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Abstract. This paper suggests a simple method of deriving nonparametric lower bounds of the
accuracy of statistical inference on heavy-tailed distributions. We present lower bounds of the mean
squared error of the tail index, the tail constant, and extreme quantiles estimators. The results show
that the normalizing sequences of robust estimators must depend in a specific way on the tail index
and the tail constant.
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1. Introduction. Heavy-tailed distributions naturally appear in finance, mete-
orology, hydrology, teletraffic engineering, etc. (see [10], [20]). In particular, it is
widely observed that frequent financial data often exhibit heavy tails [5], [10], [15].
The distribution of a random variable (r.v.) X is said to have a heavy right tail if

(1) P(X = x) = L(x)x−α (x > 0),

where α > 0 and the (unknown) function L is slowly varying at infinity:

lim
x→∞

L(xt)

L(x)
= 1 (∀t > 0).

We denote by H the class of distributions with a heavy right tail.
The number α in (1) is called the tail index. It is the main characteristic describing

the tail of a distribution. If L(x) = C + o(1), then C is called the tail constant.
The problem of tail index estimation turned out to be a challenge; it has attracted

the attention of researchers for decades (see [10], [18], [20], and references therein).
Consistency and asymptotic normality have been established for a number of tail
index estimators (see [10], [18]). However, the problem of establishing a lower bound
of the mean squared error (MSE) of a tail index estimator remained open.
The famous Fréchet–Rao–Cramér inequality gives a lower bound of MSE of an

estimator in a regular parametric case; lower bounds are known also for parametric
families with certain irregularities [14], [21].
Note that H is a nonparametric class of distributions. It is typical of nonpara-

metric estimation problems that estimators are functions of a tuning (nuisance) pa-
rameter; cf. (15). This makes estimation far from straightforward.
The first step towards establishing a lower bound of the accuracy of tail index

estimation was made by Hall and Welsh [8], who proved the following result. Let
DA(α0, C0, ε, b) be the class of distributions on (0;∞) with densities

(2) f(x) = Cαx−α−1(1 + r(x)),
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where supx>0 |r(x)|x
bα 5 A, |α−α0| 5 ε, |C−C0| 5 ε. Denote by α̂n ≡ α̂n(X1, . . . , Xn)

an arbitrary tail index estimator, where X,X1, . . . , Xn are independent and identi-
cally distributed (i.i.d.) random variables, and let {zn} be a sequence of positive
numbers. If

(3) lim
n→∞

sup
F∈DA

PF (|α̂n − α| > zn) = 0 (∀A > 0)

for some α0 > 0, C0 > 0, b > 0, ε > 0, then

zn � n
−b/(2b+1)

(to be precise, Hall and Welsh dealt with the r.v.’s Yi = 1/Xi, whereXi are distributed
according to (2)). Beirlant, Bouquiaux, and Werker [1] established a similar result for
a larger class P of distributions but required the estimators to be OP(1) uniformly
over P.
A related result was established by Pfanzagl [19]. Let Db be the class of distribu-

tions with densities (2) such that supx>0 |r(x)|x
αb <∞, α > 0. Denote

sn(c, P0) = sup
P∈Pn,c

|αP − αP0 |,

where αP is the tail index of a distribution P, Pn,c = {P ∈ Db : dTV(Pn0 ;P
n) 5 c} is

a neighborhood of P0 ∈ Db, and dTV is the total variation distance. Pfanzagl showed
that neither estimator can converge to αP uniformly in Pn,c with the rate better than
sn(c, P0), and

inf
0<c<1

c−2b/(1+2b) lim inf
n→∞

nb/(1+2b)sn(c, P0) > 0.

Donoho and Liu [3] present a lower bound of the accuracy of tail index estimation
in terms of a modulus of continuity ΔA(n, ε); however, they do not calculate ΔA(n, ε);
the claim that a particular heavy-tailed distribution is stochastically dominant over
all heavy-tailed distributions with the same tail index is stated without a proof.

Drees [4] derives the asymptotic minimax risk for affine estimators of the tail index
and indicates an approach to numerical computation of the asymptotic minimax risk
for nonaffine estimators.

Hall and Welsh [8] showed also that zn � (log n)n−b/(2b+1) if α̂n − α is replaced
with Ĉn −C in (3), where C is the tail constant and Ĉn is an arbitrary tail constant
estimator.

Among nonparametric families of heavy-tailed distributions considered in the lit-
erature, we should mention the class

(4) Ha,b,c,d =
{
P : P(X = x) = cx−1/a

(
1 + dx−b/a(1 + o(1))

)}

of distributions on (1;∞), where a = 1/α > 0, b > 0, c ≡ c(a) > 0, d ≡ d(a, b) 6= 0
(see [17], [18]).

A few other classes and the comparison of Hill’s and the ratio estimators of the
tail index can be found in [18]. The parametric Pareto family

(5) P(X = x) = x−1/a (x = 1, a > 0)
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can be considered a “limiting point” of Ha,b,1,d, as the second index, b, tends to
infinity. Note that

(6) E

(
a∗n
a
− 1

)2
=
1

n
,

(
a∗n
a
− 1

)
√
n ⇒ N (0; 1) (n→∞)

in the case of i.i.d. observations over the Pareto distribution (5), where a∗n = n
−1∑n

i=1 logXi.
This paper suggests a simple approach to establishing minimax lower bounds to

the MSE. The method is based on Lemma 1, which is presented in section 3.
In the next section we apply the approach to the problems of statistical inference

on heavy-tailed distributions and derive nonparametric lower bounds of the accuracy
of tail index, tail constant, and extreme quantiles estimation. Lower bounds of the
MSE of tail index and extreme quantile estimators seem to be established for the first
time.
The bounds are higher for smaller α indicating that the estimation problem be-

comes harder for distributions with heavier tails. The results reveal that normalizing
sequences of estimators depend in a specific way on the tail index and the tail constant.
Proofs are presented in section 3.

2. Lower bounds. The traditional method of establishing nonparametric lower
bounds advocates choosing “as many functions as possible which are distant from one
another by no less than (a small quantity) δ > 0” [12], [13], [9].
Another approach is based on constructing two “close” distribution functions

(d.f.’s) F0, F1 [6], [8], [22].
We show that the latter approach is capable of producing minimax lower bounds

to the MSEs of estimators of the tail index, the tail constant, and extreme quantiles.
It is well observed that the accuracy of estimation in the case of a nonparametric

class of distributions is typically worse than in the regular parametric case. The
accuracy of estimation depends on the degree of “richness” of a class of possible
distributions: the richer the class, the harder the problem of choosing between close
alternatives, and hence the lower the accuracy of estimation. For instance, in the case
of the nonparametric density estimation problem, a researcher may deal with a class
of distributions obeying a certain smoothing condition; the smoother the densities,
the better the accuracy of estimation [12], while the rate of decay of the MSE can be
arbitrarily poor if no restrictions are specified [2].
Similarly, the class H of heavy-tailed distributions appears too “rich” for mean-

ingful inference. In what follows we deal with the nonparametric class

(7) H(b) =
{
P ∈ H : sup

x>K∗(P )

|c−1
F
xαF P (X = x)− 1|xbαF <∞

}

of distributions on (0;∞), where b > 0, K∗(P ) denotes the left end-point of a distri-
bution, α

F
≡ α

P
is the tail index, and c

F
≡ c

P
is the tail constant. If P ∈ H(b),

then

P (X = x) = c
F
x−αF

(
1 +O(x−bαF )

)
(x→∞).

The problem of tail index estimation is equivalent to that of estimating α from a
sample of i.i.d. nonnegative r.v.’s with the distribution

(8) F (y) ≡ P(Y < y) = yα`(y) (y > 0),
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where function ` slowly varies at the origin. Denote by F the class of distributions
obeying (8). Then α ≡ αF is a functional of F :

(9) α
F
= lim
y↓0

logF (y)

log y
.

If `(y) tends to a constant (say, c
F
) as y ↓ 0, then the tail constant c

F
is also a

functional of F :

c
F
= lim
y↓0
y−αFF (y).

Note that L(Y ) ∈ F if and only if L(1/Y ) ∈ H. The tradition of dealing with
this equivalent problem stems from [7].
A counterpart to H(b) is the following nonparametric class of distribution func-

tions on (0;∞):

(10) F(b) =
{
F ∈ F : sup

y<K∗(F )

|c−1
F
y−αF F (y)− 1|y−bαF <∞

}
,

where b is a positive number and K∗(F ) is the right end-point of F . A distribution
function (d.f.) F ∈ F(b) obeys

F (y) = c
F
yαF

(
1 +O(ybαF )

)
(y → 0).

A counterpart to the Pareto family is {Fa}a>0, where Fa(y) = y1/a, 0 < y 5 1. More
general is the parametric family {Fα,c, α > 0, 0 < c 5 1}, where

(11) Fα,c(y) =

(
y

c

)α
(0 < y 5 c).

If Y1, . . . , Yn is a sample of independent r.v.’s distributed according to (11), then the
maximum likelihood estimator

â∗n ≡
1

α̂∗n
= log

(
max
i5n
Yi

)
− n−1

n∑

i=1

log Yi

has the MSE E (â∗n/a − 1)
2 = n−1. Since the nonparametric class F(b) is much

“richer,” the rate of the accuracy of minimax estimation in F(b) is worse than n−1.
Denote

r = b/(1 + 2b).

When we deal with a d.f. Fi, we put αi = αFi , ai = 1/αi; Ei means the expectation
with respect to Fi.
Theorem 1. For any α > 0 and c > 0 there exist d.f.’s F0, F1 ∈ F(b) such that

α
F0
= α, c

F0
= c−α, and for any tail index estimator α̂n and estimator ân of index a,

max
i∈{0;1}

αr/b
Fi
cr
Fi
E
1/2
i

(
α̂n

α
Fi

− 1

)2
=

(
8r

ne

)r
tn

2
,(12)

max
i∈{0;1}

a−r/b
Fi
cr
Fi
E
1/2
i

(
ân

a
Fi

− 1

)2
=

(
8r

ne

)r
tn

2
(13)



ACCURACY OF INFERENCE ON HEAVY-TAILED DISTRIBUTIONS 5

as n > 4max{α2c−2αb; cαα−1/b}, where

tn =

(

1−

(
4

n

)r
α−r/b max

i∈{0;1}
(c
rα
Fi ∨ 1)

)

e−1/(4n).

According to (12), for any estimator α̂n there exists a d.f. F ∈ F(b) such that

(14) E
1/2
F

(
α̂n

α
F

− 1

)2
=
1

2

(
8r

ne

)r
α−r/b
F
c−r
F
(1 + o(1)).

The smaller α
F
is, the heavier is the tail and the higher is the lower bound of

E
1/2
F (α̂n/αF − 1)

2. Theorem 1 provides a background for the common opinion that
inference on distributions with heavier tails is more difficult.
The important feature of the result is the dependence of the lower bound on

α
F
and c

F
. One can say that the bounds are “nonuniform.” Inequalities (12)–(14)

indicate that the natural normalizing sequence for α̂n/αF − 1 is

n−rα−r/b
F
c−r
F

(cf. (6), noting that r → 1/2 and r/b → 0 as b → ∞). Moreover, a “uniform” lower
bound would be meaningless: for any estimator α̂n

sup
F∈F(b)

E
F

(
α̂n

α
F

− 1

)2
nr →∞ (n→∞).

Apparently, b often equals 1 (as in the case of the Fréchet distribution) or 2 (as in
the case of the Cauchy distribution); see [8], [10]. Hence the typical rates of estimation
of the tail index are n−1/3 and n−2/5.
Denote by

(15) âREn (x) =

∑n
i=1 log(Xi/x)1{Xi = x}∑n

i=1 1{Xi = x}
, α̂REn (x) =

1

aREn (x)

the ratio estimators (RE) of the tail index α and index a = 1/α. The ratio estimator
seems to be the only tail index estimator for which the asymptotics of the MSE is
known:

(16) E

(
âREn (x)

a
− 1

)

= v(x), E

(
âREn (x)

a
− 1

)2
∼

1

nP(X = x)
+ v2(x)

in the case of i.i.d. heavy-tailed r.v.’s, where

(17) v(x) = a−1E

{

log

(
X

x

) ∣
∣
∣X = x

}

− 1

(see [16], [18]). The ratio estimator was introduced by Goldie and Smith [11] (see [8],
[11], [18] concerning estimators of the tail constant). For the ratio estimator âREn (xn)
with threshold x ≡ xn ∼ (n/8rα2cα)r/αb we have

(18) max
i∈{0;1}

a−r/b
Fi
cr
Fi
E1/2
Fi

(
âREn
a
Fi

− 1

)2
∼ (8r)−r/(2b)n−r (n→∞),
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where Fi is the d.f. of Li(1/Y ). The right-hand side of (18) differs from that of (13)
only by the factor of er/

√
2r.

Let ĉn denote an arbitrary tail constant estimator. The following theorem presents
a lower bound of the MSE of a tail constant estimator.
Theorem 2. For any α > 0 and c > 0 there exist distribution functions F0, F1 ∈

F(b) such that α
F0
= α, c

F0
= c−α, and

(19) max
i∈{0;1}

ti,nα
r/b
Fi
cr
Fi
E
1/2
i

(
ĉn

c
Fi

− 1

)2
=
r

2b
(log n)

(
8r

ne

)r

for all large enough n, where maxi∈{0;1} |ti,n − 1| → 0 as n→∞.
We now present a lower bound of the accuracy of extreme quantiles estimation.

We call a quantile “extreme” if the level qn → 0 as n grows. Of course, there is an
infinite variety of possible rates of decay of qn. Theorem 3 presents lower bounds in the
case qn � n−1/(1+2b). More specifically, we deal with quantile levels qn = vn−1/(1+2b),
where v is bounded away from 0.
We denote by

yi ≡ yi(qn) = F
−1
i (qn)

the quantile of level qn. Equivalently, 1/yi is the upper quantile of Li(1/Y ). In
financial applications (see, e.g., [18] and references therein) the level as high as 0.05
can be considered extreme as the empirical quantile estimator of level q 5 0.05 appears
unreliable.
Theorem 3. Let ŷn be an arbitrary estimator of the level qn quantile. For any

α > 0, c > 0, and v < (8α2rc−2αb)r/b there exist distribution functions F0, F1 ∈ F(b)
such that α

F0
= α, c

F0
= c−α,

max
i∈{0;1}

ki,nα
r/b
i c

r
Fi
| logwi|

−1E
1/2
i

(
ŷn

yi
− 1

)2
=
1

2

(
8r

ne

)r
(20)

for all large enough n, where wi = v
1/αi(8rα2i c

2b
Fi
)−r/(αib) and maxi∈{0;1} |ki,n−1| → 0

as n → ∞. Inequality (20) holds if ŷn/yi − 1 in the left-hand side is replaced by
yi/ŷn − 1.
The smaller v is, the lower is qn, and hence the harder is the estimation problem.

Inequality (20) supports this point: | logwi| grows as v decreases, lifting the lower
bound.
Note that 1/ŷn is an estimator of the upper quantile of level qn of L(1/Y ).

3. Proofs. Given a family P of distributions, Lemma 1 refers to a general
problem of estimating a functional aP of an unknown distribution P ∈ P from a
sample X1, . . . , Xn of i.i.d. r.v.’s.
We assume that the functional aP is an element of a metric space (X , d). An

estimator â of aP is a measurable function of X1, . . . , Xn taking values in a subspace
{aP : P ∈ P} ⊂ X .
Given two distributions {P0, P1} ∈ P , we put

ai = aPi , 2δ = d(a0; a1),

and Ei ≡ EPi is the mathematical expectation with respect to Pi. Let R denote a
loss function, and let dH(P0;P1) denote the Hellinger distance.
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Lemma 1. If function R1/2 is convex, then for any estimator â

(21) max
i∈{0;1}

EiR(d(â; ai)) = R(δ)
(
1− d2

H

)2n
.

In particular, for a quadratic loss function we have

(22) max
i∈{0;1}

E
1/2
i d

2(â; ai) = δ
(
1− d2

H

)n
.

See [9], [13], [22], and references therein concerning the literature on minimax
lower bounds.
Proof of Lemma 1. We may assume that a1 6= a0. Denote

E∗ = max
i∈{0;1}

EiR(d(â; ai))

and recall that

d2
H
(P0;P1) =

1

2

∫
(f
1/2
0 − f1/21 )

2 = 1−
∫ √

f0f1,

where fi is a density of Pi with respect to a certain measure (e.g., P0 + P1). Let fi,n
denote the density of Li(X1, . . . , Xn). By the triangle inequality,

δ 5
d(a0; â)

2
+
d(â; a1)

2
.

Since function R1/2 is convex, R1/2(δ) 5 R1/2(d(â; a0))/2 +R1/2(d(a1; â))/2. There-
fore,

2R1/2(δ)(1− d2
H
)n 5

∫
R1/2(d(â; a0))

√
f0,n

√
f1,n +

∫
R1/2(d(a1; â))

√
f0,n

√
f1,n.

This and the Cauchy–Bunyakovskiy inequality entail

2R1/2(δ)(1− d2
H
)n 5 E1/20 R(d(â; a0)) +E

1/2
1 R(d(â; a1)) 5 2E

1/2
∗ ,

yielding (21). The proof of Lemma 1 is complete.
Our approach to establishing lower bounds involves two distributions P0 and P1,

where P0 is a Pareto distribution and P1 ≡ P1,n is a “disturbed” version of P0.
We then apply Lemma 1 that provides a nonasymptotic lower bound of the ac-

curacy of estimation when choosing between the two close alternatives.
Proof of Theorem 1. Given an arbitrary α > 0 and c > 0, we deal with

distribution functions F0 and F1, where

F0(y) =

(
y

c

)α
1{0 < y 5 c},

F1(y) =

(
h

c

)−γ(
y

c

)α1
1{0 < y 5 h}+

(
y

c

)α
1{h < y 5 c},

α1 > α, h ∈ (0; c). It is easy to see that F1 5 F0 and

(23) α
F0
= α, α

F1
= α1, cF0 = c

−α, cF1 = c
−αh−γ .
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Denote α0 = α, and let

α1 = α+ γ, γ = hαb.

Obviously, F0 ∈ F(b). We now check that F1 ∈ F(b). Since

c−1F1 y
−α1F1(y) = y

−γhγ (h < y 5 c),

we have

(24) sup
0<y5c

|1− c−1F1 y
−α1F1(y)|y

−bα1 = sup
h<y5c

(
1− y−γhγ

)
y−bα1 .

The function on the right-hand side of (24) assumes its maximum at y0 = h(1 +
γ/bα1)

1/γ ; it is bounded by e1/eα/bα.
It is easy to check that

d2
H
(F0;F1) =

(
h

c

)α(

1−

√
1 + γ/α

1 + γ/(2α)

)

∼
γ1/r

8α2cα

as γ → 0 and

(25) d2
H
(F0;F1) 5

γ1/r

8α2cα
.

Inequality (25) is typical for nonparametric estimation problems. A nonparamet-
ric class is usually so “rich” that one can find distributions {Pt, t = 0} such that
dH(P0;Pt) � |t|

ν , with ν > 1, while in a regular parametric case dH(P0;Pt) � |t|.
According to Lemma 1,

(26) max
i∈{0;1}

E
1/2
i (α̂n − αFi )

2 =
γ

2
(1− d2

H
)n =

γ

2

(

1−
γ1/r

8α2cα

)n
.

Maximizing the right-hand side of this inequality in γ, we obtain

max
i∈{0;1}

E
1/2
i (α̂n − αi)

2 =
1

2

(
8rα2cα

n

)r(

1 +
r

n

)−n−r
.

and the optimal choice of γ is given by γ = γn , where

(27) γn ≡ γn(α, b, c) =
(8α2cα)r

(1 + n/r)r
.

Note that h < c as n = 8α2rc−2bα. It is easy to check that α/α1 = 1 − γ/α1,
γ = γn 5 (4α2cα/n)r, and cαr 5 cα1r as c > 1. Hence

(28)

(
α

α1

)2r
= 1−

2rγ

α1
= 1− 2r

(
8r

n

)r
α2r−11 cαr = 1−

(
4

n

)r
α2r−11 (crα1 ∨ 1).

Taking into account (23), we derive (12). Similarly (ai := 1/αi, a := a0),

max
i∈{0;1}

E
1/2
i (ân − ai)

2 =
aa1

2
γ

(

1−
γ1/ra2

8c1/a

)n
=
a1

2
a1−2r cr/a

(
8r

n

)r(

1 +
r

n

)−n−r
,
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leading to (13). The proof is complete.
Concerning (18), if the distribution function of 1/X is given by Fi, i ∈ {0; 1}, it

is natural to choose

xn =
1

h
= γ−a/bn ∼

(
n

8rα2cα

)r/(αb)
.

Then v(xn) = 0 by (17), and (18) follows from (16).
Proof of Theorem 2. Denote ci := cFi . With F0 and F1 defined as above,

cF1 − cF0 = c
−α(γ−γ/(αb) − 1) =

c−αγ| log γ|
αb

.

Using this inequality and (22), we derive

max
i∈{0;1}

E
1/2
i (ĉn − ci)

2 = c−α(2αb)−1γ| log γ|

(

1−
γ1/r

8α2cα

)n
.

With γ given by (27), we have

max
i∈{0;1}

E
1/2
i (ĉn − ci)

2 = rcα(r−1)(2αr/bb)−1
(
8r

ne

)r
log

(
n

8rα2cα

)

for all large enough n, and thus (19) follows.
Proof of Theorem 3. Denote

κ = v1/α(8α2cαr)−r/(αb).

It is more convenient for us to deal with the equivalent problem of estimating
quantiles of the level

qn = κ
αγ1/bn ∼ vn−r/b,

where γ = γn is given by (27).
Note that qn = (κh)

α. With functions F0, F1 defined as above, it is easy to see
that

y0 = cκh = cq
1/α
n < h, y1 = (cκ)

α/α1h, cκ < 1.

Using the fact that ex − 1 = xex/2 (x = 0), we derive

y1 − y0 = cq
1/α1
n

((
h

c

)γ/α1
− qγ/(αα1)n

)

= ((cκ)−γ/α1 − 1)cκh = γ1+1/(αb)(cκ)1−γ/(2α1)
| log cκ|
α1

.

This and (22) entail

(29) max
i∈{0;1}

E
1/2
i (ŷn − yi)

2 =
| log cκ|
2α1

cκγ1+1/(αb)
(

1−
γ1/r

8α2cα

)n
.

With γ = γn,

max
i∈{0;1}

E
1/2
i

(
ŷn

yi
− 1

)2
=
1

yi

| log cκ|
2α1

cκγ1+1/(αb)
(

1−
γ1/r

8α2cα

)n
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=
| log cκ|
2α1

(cκ)1−α/αi γn

(

1 +
r

n

)−n
.

Using (27) and (28), we arrive at

(30) max
i∈{0;1}

ki,nα
r/b
i c

r
Fi
E
1/2
i

(
ŷn

yi
− 1

)2
=
1

2
| log cκ|

(
8r

ne

)r

for all large enough n. Note that

cκ = v1/α(8α2rc2b
F0
)−r/(αb).

Hence (20) follows from (30).
Since

|1/y1 − 1/y0| = |y1 − y0|/(y0y1) =
1

αi
| log cκ|(cκ)−1+γ/(2α1)γ1−1/αb,

we have

max
i∈{0;1}

E
1/2
i

(
yi

ŷn
− 1

)2
=
| log cκ|
2α1

(cκ)γ/(2α1)γ

(

1−
γ1/r

8α2cα

)n
,

yielding the following counterpart to (20): in the assumptions of Theorem 3

max
i∈{0;1}

ki,nα
r/b
i c

r
Fi
E
1/2
i

(
yi

ŷn
− 1

)2
=
1

2
| log cκ|

(
8r

ne

)r
,

and hence

(31) max
i∈{0;1}

ki,nα
r/b
i c

r
Fi
| logwi|

−1E
1/2
i

(
yi

ŷn
− 1

)2
=
1

2

(
8r

ne

)r

for all large enough n. This is a minimax lower bound of the MSE of an arbitrary
estimator 1/ŷn of the upper qn-quantile of the distributions Li(1/Y ) ∈ H(b). The
proof is complete.

Acknowledgments. The author is grateful to the referees for many helpful re-
marks.
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