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Abstract—The front-end block-based video encoder applies an
Image Quality Assessment (IQA) as part of the distortion metric.
Typically, the distortion metric applies uniform weighting for
the absolute differences within a Sub-Macroblock (Sub-MB) at
any given time. As video is predominately designed for Humans,
the distortion metric should reflect the Human Visual System
(HVS). Thus, a perceptual distortion metric (PDM), will lower
the convex hull of the Rate-Distortion (R-D) curve towards
the origin, by removing perceptual redundancy and retaining
perceptual clues. Structured Similarity (SSIM), a perceptual
IQA, has been adapted via logarithmic functions to measure
distortion, however, it is restricted to the Group of Picture level
and hence unable to adapt to the local Sub-MB changes. This
paper proposes a Local Hybrid Pseudo-SSIM-SATD (LHPSS)
Distortion Metric, operating at the Sub-MB level and satisfy-
ing the Triangle Equality Rule (P). A detailed discussion of
LHPSS’s Psuedo-SSIM model will illustrate how SSIM can be
perceptually scaled within the distortion metric space of SATD
using non-logarithmic functions. Results of HD video encoded
across different QPs will be presented showing the competitive bit
usage under IbBbBbBbP prediction structure for similar image
quality. Finally, the mode decision choices superimposed on the
Intra frame will illustrate that LHPSS lowers the R-D curve as
homogeneous regions are represented with larger block size.

I. INTRODUCTION

The role of the front-end block-based video encoder is to
select the prediction representing the most amount of pixel
image block as signalling, for the least amount of distortion for
the quantised residue. This is reflected by the Rate-Distortion
(R-D) curve in equation (1) within [1]. Here, lambda (λ)
applies quantisation to maintain a given bit rate (R), while
its effects are assessed by the distortion metric (D). This can
extend along various stages of the encoder [2], searching for
Jmin energy , the optimum point of operation along the convex
hull of the R-D curve for the encoder as discussed in [3].

Jmin energy = λquant ×Rbit rate +Ddistmetric (1)

The benefits of having a distortion metric based upon the
HVS (perceptual model) can bring the convex hull closer to the
origin, thus lowering the bit-rate required to achieve similar
Image Quality (IQ) [3], [4]. However, perceptual models
can be computationally high and their perceptual distortion

scores difficult to quantify [4], hence, the use of low complex
tractable solutions [3], which support the Triangle Equality
Rule (P) [5].
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Fig. 2. Geodesic Triangle Equality

The triangle equality rule (P) in terms of the distortion
metric is where for an image triplet of original, predicted and
difference; the distortion score of each pair should be such that
the distortion score of one should equate to the summation of
the other two distortion scores as shown in figure 1 [5].

Different perceptual based models have achieved the goal
of lowering the convex hull towards the origin, such as
Just Noticeable Distortion (JND) [6]. JND is highly complex
and considers relative lighting conditions, an aspect of HVS.
Structural Similarity (SSIM) [7], a low complexity perceptual
Image Quality Assessment (IQA) that takes into account the
structural information based on relative lighting conditions and
is described in equation (2),

SSIM(org, rec)=
(2µorgµrec+C1)×(2σorg,rec+C2)

(µ2
org+µ

2
rec+C1)×(σ2

org+σ
2
rec+C2)

(2)

where, µorg and µrec represent the mean of the original
image block and reconstructed image block, σ2

organd σ2
rec are

the standard deviations respectively, σorg,rec is the covariance,
C1 and C2 are constants which are calculated based upon the
bit depth to stabilise the equation.

It was explained in [5], that a true distortion metric supports
the triangle equality rule (P), suggesting that SSIM should
support a Geodesic Triangle Equality, as shown in figure 2,
over a curved space. Hence, non-linear equations should be
applied to SSIM to scale it such that it satisfies the triangle
equality rule (P).

SSIM is a perceptual IQA, but cannot be natively used as
a distortion metric as it does not support the triangle equality



rule (P). The efforts of adapting SSIM to operate as a pseudo-
distortion metric have been achieved in [8] by use of logarith-
mic functions, however this approach is limited to the Group of
Pictures (GOP) level. Furthermore, it does not meet the goals
of low complexity and variability [3]. Variability distinguishes
two similar results by their scores, which when considered
at the Sub-Macroblock (Sub-MB) level at the Prediction and
Mode Decision stages, is crucial. Hence, the accuracy and
coverage of a perceptual distortion metric (PDM) must be
sufficient to achieve this for the selection of prediction modes
and block sizes. The scaled-SSIM-PDM is the evidence backed
concept of representing SSIM values within the Standard
Traditional Distortion Metrics (STDM) space, proposed in [2].
Though no means of realising this concept was shown, the
work highlighted that logarithmic functions should be avoided.
Similar to IQA, perceptual vs. non-perceptual, a scaled-SSIM-
PDM vs. a non-PDM will differ by the ordering of scores,
allowing for certain types of distortions over others [7]. This
can be extended at the local level, where the scaling can be
adapted according to the perceptual or bit-budget conditions
at that given time. Therefore, equation (1) can be re-written as
equation (3), where kappa (κ) represents adapting the scaling
of the PDM towards a perceptual rate control (PRC). Rather
than adjusting λ to regulate the bit-budget, κ can influence the
PDM based upon the perceptual significance of the incoming
MB [2].

Jmin energy = λquant ×Rbit rate + κ×Ddistmetric (3)

Hence, this paper will demostrate SSIM scaled in the
distortion metric space of SATD at the Sub-MB level, avoiding
logarithmic functions. This will be shown in the form of
Pseudo-SSIM and as part of Local Hybrid Pseudo-SSIM-
SATD (LHPSS) Distortion Metric which falls back to SATD
when Pseudo-SSIM is out of scope.

The paper is divided up as follows, an explanation of how
covariance can aid in ordering samples that occupy the same
SSIM value, thus allowing SSIM to be scaled and to meet
the triangle equality rule (P). However, covariance should be
perceptually compared to a HVS model like Just Noticeable
Distortion (JND) [6] to assess how it perceptually evaluates
an image. Then, a flowchart and operational block diagram
will illustrate the Local Hybrid Pseudo-SSIM-SATD (LHPSS)
Distortion Metric and Pseudo-SSIM operations in figure 6 and
section IV respectively. Finally, the results of the implemented
LHPSS, in terms of table of results and Intra frames with
mode decision superimposed shown in table I and figure 8
respectively. Please note that the scaling values of Pseudo-
SSIM are provided in tables II to XIV.

II. ORDERING OF SSIM WITHIN AN EXISTING
DISTORTION METRIC SPACE

It is shown in [5] that SSIM must be non-negative, sym-
metrical and fulfil the triangle equality rule (P). These first
two conditions are met by presenting SSIM in the form of
(1-SSIM), a method adopted in [8] and explained in [5]. To
support the triangle equality rule (P), the findings in [2] of a
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Fig. 3. SSIM vs. SATD (8x8) with Covariance.

universal bounded region (UBR) by block size is extended in
this paper by stating how they may be ordered.

The graph in figure 3 illustrates SSIM samples taken along
side SATD samples at the Prediction level, with the markers
coloured by their covariance (Cov) value. Covariance is a
component of SSIM, calculated between the original and
reconstructed block as shown in equation (2). In terms of
8-bit Grey-scale, Luma, the theoretical range for Covariance
is ±16k. In the graph figure 3, the actual range observed
were between -334 and 4731, hence the covariance value has
been shifted by +580, (C2×10), so that negative covariance
values can be illustrated on the same graph. From figure 3, it
shows how samples that occupy the same SSIM value can
be distinguished by their covariance value. Thus, figure 3
provides insight of how the concept of a scaled-SSIM-PDM
in [2] can be achieved within distortion metric of SATD and
thus satisfying the triangle equality rule (P).

For reasons of time and simplicity, the modelling of figure 3
in terms of Pseudo-SSIM will be bounded, where 0 ≤ Cov <
8000 and where 1−SSIM <1. This should cover the majority
of samples as shown in [2], however when out of scope of
Psuedo-SSIM it will falling back to SATD .

Pseudo-SSIM model will enable prediction and mode deci-
sion to assess in terms of the perceptual score at the Sub-MB
level. This can be further extended in the form of perceptual
rate control as described in equation (3).

III. COVARIANCE MAP ANALYSIS

In order to assess the perceptual nature of covariance, a co-
variance heatmap based upon raw Luma values was produced
using a spreadsheet. This was based upon raw Luma values
of original and reconstructed intra frames, the covariance
range was shifted by three to ensure full coverage. Figure 4
represents the values of covariance in a heat map format with
a scale of Log8000(Cov + 3).

The Covariance Map illustrates flat regions with low co-
variance and where edges or boundaries exist, represented
by high covariance. To compare the perceptual covariance
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Fig. 4. Covariance Heatmap of
Intra Frame (Foreman frame 0
QCIF).
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Fig. 5. Just Noticeable Distortion
(JND) Visibility Threshold of Intra
Frame.

heatmap in HVS terms, another heatmap representing JND
using [6] was produced based upon raw luma values and a
spreadsheet. The JND heatmap is shown figure 5 illustrates the
visibility threshold to be lowest in the homogeneous regions,
i.e. the bottom left hand corner, the helmet and upon the
panelling. These have the darkest region, where the sensitivity
to Luma differences are high and most noticeable. Overall,
analysing figure 4 and figure 5 shows that covariance makes a
reasonable approximation of JND. This justifies covariance as
a perceptual means of scaling of SSIM values. Furthermore,
this understanding of interpreting local covariance values of
original and reconstructed images can be used to interpret the
graphs shown in [2].

IV. LOCAL HYBRID PSEUDO-SSIM-SATD (LHPSS)
DISTORTION METRIC

Within the encoding process, the Local Hybrid Pseudo
SSIM-SATD (LHPSS) model will affect both the intra and
inter blocks at the mode and prediction levels and can be
extended to Rate Control as part of the PRC model [2].

As Pseudo-SSIM has been defined as where 1−SSIM<1
and 0≤Cov<8000, it must work in a Hybrid form along side
the distortion metric it mimics, SATD, as a fall-back to ensure
full coverage. Figure 6 represents a flowchart of the LHPSS
Distortion Metric. Within the flowchart, the Absolute Mean
Difference (|µO−R|) and Covariance are used to provide vari-
ableness and scale SSIM respectively. Variableness between
samples is crucial for the encoder to distinguish between
similar samples [3], especially at the Sub-MB level where the
likelihood of prediction modes sharing the same SSIM score
is high [2].

The workflow of LHPSS as shown in figure 6 uses SSIM’s
own components to scale Pseudo-SSIM. The scaling is per-
formed using linear equations to ensure processor friendly
operations. Compared to [8], LHPSS can operate locally
without using logarithmic functions and without re-quantising
to produce a temporal relative distortion scale. As LHPSS
operates in the distortion metric space of SATD it satisfies
the triangle equality rule (P). Therefore, in [8] the perceptual
model must be actively updated on a key frame basis as its
relative nature limits the scope to the GOP level or when
there is high activity. Hence, in [8] it does not adapt to
the local conditions like an STDM. LHPSS distortion metric
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Fig. 6. Flowchart of Hybrid Pseudo-SSIM-SATD Distortion Metric.
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Fig. 7. Operational Block Diagram of PseudoSSIM

addresses these issues related to [8] by providing a general
solution based upon modelling the UBR by block size [2]. This
enables LHPSS to be integrated at the Sub-MB prediction and
mode decision stages, thus awarding a distortion score based
on the local perceptual significance. Furthermore, Pseudo-
SSIM within LHPSS can be extended to dynamically adapt
as described in equation (3)

From an operational point of view, Pseudo-SSIM can be
seen to be competitive against STDMs. While an STDM would
calculate the differences between a Original and Reconstructed
block before determining the score, SSIM can be performed
immediately before Pseudo-SSIM scales the SSIM value.
However, where the SSIM or covariance values are out of
range, it must then fall back to use SATD, an STDM. There-
fore, for those values that fall out of scope of Pseudo-SSIM,
the encoding process takes longer, thus requiring additional
processing time.



V. WORKING OF PSEUDO-SSIM WITHIN LHPSS
The samples gathered to produce the scaled-SSIM-PDM

model of Pseudo-SSIM were taken at the prediction level [2]
based upon the data gathered from the first three frames of
Foreman video sequence of QCIF resolution and reflect the
large proportion low covariance regions shown in figure 4.

The internal processes involved to calculate Pseudo-SSIM
are shown in figure 7. They comprise of three main parts,
the Mean Difference Cost, the Covariance Scaling Cost and
the SSIM Scaling Cost and together they sum up to output
a Pseudo-SSIM score. There are six zones, which are set
depending upon the covariance score, where ∆Cov is the rela-
tive covariance that is subsequently processed. The weightings
per covariance zone and SSIM profiles for Pseudo-SSIM are
shown in tables II to XIV.

Within the Mean Difference Cost the pathways are specific
to the block size. Specifically, the 8x8 Model, the mean
difference can be high which will lead to addition processing
of the mean difference towards the final value of the Mean
Difference Cost. Otherwise, the Covariance Scaling Cost and
SSIM Scaling Cost for both 4x4 and 8x8 block sizes are
the same with only the values that differ. The values set
for coefficients, denominator and offset within Pseudo-SSIM
have been set to be either binary friendly or when applied
implemented with as shifts, additions or subtractions. This
has been possible by working with integers. The SSIM score
is initially converted to (1−SSIM)×1000 and covariance has
had its respective covariance zones threshold subtracted and
labelled as ∆Cov. Thus, only when two unknowns at designed
time are multiplied or SSIM is converted to (1−SSIM)×1000
does a multiplication take place. Therefore, 4x4 block will
undergo two multiplication operations and an 8x8 block will
have three multiplication operations, The purposed of the
covariance scaling cost is to distinguish two samples of same
the SSIM value by their respective covariance within the dis-
tortion metric space of SATD. Hence, the upper part of ∆Cov
divided by a denominator factor states the position within the
given zone. While the lower part of ∆Cov×(1−SSIM)×1000
reflects how the zones are divided into SSIM bands and so
this represents the rate of growth for the given band.

VI. RESULTS

The results in table I show the implementation of the LHPSS
at the Prediction and Mode Decision stages, operating as a
distortion metric alternative to SATD where conditions are
met. The performance results are from the encoder’s console
and statistics file and further analysis of the mode selection on
the intra frame were extracted separately from the encoder.

The default configuration file in JM18.4 MPEG4/AVC [9]
was set-up with the recommendations set by [10] and SSIM
assessment. A separate modified JM18.4 code base with the
LHPSS model implemented was set-up with the same con-
figuration except for LHPSS operating at Motion Estimation
(Half and Quarter Pixel) and at Mode Decision Distortion.

The video sequences selected are of HD resolution
(1920x1080), ‘CrowdRun’ and ‘sunflower’, 50 and 25

IbBbBbBbP
CrowdRun QP22 QP27 QP32 QP37 Ave.
Total Time 19.70% 19.70% 12.67% 21.07% 18.29%
Y-PSNR -0.35% -0.55% -0.65% -0.57% -0.53%
Y-SSIM -0.06% -0.20% -0.44% -0.68% -0.34%
Total Bits 1.95% 1.38% 0.53% -0.54% 0.83%

Sunflower QP22 QP27 QP32 QP37 Ave.
Total Time 21.16% 21.91% 23.50% 24.81% 22.85%
Y-PSNR -0.19% -0.30% -0.34% -0.43% -0.31%
Y-SSIM -0.03% -0.07% -0.16% -0.39% -0.16%
Total Bits 0.57% -1.99% -5.45% -9.49% -4.09%

IPPP
CrowdRun QP22 QP27 QP32 QP37 Ave.
Total Time -5.51% 4.80% 10.39% 12.31% 5.50%
Y-PSNR -31.17% -32.74% -35.15% -38.56% -34.40%
Y-SSIM -16.96% -25.68% -35.48% -46.88% -31.25%
Total Bits -82.97% -83.33% -82.34% -84.37% -83.25%

Sunflower QP22 QP27 QP32 QP37 Ave.
Total Time 13.27% 19.29% 20.00% 23.90% 19.12%
Y-PSNR -15.10% -17.51% -19.29% -23.63% -18.88%
Y-SSIM -2.80% -4.80% -7.88% -13.88% -7.34%
Total Bits -68.86% -65.60% -50.29% -24.49% -52.31%

TABLE I
SUMMARY OF LHPSS RELATIVE VIDEO PERFORMANCE SHOWN AS %
DIFFERENCES FOR IBBBBBBBP AND IPPP PREDICTION STRUCTURE

USING CROWDRUN AND SUNFLOWER 1080P

frames/second respectively. The tests were run under
’IbBbBbBbP’ and ’IPPP’ prediction structure [10] across four
Quantisation Parame (QP) values of 22, 27, 32 and 37 for
QPISlice, with QPPSlice and QPBSlice increamented by 1,
i.e. if QPISlice is 22, QPPSlice is 23 and QPBSlice is 24.

The run of tests were performed with Rate Distortion Opti-
misation (RDO) Quantisation (RDOQ) enabled, whereby each
prediction mode is assessed by their Distortion Score as well as
compressibility, reflecting the need to balance (R-D). The run
of tests with RDOQ disabled have not been performed, since
the results with RDOQ enabled would occupy a smaller range
of SSIM, excluding the extreme cases and thus, increasing the
likelihood of having those prediction modes that are closer to
the origin of the R-D curve. The tests were performed using
a system with an Intel Core i7 CPU 920 processor operating
at 2.67GHz and 7GB of RAM.

VII. ENCODER PERFORMANCE

The novel LHPSS model has been implemented within the
JM18.4 H.264/AVC Encoder as shown in figure 7.

The summary of results presented in table I, shows the
performance of SATD and Pseudo-SSIM. The Encoder outputs
information pertaining frame bit usage, timings and IQ. These
are shown as relative video performance shown as % dif-
ferences for IbBbBbBbP and IPPP prediction structure using
CrowdRun and Sunflower 1080p.

The results for IbBbBbBbP prediction structure illustrate
CrowdRun to have an overall bit usage approximately the same
as SATD, within ±2%, across the range of QP’s tested. Simi-
larly, the PSNR and SSIM values remain within 1% difference.
Comparing to Sunflower, which is a highly textured video
sequence, the bit usage progressively drops under LHPSS as



(a) SATD I4x4:57, I8x8:6408,
I16x16:1695

(b) Pseudo-SSIM I4x4:67, I8x8:6161,
I16x16:1932

(c) SATD I4x4:2910, I8x8:4333,
I16x16:917

(d) Pseudo-SSIM I4x4:2127,
I8x8:4880, I16x16:1153

Fig. 8. CrowdRun (top pair) and Sunflower (bottom pair)Frame 1 (Intra)
Luma with Highlighted Macroblocks type, Red for Intra4x4, Green for Intra
8x8 and Blue for Intra 16x16.

QP increases, while image quality (IQ) score dropping by less
than 1

2 %. The overall time for encoding the video sequence
using the LHPSS model is +18% and +23% respectively for
CrowdRun and Sunflower.

Under IPPP prediction structure, the overall bit usage dra-
matically drops by 83% and 52% respectively for CrowdRun
and Sunflower; however, this happens at the expense of IQ.
For CrowdRun, PSNR using LHPSS reduces by 31% at QP22
and 39% at QP37 when comparted to SATD. For Sunflower,
the PSNR is 15% lower at QP22 and 24% lower at QP37 when
LHPSS is used. In SSIM terms, the drop in IQ is on average
almost a third in CrowdRun and a fifth in Sunflower.

The intra frame with mode selection superimposed on top is
shown in figure 8. Here, a greater number of larger block sizes
are chosen with LHPSS. In CrowdRun, the top ’sky’ region,
which is mainly homogeneous, shows a large number of 8x8
blocks (green) when compared to SATD. Also, in the middle
front of the CrowdRun, the number of 4x4s used is less under
LHPSS. In the Sunflower test video, the number of 16x16
is approximately 14% higher, which are largely concentrated
on the petals on the right hand side. Again, this region is
homogeneous, thus exploiting perceptual redundancy.

VIII. CONCLUSION AND FUTURE WORK

The results presented in this paper have demonstrated that
SSIM scaling by using its own component of ‘covariance’,
both satisfies the Triangle Equality Rule (P) and utilises a
perceptual means of scaling.

The LHPSS model utilises non-logarithmic functions thus
allowing for it to be implemented at the Sub Macroblock
Prediction and Mode Decision stages of a block-based encoder.
The model is based upon data which is gathered from the
first three frames of the Foreman QCIF resolution video and
subsequently tested on HD resolution against SATD to show
the generalisation of the novel LHPSS model’s applicability.

The results show the model is able to retain a level of
IQ in IbBbBbBbP for similar or lower bit usage, though the
time taken is high. For the IPPP prediction structure case, the
bit usage is dramatically lowered at the expense of IQ, with
time taken remaining high. The increase in time is related
to LHPSS falling back on to SATD for those samples which
SSIM or covariance values are out of scope of Pseudo-SSIM.
While this novel approach shows a potential for bit-budget
improvement, it can be refined with a more accurate model,
which can address the IQ losses seen in IPPP. This can be
addressed by extending the coverage of LHPSS to a wider
range of SSIM and covariance from different video sources
as discussed in [2]. Thus, produce a more accurate perceptual
R-D model as mentioned in [3] as well as minimise the fall
back to SATD, and so also address issues related to timing.

When the Intra frame image with the Mode Decision
was shown, under LHPSS, homogeneous regions exhibited
higher number of larger block sizes than SATD. This is
encouraging, demonstrating that where the LHPSS model is
successful in lowering the convex hull of the Rate-Distortion
curve towards the origin. This work can be extended in the
form of equation (3), so that Pseudo-SSIM adapts depending
upon the perceptual nature of the block and the bit budget.
Therefore, implementing a Local Perceptual Rate Control
with a dynamically adapting perceptual distortion metric to
complete the Perceptual Framework discussed in [2].
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SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

2 10 8 1 1/8 1/64 1/32
10 20 12 3/4 1/128 1/8
20 50 14 5/8 1/256 3/16
50 100 32 1/4 1/256 1/4

100 200 32 1/4 1/1024 5/16
200 600 32 1/4 1/512 1/2
600 800 −300 3/4 1/256 −1/2
800 900 −1,688 2 1/2 1/64 −10

TABLE II
4X4: ZONE1Cov (0≤COV<150) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

2 10 12 3 5/8 1/256 1/16
10 20 28 1 15/16 1/256 1/16
20 50 42 1 1/4 1/256 1/16
50 100 58 15/16 1/512 1/8

100 200 80 11/16 1/512 1/8
200 600 88 5/8 1/512 1/8
600 800 −142 1 1/512 1/8

TABLE III
4X4: ZONE2Cov (150≤COV<300) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

0 2 32 3 5/8 1/256 1/64
2 10 32 3 5/8 1/256 1/32

10 20 40 2 1/2 1/256 1/32
20 50 56 1 3/4 3/1024 1/32
50 100 86 1 1/8 1/1024 1/8

100 200 102 15/16 1/2048 3/16
200 600 108 7/8 1/1024 3/32
600 800 −120 1 1/4 1/128 −4

TABLE IV
4X4: ZONE3Cov (300≤COV<600) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

0 2 36 5 5/8 1/64 1/256
2 10 36 5 5/8 1/256 3/128

10 20 56 3 3/8 1/512 5/128
20 50 80 2 1/4 1/1024 1/16
50 100 124 1 3/8 1/1024 3/64

100 200 160 1 1/8 1/2048 3/32
200 600 160 1 1/16 1/2048 3/32

TABLE V
4X4: ZONE4Cov (600≤COV<1350) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

0 2 48 8 1/2 3/256 −1/64
2 10 48 8 1/2 1/512 1/64

10 20 84 4 3/4 1/1024 7/256
20 50 120 3 1/1024 1/32
50 100 176 1 7/8 1/1024 3/128

100 200 214 1 1/2 (∆CV/8)×x/2048 7/64
200 250 284 1 1/4 (∆CV/8)×x/2048 3/32

TABLE VI
4X4: ZONE5Cov (1350≤COV<3014) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

0 2 66 12 3/512 −1/256
2 10 66 12 1/512 1/512

10 20 128 6 3/4 (∆CV/16)×x/512 1/64
20 50 186 4 1/4 (∆CV/4)×x/512 1/128
50 100 256 3 (∆CV/4)×x/512 1/256

TABLE VII
4X4: ZONE6Cov (3014≤COV<8000) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

2 10 42 3 1/4 1/64 5/8
10 50 46 2 1/4 1/64 3/4
50 100 96 1 1/4 1/64 1

100 600 128 1 1/128 3/2
600 750 −350 1 3/4 1/64 −3 1/4
750 900 −2,375 4 1/2 1/128 2
900 975 −22,000 26 1/128 1

TABLE VIII
8X8: ZONE1Cov (0≤COV<150) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

2 10 150 5 1/2 1/16 1/4
10 50 150 5 1/2 1/64 1/8
50 100 192 4 1/2 1/512 1

100 600 256 2 1/2 1/256 1
600 900 −1,024 4 1/2 1/128 −1

TABLE IX
8X8: ZONE2Cov (150≤COV<300) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

2 10 100 9 1/32 3/16
10 20 100 9 1/32 1/8
20 50 100 9 0 5/8
50 100 312 4 1/128 3/8

100 500 448 3 1/256 1/2
500 600 448 3 1/128 −3/2
600 750 −600 5 1/256 1/2

TABLE X
8X8: ZONE3Cov (300≤COV<600) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

0 10 168 16 1/2 1/64 1/16
10 20 224 13 1/2 1/128 1/8
20 50 352 7 1/128 1/8
50 100 448 6 1/1024 3/8

100 550 552 4 3/4 1/512 1/4
TABLE XI

8X8: ZONE4Cov (600≤COV<1350) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

0 10 245 30 1/128 1/32
10 15 368 17 1/128 1/64
15 20 368 17 1/256 1/16
20 50 464 12 1/256 1/16
50 100 464 12 −1/1024 5/16

100 275 848 6 1/256 0
TABLE XII

8X8: ZONE5Cov (1350≤COV<3014) WHERE X=(1−SSIM)×1K

SSIMcost Covcost
xmin xmax Offset Coeff. ∆Cov×x ∆Cov

0 15 272 44 1/1024 1/128
15 50 512 20 1/512 1/64
50 200 952 10 1/1024 1/16

TABLE XIII
8X8: ZONE6Cov (3014≤COV<8000) WHERE X=(1−SSIM)×1K

Zone ∆Cov Thresh 4x4: Coeff. 8x8: (Ax+B)×µ∆+µ∆
1 0 8 A: 1/16, B: 0
2 150 8 A: 1/16, B: 0
3 300 8 A: 7/128, B: -4
4 600 8 A: 3/512, B:16
5 1350 8 A: 5/512, B:2
6 3014 4 A: 5/512, B:-43

TABLE XIV
MEAN ABSOLUTE DIFFERENCE COST WHERE µ∆ = |µO−R|


