
1

A review of interactive narrative systems and
technologies: a training perspective

Linbo Luo1, Wentong Cai2, Suiping Zhou3,Michael Lees4, Haiyan Yin2,
1School of Computer Science and Technology, Xidian University, China

2School of Computer Engineering, Nanyang Technological University, Singapore
3School of Science and Technology, Middlesex University, United Kingdom

4Section Computational Science, University of Amsterdam, Netherlands

Abstract—As an emerging form of digital entertainment, interactive narrative has attracted great attention of researchers
over the past decade. Recently, there is an emerging trend to apply interactive narrative for training and simulation. An
interactive narrative system allows players to proactively interact with simulated entities in a virtual world and have
the ability to alter the progression of a storyline. In simulation-based training, the use of an interactive narrative system
enables the possibility to offer engaging, diverse and personalized narratives or scenarios for different training purposes.
This paper provides a review of interactive narrative systems and technologies from a training perspective. Specifically,
we first propose a set of key requirements in developing interactive narrative systems for simulation-based training.
Then we review nine representative existing systems with respect to their system architectures, features and related
mechanisms. To examine their applicability to training, we investigate and compare the reviewed systems based on
the functionalities and modules that support the proposed requirements. Furthermore, we discuss some open research
issues on future development of interactive narrative technologies for training applications.

Index Terms—Interactive narrative, human-in-the-loop simulation, training, intelligent agents

F

1 INTRODUCTION

R ECENT years have witnessed an increasing
interest in developing simulation-based

training systems for a wide spectrum of appli-
cations such as military operations [1], [2], [3],
health care [4], [5], [6], [7], business manage-
ment [8], [9], [10], [11], and education [12], [13],
[14]. Simulation-based training is also referred
to as human-in-the-loop simulation, where a
trainee is situated in a synthetic environment
and interacts with virtual entities for the pur-
pose of knowledge and skill acquisition. Com-
pared to traditional training methods, simu-
lation provides an unique way for training
that is more affordable and adaptive. For ex-
ample, a soldier can practice military opera-
tion skills through simulation without being
physically exposed to a real combat environ-
ment. It also has the advantage of offering an
engaging, interactive and collaborative virtual
experience, which can lead to better learning
performance [14], [15].

Despite its increasing popularity, simulation-
based training still faces many challenges in
its development. One of the key challenges
is the provision of scenarios. A scenario in
terms of training refers to a sequence of events
that a trainee experiences during the simu-
lation. It is an essential component to drive
the simulation towards achieving the desired
training objectives. Through playing different
scenarios, a trainee can exercise different skills
or undertake certain missions for training. In
practice, manual authoring of scenarios is a
time-consuming and tedious process. Thus, the
number of scenarios that can be played is a
critical bottleneck to training [16], [17]. More-
over, during the simulation, the execution of
a scenario has to be coupled with trainee’s
actions in an interactive manner. It requires that
the training system has the capability to allow a
trainee to influence the way in which a scenario
progresses in the simulation. Such a capability
is not commonly supported by traditional non-
interactive simulations.

2

(a) (b) (c)

(d) (e)

Fig. 1. Screenshots of prototype interactive narrative systems: (a) Façade [18], (b) IDA [19], (c)
ISAT [3], (d) I-Storytelling [20], (e) FearNot! [21]

Over the past decade, interactive narrative
(also known as interactive storytelling) has
been rapidly developed as a new form of
digital entertainment. More recently, there is
an emerging trend to apply interactive nar-
rative in training domain [3], [17], [22], [23].
In an interactive narrative system, a player is
situated in a virtual world and she/he can
take different actions in the progression of
an unfolding story. The vision of interactive
narrative is to create a dramatic “Holodeck”-
like experience [24], in which a dramatically
significant story can be dynamically generated
via player’s interaction in a highly-immersed
virtual environment. To enable interactivity, in-
teractive narrative system is designed to al-
low a player to influence the way in which
the story unfolds. Most interactive narrative
systems (although not all) also employ some
automated means (e.g., AI planning [25], [26],
[27]) to generate narratives, which helps to
alleviate the burden of authoring. While the
research on interactive narrative is still a young
and emerging area, many interactive narrative
systems and techniques [18], [19], [20], [25],
[27], [28], [29], [30], [31], [32], [33], [34] have
been proposed and steadily developed over the
last twenty years. Fig. 1 shows the screenshots

of some existing prototype systems developed
for interactive narrative.

In this paper, we advocate the use of in-
teractive narrative system as a viable tool to
address the scenario provisioning challenge
in simulation-based training. While a growing
number of researchers have started to develop
different interactive narrative systems for train-
ing, there is little work that has thoroughly
examined the suitability of existing interac-
tive narrative technologies in the application
of training. To design an interactive narrative
system for training, it requires the use of in-
teractive narrative or scenario as a way to
promote effective learning, rather than only
to convey some dramatic meaning. Thus, the
designer has to consider additional or even dif-
ferent requirements for such purposes. In this
paper, we propose a set of key requirements
in developing interactive narrative system for
training. We use these requirements as the cri-
teria to assess the existing interactive narrative
systems. The paper aims to provide an in-depth
review of the existing approaches and assess
their strength and weakness from a training
perspective. The assessment is intended to re-
veal potential improvements and identify open
research problems for the future.

3

As interactive narrative is becoming an ac-
tive area of research and practice, it is not
surprising that literature review exists. In [35],
Roberts and Isbell provided a comprehensive
review and qualitative analysis on the exist-
ing interactive narrative systems. Specifically,
they examined the type of systems that use
the drama manager agent to direct the progres-
sion of narrative and they proposed a set of
desiderata to analyze these systems. In a more
recent review [36], Riedl and Bulitko suggested
a taxonomy to classify existing approaches to
interactive narrative along a three-dimensional
space and they showed how a small sample
of existing interactive narrative systems are
placed within the space. The review provides a
good overview on the landscape of interactive
narrative research. However, it tends to focus
on high-level approaches instead of diving into
the specifics of any existing system.

The key difference of our review from the
above mentioned reviews is that we examine
the existing systems in a specific context of
training applications, rather than in a general
context. We identify a set of assessment cri-
teria (i.e., the key requirements) that we be-
lieve are most relevant to training applications.
Although some of the criteria are borrowed
from the previous reviews, there are differences
as we elaborate these criteria in the training
context. Moreover, our paper also provides a
more detailed review of the existing systems at
a system design level. We investigate the key
features and related mechanisms of the existing
systems. We hope to provide researchers and
developers with more concrete insights on the
approaches and techniques in the literature that
can be potentially applied in their own work.

The rest of the paper is organized as fol-
lows. Section 2 first proposes a set of key re-
quirements of developing interactive narrative
systems for training. Section 3 then presents a
review of some representative interactive nar-
rative systems, in terms of the system architec-
tures, design features, and related mechanisms.
Section 4 summarizes and compares the re-
viewed systems based on the proposed require-
ments. Section 5 rounds up the review and
discusses some important issues for applying
interactive narrative technologies to training

and simulation.

2 KEY REQUIREMENTS IN DEVELOPING
INTERACTIVE NARRATIVE SYSTEMS FOR
TRAINING

In this section, we propose a set of key re-
quirements that need to be considered when
developing an interactive narrative system for
training. We aim to use these requirements as
the criteria to assess the existing interactive
narrative systems from a training perspective.
The proposed requirements may also serve
as a general framework for designers to as-
sess their own interactive narrative systems
for simulation-based training in future devel-
opment. Generally speaking, the proposed re-
quirements can be grouped into two categories.
The first category is from a trainer’s point of
view and considers how an interactive narra-
tive can satisfy trainer’s need to achieve differ-
ent training objectives. The requirements in this
category include controllability and robustness.
The second category is from a trainee’s point
of view and focuses on how an interactive
narrative system can offer an engaging and in-
dividualized narrative experience to a trainee.
The requirements in this category include per-
sonalization and interaction.

2.1 Controllability
In simulation-based training, a trainer has the
role to direct the training towards certain train-
ing objectives. For example, a trainer may wish
to let a trainee exercise a certain set of skills
over other skills in a training session, depend-
ing on the trainee’s existing abilities. Thus,
it is necessary to allow the trainer to control
how a narrative or scenario is generated, such
that it can reflect the trainer’s preferences over
different training objectives. In this paper, we
refer to the controllability as the capability of an
interactive narrative system to allow a trainer
to direct the trajectory of a narrative towards
some desired ones.

To further clarify the controllability require-
ment, we first draw a distinction between the
role of a trainer and an author in an interac-
tive narrative system for training. While some

4

existing works (e.g., [2]) assume the these two
users have the same role, we consider a trainer
as the user of the system and an author as
the developer of the system. Specifically, an
author is considered to be responsible for the
creation of the narrative content (e.g., plot
points) and/or narrative structure, which are
used in interactive narrative system to generate
variants of narrative (i.e., different narrative
trajectories). In software engineering term, au-
thor can be referred to as library developer.
A trainer, on the other hand, does not need
to create the actual narrative content. Rather,
an interactive narrative system should allow
trainer to interface with the system in the way
that she/he can control or influence the choice
on which narrative trajectories are generated.
In software engineering term, trainer can be
referred to as library user.

1

A branching story graph

2

3 4

5 6 7

108 9 11 12

D1

2

3 4

p3 p4

Add a system
decision node

Probabilistic choice
affected by trainer’s control

Fig. 2. An example of branching story graph
and the way to ensure controllability. In the
graph, nodes are authored narrative content
(plot points), solid directed arcs are choices
made by player (i.e., trainee), D1 is a decision
node controlled by the system, and dashed di-
rected arcs are choices made by the system

Based on the distinction between trainer and
author, we emphasize that the controllability is
from a trainer’s point of view, rather than an
author’s. It differs from the authorial intent as
discussed in [36], which refers to the extent to
which an author’s intent constrains the inter-
active narrative system. In [36], an example of
high authorial intent is the systems that utilize
a branching story graph (see Fig. 2), where
a player can choose branches in the graph at

her/his own will during game play. In such a
system, as every narrative trajectory is manu-
ally created by an author, the author’s intent is
considered to be fully preserved. However, this
does not necessarily suggest that the system
has full controllability, as the trainer does not
have the control on which narrative trajectory
will be experienced by the trainee. One way to
enable the controllability in a branching story
graph is to embed some decision nodes (e.g.,
D1 in Fig. 2), which select branches based on
the system’s decisions instead of the player or
trainee’s decisions. By doing this, some mech-
anisms can be designed to allow a trainer to
direct the system’s decision and thus influence
how a particular narrative trajectory is selected.

Depending on the way in which a trainer
directs an interactive narrative system, we clas-
sify the controllability into two types: soft
control and hard control. Soft control is the
ability to influence the likelihood that certain
narrative content will occur during game-play,
while hard control is the ability to force certain
narrative content to occur. In the example in
Fig. 2, the effect of soft control could be to
increase the probability of selecting node 3 (i.e.,
p3) over the probability of selecting node 4 (i.e.,
p4) or vice versa. The effect of hard control is
to make one probability (either p3 or p4) to be
one and the other to be zero.

2.2 Robustness
In an interactive narrative, a player is usu-
ally provided with a wide range of actions to
perform during the game. In some cases, the
player may perform some unexpected actions,
which may cause the narrative to go outside of
the story space (i.e., the space of possible nar-
rative trajectories) constrained by the author.
Brain Magerko [37] refers to this issue as the
boundary problem in interactive narrative. In the
context of training, such s story space may be
further confined into a sub-space due to the
trainer’s control (as discussed in section 2.1).
Thus, it is important to ensure the system
is robust enough to recognize and respond
to the potential deviation from this trainer-
controlled story space. In this paper, we refer
to the robustness as the capability of interac-
tive narrative system to deal with the trainee’s

5

actions that can possibly lead the narrative
to go beyond the bounds as confined by the
trainer. This requirement is necessary not only
to guarantee the coherence of narrative, but
also to make sure that trainee can follow some
narrative trajectories for some specific training
objectives as defined by trainer.

To ensure the robustness of interactive nar-
rative system, the approaches adopted by the
existing systems can be generally classified
into two categories: prevention approach and
mediation approach. The prevention approach
provides player only a limited set of actions
to choose (usually at some prescribed times)
during the game. In other words, the system
disallows any actions that can potentially cause
the boundary problem. One example is the
systems using the branching story graph [38].
In these systems, a player can only perform the
actions at some specific times with a set of al-
ternatives to choose from. While the prevention
approach is the most straightforward way to
ensure the robustness, it limits the interactivity
of the system to some extent. Thus, it is less
desirable, especially in the context of training.

The mediation approach allows more free-
dom on the actions that a player can perform
and it adopts some mediation strategies to
solve the boundary problem caused by player’s
actions. Depending on how the boundary prob-
lem is handled, the mediation strategies can
be further classified into two categories: reac-
tive approach and predictive approach. The reac-
tive approach handles the boundary problem
only when player’ actions cause the deviation
from the desired story space. That is when the
boundary problem actually occurs. One notable
system that adopts such reactive strategies is
the Mimesis system [34], where two specific
mediation strategies, accommodation and inter-
vention, are proposed to manage player in-
teraction. In contrast, the predictive approach
anticipates the possible boundary problem be-
forehand. The systems which adopt predictive
strategies, such as IDA [33], usually make in-
ference on the future behaviors of players and
direct the narrative based on such inference.

2.3 Personalization

While the first two requirements focus on how
to control the narrative trajectory (both at com-
pile time and run-time) towards the ones pre-
ferred by the trainer, it is also necessary to con-
sider how the system can generate narratives
catered to different trainees. For instance, in
challenge-focused training, the training process
will be effective only when the scenario or
narrative presented to the trainee is neither too
difficult nor too easy. In this case, an interac-
tive narrative system has to provide different
narratives for different trainees depending on
their existing skill levels. In this paper, we
refer the personalization as the capability of
interactive narrative system to adapt itself to
different trainees.

To achieve personalization there is a growing
trend [36] to incorporate player modeling for
interactive narrative. A player model is used to
learn and capture the differences of individual
players (i.e., trainees). By using a player model,
the interactive narrative system can infer how
to select narratives that best fit the trainee’s
characteristics. For example, in [39], a player
model is designed to automatically learn the
player’s preferred playing styles based on the
player’s in-game actions. The interactive narra-
tive system then dynamically adapts the narra-
tive content to match with the inferred playing
style of the player.

Depending on how the player model is con-
structed, existing approaches to realize per-
sonalization for interactive narrative can be
generally classified into two categories: hypo-
thetical approach and data-driven approach. The
hypothetical approach constructs the player
model based on designer’s experiences. The
designer usually makes hypotheses on how to
map the observed player actions to the player’s
characteristics (e.g., playing styles, preferences,
and skill levels). For example, the player model
in [39] uses the designer pre-defined rules for
updating the player’s playing style, given the
actions taken by the player. The data-driven
approach relies on the actual player game-play
data and player feedback to build the player
model. For example, in [40], past players’ feed-
back and their game-place traces are collected.

6

A data-driven player model is built based
on these data and it employs the case-based
reasoning to predict the player preference by
comparing the current player’s behavior with
the behavior of past players.

2.4 Interaction

The key difference of interactive narrative from
traditional storytelling is that it allows player
to interact with the system so as to influence
the progression of a storyline. In this paper,
we refer the interaction as the way how a
trainee can interact with interactive narrative
system. We consider the interaction as an im-
portant requirement in training, as the way in
which a trainee can interact with the system
largely affects the degree to which the indi-
vidual difference of trainees can be exhibited
during the game. For example, consider the
choice of actions that an interactive narrative
system provides to a trainee. If the system only
allows a trainee to choose a set of actions at
some prescribed times, it is more likely that
different trainees will choose the same action
at a given time because of the limited choices.
In such cases, it is more difficult to recognize
the difference of individual trainees in terms of
their preferences, playing styles or abilities.

In the existing interactive narrative systems,
the most common mode of player interaction is
that a player plays the role of a first person
character (e.g., protagonist). Acting as a first-
person virtual character, a player can directly
communicate with other virtual agents and
manipulate the objects in the virtual world. Be-
sides being a first-person participant, a player
can also interact with story world “off-stage”,
as suggested by Cavazza et al. [41]. An exam-
ple of the “off-stage” intervention is that as a
spectator, a player may give advice to virtual
agents via a communication link. Regarding
the interaction time, some existing systems give
the player the freedom to perform actions at
anytime during the game, while other systems
only allow players to perform actions at some
prescribed times. In terms of the choice of ac-
tions, some systems allow players to perform
all available actions, which are applicable to
the current situation. In some other systems,

players can only choose a limited set of actions
at given times.

3 A REVIEW OF NINE INTERACTIVE
NARRATIVE SYSTEMS

In this section, we provide a review of existing
work in terms of their key design features, sys-
tem architectures, core modules and function-
alities. Our aim in this section is not to give a
complete account of all existing work. Instead,
we will sample some representative work in
interactive narrative research. We select some
of the most influential work which we judge
to have had significant impact on the later
design of interactive narrative systems. We also
select some more recent works which develop
interactive narrative systems not only for en-
tertainment purpose, but also for training and
education purposes. We also tend to choose
the work which provides a full-fledged sys-
tem design of interactive narrative, rather than
merely focuses on a particular issue, such as
narrative generation. Thus, some earlier works
on automatic story generation, such as Tale-
Spin [42], Universe [43] and MINSTREL [44],
are not included in this review. In the following
sub-sections, the reviewed works are presented
in chronological order to give the reader a gen-
eral idea of how the technologies of interactive
narrative have evolved over the years.

3.1 Mimesis
The Liquid Narrative Group is led by R.
Michael Young at North Carolina State Univer-
sity. The Mimesis system [34], developed by
the group, is one of the pioneering works on
interactive narrative. The system uses a plan
structure to drive the actions in the story world.
One key feature of Mimesis is that it integrates
plan-based behavior generation with interac-
tive game environments. This feature allows
Mimesis to automatically produce intelligent
action sequences that are highly sensitive to
run-time context. Another key feature of Mime-
sis is the proposed narrative mediation strategy
to manage the user interactions that interfere
with story structure. The mediation strategy
helps to prevent the potential plan failure from
the threats introduced by user’s actions.

7

MWorld (Unreal Tournament 2003)

User’s View of
Game World

Game
Engine

Game Engine
Function Calls

Action
Class Library

Class Definitions

MWorld

Action
Directives

Plan
Request

Execution
Manager

Storyworld
Planner

Storyworld
Plan

Player and System
Action Updates

Controller
Action Updates

Narrative
Plan

Discourse
Planner

Fig. 3. The Mimesis system architecture (re-
trieved from [34])

The Mimesis system employs a component-
based architecture to promote the modularity
of the system. The architecture design of the
Mimesis system is shown in Fig. 3. The execu-
tion of the system starts with MWorld controller
sending a plan request to storyworld planner.
The plan request contains the information on
current and goal states of the game (used to
form initial plan) and a set of pre-defined ac-
tions (operators) in the story world. The sto-
ryworld planner responds to the plan request
by generating a storyworld plan that specifies
the action sequences of characters/objects in
the game. Based on the storyworld plan, the
discourse planner creates another plan of action
sequences carried out by the game engine’s
media resources (e.g., camera, narration and
background music), and it integrates the two
plans to form a final narrative plan. The exe-
cution manager receives the narrative plan and
builds a directed acyclic graph (DAG) to repre-
sent actions in the plan (as nodes) and tempo-
ral orderings (as edges). The execution manager
initiates an action’s execution by selecting an
action node from DAG and sending a corre-
sponding action directive to MWorld. MWorld
is a customized game environment built on
top of the Unreal Tournament engine, and it
consists of three elements: game engine, action
class library, and MWorld controller. The MWorld
controller serves as a central message router for
other components in the system.

Mimesis provides an explicit support for
user interaction management through the pro-
posed mediation strategies [45]. User actions in
the Mimesis system are classified into three cat-
egories: constituent, consistent and exceptional.

Constituent actions are those prescribed as part
of the narrative plan, whose effects can drive
the story forward. Consistent actions are those,
whose effects do not threaten any of the causal
links for the remaining part of the plan. Excep-
tional actions are those, whose effects threaten
at least one of the causal links in the plan. The
mediation strategy of Mimesis always permits
constituent and consistent actions to be per-
formed. For exceptional actions, Mimesis han-
dles the situation with one of two mediation
strategies. The first strategy is to accommodate
the user’s action by re-planning the unexecuted
portion of the plan. The re-planning process
helps to reestablish any threatened causal links
caused by user’s exceptional action. The second
strategy is to intervene with the user’s action
by replacing the action’s effects with the ones
consistent with the causal constraints. An ex-
ample of intervention is a vending machine in
the story world returns the money back to the
user instead of delivering a can of beverage,
as user’s action (buying a drink) may threaten
a pre-condition (possessing enough money) in
the subsequent story plan. Given an initial sto-
ryworld plan, Mimesis predicates all possible
exceptions caused by the user’s actions, and
it constructs a mediation table with a set of
mediation policies to handle these exceptions
based on either accommodation or intervention.

In terms of controllability, the Mimesis sys-
tem does not provide explicit support to al-
low a trainer to direct the narrative trajectory.
In Mimesis, the narrative plan request, which
defines the goals and actions of the generated
plan, is made by the game engine itself. No
interface is provided to allow a trainer to in-
fluence how a narrative plan can be generated.
However, as Mimesis adopts a partial-order
plan structure for narrative representation, it is
potentially possible to integrate some control
mechanisms (e.g., through some hard or soft
constraints to planning). The robustness of the
Mimesis system is realized through the pro-
posed accommodation and intervention strategies.
Both strategies are considered as a reactive ap-
proach as we described in section 2.2. Mimesis
does not address the personalization require-
ment, as the system does not adapt itself to
cater for the player (i.e., trainee) differences.

8

However, as planning-based search is used for
narrative generation, it is possible to use some
heuristics to guide the searching process so
that the generated narrative can be tailored to
the individual difference. With regard to the
interaction, Mimesis allows players to control
a virtual character in a story world and issue
commands to trigger specific user actions [46],
[47]. The players can perform an action at
anytime during the game and they can take
any actions that are applicable to the current
situation.

3.2 IDA

The Interactive Drama Architecture (IDA) [33]
proposed by Brain Magerko and John Laird
at the University of Michigan is an interactive
narrative system, which focuses on achieving
the robustness of the system by introducing
a predictive approach to deal with the player’s
actions in an interactive virtual environment.
The proposed approach is intended to resolve
the boundary problem [19], [37] that occurs, when
a player takes some actions that lead to the
consequences outside of the content (i.e., the
story space) of pre-authored plot. To address
this issue, the IDA system proposes a director
agent to direct the behaviors of the virtual
agents and influence the player’s behaviors
to confine with the pre-defined story space.
The director in IDA does not wait to handle
the player’s actions until the boundary problem
occurs. Rather, it employs a predictive model of
player’s behaviors and anticipates the possible
boundary problem beforehand. The director will
preemptively initiate some subtle strategies to
direct the player away from the actions that
may endanger the story plot. Compared to the
reactive approach, IDA’s predicative approach
in handling user exceptions can help to im-
prove the player’s experience and believability
of the system.

As shown in Fig. 4, the overall architecture
of IDA comprises of an author, who writes
the plot of story, the director agent, the virtual
world populated with synthetic characters, and
the human player who interacts with the vir-
tual environment. The author, who could be
a human writer or an autonomous authoring

percepts

AI Actor
user actions

Human player

story

Haunt 2: Built in Unreal Tournament AI Director
Author

Fig. 4. The Interactive Drama Architecture (re-
trieved from [19])

system, is responsible to produce the initial
plot of a story, using a story representation
language provided by IDA. The story plot in
IDA is represented as a graph of plot points,
which contains a set of preconditions and ac-
tions. It should be noted that even though IDA
uses the plan-based narrative representation,
no automated mean (e.g., planning algorithms)
is employed to generate narrative plans. The
narrative plan is pre-defined by the author and
it is then used as used as the input to the
director agent to drive the story in the virtual
world. The functionality of the director agent
is to monitor the behaviors of the player and
direct the virtual character in the story world
to ensure the executability of pre-defined nar-
rative plan. The virtual characters in IDA are
implemented as rule-based Soar agents [48].

The central role in the IDA system is the
director agent, which is able to guide the
player’s behaviors, based on both the current
actions and hypothesis of future actions of a
player. The director agent employs a probabilis-
tic model of player behaviors, as shown in
Fig. 5. This player model represents a general
hypothesis of how a player would behave in
the virtual world. To predict the likelihood that
the boundary problem might occur, the director
agent first creates an internal simulation of the
story world. Based on the simulated world,
the director agent runs the player model and
observes whether any plot elements may be
affected by the anticipated player’s actions. The
probability of the player’s actions fulfilling plot
content, P (F), is then computed. If P (F) is less
than an author-defined threshold, the director

9

agent will take some preemptive strategies to
prevent the boundary problem.

appear chase light-fire explore hide

P(a) = 0.53 P(c) = 0.53 P(lf) = 0.53 P(e) = 0.53 P(h) = 0.53

appear move-
target

move-to-
target

move-to-
area

move-to-
dest

remove-
dest

P(a|c) = 0.33 P(mt|c) = 0.33 P(mtt|c) = 0.33 P(ma|e) = 0.33 P(md|e) = 0.53 P(rd|e) = 0.33

Fig. 5. An example of the probabilistic model of
player behaviors in IDA (retrieved from [19])

The design of IDA helps to ensure that
the executed story plot does not deviate from
the one defined by an author. However, in
terms of controllability, the system does not
provide a way to allow a trainer to direct the
story plot. The direction of story progression
is fully controlled by the autonomous direc-
tor agent. The robustness of the system is en-
sured through the use of the director agent,
which uses a predicative approach to handle
player’s actions. It should be noted that even
though a player model is used to predict the
player behaviors in IDA, the objective is to
check whether the predicted player behaviors
will cause the deviation from the pre-defined
plot. The player model is not utilized for the
purpose of personalization. With regard to the
interaction, IDA provides a proper management
of player interactions. Thus, it does not enforce
significant restrictions on the player’s actions.
A player in IDA plays a role of a ghost in the
story world. She/he can freely move around
the environment and interact with other vir-
tual characters at any time during the game.
The player’s interaction with virtual characters
will influence how the virtual characters will
behave in the story.

3.3 I-Storytelling
Marc Cavazza and his colleagues in Intel-
ligent Virtual Environments Lab at Teesside
University have made extensive contributions
towards character-based interactive narrative.

The Interactive Storytelling (I-Storytelling) sys-
tem [20], [49] developed by the group uses
the structure of Hierarchical Task Networks
(HTN) [50] to represent the roles and tasks
of autonomous agents in an interactive sto-
rytelling environment. The system focuses on
the modeling of virtual agents’ behaviors. The
story variants are expected to emerge from the
dynamic interactions of the virtual agents. The
HTN-based hierarchical planning adopted by
I-Storytelling facilities the encoding of domain
knowledge, and the interleaving of planning
and execution.

In the I-Storytelling system, each main char-
acter’s goal and tasks are represented using
a HTN, which is formalized as an AND/OR
graph. Fig. 6 shows a typical HTN represen-
tation of a main character Ross in a sitcom
FriendsTM -like scenario. The character’s main
goal is defined at the top of the hierarchy. The
top-level goal can be refined into the sub-goals
(i.e., AND nodes) representing various steps to
achieve the top-level goal in an implicit time
ordering. For example, as Ross’s main goal is to
take character Rachel out, he may achieve this
goal following the steps of acquiring informa-
tion about Rachel, then gaining her friendship,
and finally asking her out. For each sub-goal,
there could be also a set of alternative solutions
(i.e., OR nodes) to achieve it. For example,
in order to acquire Rachel’s information, Ross
may either ask her friend, borrow her diary, or
phone her mother. These alternative solutions
are represented as sub-plans. At the lowest
level of HTN, the leaf nodes are the primitive
actions that can be directly executed by the
virtual agents in the game environment.

For each virtual agent, a suitable plan
from the HTN is generated using a heuristic
search algorithm [20]. The algorithm uses some
heuristic values to guide the searching process
and these heuristic values reflect the person-
ality and mood of the character. The virtual
agents’ behaviors are driven by the generated
HTN plans. In I-Storytelling, the story varia-
tions are emerged from the dynamic interaction
between virtual agents, and user intervention.

The dynamic interaction among agents may
introduce some emergent situations that are
not represented as part of virtual agent’s HTN

10

Fig. 6. An example of Hierarchical Task Network for character behavior (retrieved from [20])

plan. For example, Ross may meet Rachel ac-
cidentally at the early stage of Ross’s plan.
Apart from using re-planning, the I-Storytelling
system has proposed two mechanisms, situation
reasoning and action repair to handle emergent
situations. The situation reasoning is used to
avoid undesirable results. As for the case of
accidental encounter with Rachel, one example
of situation reasoning by Ross is to hide from her.
By doing this, Ross can still resume his initial
plan after Rachel passes. The action repair is
used to restore the executability condition from
action failure. One example is that Ross intends
to perform the “read Rachel’s diary” action, but
Rachel is currently writing in the diary. In this
case, the action repair to restore the executability
condition (i.e., the diary is available for read-
ing) could be simply to wait Rachel finishing
writing. In the system, the situation reasoning
and action repair are implemented as separate
plans from the virtual agent’s main plans.

In I-Storytelling, how the story will progress
is largely driven by the character’s interactions.
The system has the advantage in maintain-
ing character believability, as all the charac-

ters’ behaviors are driven by their own goals
and intentions (through their own HTN plans).
However, it is difficult to enable controllability
in such a system. This is because the system
does not have overall control on how the story
will progress over time. In terms of the robust-
ness, I-Storytelling uses the reactive approach,
which creates the contingency plans to handle
the emergent situations. However, it should be
noted that the proposed mechanisms are used
to ensure the executability of the virtual agent’s
HTN plans. These mechanisms do not guaran-
tee that the progression of the story will follow
a certain direction during the execution. The
personalization requirement is not considered in
the I-Storytelling system. With regard to the
interaction, I-Storytelling allows anytime player
interaction. The player can choose to intervene
at anytime by either manipulating the objects
with narrative meaning or giving advice to
virtual agents via natural language processing
(NLP). It should be noted that the HTN-based
story representation in I-Storytelling isn’t ca-
pable of generating highly complex stories as
it is bounded by its total-ordering and task in-

11

dependence assumption. Thus, the same group
from Teesside University has proposed to use
Heuristic Search Planning (HSP) [32] as an
alternative solution.

3.4 Façade
Façade [18] developed by Michael Mateas
and Andrew Stern is one of the most suc-
cessful fully-realized interactive narrative sys-
tems. The design of the system explicitly ad-
dresses the issue of balancing character believ-
ability and plot coherence. In Façade, rather
than solely relying on the behavior-based au-
tonomous agents, an additional drama manager
agent is introduced to direct the story direction.
The drama manager operates on fine-grain plot
elements called beats. A beat is defined as
the smallest unit of story structure. Each beat
contains a collection of characters’ behaviors,
tailored to a specific situation or context. One
key feature of Façade is it aims to offer high
agency [51] that allows the system to react to
and incorporate user’s interactions in a narra-
tively meaningful way. The system is designed
to respond to user’s interactions both locally
and globally in order to provide a dramatic-
rich user experience.

Fig. 7. Façade system architecture (retrieved
from [18])

Fig. 7 shows the overall architecture of the
Façade system. The drama manager is responsi-
ble for continuously monitoring the situation
and selecting an appropriate beat when the
current beat terminates or aborts. The beat is
selected from all the available beats of a story

(i.e., bag of beats). Each beat is annotated with
preconditions, weight, priority and effects. This
annotated knowledge is used by drama manager
for selecting the next beat. For example, the
effects of beat are used to compare with the cur-
rent desired value in a user-defined dramatic
arc, and the beats whose effects closely match
with the desired value may be given high
scores for selection. Once the drama manager has
chosen a beat, it will update the story memory
and send the selected beat to the story world for
execution. In the story world, only one beat is
active at a time. The beat contains the behav-
iors of virtual agents, as well as the reactions
to the player in a given situation. The user
interactions are primarily handled by natural
language processing. The player’s inputs to the
system are interpreted into the discourse acts,
which concisely represent the general meaning
of the player’s actions. Each beat is designed to
respond to these discourse acts, based on a set
of forward-chaining mapping rules.

In each Façade beat, the collection of be-
haviors are organized into a set of beat goals,
which define different narrative goals within
the context of a particular beat. A beat goal
could be a transition-in goal that provides a
transition to the current beat. Several main
body goals could be defined to establish a main
conflict or dramatic situation within the beat.
There is also a transition-out goal to transit out
of the beat. To handle the player interaction, a
special type of beat goal called mix-in goal is
defined to mix in a performance of the reaction
to player’s actions within the beat. When a mix-
in goal needs to be executed, the system will
abort the current beat goal and prioritize the
mix-in goal to start immediately. For example,
when a virtual agent is trying to offer a drink to
a player, the player may start to discuss a topic
about marriage. The virtual agent may mix-in
a short beat goal discussing her feelings about
marriage, then resume the previous beat goal
by continuing offering a drink to the player.
Each beat goal in a Façade beat is realized
through a set of action/reaction pairs, where
a virtual agent performs an action and other
agents react accordingly. These pairs of joint be-
haviors support the coordination between the
virtual agents, and they are implemented using

12

a reactive behavior language called ABL [52].
The controllability of the Façade system is

achieved by specifying the dramatic arc (as
shown in Fig. 7). The system allows the user
(e.g., trainer) to define the shape of the arc,
which will influence how the beats will be
selected in the beat sequencing process. It is
a form of soft control, as it only increases the
probability of certain type of beats (e.g., the
beats with high story tension) to be selected.
In terms of the robustness, Façade uses the mix-
in goals to handle the player’s behaviors. The
mix-in goals are designed to reactively respond
to off-topic behaviors initiated by the player. It
should be noted that all the mix-in goals need
to be defined at the authoring stage, which may
cause authoring burden. The personalization is
not considered in the Façade system. With
regard to the interaction, a player in Façade is
given the flexibility to speak to virtual agents
via NLP, make gestures, and take actions in
the virtual environment. It also does not limit
the time and choice that a player can perform
actions.

3.5 Thespian

Thespian [28], [53], [54], developed by the
computational emotion group at University of
Southern California, is a multi-agent frame-
work for interactive narrative. The system is in-
tended to be used for both entertainment (e.g.,
modeling the Little Red Riding Hood story)
and pedagogical purposes (e.g., tactical lan-
guage training). Thespian is built based on Psy-
chSim [55], which models the agent’s reasoning
based on Partially Observable Markov Decision
Problems (POMDPs) [56]. In Thespian, char-
acters are controlled by goal-driven agents. A
model of player [57] is explicitly introduced
to represent different types of player and the
model is utilized to predict the player’s inter-
actions with virtual agents. Based on the player
model, a directional control mechanisms [53] is
proposed to modify the virtual agents’ goals
and beliefs to prevent the violation of author’s
intentions.

Thespian adopts a two-layer approach, as
shown in Fig 8, for authoring and simulating
interactive narratives. At the bottom layer (i.e.,

Fig. 8. Two-layer system architecture of Thes-
pian(retrieved from [53])

character level), a multi-agent system is de-
veloped to support the simulation of various
virtual agents. The interactions among virtual
agents are realized in a turn-taking manner,
with only one agent acts at each turn. The
behaviors of an agent are motivated by the
agent’s goals being assigned by the author. The
agent’s personality is reflected by its various
goals and the relative importance (weights) of
these goals. To make sure the agents’ behaviors
are well-motivated and believable, a person-
ality fitting process [28] is also proposed in
Thespian for character authoring. The process
requires the author to provide some desired
story paths (i.e., linear sequence of agents’
actions) as the inputs. The process can then
automatically fit agents’ personalities to their
roles in the story by adjusting the goal weights
of agents.

At the upper layer (i.e., plot level), Thespian
provides an omniscient agent, named the direc-
tor agent, to proactively direct the agents’ be-
haviors in accordance with the author’s inten-
tions. The director agent can access the beliefs
of all virtual agents, reason about the future
interactions between the agents and user, and
check for the potential violation of the tempo-
ral and partial order constraints specified by
the author. To prevent the potential violations,
the director agent can either fit the agents’
goals or modify the agents’ beliefs to influence
their behaviors. The director agent iteratively
makes the adjustment to virtual agents and
check for the violations in future steps, until a

13

satisfactory solution is found or the maximum
number of attempts is reached. To facilitate the
authoring and evaluation of stories, a model
of player is also incorporated in Thespian. The
“simulated” user acts as a virtual agent in
the story. By assigning different goals to the
player agent, the player model can be used
to represent different types of players (e.g.,
talkative and non-talkative). The player agent
can choose actions at each turn of the player
and the director agent is used to perform the
directional control accordingly.

The controllability of the Thespian system is
ensured by allowing the author or trainer to
specify temporal and partial order constraints.
It is a form of soft control, as the director
agent only influences the virtual agents’ be-
haviors by modifying their beliefs or goals. By
incorporating a model of the player, Thespian
adopts a predictive approach, similar to IDA,
for achieving robustness. It simulates the future
behaviors of agents and player, and antici-
pates the possible violations of the prescribed
story requirements beforehand. Even though
the player model is designed in Thespian, it is
not utilized for the purpose of personalization.
As for the interaction, a player acts in a first-
person role in the environment and interacts
with virtual agents individually via spoken
language and gestures.

3.6 ISAT
The Interactive Storytelling Architecture for
Training (ISAT) [2], [22] developed by Brain
Magerko et al. is an interactive narrative sys-
tem specifically targeted for training domains.
The ISAT system distinguishes from the previ-
ously discussed systems in its ability to gen-
erate narratives that are tailored to individual
players (i.e., trainees). ISAT introduces an intel-
ligent director agent, which chooses the training
narrative/scenario based on a trainee’s skill
level. A player’s skill model is designed to
track the skill proficiency of a trainee dur-
ing the game-play. The key feature of ISAT is
that it provides customized and individualized
training experience through real-time narrative
adaptation.

Fig. 9 shows the overall architecture of the
ISAT system. In ISAT, the trainer also plays the

will enable existing and new training systems to
dynamically adapt content to support training goals and
increase trainee engagement. The ISAT architecture is
focused on an internal and imperceptible agent, the
director, in a constructive simulation environment.

Fig. 1. ISAT architecture diagram.

ISAT builds on the notion of a pedagogical agent

that guides user experience. The director agent in ISAT
does not play an explicit instructional role but instead
interacts with the trainee indirectly through the
environment. The director does not provide direct
pedagogical guidance and feedback to the trainee; rather,
it structures the environment to give the trainee
appropriate experiences. The director commands the
environment to respond in ways that are dramatically
and pedagogically relevant for the individual trainee.

Because the director is not represented explicitly,

the trainee’s sense of engagement and responsibility for
decision making is naturally and effectively supported.
Furthermore, as the trainee’s skills develop, the director
takes fewer and less frequent remedial actions, purposely
fading out the instructional support and helping the
trainee develop the ability to act independently.

ISAT’s design (see Figure 1) includes the trainee,

the human trainer who authors the training content, the
virtual simulation environment populated with synthetic
or non-player characters (NPCs), and the director agent.
The trainer authors story content with both dramatic and
instructional principles in mind. The director is
responsible for managing the trainee’s experience in
response to the training scenario content, the trainee’s
actions in the simulation environment, and the skill
model of the trainee, which tracks his mastery across a
set of domain skills. The director can influence the
trainee’s experience by giving synthetic characters
certain actions, by altering the environment (e.g.,
spawning characters or environmental sounds), or
through selection and performance of scenario content.

3.2 Environment

Our current prototype system is implemented using

the 91W10 Tactical Combat Casualty Care Simulation

(TC3), a combat medic training system developed by
Engineering and Computing Simulations, Inc. (ECS). The
TC3 combat medic trainer is based on the same systematic
approach for Basic and Advanced Trauma Life Support
that is used to train Emergency Medical Technicians
(EMTs). The TC3 is an immersive 3D simulation in which
trainees treat casualties in tactical situations that are
dictated by the principles of Tactical Combat Casualty
Care.

Fig. 2. Treatment menus in TC3 trainer.

The trainee sees the simulated world from a first-

person point of view, and can move around in a 100-ft.
radius circle of terrain representing a courtyard in an
Afghani village. As a result of an improvised explosive
device, the trainee encounters various casualties which he
must prioritize and treat. Trainees can implement a variety
of medical procedures by selecting them from menus
associated with different body parts (see Figure 2).

4. ARCHITECTURAL DETAILS

4.1 Trainer’s Role as Author

One of the major differences between interactive
training systems and interactive drama is the inclusion of a
human trainer or knowledge expert that is directly needed
within the authoring process. ISAT includes a story
authoring tool, called Scribe, which allows the trainer to
create scenarios using a visual representation of ISAT’s
story representation (described in Section 4.5). This
bypasses the common problem of domain experts and
educators being removed from the design process because
they do not have the relevant skill set to directly encode
their own expertise (e.g. lacking programming skills).
Details on Scribe’s design can be found in Medler and
Magerko (2006).

 3

Fig. 9. ISAT system architecture (retrieved
from [2])

author role. She/he can interface with a story
authoring tool, named Scribe [58], to define
both the story content and flow. The defined
story/scenario is represented in the form of
partially-ordered plot points. Each plot point
is also referred to as a scene, which contains a
set of events occurring within a short period of
time in a specific location. The director agent is
responsible for executing the trainer-specified
story within the training environment. The di-
rector agent maintains a trainee skill model to
dynamically track the trainee’s proficiency in
a set of domain-specific skills. Based on the
state of the trainee skill model, the director
agent can perform a set of actions in order to
provide an individualized training experience
to the trainee. These actions include spawn-
ing virtual characters and objects, modifying
character’s behaviors, and selecting appropri-
ate plot points to execute.

During a training session, the director agent
monitors the actions of the trainee and updates
the trainee skill model accordingly. For in-
stance, if a certain skill is performed incorrectly,
the director agent will decrease the correspond-
ing skill score in the trainee skill model. For
the selection of plot points, each plot point is
annotated with the set of skills that it tests. The
director agent will select the next plot-point
that best matches with the current state of the
skill model. The selection process is illustrated
in Fig. 10. As shown in Fig. 10, the current
state of trainee skill model indicates the low
proficiency in skill D and E and the current
scene (i.e., the plot point) are used to test the
skill A and B (the blue circles). Thus, given all
the candidate scenes to be selected as the next

14

fix or un-do it. If the director were to instead adversely
modify the state of one of the trainee’s teammates (e.g.,
worsen his condition due to the incorrect application of a
tourniquet), that would be a type of indirect skill-based
direction.

The ability to choose specific, skill-based direction

strategies based on the state of the trainee’s skill model
allows the director to scaffold and fade his feedback.
For example, while the director might interject direct in-
game feedback to a novice trainee who has made an
error in a certain skill (like having a character shout at
him about the error), it might use a more indirect
approach in reaction to the same error by a more
experienced trainee. Access to the skill model affords
the director a great deal of flexibility when choosing a
particular feedback method.

5.2 Reactive Direction

One of the pitfalls of immersive training
environments is that students are given the opportunity
to execute actions which are peripheral to or otherwise
outside the training experience. In the TC3 combat
medic training simulation, for instance, trainees are free
to navigate the world. While this certainly makes for a
realistic experience, it does not always serve to achieve
the objective of good training.

Reactive direction is a technique by which ISAT can

prevent the trainee from navigating outside the training
space. To implement this technique, the director must
first detect when the trainee is in a situation where he
does not have access to training content (e.g., is in an
area where there are no casualties). Then, the director
must choose and implement a strategy to subtly (e.g., not
using a ‘talking head’) guide the trainee back into the
content of the story. An example of this would be to
direct an associated character (e.g., a teammate) to walk
over to a trainee who has wandered outside the story
content (e.g., into a portion of the map where no story is
taking place) and point him in the correct direction.

5.3 Scene Selection and Performance

Though the ISAT Director is given the set of scenes
(or plot-points) from Scribe as described in Sections 4.1
and 4.5, it is the director’s responsibility to select and
perform those plot-points in an appropriate order so as to
personalize the scenario to fit the needs of the trainee.

The selection of plot-points is controlled by two

components: dramatic and pedagogical relevance. Plot-
points are selected for dramatic relevance to ensure that
the story presented to the trainee is both believable and
engaging. Plot-points are similarly selected for

pedagogical relevance so that the training content
delivered to the trainee more closely matches what will
most benefit him.

In their description, plot-points are annotated with the
set of skills that they test. When the director chooses a
plot-point, it matches the list of tested skills from each
plot-point with the current state of the skill-model. If the
trainee is weak in a large set of skills that happen to be
tested by a particular plot point, the director may be
inclined to choose that point depending on its dramatic
relevance to the story. Fig. 3 illustrates this process.

To perform a selected plot point, the director simply

executes commands to fulfill the unfulfilled preconditions
and the associated events for that selected point.

Fig. 3. Scene selection in ISAT.

6. FUTURE WORK

6.1 Evaluation of ISAT

To evaluate the overall training effectiveness of ISAT,
we are currently planning two separate evaluation studies
to be conducted in spring of 2007. The first study will
focus mainly on the implicit actions of the director. The
second will focus more directly on the achievement of
training objectives in the 91W10 combat casualty course.

The first study will be conducted using medical

students from Michigan State University. Although the
medical students will not know the specific principles of
combat casualty care, they will be familiar enough with the
medical treatment options to interact meaningfully in the
simulation.

The director manipulates scenes according to a

pedagogical approach based on training goals and a
dynamic model of the trainee’s skill. These manipulations
of the trainee’s experience are intended to be seamlessly

 6

Fig. 10. Process of scene selection in ISAT
(retrieved from [2])

scene, the scene that can practice both skill D
and E is then selected.

In ISAT, the controllability is exercised by
putting the trainer in the role of author. The
trainer has the responsibility to define the story
space with the assistance of an authoring tool.
As discussed in section 2.1, the manual author-
ing of story content can ensure the author’s in-
tent (or trainer’s in this case) is well preserved.
Yet, it does not necessarily suggest full control-
lability. In ISAT, how the narrative content (e.g.,
plot points) that is selected and presented to the
trainee is still managed by the director agent.
For ensuring robustness, ISAT adopts a reactive
approach, called reactive direction [2], to prevent
the trainee from going into a situation outside
the training space. The trainee skill model in
ISAT is specifically designed to achieve the per-
sonalization. The skill model makes hypotheti-
cal mapping between trainee’s in-game actions
and their proficiency in various skills. Thus, it
takes a hypothetical approach for player model-
ing. For the interaction, the trainee plays a first-
person role to move around the environment
and search for casualties in a combat medic
training scenario. When a casualty is found,
the trainee can choose all available medical
treatment options from graphical menus and
perform the medical procedures.

3.7 PaSSAGE

The PaSSAGE (Player-Specific Stories via Au-
tomatically Generated Events) system [39], de-
veloped by David Thue et al. at the University
of Alberta, is an interactive narrative system
that incorporates player modeling for generat-
ing narratives tailored to the player’s preferred
playing style. The purpose of player modeling
in PaSSAGE is to improve the entertainment
value of the narratives and thus make the
player experience more enjoyable. Similar to
the ISAT system, PaSSAGE steers the narrative
in run-time based on the player’s in-game ac-
tions.

The PaSSAGE uses the tree structure as
shown in Fig. 11, similar to the branching
story graph, to represent a story. The rounded
boxes in Fig. 11 denote the in-game events (also
known as encounters) and diamonds indicate
different story endings. The square boxes (i.e.,
D1 to D3) are the system’s decision nodes,
which are utilized to make story adaptive to
different players. At each decision node, the
PaSSAGE system automatically selects the next
encounter based on the current estimate of play
style of the player. At the design stage, all the
encounters are annotated with the information
on which type of players it is suitable for.
During the game-play, the system examines in-
formation about the encounter and its branches
and it chooses the encounter whose branch best
fits the current value in the player model.

The player model in PaSSAGE classifies dif-
ferent players into stereotype based on their
play styles. Specifically, the model considers
five types of play style: fighter who prefer
combat, power gamer who prefer collecting
items and gaining riches, tacticians who prefer
think creatively, storytellers who prefer com-
plex story plots, and method actors who pre-
fer dramatic actions. The player model uses
a weight vector to indicate the player’s in-
clination to the five types of play styles and
updates each weight based on player’s actions.
For example, if a player chooses to search for a
valuable item, the weight for power gamer will
be increased. At the design stage, all the possi-
ble actions taken by the player are pre-specified
with the values that change the weights in the

15

Start

Mercy Bounty

Distract Recruit

D1

D2 D2
Distract Recruit

Monsters Traveller Monsters Traveller Monsters Traveller

D3 D3 D3D3

WER

AER AER Help
Troll?

Save
Wizard?

Warn
Wizard?

Y N

WE WKT WL

Y N Y N

WER

Help
Troll?

Save
Wizard?

Warn
Wizard?

Y N

WE WKT WL

Y N Y N

Monsters Traveller

AER AER

Figure 1: Overview of the game tree. Rounded nodes are in-game events. Diamonds are endings labelled by acronyms: AER
= Annara (the player’s character) Eaten & Rescued, WE = Wizard Eaten, WER = Wizard Eaten & Rescued, WKT = Wizard Kills
Troll, and WL = Wizard Leaves. Square nodes (D#) represent decisions made by PaSSAGE.

Experimental Setup
Using the Aurora Neverwinter Toolset (BioWare Corp.
2006), we created a library of 8 encounters for a story in-
spired by the fairy tale “Little Red Riding Hood” (Grimm
& Grimm 1812) which recently served as a common ground
for discussing techniques in Interactive Storytelling (TIDSE
2006). To avoid a familiarity bias in our study, we changed
some of the plot’s elements, all characters, and all dialogue.

We identified three stages of Campbell’s Monomyth in
the Little Red Riding Hood story as useful decision points
for an interactive storytelling engine: the Call to Adventure
(Red is sent to Grandma’s house), Crossing the Threshold
(Red enters the forest and meets the wolf), and the Road
of Trials (Red faces distractions along the forest path). For
each of these stages we authored two potential encounters,
each having one or two branches tailored for particular styles
of play. To ensure a consistent conclusion to the story, five
ending encounters were authored to correspond to the Or-
deal stage of the Monomyth, and the ending experienced by
each player was determined by both previous story events
and the player’s immediate actions. Generating all possible
sequences of encounters yields the game tree given in Fig-
ure 1; it consists of 20 possible lines of gameplay, called
paths, with five different endings.

Using the game tree as a guide, we created two non-
adaptive (“fixed”) stories designed to collectively include
every encounter in the tree. Although having one fixed story
for every possible combination of encounters would have
been ideal, the size of our participant pool limited our tests to
only two fixed stories. The first fixed story (shown by dashed

lines in Figure 1) was most closely related to the Little Red
Riding Hood fairy tale. The second fixed story (shown in
bold lines), led to one of four endings determined directly
by player actions. No player modelling was performed dur-
ing the fixed stories, and all players faced the same decision
points (denoted by questions such as “Save the Wizard?”).

In contrast, the adaptive story maintained a player model
and had three internal decision nodes (‘D1’ through ‘D3’ in
the figure), each corresponding to one of the three stages of
the Monomyth identified above. Each decision node deter-
mined which encounter players would face next, based on
the model’s current estimate of their preferred style of play.
It was possible for players of the adaptive story to traverse
any of the 20 paths in the tree, and each player’s path was
determined both directly via player decisions and indirectly
through the player model.

To help PaSSAGE make an informed decision at node D1

(Call to Adventure), the story began with a “history lesson”
in which the player had the opportunity to respond several
times to the events of a short sub-story told by an in-game
character. Although the player model was updated with each
player response, it was not used until after the lesson was
over. To reduce bias between the adaptive and fixed stories,
the history lesson was presented in all three; the player’s
responses had no significant effect in the fixed stories.

Adaptive Gameplay Walkthrough
We now follow an actual play of the adaptive story,
demonstrating how the model was updated and how it
was used in the decision nodes. An annotated video

Fig. 11. Example of tree-based story representation in PaSSAGE(retrieved from [39])

player model.

The PaSSAGE system does not provide an
explicit support for the controllability within its
tree-based story structure. The encounters in
the story tree are selected either by the player’s
own choices or the system’s decision nodes
that choose the encounter based on the state of
player model. However, it is potentially possi-
ble to impose some trainer-specified constraints
at the system’s decision nodes so that the selec-
tion of encounters can be directed towards the
trainer’s desire. With regard to the robustness,
PaSSAGE adopts the prevention approach, as
it only allows a player to select a set of pre-
defined choices of actions at some prescribed
situations. The key strength of the PaSSAGE
system is its ability to achieve the personaliza-
tion. Similar to ISAT, the player model used in
PaSSAGE also takes a hypothetical approach, as
how the player’s actions can reflect the play
style and update the weight values based on
the designer’s hypotheses. For the interaction,
even though a player in PaSSAGE can move
around in the virtual environment, the key
actions that a player can take are governed
by the pre-defined story tree. The player can
only choose from a pre-defined set of actions
at certain stages as defined in the story tree.

3.8 Automated Story Director

The Automated Story Director (ASD) [3] de-
veloped by Mark Riedl et al. is an interactive
narrative system that uses an experience man-
ager to offer adaptive narratives in response
to player’s actions. The experience manager
employs a generative approach, which can au-
tomatically generate variations of a narrative.
It uses a planning-based narrative generator
to produce alternative narratives (i.e., contin-
gency plans) to deal with the inconsistencies
caused by player’s actions. The generative ap-
proach adopted by the ASD system helps to
reduce the authoring burden, as it only requires
an author to provide an exemplar narrative
and a collection of plan operators for narrative
authoring. The system has been applied to two
prototype applications, one for entertainment
purpose (i.e., an interactive Little Red Riding
Hood story) and one for military training.

In ASD, the experience manager first starts
to work on an exemplar narrative. This exem-
plar narrative is created by a human author
and it is used as the narrative that the author
or system expects the player will experience.
To represent a narrative, a partially-ordered
plan-based structure, similar to the one used
in Mimesis [34], is used. Fig. 12 shows the

16

planning algorithm consistent with the generative experience
management approach described in this article.

A plan, as a computational representation of narrative,
facilitates generation and execution of narratives. However,
it is important that the human author be able to exert
influence over the types of narratives created by the
Automated Story Director. The next section describes an
extension to the computational representation that allows the
human author to exert their authorial intent on the system.

2.2 Preserving Authorial Intent

The Automated Story Director is a generative approach to
experience management, meaning that an automated narrative
generation process automatically produces variations on the
hand-authored narrative content (e.g. the exemplar narrative).
While the human author necessarily cannot have fine-grained
control of the participant’s experience during runtime, it is a
desirable trait for interactive narrative systems – from both
dramatic and pedagogical perspectives – to allow the author
to be able to constrain the space of possible experiences the
participant can have. For an entertainment-based system, the
authorial intent may be a set of dramatic circumstances. For
an educational or training system, the authorial intent may be
to introduce the user to situations relevant to the course of
study.

The Automated Story Director provides a mechanism for
encoding authorial intent based on special data structures
called islands. Islands – a term coined to refer to a technique
for controlling the form of solutions generated by planners
[22] – are intermediate states in a search space, through
which all solutions to a planning problem must pass. Islands
inform the planner as to what valid solution plans should look
like, conceptually speeding up the planning process. Plans

that do not satisfy each island state description at some point
between the initial state and the end state are effectively
pruned. We use islands as a way for the human user to inject
guidance into the narrative generation process used by the
experience manager.

In our computational representation of narrative, islands
are implemented as a special type of plan step that have
preconditions describing the intermediate world state but no
effects. Islands are provided at the time of planner
initialization and describe world states that must be achieved
at some intermediate time during plan execution. If more
than one island is given, there can be pre-specified temporal
links between them so that islands must occur in the resulting,
complete plan in a particular order. In this way, the existence
of islands constrains the space of plans that can be searched
by the planner. That is, the planner cannot consider any plan
in which the world state described by an island will not be
achieved during plan execution. Unlike total-order state-
space search algorithms, causal dependency planners (e.g.,
[57], [60], and [42] [47]) search through the space of partial
plans [57]. When islands are used, the planner is instantiated
with virtual plan steps – that is, plan steps that are not
executed – inside the initial, usually empty, plan.

For example, in an implementation of an interactive Little
Red Riding Hood story, islands may specify that valid
narratives are those in which (a) Little Red Riding Hood is at
some point in the state of being eaten (island 1 in Figure 2),
and (b) Little Red Riding Hood is at some later point in the
state of not being eaten (part of the Outcome in Figure 2).
This prevents the experience manager from considering any
narrative plans in which Little Red Riding Hood is not eaten
at some point, or in which Little Red Riding Hood is eaten
but not rescued. The goal – or outcome – of a plan can be
considered a special type of island. Once authorial intent is
encoded into the exemplar narrative plan, the system can
reason about how to adapt that narrative in order to handle
user interactivity.

2.3 Anticipating Necessary Narrative Plan Adaptations

Using planning structures to model scenarios is advantageous
because a plan can be analyzed for points in which failure can
occur due to unpredictable and interactive behaviors
performed by the participant. We use a technique similar to
that described in [44] to analyze the causal structure of the
scenario to determine all possible inconsistencies between
plan and virtual world state that can occur during the entire
duration of the narrative. Inconsistencies arise due to
participant actions that change the world. For every possible
inconsistency that can arise that threatens a causal link in the
plan, an alternative narrative plan is generated. Unlike [44],
we do not attempt to prevent the user from causing
undesirable world state changes. Instead, we use a tiered
replanning approach. For each potential inconsistency that
can arise, the following repair processes are tried in order
until one succeeds in repairing the narrative:

(i) The threatened causal link is removed, an open condition
flaw annotates the precondition on the plan step that was
previously established by the removed causal link, and
the planner is invoked.

Fig. 2. Example narrative plan set in the Little Red Riding

Hood world.

Fig. 12. Exemplar narrative plan in
ASD(retrieved from [3])

plan structure of the exemplar narrative for
the Little Red Riding Hood story. In such a
plan structure, the boxes represent the plan
steps, solid arrows are causal links and dashed
arrows are temporal constraints. To ensure that
the user (i.e., the author or trainer) can have the
ability to control the possible narrative trajecto-
ries generated from such a partial-order plan, a
special data structure called islands (as shown
in Fig. 12), is used. The system allows user to
inject these islands, which are the intermediate
states that all narratives generated by a planner
must pass. In the context of training, such is-
lands can help to ensure that certain situations
relevant to training (e.g., a tasking opportunity
to practice a skill) will be presented to the
trainee according to trainer’s preferences.

The ASD system handles the player’s actions
by analyzing all the possible inconsistencies
between narrative plan and the virtual world
state that can occur due to the player’s actions.
Specifically, the system checks every inconsis-
tency that can potentially threaten a causal link

in the exemplar narrative plan. Once such a
threatened causal link is detected, the system
uses a tiered re-planning approach to search
for the contingency plan to fix the broken link.
The narrative re-planning process is conducted
off-line to avoid the delays during the game-
play. Given all the potentially threatened causal
links, the re-planning will generate a tree of
contingency plans, where each plan forms a
branch of the initial exemplar narrative. Dur-
ing the game-play, the ASD system executes
the narrative plan by generating directives to
control the semi-automatous virtual characters
in the story world.

The ASD system achieves the controllability
through the use of islands in its partially-
ordered plan narrative. The specification of
islands allows a trainer to exercise hard con-
trol, as it ensures that the certain intermedi-
ate states (i.e., the specified islands) will be
achieved during plan execution. The robustness
of the system is realized by its re-planning
mechanism to generate the contingency plans.
It uses a reactive approach, as the contingency
plans are invoked only when a player performs
an action that threatens a causal link in the
initial plan. Even though the system adapts its
narrative (through invoking contingency plans)
based on the player’s actions, the adaptation is
to preserve the desired properties as specified
by the author or the trainer. The personalization
of the system is not addressed, as the adapta-
tion is not made to consider variation in the
trainees. For the interaction, the player of the
ASD system can control a virtual character and
act as a role in the story world character. The
player can perform a wide repertoire of actions
at anytime during the game.

3.9 C-DraGer

The Case-based Drama manaGer (C-DraGer)
developed by Manu Sharma et al. [40] is an
interactive narrative system, which aims to
generate narratives that can adapt to improve
an individual player’s experiences in an in-
teractive fiction game. The system employs a
case-based player model that leverages on the
player feedback data to predict the interesting-
ness of plot points in a story. Based on the

17

built player model, a Drama Manager module
is designed in C-DraGer to dynamically de-
termine the next plot point that is best suited
to a specific player. One salient feature of the
C-DraGer system is that its player model is
constructed based on real player’s data rather
than the empirically-derived models of player
behaviors.DRAMA MANAGEMENT AND PLAYER MODELING 191

Game
Engine

Player
Modeling

Drama
Manager

Player
Trace

Player
Model

DM
actions

Player

Story
state

History

Physical
state

Game State

FIGURE 3. Architecture of the Case-based Drama manaGer (C-DraGer). C-DraGer oversees the player’s
interaction with the game and attempts to make the story arcs interesting by building the player model and
maximizing the player’s interests.

TABLE 1. Player Action Classes Available in Anchorhead.

Player Action Type Effect in Game Example

Movement Changes the player’s current location to Walk from street to home
one of the twelve possible locations

Conversation Speak with a nonplaying character in Talk to bum lying on the ground
the game

Picking Objects Adds an item from the game Accept library card
to the player’s inventory

Using Objects Interact with an object in the game or the Use magic lens on telescope
player’s inventory

No Effect Does not contribute toward any story arc Drink French wine

Note: Anchorhead Provided a Total of 52 Possible Player Actions.

of player actions. When the player selects an action, it is the game engine’s responsibility to
execute the player action and update the game state. While the game engine processes the
player action, two steps are taken: first, this player action is sent to the PMM, which maintains
a player model; and second, the updated player model is sent to the DMM. It uses this player
model to decide whether it is going to influence the game or not. The DMM influences the
game by executing a drama manager actions (explained in the following sections). If a drama
manager action is indeed selected, it is again the game engine’s responsibility to execute the
action and thereby influence the game state. The following sections explain the various terms
used across the article followed by the details of all the modules presented in Figure 3.

4.1. Terms and Definitions

Let us start the explanation of C-DraGer with a collection of definitions for the most
common terms used in the remainder of this article. Note that these definitions are simply
meant to serve as clarifications for the usage of these terms in this article:

• A player action is any action that the player can execute to interact with the game. For
example, “open Willam’s coffin,” or “browse through the objects at the Magic shop.”
See Table 1 for the types of player actions available in Anchorhead.

Fig. 13. Architecture of C-DraGer(retrieved
from [40])

The architecture of the C-DraGer system is
shown in Fig. 13. The architecture consists of
three main modules, namely, the game en-
gine, player modeling and drama manager.
The game engine runs the narrative, executes
player’s actions and updates game states. In C-
DraGer, a player interacts with the game engine
through a text-based interface. The trace of the
player’s in-game actions are sent to the player
modeling module (PMM). The PMM analyzes
the player’s trace to predict the interestingness
of the candidate plot points. Based on the
information obtained from PMM, the drama
manager module (DMM) steers the narrative
by sending DM actions to the game engine.

The player modeling module (PMM) in C-
DraGer uses a case-based reasoning approach
to construct the player model. The system
first builds a case base by recording the past
players’ gameplay traces and their feedback
on the interestingness of the plot points they
experienced during the game. The feedback
is obtained by asking the player to rank the
experienced plot points and the whole story
based on a 5-point Likert scale and give a
confidence value on her/his ranking. Based on
this recorded information, each case base is
constructed and it contains the player trace, the

interestingness values and confidence value of
a past player. To predict the preference of the
current player, the PMM compares the trace of
current player with the ones of past players
in the case base. The PMM selects the case
with its player trace most similar to the current
player’s and uses the interestingness values
in the matched case to predict the current
player’s interestingness values. The system as-
sumes that the players with similar preferences
(i.e., the story interestingness) tend to perform
the similar actions in the game.

DRAMA MANAGEMENT AND PLAYER MODELING 199

Expectimax

Story
Evaluation

General Story Heuristics
and Author-Specified Rules

Plan

current state

state state state

state state

state state

state state

Plan

Game State

DM Actions

Player Model

0.9

0.3

0.7

Confidence: 0.6

pp1

pp2

ppn

next DM action

DM
action

DM
action

action actionaction action

DM
action

DM
action

DM
action

FIGURE 7. The Drama Manager Module consists of a planner and a story evaluation module. Given the
history of the current game and the player’s interest model, this module is responsible to decide a Drama Manager
action that is likely to lead the player to interesting story arcs.

To decide the next DM action to execute, the DMM uses an expectimax algorithm
(Michie 1966). The expectimax algorithm is very similar to the minimax algorithm used in
chess-like games. Both algorithms construct a search tree and use an evaluation function in
the leaf nodes thereby providing a score for each leaf. These scores are propagated up the
tree. The difference is that the minimax algorithm assumes that the opponent has opposite
goals, whereas the expectimax algorithm does not. Whereas the minimax algorithm picks the
minimum score out of all the scores associated with the child nodes, expectimax computes
the average score.

As shown in Figure 7, the starting node of the search tree is the current game state.
In the odd plys of the tree, each branch consists of a DM action (including a branch for
performing no action). In the even plys of the tree, each branch consists of a player action.
In our evaluation, we have kept a fixed depth of 5 plys so that the time required by the DMM
to search is not appreciable by the player. Each leaf in the tree corresponds to the game state
(including the physical state, story state and history) resulting from applying all the actions
in its branch to the current game state. For each leaf node (l j), the DMM computes two
interestingness values: p(l j) and a(l j). p(l j) is the average interestingness of the visited plot
points in l j (computed using the player model) and a(l j) is the interestingness obtained using
the author defined rules.

Once both p(l j) and a(l j) have been computed, the interestingness value of a node is
computed as

nodei (l j) = cP M × p(l j) + (1 − cP M) × a(l j)

where cP M is the confidence value returned by the player modeling module via the constructed
player model. The intuition behind the calculation is that if the confidence in the player model
is high, weigh the player model higher. If the confidence is low, the system should rely in the
author-specified guidelines.

The interestingness values are propagated up in the tree by selecting the maximum
interestingness in the plys with DM actions and the average interestingness in the plys with

Fig. 14. Drama Manager Module in C-
DraGer(retrieved from [40])

Based on the player model and the cur-
rent game state, the drama manager module
(DMM) in C-DraGer is designed to influence
the story world by sending DM actions. In C-
DraGer, a story is represented as a branching
story graph as shown in Fig. 14 and DM actions
can affect which plot points (i.e., states) will be
selected given the current state of the game.
To determine the next DM action to execute,
the DMM uses an expectimax algorithm, which
evaluates the story based on both the player
interest and author-specified story guidelines.
As shown in Fig. 14, the story evaluation
takes the inputs of story heuristics and author-
specified rules, which evaluate the story based
on some desired properties (e.g., how much
the story changes from one topic to another)
as preferred by the author. The interestingness
values obtained from the player model are then
combined with the evaluation values based on
author-specified heuristics and rules. The DM
action, which gives the maximum combined
value, will be selected for execution.

18

TABLE 1
Controllability in the nine interactive narrative systems

Systems Mechanism for controllability
Mimesis Not supported. Potentially applicable to use hard or soft constraints to direct the

planning-based story generation.
IDA Not supported. Story is pre-defined by author.
I-Storytelling Not supported. The direction of story is only affected by dynamic interactions

of virtual agents.
Façade Soft control. A trainer can influence the story using dramatic arc.
Thespian Soft control. A trainer can specify temporal and partial-order constraints.
ISAT Authoring. Trainer has the role of author, which uses a story authoring tool to

create the story space.
PaSSAGE Not supported. Potentially applicable to impose trainer-specified constraints in

the system decision nodes of tree-structure story
ASD Hard control. Use islands to ensure certain trainer-specified plan states will be

achieved in planning-based story generation.
C-DraGer Soft control. Use author/trainer-specified heuristics and rules to influence the

selection of plot points.

In terms of controllability, C-DraGer allows a
trainer or author to explicitly specify the story
heuristics and rules, which influence how the
drama manager selects the plot points in the
story. It is a type of soft control, as it affects the
likelihood that certain types of plot points will
appear in the generated story. The C-DraGer
system uses a branching story graph represen-
tation, within which all the player actions are
defined as the branches in the graph. Thus, a
player can only choose the actions, which are
pre-defined in the graph. Thus, the robustness
of the C-DraGer system is achieved using the
prevention approach. One salient feature of
C-DraGer is the use of a data-driven player
model to achieve the personalization. Compared
to other hypothetical player models, C-DraGer
does not need to make hypothesis on the map-
ping between player’s actions and characteris-
tics. It relies on the past players’ play traces and
ratings to infer the preferences of the current
player. With regard to the interaction, C-DraGer
has a text-based interface for player interaction,
where a player is presented with a set of valid
actions to choose at any given time in the game.
The choice of player actions is constrained by
the action choices as pre-defined in the branch-
ing story graph structure.

4 FUNCTIONAL COMPARISON

In the previous section, we have reviewed
some influential existing work in interactive
narrative. In this section, we will compare the
nine reviewed systems based on the four pro-
posed requirements that they support. Table 1
compares the controllability mechanisms of the
nine reviewed systems. It can be observed that
five systems provide an explicit support for
controllability. Among these five systems, three
systems (i.e., Façade, Thespian and C-DraGer)
adopt the soft control approach, one system
(i.e., ASD) adopts the hard control approach
and one system (i.e., ISAT) provides an au-
thoring tool to let trainer perform authoring
task (strictly speaking, not controllability as
described in section 2.1). In the rest of four
systems that do not support controllability,
two systems (i.e., Mimesis and PaSSAGE) are
potentially applicable to enable controllability
given their story representation and story gen-
eration mechanisms. Generally speaking, it is
easier to enable controllability in the systems
that use planning-based story generation. In
such systems, a trainer can specify either hard
or soft constraints to control the story planning
process. For the systems (e.g., PaSSAGE and
C-DraGer) that use a tree-based or branching
story graph structure, a trainer can influence
the progression of story if there exist some
system decision nodes to determine the next

19

TABLE 2
Robustness in the nine interactive narrative systems

Systems Mechanism for robustness
Mimesis Reactive approach. Two strategies, namely accommodation and intervention, are

used to react to the exceptional player actions.
IDA Predictive approach. A director agent preemptively directs the story based on

the predicted future player behaviors.
I-Storytelling Reactive approach. Two mechanisms, namely situation reasoning and action

repair, are used to ensure the executability of virtual agents’ plans.
Façade Reactive approach. Pre-defined mix-in goals in story beat are used to react

player’s behaviors.
Thespian Predictive approach. A direct agent anticipates the possible violations of the

prescribed story based on a model of player.
ISAT Reactive approach. Reactive direction is used to prevent trainee going outside

the training space.
PaSSAGE Prevention approach. A player can only choose a set of pre-defined actions at

some prescribed situations.
ASD Reactive approach. An offline re-planning process is carried out to create a tree

of contingency plans.
C-DraGer Prevention approach. A player chooses the actions which are pre-defined in the

branching story graph.

branch. It is relatively difficult to ensure con-
trollability in the systems (e.g., I-Storytelling)
in which the direction of story largely depends
on the dynamic interactions of virtual agents.

Table 2 compares the robustness mechanisms
of the nine reviewed systems. It can be found
that all the systems provide some mechanisms
for robustness, with the majority of them (i.e.,
five systems) adopting the reactive approaches.
The popularity of the reactive approach may be
due to the reason that it is an intuitive way to
handle the undesired player behaviors and it
can react to the changing situation in a prompt
manner. However, it should be noted that most
reactive approaches require the creation of con-
tingency plans or strategies at the authoring
stage. This may introduce additional authoring
burden, especially when the story plot is com-
plex. The prevention approach is usually used
in the systems (e.g., PaSSAGE and C-DraGer)
that employ a branching story structure and
provide a pre-defined set of player actions at
each branching point. Though the prevention
approach is the most straightforward way to
ensure robustness, it has the disadvantage of
limiting the freedom of the player’s interaction.
Among all the reviewed systems, only IDA
and Thespian adopt the predictive approach
for robustness. One challenge in realizing the

predictive approach is that it relies on an accu-
rate estimation of the player’s future behaviors.

Table 3 compares the personalization mech-
anisms of the nine reviewed systems. It can be
observed that even though personalization is
an important requirement for improving both
entertainment and training value of interac-
tive narrative, the work on personalization for
interactive narrative is still limited. Among
the nine reviewed systems, three systems (i.e.,
ISAT, PaSSAGE and C-DraGer) provide an ex-
plicit mechanism for personalization. Two of
them (i.e., ISAT and PaSSAGE) adopt the hy-
pothetical approach and one system (i.e., C-
DraGer) adopts the data-driven approach. The
hypothetical approach relies on the modeler’s
experiences to derive the mapping between
player in-game actions and player’s character-
istics. Thus, it is relatively easy to construct
the player model. In contrast, the data-driven
approach requires a large amount of data of
past players to construct the player model.
Even though it may introduce some overheads,
it is potentially more reliable as the model is
constructed based on actual gameplay data.
Note that even though a player model is in-
troduced in the IDA and Thespian systems,
it is not used for the purpose of generating
personalized stories.

20

TABLE 3
Personalization in the nine interactive narrative systems

Systems Mechanism for personalization
Mimesis Not supported.
IDA Not supported. Even though a player model is used to predict player behaviors,

it is used to prevent the deviation from the pre-defined plot.
I-Storytelling Not supported.
Façade Not supported.
Thespian Not supported.
ISAT Hypothetical approach. A player skill model that estimates the proficiency of

player’s skills based on player’s actions is used.
PaSSAGE Hypothetical approach. A player model that infers the player’s play style based

on player’s actions is used.
ASD Not supported.
C-DraGer Data-driven approach. A player preference model that is constructed from the

past player’s game traces and feedback is used.

TABLE 4
Interaction in the nine interactive narrative systems

Systems Interaction Mode Time Choice
Mimesis First-person. Control a virtual

character
Anytime All available actions

IDA First-person. Play a role of ghost Anytime All available actions
I-Storytelling Inspector. Manipulate objects

and give advice to virtual agents
Anytime All available actions

Façade First-person. Speak to virtual
agents via NLP

Anytime Unlimited

Thespian First-person. Speak to virtual
agents and make gestures

Anytime Unlimited

ISAT First-person. Control a virtual
character

Specific time. When a
casualty event is pre-
sented

All available actions

PaSSAGE First-person. Control a virtual
character

Specific time. When a
game event is encoun-
tered

A set of actions. De-
fined in branching story
graph

ASD First-person. Control a virtual
character

Anytime All available actions

C-DraGer First-person. Interact using a
text-based interface

Anytime A set of actions. De-
fined in branching story
graph

Table 4 summarizes the interaction mecha-
nisms of the nine reviewed systems in terms of
interaction mode, time and choice. It can be ob-
served that most of the reviewed systems (i.e.,
eight systems) have a first-person interaction
mode and allow a player to control a virtual
character in the story. In the I-Storytelling sys-
tem, the player is not involved in the actual
story. But, she/he can influence the behaviors
of virtual agents in an “off-stage” manner. All
systems, except ISAT and PaSSAGE, also allow

the player to interact with the system at any-
time during the game, In ISAT and PaSSAGE,
a player can issue an action only when certain
story events are presented. In terms of the
action choices, Façade and Thespian systems
do not limit the actions a player can perform.
A player can type any dialog and the system
will handle the player’s input using NLP. The
rest of the systems provide a player a set of ac-
tions to select from. Among these systems, the
PaSSAGE and C-DraGer only allows a player

21

to select a pre-defined sub-set of actions as
defined in the branching story graph. In other
systems, a player can choose from the set of all
available actions.

5 CONCLUSION

With the advancement of new media, AI and
agent technologies, recent years have wit-
nessed an increasing interest in interactive nar-
rative from researchers, educators and enter-
tainment industries, with many papers being
published and many projects being conducted.
Although some significant work has been done
in designing interactive narrative systems, it is
still a relatively young research area. In this pa-
per, we review the existing interactive narrative
systems from a training perspective. The objec-
tive is to gain understanding of the readiness of
existing interactive narrative technologies for
simulation-based training. To this end, we first
identified some key requirements in develop-
ing interactive narrative systems for training.
Then, we described some representative exist-
ing work and discussed the architecture design,
major features and related mechanisms of these
systems. Based on our review of the existing
work, we made a comparison based on their
functionalities and mechanisms to support the
key requirements we identified. We hope that
the review and assessment could provide read-
ers with useful information and insights on
the state of the art of the interactive narrative
technologies as well as their applicability to
training.

The primary application of interactive nar-
rative system is oriented towards digital en-
tertainment and games. Recently, there is an
emerging trend to apply interactive narrative
technologies for training [3], [17], [22], [23]. In
fact, it has been observed by the stakeholders
and government agencies that there is a need
to provide a more intuitive and interactive way
to train or educate the personnel with relevant
skill sets. The interactive narrative systems
and technologies have shown great potential
to facilitate such interactive training and ed-
ucation. In our future work, we are particu-
larly interested in the investigation of how to
apply interactive narrative technologies to the

scenario generation process in virtual training
systems. Despite the applicability of interactive
narrative technologies in training, there is still
a gap between what existing systems can offer
and meet the requirements imposed by the
training applications. Based on our review in
this paper, it can be observed that no single
interactive narrative system has provided a
full solution to satisfy all the requirement for
training. To conclude this paper, we provide
our observations on the key research issues
for developing interactive narrative systems for
training.

Trainer controllability. One essential re-
quirement for a training system is that the
trainer should be able to easily set up the
training scenarios or narratives, based on the
training objectives. This requires the interactive
narrative system of training application to offer
a high degree of controllability to let the trainer
interact and direct the scenario set-up process.
The trainer should be given the capability to di-
rect the progression of the storyline, so that the
generated scenario could reflect the training ob-
jectives the trainer aims to achieve. Currently,
the issue of controllability is less explored in in-
teractive narrative research. While some exist-
ing systems have provided some mechanisms
for controllability, they tend to control the story
for achieving some dramatic requirements (e.g.,
following the dramatic arc in Façade). Such
control does not necessarily imply that it is a
story complying to a desired training objective
that a trainer aims to achieve. Therefore, when
applying interactive narrative technologies to
training applications, the research on trainer
controllability still needs further investigation.

Trainee adaptation. Another key aspect for
developing a training system is the adaptation
to trainee (i.e., player). The training process
will be effective only when the scenarios or
narratives presented to a trainee are neither too
difficult nor too easy, based on the trainee’s
existing skill levels. To this end, it is essential
to have a player model to learn and capture
the differences of individual trainees, so that
the training system can adapt the scenarios ac-
cordingly. Among the reviewed systems, there
are only three systems (i.e., ISAT, PaSSAGE and
C-DraGer) that incorporate player models for

22

the purpose of personalization and adaptation.
Further research is needed to study how to con-
struct the player model to accurately capture
the trainee’s characteristics and how to utilize
the constructed player model for adapting the
narratives in training.

Story variation and replayablility. The vari-
ation and replayablility of the scenario, or
narrative, play an important role in building
an effective training system. If a trainee prac-
tices with the repeated scenario multiple times,
she/he tends to memorize the scenario, instead
of learning the underlying concepts. Thus, an
enriching learning experience for the trainee
cannot be achieved if the number of available
scenarios is limited. Thanks to the capability of
generating story variation, the interactive nar-
rative technology has a great potential to offer
story variation and hence offer replayablility.
However, the research on the assessment of the
quality of the story variants still requires fur-
ther investigation. To this end, we envisage two
levels of story variations need to be achieved.
The first type of variation is at a strategic
level. This type of variation should reflect the
different training objectives and intensities of
these objectives to be trained. The second type
is at an action level. This type of variation may
exercise the same set of training objectives, but
they aim to enhance the replayablility of the
system. Example of such variation is to place
an enemy in different, but strategically-similar
locations.

REFERENCES

[1] R. Hill, J. Gratch, S. Marsella, J. Rickel, W. Swartout,
and D. Traum, “Virtual humans in the mission rehearsal
exercise system,” Künstliche Intelligenz, vol. 4, no. 03, pp.
5–10, 2003.

[2] B. Magerko, B. Stensrud, and L. Holt, “Bringing the
schoolhouse inside the box-a tool for engaging, individ-
ualized training,” in Proceedings of the 25th Army Science
Conference, 2006.

[3] M. O. Riedl, A. Stern, D. Dini, and J. Alderman, “Dynamic
experience management in virtual worlds for entertain-
ment, education, and training,” International Transactions
on Systems Science and Applications, Special Issue on Agent
Based Systems for Human Learning, vol. 4, no. 2, pp. 23–42,
2008.

[4] P. M. Kato, “Video games in health care: Closing the gap,”
Review of General Psychology, vol. 14, no. 2, p. 113, 2010.

[5] J. A. Sokolowski, C. M. Banks, and P. Hakim, “Simulation
training to improve blood management: an approach
to globalizing instruction in patient safety,” Simulation,
vol. 90, no. 2, pp. 133–142, 2012.

[6] J. Dequidt, H. Courtecuisse, O. Comas, J. Allard,
C. Duriez, S. Cotin, É. Dumortier, O. Wavreille, and J.-F.
Rouland, “Computer-based training system for cataract
surgery,” Simulation, vol. 89, no. 12, pp. 1421–1435, 2013.

[7] G. Bausch, J. Adermann, B. Andrack, M. Dengl, J. Handw-
erk, M. Müller, A. Seifert, H. Steinke, M. Sturm, W. Korb
et al., “Design and development process of a next-
generation training system for spinal surgery,” Simulation,
vol. 89, no. 12, pp. 1436–1441, 2013.

[8] A. J. Faria, D. Hutchinson, W. J. Wellington, and S. Gold,
“Developments in business gaming a review of the past
40 years,” Simulation & Gaming, vol. 40, no. 4, pp. 464–487,
2009.

[9] D.-J. Van Der Zee, B. Holkenborg, and S. Robinson, “Con-
ceptual modeling for simulation-based serious gaming,”
Decision Support Systems, vol. 54, no. 1, pp. 33–45, 2012.

[10] C. Cleophas, “Designing serious games for revenue man-
agement training and strategy development,” in Proceed-
ings of the Winter Simulation Conference, 2012, pp. 140:1–
140:12.

[11] A. G. Bruzzone, M. Massei, A. O. Solis, S. Poggi, C. Bar-
tolucci, and L. D. Capponi, “Serious games as enablers
for training and education on operations on ships and
off-shore platforms,” in Proceedings of the 2013 Summer
Computer Simulation Conference, 2013, pp. 36:1–36:8.

[12] W. Johnson, J. Rickel, and J. Lester, “Animated pedagogi-
cal agents: Face-to-face interaction in interactive learning
environments,” International Journal of Artificial Intelligence
in Education, vol. 11, no. 1, pp. 47–78, 2000.

[13] M. Core, D. Traum, H. C. Lane, W. Swartout, J. Gratch,
M. Van Lent, and S. Marsella, “Teaching negotiation skills
through practice and reflection with virtual humans,”
Simulation, vol. 82, no. 11, pp. 685–701, 2006.

[14] A. Meluso, M. Zheng, H. Spires, and J. Lester, “Enhancing
5th graders’ science content knowledge and self-efficacy
through game-based learning,” Computers & Education,
vol. 59, no. 2, pp. 497–504, 2012.

[15] H. Lukosch, T. van Ruijven, and A. Verbraeck, “The
participatory design of a simulation training game,” in
Proceedings of the Winter Simulation Conference, 2012, pp.
142:1–142:11.

[16] J. Caussanel, N. Giambiasi, and A. G. Bruzzone, “From
abstract representation to formal modeling of tactical
military operations,” in Proceedings of the 2007 Summer
Computer Simulation Conference, 2007, pp. 1094–1100.

[17] A. Zook, S. Lee-Urban, M. O. Riedl, H. K. Holden, R. A.
Sottilare, and K. W. Brawner, “Automated scenario gener-
ation: Toward tailored and optimized military training in
virtual environments,” in Proceedings of the International
Conference on the Foundations of Digital Games, 2012, pp.
164–171.

[18] M. Mateas and A. Stern, “Façade: An experiment in build-
ing a fully-realized interactive drama,” in Game Developers
Conference, 2003, pp. 4–8.

[19] B. Magerko, “Evaluating preemptive story direction in the
interactive drama architecture,” Journal of Game Develop-
ment, vol. 2, no. 3, pp. 25–52, 2007.

[20] M. Cavazza, F. Charles, and S. J. Mead, “Character-based
interactive storytelling,” IEEE Intelligent Systems, vol. 17,
pp. 17–24, 2002.

[21] N. Vannini, S. Enz, M. Sapouna, D. Wolke, S. Wat-

23

son, S. Woods, K. Dautenhahn, L. Hall, A. Paiva,
E. André et al., “FearNot!: a computer-based anti-
bullying-programme designed to foster peer interven-
tion,” European journal of psychology of education, vol. 26,
no. 1, pp. 21–44, 2011.

[22] B. Magerko, B. Wray, L. Holt, and B. Stensrud, “Improv-
ing interactive training through individualized content
and increased engagement,” in Proceedings of the Interser-
vice/Industry Training, Simulation, and Education Conference,
2005.

[23] M. Ponder, B. Herbelin, T. Molet, S. Schertenlieb,
B. Ulicny, G. Papagiannakis, N. Magnenat-Thalmann, and
D. Thalmann, “Immersive VR decision training: telling
interactive stories featuring advanced virtual human sim-
ulation technologies,” in Proceedings of the workshop on
Virtual environments, 2003, pp. 97–106.

[24] J. H. Murray, Hamlet on the Holodeck: The future of narrative
in cyberspace. MIT Press, 1998.

[25] M. O. Riedl, “An intent-driven planner for multi-agent
story generation,” in Proceedings of the third international
joint conference on Autonomous Agents and Multi-Agent
Systems, 2004, pp. 186–193.

[26] J. Porteous and M. Cavazza, “Controlling narrative gener-
ation with planning trajectories: the role of constraints,”
in Proceedings of the 2nd Joint International Conference on
Interactive Digital Storytelling: Interactive Storytelling, 2009,
pp. 234–245.

[27] R. M. Young, “Notes on the use of plan structures in the
creation of interactive plot,” in AAAI Fall Symposium on
Narrative Intelligence, 1999, pp. 164–167.

[28] M. Si, S. C. Marsella, and D. V. Pynadath, “Thespian:
Using multi-agent fitting to craft interactive drama,” in
Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, 2005, pp. 21–28.

[29] Y. Cai, C. Miao, A.-H. Tan, and Z. Shen, “A hybrid of plot-
based and character-based interactive storytelling,” in
Proceedings of the 2nd international conference on Technologies
for e-learning and digital entertainment, 2007, pp. 260–273.

[30] A. B. Loyall, “Believable agents: Building interactive per-
sonalities,” Ph.D. dissertation, Carnegie Mellon Univer-
sity, 1997.

[31] R. Aylett, J. Dias, and A. Paiva, “An affectively driven
planner for synthetic characters,” in Proceedings of the
16th International Conference on Automated Planning and
Scheduling, 2006, pp. 2–10.

[32] F. Charles, M. Lozano, S. J. Mead, A. F. Bisquerra, and
M. Cavazza, “Planning formalisms and authoring in inter-
active storytelling,” in Proceedings of the first International
Conference on Technologies for Interactive Digital Storytelling
and Entertainment, 2003, pp. 216–225.

[33] B. Magerko and J. Laird, “Building an interactive drama
architecture,” in Proceedings of First International Conference
on Technologies for Interactive Digital Storytelling and Enter-
tainment, 2003, pp. 226–237.

[34] R. M. Young, M. O. Riedl, M. Branly, A. Jhala, R. J.
Martin, and C. J. Saretto, “An architecture for integrating
plan-based behavior generation with interactive game
environments,” Journal of Game Development, vol. 1, pp.
51–70, 2004.

[35] D. L. Roberts and C. L. Isbell, “A survey and qualitative
analysis of recent advances in drama management,” In-
ternational Transactions on Systems Science and Applications,
vol. 4, no. 2, pp. 61–75, 2008.

[36] M. O. Riedl and V. Bulitko, “Interactive narrative: An

intelligent systems approach,” AI Magazine, vol. 34, no. 1,
pp. 67–77, 2013.

[37] B. Magerko, “Player modeling in the interactive drama
architecture,” Ph.D. dissertation, University of Michigan,
2006.

[38] M. O. Riedl and R. M. Young, “From linear story gener-
ation to branching story graphs,” Computer Graphics and
Applications, IEEE, vol. 26, no. 3, pp. 23–31, 2006.

[39] D. Thue, V. Bulitko, M. Spetch, and E. Wasylishen, “In-
teractive storytelling: A player modelling approach,” in
Proceedings of the 3rd Artificial Intelligence and Interactive
Digital Entertainment conference, 2007, pp. 43–48.

[40] M. Sharma, S. Ontañón, M. Mehta, and A. Ram, “Drama
management and player modeling for interactive fiction
games,” Computational Intelligence, vol. 26, no. 2, pp. 183–
211, 2010.

[41] M. Cavazza, R. Aylett, K. Dautenhahn, C. Fencott, and
F. Charles, “Interactive storytelling in virtual environ-
ments: Building the “Holodeck”,” in 6th International Con-
ference on Virtual Systems and Multi-media (VSMM 2000),
2000, pp. 678–687.

[42] J. R. Meehan, “The Metanovel: writing stories by com-
puter.” Ph.D. dissertation, Yale University, 1976.

[43] M. Lebowitz, “Creating characters in a story-telling uni-
verse,” Poetics, vol. 13, no. 3, pp. 171–194, 1984.

[44] S. R. Turner, The creative process: A computer model of
storytelling and creativity. Psychology Press, 1994.

[45] M. O. Riedl, C. J. Saretto, and R. M. Young, “Managing
interaction between users and agents in a multi-agent
storytelling environment,” in Proceedings of the second
international joint conference on Autonomous agents and mul-
tiagent systems, 2003, pp. 741–748.

[46] R. M. Young, “An overview of the mimesis architecture:
Integrating intelligent narrative control into an existing
gaming envonment,” in Working Notes of the AAAI Spring
Symposium on Artificial Intelligence and Interactive Entertain-
ment, 2001, pp. 78–81.

[47] R. M. Young and M. O. Riedl, “Towards an architecture
for intelligent control of narrative in interactive virtual
worlds,” in Proceedings of the International Conference on
Intelligent User Interfaces, 2003, pp. 301–302.

[48] J. E. Laird, A. Newell, and P. S. Rosenbloom, “Soar: An
architecture for general intelligence,” Artificial intelligence,
vol. 33, no. 1, pp. 1–64, 1987.

[49] M. Cavazza, F. Charles, and S. J. Mead, “Interacting with
virtual characters in interactive storytelling,” in Proceed-
ings of the first international joint conference on Autonomous
Agents and Multiagent Systems, 2002, pp. 318–325.

[50] D. S. Nau, S. J. J. Smith, and K. Erol, “Control strategies
in htn planning: Theory versus practice,” in Proceedings
of the fifteenth national/tenth conference on Artificial intel-
ligence/Innovative applications of artificial intelligence, 1998,
pp. 1127–1133.

[51] M. Meteas and A. Stern, “Structuring content in the façade
interactive drama architecture,” in Proceedings of the First
Artificial Intelligence and Interactive Digital Entertainment
Conference, 2005, pp. 93–98.

[52] M. Mateas, “Interactive drama, art and artificial intelli-
gence,” Ph.D. dissertation, Carnegie Mellon University,
2002.

[53] M. Si, “Thespian: A decision-theoretic framework for
interactive narratives,” Ph.D. dissertation, University of
Southern California, 2010.

[54] M. Si, S. C. Marsella, and D. V. Pynadath, “THESPIAN:
An architecture for interactive pedagogical drama.” in

24

Proceedings of the 12th International Conference on Artificial
Intelligence in Education, 2005, pp. 595–602.

[55] D. V. Pynadath and S. C. Marsella, “PsychSim: Model-
ing theory of mind with decision-theoretic agents,” in
Proceedings of the International Joint Conference on Artificial
Intelligence, 2005, pp. 1181–1186.

[56] R. D. Smallwood and E. J. Sondik, “The optimal control
of partially observable markov processes over a finite
horizon,” Operations Research, vol. 21, no. 5, pp. 1071–1088,
1973.

[57] M. Si, S. C. Marsella, and D. V. Pynadath, “Proactive
authoring for interactive drama: An authors assistant,” in
Proceedings of the 7th international conference on Intelligent
Virtual Agents, 2007, pp. 225–237.

[58] B. Medler and B. Magerko, “Scribe: A tool for authoring
event driven interactive drama,” Technologies for Interactive
Digital Storytelling and Entertainment, pp. 139–150, 2006.

