We refer to Figure 2 for an illustration.

The total order of V (H) first lists u1, u2, . . . , un, then v1, v2, . . . , vN (exactly
in the same order as quantified in Ψ), and then lists the remaining vertices of
each gadget, in turn, as depicted in Figure 2 (listing w, q, z, a, b, c in this order).

We consider the game G (Φ,K2n) of Prover and Adversary played on Φ where
Prover and Adversary take turns, for each variable in Φ in the order of quantifi-
cation, respectively providing a set of n colours and choosing a colour from the
set. Prover wins if this process leads to a proper 2n-colouring of H (no adjacent
vertices receive the same colour), otherwise Prover loses and Adversary wins.
The formula Φ is a yes-instance if and only if Prover has a winning strategy.

Without loss of generality (up to renaming colours), we may assume that the
vertices u1, u2, . . . , un get assigned colours n+ 1, n+ 2, . . . , 2n, respectively, i.e.
each ui gets colour n+i. (The edges between these vertices make sure that Prover
must offer distinct colours while Adversary has no way of forcing a conflict, since
there are 2n colours available.)

The claim of Theorem 6 will then follow from the following two lemmas.

Lemma 2. If Adversary is allowed to choose for the vertices x, y in the edge
gadget (Figure 2) the same colour from {1, 2, . . . , n}, then Adversary wins. If
Adversary is allowed to choose n+ 1 for x or y, then Adversary also wins.

In all other cases, Prover wins.

Lemma 3. Φ is a yes-instance of {n}-CSP(K2n) if and only if Ψ is a yes-
instance of QCSP(Kn).

We finish the proof by remarking that the construction of Φ is polynomial in
the size of Ψ (in fact the reduction is in L). Thus, since QCSP(Kn) is PSPACE-
hard, so is {n}-CSP(K2n). This completes the proof of Theorem 6.

. . .
x y w q z a b c

u3 u2 u1un u4

Fig. 2. The edge gadget (here, as an example, x is an ∃ vertex while y is a ∀ vertex).

7

4 Algorithm for {1, 2}-CSP(P∞)

We consider the infinite path P∞ to be the graph whose vertex set is Z and
whose edges are {ij : |i − j| = 1}. An instance to {1, 2}-CSP(P∞) is a graph
G = Dψ, a total order ≺ on V (G), and a function β : V (G)→ {1, 2} where

Ψ := ∃≥β(v1) v1 ∃≥β(v2) v2 · · · ∃≥β(vn) vn
∧

vivj∈E(G)

E(vi, vj)

We write X ≺ Y if x ≺ y for each x ∈ X and each y ∈ Y . Also, we write x ≺ Y
in place of {x} ≺ Y . A walk of G is a sequence x1, x2, . . . , xr of vertices of G
where xixi+1 ∈ E(G) for all i ∈ {1, . . . , r−1}. A walk x1, . . . , xr is a closed walk
if x1 = xr. Write |Q| to denote the length of the walk Q (number of edges on Q).

Definition 3. If Q = x1, . . . , xr is a walk of G, we define λ(Q) as follows:

λ(Q) = |Q| − 2

r−1∑
i=2

(
β(xi)− 1

)
Put differently, we assign weights to the vertices of G, with weight +1 as-

signed to each ∃≥2 node, and weight −1 to each ∃≥1 node; the value λ(Q) is
then simply the total weight of all inner nodes in the walk Q.

Definition 4. A walk x1, . . . , xr of G is a looping walk if x1 6= xr and if r ≥ 3

(i) {x1, xr} ≺ {x2, . . . , xr−1}, and

(ii) there is ` 6∈ {1, r} such that both x1, . . . , x` and x`, . . . , xr are looping walks.

The above is a recursive definition. Note that endpoints of a looping walk
are distinct and never appear in the interior of the walk. Other vertices, how-
ever, may appear on the walk multiple times as long as the walk obeys (ii).
Notably, it is possible that the same vertex is one of x2, . . . , x`−1 as well as one
of x`−1, . . . , xr−1 where ` is as defined in (ii). See Figure 3 for examples.

Using looping walks, we define a notion of “distance” in G that will guide
Prover in the game.

Definition 5. For vertices u, v ∈ V (G), define δ(u, v) to be the following:

min
{
λ(Q)

∣∣∣ Q = x1, . . . , xr is a looping walk of G where x1 = u and xr = v
}
.

If no looping walk between u and v exists, define δ(u, v) =∞.

In other words, δ(u, v) denotes the smallest λ-value of a looping walk between
u and v. Note that δ(u, v) = δ(v, u), since the definition of a looping walk does
not prescribe the order of the endpoints of the walk.

The main structural obstruction in our characterization of is the following.

Definition 6. A bad walk of G is a looping walk Q = x1, . . . , xr of G such that
x1 ≺ xr and λ(Q) ≤ β(xr)− 2.

8

4.1 Characterization

Theorem 7. Suppose that G is a bipartite graph. Then the following statements
are equivalent.

(I) P∞ |= Ψ
(II) Prover has a winning strategy in G (Ψ,P∞).

(III) Prover can play G (Ψ,P∞) so that in every instance of the game, the result-
ing mapping f satisfies the following for all u, v ∈ V (G) with δ(u, v) <∞:

|f(u)− f(v)| ≤ δ(u, v) , (?)

f(u) + f(v) + δ(u, v) is an even number . (4)

(IV) There are no u, v ∈ V (G) where u ≺ v such that δ(u, v) ≤ β(v)− 2 .
(V) There is no bad walk in G.

G :

≺ is the left-to-right order

v1 v2 v3 v4 v5 v6 v7 v8 v9

β : ∃ ∃≥2 ∃≥2 ∃≥2 ∃ ∃≥2 ∃ ∃ ∃≥2

Example looping walks:
Q∗ = v1, v9, v8, v7, v2 |Q∗| = 4 λ(Q∗) = 4− 2 · 1 = 2
Q = v1, v9, v8, v7, v6, v5, v4, v3, v4, v5, v6, v7, v2 |Q| = 12

{v1, v2} ≺ {v3, . . . , v9} λ(Q) = 12− 2 · 6 = 0

We decompose Q into looping walks:
Q1 = v1, v9, v8, v7, v6, v5, v4, v3 λ(Q1) = 7− 2 · 3 = 1
Q2 = v2, v7, v6, v5, v4, v3 λ(Q2) = 5− 2 · 2 = 1

{v1, v2} ≺ v3 ≺ {v4, . . . , v9}
Note that Q is a bad walk, while neither Q∗ nor Q1 nor Q2 is.

Fig. 3. Examples of looping walks.

Proof. (Sketch) We prove the claim by considering individual implications. The
equivalence (I)⇔(II) is proved as Lemma 1. The equivalence (IV)⇔(V) follows
immediately from the definitions of δ(·, ·) and bad walk. The other implications
are proved as follows. For (III)⇒(II), we show that Prover’s strategy described in
(III) is a winning strategy. For (II)⇒(III), we show that every winning strategy
must satisfy the conditions of (III). For (III)⇒(IV), we show that having vertices
u ≺ v with δ(u, v) ≤ β(v)− 2 allows Adversary to win, by playing along the bad
walk defined by vertices u, v. Finally, for (IV)⇒(III), assuming no bad pair u, v,
we describe a Prover’s strategy satisfying (III). �

We conclude this section by remarking that the values δ(u, v) can be easily
computed in polynomial time by dynamic programming. This allows us to test
conditions of the above theorem and thus decide {1, 2}-CSP(P∞) in polytime.

9

5 Algorithm for {1, 2}-CSP(Pn)

The path Pn has vertices {1, 2, . . . , n} and edges {ij : |i− j| = 1}.
Let Ψ be an instance of {1, 2}-CSP(Pn). As usual, let G be the graph Dψ

corresponding to Ψ , and let ≺ be the corresponding total ordering of V (G).
For simplicity, let us assume that G is connected and bipartite with white and

black vertices forming the bipartition. (If it is not bipartite, there is no solution;
if disconnected, we solve the problem independently on each component.)

We start with a warmup lemma.

Lemma 4. Assume P∞ |= Ψ . Let f be the first vertex in the ordering ≺. Then

(i) P1 |= Ψ ⇐⇒ G is the single ∃≥1 vertex f .
(ii) P2 |= Ψ ⇐⇒ G does not contain ∃≥2 vertex except possibly for f .

(iii) P3 |= Ψ ⇐⇒ all ∃≥2 vertices in G have the same colour.
(iv) P4 |= Ψ ⇐⇒ all ∃≥2 vertices in G are pairwise non-adjacent except

possibly for f .
(v) P5 |= Ψ ⇐⇒ there is colour C (black or white) such that each edge xy

between two ∃≥2 vertices where x ≺ y is such that x has colour C.

We now expand this lemma to the general case of {1, 2}-CSP(Pn) as follows.
Recall that we proved that P∞ |= Ψ if and only if Prover can play G (Ψ,P∞)
so that in every instance of the game, the resulting mapping f satisfies (?) and
(4). In fact the proof of (III)⇒(II) from Theorem 7 shows that every winning
strategy of Prover has this property. We use this fact in the subsequent text.

The following value γ(v) will allow us to keep track of the distance of f(v)
from the center of the (finite) path.

Definition 7. For each vertex v we define γ(v) recursively as follows:

γ(v) = 0 if v is first in the ordering ≺

else γ(v) = β(v)− 1 + max

{
0, max

u≺v

(
γ(u)− δ(u, v) + β(v)− 1

)}
Lemma 5. Let M be a real number. Suppose that P∞ |= Ψ and that Prover plays
a winning strategy in the game G (Ψ,P∞). Then Adversary can play so that the
resulting mapping f satisfies |f(v)−M | ≥ γ(v) for every vertex v ∈ V (Dψ).

Lemma 6. Let M be a real number. Suppose that P∞ |= Ψ . Then there exists a
winning strategy for Prover such that in every instance of the game the resulting
mapping f satisfies |f(v)−M | ≤ γ(v) + 1 for every v ∈ V (Dψ).

With these tools, we can now prove a characterization of the case of even n.

Theorem 8. Let n ≥ 4 be even. Assume that P∞ |= Ψ . Then TFAE.

(I) Pn |= Ψ .
(II) Prover has a winning strategy in the game G (Ψ,Pn).

(III) There is no vertex v with γ(v) ≥ n
2 .

10

Proof. Note first that since n is even, we may assume, without loss of generality,
the first vertex in the ordering is quantified ∃≥1. If not, we can freely change its
quantifier to ∃≥1 without affecting the satisfiability of the intance.

(I)⇔(II) is by Lemma 1. For (II)⇒(III), assume there is v with γ(v) ≥ n
2

and Prover has a winning strategy in G (Ψ,Pn). This is also a winning strategy
in G (Ψ,P∞). This allows us to apply Lemma 5 for M = n+1

2 to conclude that
Adversary can play against Prover so that |f(v)− n+1

2 | = |f(v)−M | ≥ γ(v) ≥ n
2 .

Thus either f(v) ≥ 2n+1
2 > n or f(v) ≤ 1

2 < 1. But then f(v) 6∈ {1, . . . , n}
contradicting our assumption that Prover plays a winning strategy.

For (III)⇒(II), assume that γ(v) ≤ n
2−1 for all vertices v. We apply Lemma 6

for M = n+1
2 . This tells us that Prover has a winning strategy on G (Ψ,P∞) such

that in every instance of the game, if f is the resulting mapping, the mapping
satisfies |f(v)− n+1

2 | ≤ γ(v) + 1 for every vertex v. From this we conclude that
f(v) ≥ n+1

2 − γ(v)− 1 ≥ n+1
2 −

n
2 = 1

2 and that f(v) ≤ 2n+1
2 = n+ 1

2 . Therefore
f(v) ∈ {1, 2, . . . , n} confirming that f is a valid homomorphism to Pn. �

This generalizes to odd n with a subtle twist. Define γ′(v) using same recur-
sion as γ(v) except set γ′(v) = β(v)− 1 if v is first in ≺. Note that γ′(v) ≥ γ(v).

Theorem 9. Let n ≥ 5 be odd. Assume that P∞ |= Ψ and that the vertices of
Dψ are properly coloured with colours black and white. Then TFAE.

(I) Pn |= Ψ .
(II) Prover has a winning strategy in the game G (Ψ,Pn).

(III) There are no vertices u, v with γ′(u) ≥ n−1
2 and γ′(v) ≥ n−1

2 such that
u is black and v is white.

Now to derive Theorem 2, it remains to observe that the values γ(v) and
γ′(v) can be calculated using dynamic programming in polynomial time.

5.1 Proofs of Corollaries 1 and 2

In this section, we sketch proofs of the two corollaries.
For Corollary 1, we want to decide {1, 2}-CSP(H) when H is a forest. Let Ψ

be a given instance to this problem, and let G = Dψ be the corresponding graph.
First, we note that we may assume that H is a tree. This follows easily (with

a small caveat mentioned below) as the connected components of G have to be
mapped to connected components of H. Therefore with H being a tree, we first
claim that if Ψ is a yes-instance, then Ψ is also a yes-instance to {1, 2}-CSP(P∞).
To conclude this, it can be shown that the condition (III) of Theorem 7 can be
generalized to trees by replacing the absolute value in the condition (?) by the
distance in H, and by using a proper colouring of H instead of parity in (4).
This implies that no two vertices u,v are mapped in H farther away than δ(u, v).
So a bad walk cannot exist and Ψ is a yes-instance of {1, 2}-CSP(P∞).

A similar argument allows us to generalize Theorems 8 and 9 to trees. Namely,
in an optimal strategy Adversary will play away from some vertex, while Prover

11

••

•
. . .
• •

•

•

. . .
. . .

.

. . .

. . .
.

. . .

. . .

. . .
x

y

v0

v1

v2

v3

v4

v2j−2

v2j−1

j−2︷ ︸︸ ︷

︸ ︷︷ ︸
3j copies of C2j

Fig. 4. The gadget for the case when H contains a cycle C2j .

will play towards some vertex. The absolute values will again be replaced by
distances in H. From this we conclude that Adversary can force each v to be
assigned to a vertex in H which is at least γ′(v) or γ(v) away from the center
vertex, resp. center edge of H. In summary, this then proves the following.

Corollary 3. Let H be a tree. Let P be a longest path in H. Then Ψ is a yes-
instance of {1, 2}-CSP(H) if and only if Ψ is a yes-instance of {1, 2}-CSP(P).

This can be phrased more generally for forests in a straightforward manner.
The only caveat is that if two components contain a longest path with odd
number of vertices, then we can make the first vertex in the instance an ∃≥1
vertex without affecting the satisfiability, because if it is ∃≥2, we let Adversary
choose which midpoint of the two longest paths to use (and either choice is fine).

Finally, to prove Corollary 2, we note that {1, 2}-CSP(H) is NP-hard for
non-bipartite H, since {1}-CSP(H) is as famously proved in [8]. For bipartite
H, the problem is in P if H is a forest (Corollary 1) or if H contains a 4-cycle
(Proposition 10 in [11]). For bipartite graphs of larger girth, the problem is
actually PSPACE-complete as we prove in the next section (Proposition 1).

6 Proof of Theorem 3

In this section, we prove the P / PSPACE dichotomy for {1, 2}-CSP(H) for
bipartite graphs H as stated in Theorem 3. We have already discussed the poly-
nomial cases in the previous section. It remains to discuss the hardness.

Proposition 1. If H is a bipartite graph whose smallest cycle is C2j for j ≥ 3,
then {1, 2}-CSP(H) is PSPACE-complete.

Proof. We reuse the reduction from [11] used to prove Theorem 1. We briefly
discuss the key steps. The reduction is from QCSP(Kj). Let Ψ be an input
formula for QCSP(Kj). We begin by considering the graph Dψ to which we add a
disjoint copy W = {w1, . . . , w2j} of C2j . Then we replace every edge (x, y) ∈ Dψ
with a gadget shown in Figure 4, where the black vertices are identified with W .
Finally, for ∀ variables v of Ψ , we add a new path z1, z2, . . . , zj where zj = v.

The resulting graph defines the quantifier-free part of θ of our desired formula
Θ. The quantification in Θ is as follows. The outermost quantifiers are ∃≥2 for

12

variables w1, . . . , w2j . Then we move inwards through the quantifier order of Ψ ;
when we encounter an existential variable v, we apply ∃≥1 to it in Θ. When we
encounter a ∀ variable v, we apply ∃≥2 to the path z1, z2, . . . , zj constructed for
v, in that order. All the remaining variables are then quantified ∃≥1.

As proved in [11], the cycle C2j models Θ if and only if Kj models Ψ . We
now adjust this to the bipartite graph H. There are three difficulties arising from
simply using the above construction as it is.

Firstly, assume the variables w1, . . . , w2j are mapped to a fixed copy C of C2j

in H. We need to ensure that variables x, y derived from the original instance Ψ
are also mapped to C. For y variables in our gadget one can check this must be
true – the successive cycles in the edge gadget may never deviate from C, since
H contains no 4-cycle. For x variables off on the pendant this might not be true.
To fix this, we insist that Ψ contains an atom E(x, y) iff it also contains E(y, x);
QCSP(Kj) remains PSPACE-complete on such instances [2].

Secondly, we need to check that Adversary has freedom to assign any value
from C to each ∀ variable v. Consider z1, . . . , zj , the path associated with v. As
long as Prover offers values for z1, . . . , zj from C, Adversary has freedom to chose
any value for v = zj . If on the other hand Prover offers for one of z1, . . . , zj , say
for zi, a value not on C, then Adversary can choose all subsequent zi+1, . . . , zj to
also be mapped outside C, since H has no cycle shorter than C2j . Thus v = zj
is mapped outside C, but we already ensured that this does not happen.

Finally, we discuss how to ensure that W is mapped to a copy of C2j . Since
each vertex in W is quantified ∃≥2, Adversary can force this by always choosing
a value not seen already when going through each of w1, . . . , w2j in turn. If this
is not possible (both offered values have been seen), this gives rise to a cycle in
H shorter than C2j . In conclusion, if Adversary maps W to a cycle, then Prover
must play exclusively on this cycle, thus solving QCSP(Kj). If Adversary maps
W to a subpath of C2j , then Prover can play to win (regardless whether Φ is a
yes- or no- instance). So the situation is just like with {1, 2}-CSP(C2j). �

7 Partially reflexive graphs

In this section, we briefly list some results for graphs allowing self-loops on some
vertices (so-called partially reflexive graphs). Our understanding of these cases is
rather limited and some recent results [10, 12] suggest that a simple dichotomy
is very unlikely. Nonetheless, some cases might still be of further interest.

First, we consider the class of undirected graphs with a single dominating
vertex w which is also a self-loop.

Proposition 2. If H has a reflexive dominating vertex w and H \{w} contains
a loop or is irreflexive bipartite, then {1, 2}-CSP(H) is in P.

Proposition 3. If H has a reflexive dominating vertex w and H \ {w} is ir-
reflexive non-bipartite, then {1, 2}-CSP(H) is NP-complete.

Corollary 4. If H has a reflexive dominating vertex, then {1, 2}-CSP(H) is
either in P or is NP-complete.

13

It follows from Proposition 3 that there is a partially reflexive graph on four
vertices, K4 with a single reflexive vertex, so that the corresponding {1, 2}-CSP
is NP-complete. We can argue this phenomenem is not visible on smaller graphs.

Proposition 4. Let H be a (partially reflexive) graph on at most three vertices,
then either {1, 2}-CSP(H) is in Por it is PSPACE-complete.

8 Final remarks

In this paper we have settled the major questions left open in [11] and it might
reasonably be said we have now concluded our preliminary investigations into
constraint satisfaction with counting quantifiers. Of course there is still a wide
vista of work remaining, not the least of which is to improve our P/ NP-
hard dichotomy for {1, 2}-CSP on undirected graphs to a P/ NP-complete /
PSPACE-complete trichotomy (if indeed the latter exists). The absence of a
similar trichotomy for QCSP, together with our reliance on [8], suggests this
could be a challenging task. Some more approachable questions include lower
bounds for {2}-CSP(K4) and {1, 2}-CSP(P∞). For example, intutition suggests
these might be NL-hard (even P-hard for the former). Another question would
be to study X-CSP(P∞), for {1, 2} ⊆/ X ⊂ N.

Since we initiated our work on constraint satisfaction with counting quanti-
fiers, a possible algebraic approach has been published in [5, 6]. It is clear reading
our expositions that the combinatorics associated with our counting quantifiers
is complex, and unfortunately the same seems to be the case on the algebraic
side (where the relevant “expanding” polymorphisms have not previously been
studied in their own right). At present, no simple algebraic method, generalizing
results from [2], is known for counting quantifiers with majority operations. This
would be significant as it might help simplify our tractability result of Theorem 2.
So far, only the Mal’tsev case shows promise in this direction.

References

1. Barto, L., Kozik, M., and Niven, T. The CSP dichotomy holds for digraphs
with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen
and Hell). SIAM Journal on Computing 38, 5 (2009), 1782–1802.

2. Börner, F., Bulatov, A. A., Chen, H., Jeavons, P., and Krokhin, A. A.
The complexity of constraint satisfaction games and QCSP. Inf. Comput. 207, 9
(2009), 923–944.

3. Bulatov, A. A dichotomy theorem for constraint satisfaction problems on a
3-element set. J. ACM 53, 1 (2006), 66–120.

4. Bulatov, A., Krokhin, A., and Jeavons, P. G. Classifying the complexity of
constraints using finite algebras. SIAM Journal on Computing 34 (2005), 720–742.

5. Bulatov, A. A., and Hedayaty, A. Counting predicates, subset surjective func-
tions, and counting csps. In 42nd IEEE International Symposium on Multiple-
Valued Logic, ISMVL 2012 (2012), pp. 331–336.

6. Bulatov, A. A., and Hedayaty, A. Galois correspondence for counting quanti-
fiers. CoRR abs/1210.3344 (2012).

14

7. Feder, T., and Vardi, M. The computational structure of monotone monadic
SNP and constraint satisfaction: A study through Datalog and group theory. SIAM
Journal on Computing 28 (1999), 57–104.

8. Hell, P., and Nešetřil, J. On the complexity of H-coloring. Journal of Com-
binatorial Theory, Series B 48 (1990), 92–110.

9. Kolaitis, P. G., and Vardi, M. Y. Finite Model Theory and Its Applications
(Texts in Theoretical Computer Science. An EATCS Series). Springer-Verlag New
York, Inc., 2005, ch. A logical Approach to Constraint Satisfaction.

10. Madelaine, F. R., and Martin, B. QCSP on partially reflexive cycles - the
wavy line of tractability. In 8th International Computer Science Symposium in
Russia, CSR 2013 (2013), pp. 322–333.

11. Madelaine, F. R., Martin, B., and Stacho, J. Constraint satisfaction with
counting quantifiers. In 7th International Computer Science Symposium in Russia,
CSR 2012 (2012), pp. 253–265.

12. Martin, B. QCSP on partially reflexive forests. In Principles and Practice of
Constraint Programming - 17th International Conference, CP 2011 (2011).

13. Schaefer, T. J. The complexity of satisfiability problems. In Proceedings of
STOC’78 (1978), pp. 216–226.

15

