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Abstract

We provide a criterion for a generalised flow solution of a non-autonomous
ordinary differential equation to avoid a subset of the phase space. This
improves on that established by Aizenman for the autonomous case, where
avoidance is guaranteed if the underlying vector field is sufficiently regular
and the subset has sufficiently small box-counting dimension. We define the
r-codimension print of a subset S ⊂ Rn × [0, T ], which is a subset of (0,∞]2

that encodes the dimension of S in a way that distinguishes spatial and
temporal detail. We prove that the subset S is avoided by a generalised flow
solution with underlying vector field in Lp (0, T ;Lq (Rn)) with 1 ≤ p, q ≤ ∞
if the Hölder conjugates (q∗, p∗) are in the r-codimension print of S.
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1. Preliminaries

1.1. Ordinary differential equations

We examine the ordinary differential equation

ẋ = f (x, t) (1)

where the vector field f is of limited regularity, typically f ∈ Lp (0, T ;Lq (Rn))
for some p, q with 1 ≤ p, q ≤ ∞. Such equations arise naturally in fluid me-
chanics, for example: if f is a solution of the Navier-Stokes equations, which
currently have limited known regularity, then solving (1) allows us to recover
the trajectories of the fluid particles (see Foias et al. (1985)).

In this irregular setting the notion of a classical flow solution is too strong
to be useful as the vector field may contain discontinuities in which case so-
lutions of (1) that encounter these discontinuities will not be continuously
differentiable. Further, the classical flow is not invariant under the equiva-
lence classes of the Lp spaces, which is to say that if f is almost everywhere
equal to g then a classical flow solution of (1) is not necessarily a classical
flow solution of ẋ = g (x, t). This invariance is desirable as it allows solutions
of (1) to be found using functional analytic methods. The first general the-
ory for ordinary differential equations with vector fields of limited regularity
was described in the seminal paper of DiPerna and Lions (1989) in which the
authors define a generalised flow solution that is invariant under the choice
of representative for the vector field f .

Generalised flow solutions can be thought of as aggregates of individual
trajectories of (1):

Definition 1.1. A map ξ : [0, T ] → Rn is a trajectory of (1) with initial
data (x, s) ∈ Rn × [0, T ] if ξ is absolutely continuous and

ξ (t) = x+

∫ t

s

f (ξ (τ) , τ) dτ (2)

for all t ∈ [0, T ].

Note that as trajectories are absolutely continuous the equality (2) is
equivalent to requiring that ξ̇ = f (ξ (t) , t) for almost every t ∈ [0, T ], and
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that, unlike the classical continuously differentiable solutions, we do not re-
quire t 7→ f (ξ (t) , t) to be continuous.

A generalised flow is an aggregate of trajectories, one for almost all initial
data, with some additional properties:

Definition 1.2. A map X : [0, T ] × Rn × [0, T ] → Rn is a generalised flow
solution of (1) if

• for almost every x ∈ Rn and all s ∈ [0, T ] the map t 7→ X (t, x, s) is a
trajectory of (1) with initial data (x, s),

• the map X satisfies the group property:

X (t,X (τ, x, s) , τ) = X (t, x, s) ∀t, s, τ ∈ [0, T ] (3)

for almost every x ∈ Rn, and

• there exists a constant C ∈ R such that

e−|t−s|CLn (B) ≤ Ln
(
X (t, ·, s)−1B

)
≤ e|t−s|CLn (B) (4)

for all t, s ∈ [0, T ] and all Borel sets B ⊂ Rn,

where Ln is the n-dimensional Lebesgue measure.

The group property (3) guarantees that almost every initial condition
(x, s) ∈ Rn × [0, T ] lies on exactly one trajectory and further, as (3) implies
that

X (t, x, s) = X (t,X (0, x, s) , 0) ∀t, s ∈ [0, T ] (5)

for almost every x ∈ Rn, that almost every trajectory t 7→ X (t, x, s) can be
written as a trajectory with initial temporal data s = 0. We will see in the
next section that this simplifies our approach to non-autonomous avoidance.

The constant (4) requires that the Lebesgue measure of spatial setsB ⊂ Rn

does not change dramatically as the set is transported along the trajectories
of the flow both forwards and backwards in time. In particular, null sets
remain null and sets of positive measure continue to have positive measure
as they are transported along trajectories. Note that in the classical case,
for a smooth vector field f and a classical flow solution X, it is relatively
straightforward to show that

Ln
(
X (t, ·, s)−1B

)
=

∫
B

exp

(∫ s

t

divf (X (τ, x, t) , τ) dτ

)
dx (6)
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for all t, s ∈ [0, T ] and all Borel sets B ⊂ Rn. If additionally the divergence
of f is bounded we see from (6) that (4) holds with C := ‖divf‖∞.

For autonomous vector fields f : Rn → Rn we adapt the above defini-
tions by extending the temporal domain [0, T ] to the whole of R, writing
f (x, t) := f (x) and noting that the trajectories are independent of the ini-
tial temporal data s. Consequently, we drop the dependence on s and the
group property becomes

X (t+ τ, x) = X (t,X (τ, x)) ∀t, τ ∈ R (7)

for almost every x ∈ Rn.
The importance of generalised flow solutions lies in the main theorem

of DiPerna and Lions (1989) in which the authors demonstrate that such
solutions exist and are unique under mild assumptions on the vector field f :

Theorem 1.3 (DiPerna and Lions (1989)). There exists a unique generalised
flow solution of (1) if the vector field f satisfies

1) f ∈ L1
(
0, T ;W 1,1

loc (Rn)
)
,

2) f/ (1 + |x|) ∈ L1 (0, T ;L1 (Rn)) + L1 (0, T ;L∞ (Rn)), and

3) the distributional divergence divf ∈ L1 (0, T ;L∞ (Rn)).

1.2. Avoidance

For a compact subset of the phase space S ⊂ Rn × [0, T ] we say that a
trajectory avoids the set S if it does not intersect S at any time t ∈ [0, T ].
We say that a generalised flow avoids a set S if almost all of its trajectories
avoid S:

Definition 1.4. A generalised flow solution X : [0, T ] × Rn × [0, T ] → Rn

avoids a compact subset S ⊂ Rn × [0, T ] if the set

{x ∈ Rn| (X (t, x, 0) , t) ∈ S for some t ∈ [0, T ]} (8)

has zero n-dimensional Lebesgue measure.

In the case that S = A × [0, T ] with A ⊂ Rn we can regard the subset
S as a set of spatial points which are to be avoided at all times. In this
case as (X (t, x, τ) , t) ∈ S if and only if X (t, x, τ) ∈ A the above defini-
tion of avoidance reduces to that used in the current literature (Aizenman
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(1978b); Cipriano and Cruzeiro (2005); Robinson and Sadowski (2009)) which
only considers avoidance of sets of this form. The ‘autonomous’ avoidance
property first appeared in Nelson (1962) (on pp.163) but was named and
extensively studied in Aizenman (1978b).

The avoidance condition established in Aizenman (1978b) for the au-
tonomous case is given only in terms of the regularity of the vector field f
and the ‘size’ of the subset A ⊂ Rn (in the sense of the upper box-counting
dimension, dimB (A), which we recall below):

Theorem 1.5 (Aizenman (1978b)). Let f ∈ Lq (Rn) and let X be a gener-
alised flow solution of ẋ = f (x). If a bounded subset A ⊂ Rn satisfies

1

q
+

1

n− dimB (A)
< 1 (9)

then the generalised flow solution X avoids the set A.

In Cipriano and Cruzeiro (2005) this result is partially extended to the
non-autonomous case: the same criterion (9) guarantees avoidance of product
sets S = A × [0, T ] for vector fields f ∈ L1 (0, T ;Lq (Rn)). In this paper we
extend this result to the general case where S ⊂ Rn × [0, T ] is an arbitrary
bounded subset and we know the regularity of the vector field with respect
to both the spatial and temporal components in the sense that we know that
f ∈ Lp (0, T ;Lq (Rn)) for some 1 ≤ p, q ≤ ∞.

Using the result of Cipriano & Cruzeiro we can immediately establish a
partial result for the general non-autonomous case: if Px : Rn× [0, T ]→ Rn is
the canonical projection onto the spatial component then S ⊂ Px (S)× [0, T ]
so avoidance of Px (S)×[0, T ] entails avoidance of S. Consequently, the result
in Cipriano and Cruzeiro (2005) implies that the flow avoids the set S if

1

q
+

1

n− dimB (Px (S))
< 1. (10)

This approach ignores the temporal regularity of f and the temporal detail
of S in the sense that it does not distinguish between the subsets A× [0, T ]
and A×{0} of the phase space despite the fact that the latter set is smaller
and intuitively feels ‘more avoidable’. In Section 2 we provide a more general
criterion than (10) that guarantees avoidance and takes into account both
the spatial and temporal detail of the set S and the vector field f . To this
end we introduce the r-codimension print, an extended notion of dimension
similar to the Hausdorff dimension print of Rogers (1988), which encodes the
detail of S appropriately for non-autonomous avoidance.

5



1.3. Box-counting dimension

We recall that the upper and lower box-counting dimensions of a bounded
set A ⊂ Rn are given by

dimB (A) = lim sup
δ→0

logN(A, δ)

− log δ

dimLB (A) = lim inf
δ→0

logN(A, δ)

− log δ

respectively, where N (A, δ) is the smallest number of sets with diameter at
most δ which form a cover of A, or one of many similar quantities which
give an equivalent definition (discussed in Falconer (2003) §3.1 ‘Equivalent
Definitions’). Throughout we take 0 < δ < 1 so that − log δ is strictly
positive. Here we use the alternative ‘Minkowski sausage’ formulation (again,
see Falconer (2003) for proof of equivalence)

dimB (A) = n− lim inf
δ→0

log (Ln (Aδ))

log δ
(11)

dimLB (A) = n− lim sup
δ→0

log (Ln (Aδ))

log δ
(12)

where Aδ := {x ∈ Rn|dist(x,A) < δ} is the δ-neighbourhood of A. Essen-
tially, if Ln (Aδ) scales like δn−ε as δ → 0 then the box-counting dimensions
capture ε giving an indication of the growth of the δ-neighbourhood of A. In
fact we have the following bounds on Ln (Aδ):

Lemma 1.6. Let A be a bounded, non-empty subset of Rn. For each α and
β such that α > n− dimLB (A) and β < n− dimB (A) and each δ∗ > 0 there
exists a constant C such that

1

C
δα ≤ Ln (Aδ) ≤ Cδβ ∀δ ∈ [0, δ∗] (13)

The growth of Ln (Aδ) at small length scales reflects how ‘spread out’ the
set is at these length scales: rapid growth as δ increases indicates that the
δ neighbourhoods around a significant number of individual points of A do
not intersect by a large amount.
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1.4. Dimension prints

The box-counting dimension fails to capture some significant geometry
of sets: if C is the Cantor ‘middle half’ set, which has Hausdorff and box-
counting dimension equal to 1

2
, then the product set C×C ⊂ R2 has Hausdorff

and box-counting dimension equal to 1 (see Example 7.6 in Falconer (2003)).
Consequently, C×C has the same Hausdorff and box-counting dimension as
a line segment in R2 yet the sets have different anisotropic (i.e. directionally
dependent) detail in the sense that the product set has detail in two directions
while the line segment has detail in only one direction. One way of encoding
this detail is in a ‘dimension print’, initially developed in Rogers (1988).

Recall that the Hausdorff measures Hd are a 1-parameter (in d) family
of measures and that the Hausdorff dimension of a set S is the value of the
parameter at which Hd (S) changes from infinity to zero. To capture the
anisotropic properties of subsets of Rn in Rogers (1988) the author defines
an n-parameter family of measures Hα similar to the Hausdorff measures.
The dimension print of a set S is the set of points α for which Hα (S) is
non-zero.

Definition 1.7 (Rogers (1988)). For a subset S ⊂ Rn and α ∈ Rn with
αj ≥ 0 for all j we define for all δ > 0 the quantity

Hα
δ (S) := inf

{
∞∑
i=1

l1 (Bi)
α1 . . . ln (Bi)

αn

∣∣∣∣Bi ∈ B, diamBi ≤ δ, ∪∞i=1Bi ⊃ S

}

where B is the set of open rectangular parallelepipeds (henceforth ‘boxes’) in
Rn, l1 (Bi) , l2 (Bi) , . . . , ln (Bi) are the side lengths of the box Bi taken in a
non-increasing order and lj (Bi)

0 = 1 for all i, j.
We say that α is in the Hausdorff dimension print of S if and only if the

Hausdorff-type measure

Hα (S) := sup
δ>0
Hα
δ (S)

is positive.

As each measure weights the side lengths of the boxes differently it is pos-
sible to distinguish between sets that are easily covered by long thin boxes,
such as a line, and sets which are not, such as the product set C × C. Note
that the measure H(d,0,...,0) is equal to the usual d-dimensional Hausdorff
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measure multiplied by a constant depending only on n, so it is possible to
read the Hausdorff dimension of a set directly from the Hausdorff dimension
print. Also note that we do not require the boxes Bi to have sides parallel
to the coordinate axes so that the Hausdorff dimension print captures the
degree to which a set has directionally dependent detail but not the direction
in which this detail lies. In particular the dimension print is invariant under
Euclidean transformations of a set as we can simply apply the same trans-
formation to each of the covering boxes Bi. While this is generally regarded
as a desirable property for any notion of ‘dimension’, we ultimately wish to
distinguish between spatial detail and temporal detail when we consider the
non-autonomous ODE (1).

At the expense of this Euclidean invariance we can use dimension prints
to capture the direction in which the detail lies by instead restricting the class
of boxes B in Definition 1.7 to be those with sides parallel to the coordinate
axes and each lj (Bi) to be the length of the side of the box Bi which is
parallel to the jth coordinate axis.

In Lee and Baek (1995) a box-counting dimension print is defined in a
similar way from the premeasure

µα (S) = lim inf
δ→0

{Nl (S) lα1
1 . . . lαnn |0 < l1 ≤ l2 ≤ . . . ≤ ln ≤ δ}

where, after dividing Rn into mesh boxes with dimensions l1 × l2 × . . .× ln,
the quantity Nl (S) is the number of mesh boxes which intersect the set S.
In the next section we define a similar print, which is useful for our study of
non-autonomous avoidance.

1.5. r-codimension print

We introduce the r-codimension print of a bounded non-empty set
S ⊂ Rn× [0, T ] as a way of encoding the anisotropic fractal detail of subsets
appropriately for the study of non-autonomous avoidance. The r-codimension
print takes its name from the function dist(·, S) : Rn× [0, T ]→ R used in its
definition, which is denoted by r in Aizenman (1978b).

Definition 1.8. The r-codimension print of a subset S ⊂ Rn×[0, T ], denoted
printr (S), is the set of points (γ, β) ∈ (0,∞]2 such that the quantity

Iγ,β (S) :=

∫ T

0

 ∫
{x|rS(x,t)<r0}

rS (x, t)−γ dx


β
γ

dt


1
β

<∞, (14)
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where r0 is some positive constant, rS (x, t) := dist((x, t) , S), and the ap-
propriate integrals are interpreted as essential suprema if either γ = ∞ or
β =∞.

Observe that we integrate over the set

Sr0 := {(x, t) ∈ Rn × [0, T ] |rS (x, t) < r0} ,

which is the r0-neighbourhood of S ⊂ Rn × [0, T ]. Further, note that the
choice of positive constant r0 is arbitrary as r−1

S is bounded outside each
neighbourhood of S. Equivalently, (γ, β) ∈ printr (S) if and only if the
quantity ∥∥r−1

S 1Sr0
∥∥
Lβ(0,T ;Lγ(Rn))

<∞ (15)

where 1Sr0 is the characteristic function for the set Sr0 , but recall that (15)
is not a norm for γ, β < 1.

The function r−1
S is unbounded on Sr0 so for fixed γ, β the quantity Iγ,β (S)

is finite if r−1
S is not ‘too’ singular. By allowing γ, β to vary we can capture

a sense of how singular r−1
S is, which quantifies the degree to which the set

S is ‘spread out’. Further, by allowing γ, β to vary independently we can
weight the integrals so that the contribution from the spatial component is
more or less significant than the contribution from the temporal component.
Consequently, the r-codimension print encodes the degree to which the set
S is spread out and the extent to which this spread is temporal rather than
spatial.

This definition is easily generalised to consider the anisotropic detail of a
subset S ⊂ Rn+1 with respect to each of the n + 1 coordinates: in this case
the r-codimension print of S is the set of points α ∈ (0,∞]n+1 such that the
quantity ∥∥r−1

S 1Sr0
∥∥
Lαn+1 (R;Lαn (R;...;Lα1 (R)))

<∞. (16)

This broader definition more closely mimics the dimension prints of Rogers
(1988) and Lee and Baek (1995) but for our application to non-autonomous
ODEs we only wish to distinguish between the spatial and temporal de-
tail of a subset. The ‘spatio-temporal’ r-codimension print of Definition 1.8
is simply the restriction of the more general r-codimension print to points
α ∈ (0,∞]n+1 such that α1 = α2 = . . . = αn so that the spatial contributions
to the integral are all weighted equally.

Note that the definition of the r-codimension print presupposes an or-
dering of the coordinate axes in the order of integration of (16). It is not
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immediately clear how the print varies under reordering of axes. However, for
our application we use the canonical spatio-temporal order presupposed in
our choice of vector fields: the norm of the vector field f ∈ Lp (0, T ;Lq (Rn))
is defined by first integrating with respect to the spatial variables, then with
respect to time. Henceforth, we consider S ⊂ Rn × [0, T ] and use Defini-
tion 1.8.

In Section 3 we establish some of the structure of the r-codimension
print, including a relationship with the box-counting dimensions of S and its
projections.

1.6. Motivation and applications

We briefly review two applications of the avoidance property for ordinary
differential equations, the first of which is due to Nelson: the avoidance
property was first studied in Nelson (1962) in order to establish the existence
and uniqueness of generalised flow solutions for a narrow class of irregular
vector fields. Below we discuss Nelson’s results, his broader conjecture for
solutions of irregular ODEs, and the limitations of this theory described in
Aizenman (1978a).

For our second application we provide a condition for an irregular ODE to
have a unique trajectory for almost all initial data. This application provides
a useful supplement to the general theory of DiPerna & Lions (Theorem 1.3,
above) as it is not currently possible to determine this stronger uniqueness
property using their functional analytic approach to irregular ODEs.

1.6.1. Existence and uniqueness of generalised flows

In Nelson (1962) the author proposed a theory of irregular ODEs before
the general theory of DiPerna & Lions was developed. Nelson examined
autonomous ODEs and required a flow solution to consist of a trajectory for
all initial data and satisfy (7) for all x ∈ Rn, which is a stronger notion of
solution than that used in the subsequent theory of DiPerna & Lions. In
Nelson (1962) the author made the following conjecture:

Conjecture 1.9 (Nelson). If the vector field f : Rn → Rn has compact sup-
port, has zero (distributional) divergence, and f ∈ L2 (Rn) then there exists
a unique map X : R× Rn → Rn such that

• for all x ∈ Rn the map t 7→ X (t, x) is a trajectory of (1) with initial
data x ∈ Rn, and
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• X satisfies the group property (7).

This conjecture was motivated by the success of energy methods for fam-
ilies of partial differential equations that are related to the transport equa-
tion ∂u

∂t
= f · ∇u (which, for sufficiently regular vector fields, is equivalent

to the ODE (1)). Nelson further suggests that the requirement f ∈ L2 (Rn)
is significant by considering the following example: the radial vector field
f : R2 → R2 defined by

f (x) = −sign (x2)

|x|2
x (17)

is divergenceless and satisfies f ∈ Lp (R2) for p in the range 1 ≤ p < 2.
However every trajectory of ẋ = f (x) reaches the origin in finite time, so
no collection of trajectories satisfies the group property (7) and consequently
there is no generalised flow solution.

In the same paper the author proved a weakened form of the conjecture:

Theorem 1.10 (Nelson). There exists a unique generalised flow solution of
the autonomous ODE ẋ = f (x) if

1) f has compact support,

2) f ∈ L2 (Rn),

3) the distributional divergence divf = 0, and

4) f is locally Lipschitz outside a closed set K of zero capacity.

The proof has two components: first, as f is locally Lipschitz on Rn \K,
there is a unique ‘local’ flow solution where each trajectory is defined on
the largest time interval that the trajectory remains in Rn \ K. Further,
the condition (3) ensure that this local flow is measure preserving. As a
generalised flow only requires a trajectory for almost all initial data it is
sufficient to demonstrate that almost every trajectory is defined on the entire
temporal domain and hence remains in Rn\K where existence and uniqueness
is assured. For a set K ⊂ Rn of Lebesgue measure zero this is precisely
the requirement that the local flow avoids K. Nelson completes the proof
of Theorem 1.10 by giving a sufficient condition for avoidance: with the
regularity assumptions (1) - (3) a local flow avoids every set of zero capacity
so in particular, from (4), avoids the set K.

11



Nelson’s Conjecture 1.9 was proved false in Aizenman (1978a) through
two counterexamples which are relevant to our examination of the avoidance
property: in both cases Aizenman constructs a divergenceless vector field
f : R3 → R3 with support contained in the unit cube

C :=
{
x ∈ R3|0 ≤ xi ≤ 1, i = 1, 2, 3

}
for which there is a unique local flow: all initial data x ∈ C gives rise to
a unique trajectory defined for a short time, and further the aggregate of
these trajectories is measure preserving. However, there is no generalised
flow solution as, like Nelson’s radial example (17), the distinct trajectories
intersect in finite time, which violates the group property (7). In more detail,
there exists a time T > 0 and a map

γ : [0, 1]→ {x ∈ C|x3 = 0}

(that is taking values in the lower face of the cube) such that all initial data
in the line segment {x ∈ C|x2 = c, x3 = 1} gives rise to a distinct (unique)
trajectory that intersects γ (c) at time T .

The image of γ is precisely the image of the upper face {x ∈ C|x3 = 1}
transported along the trajectories at time T . In terms of avoidance we see
that, by construction, the local flow does not avoid the set Im (γ). Further
it is precisely the set Im (γ) where the obstruction to the existence of a
generalised flow is introduced as this is where the trajectories intersect.

Aizenman’s first example has the above features and the further proper-
ties that

• the vector field f is bounded, and

• the map γ : [0, 1]→ {x ∈ C|x3 = 0} is surjective.

In this first example it is perhaps unsurprising that the local flow does not
avoid Im (γ) as the set is a square transverse to the direction of the flow.

In his second example Aizenman investigates how small the set Im (γ) can
be while retaining this non-existence result. He remarks that in order for a
flow to be measure preserving as it approaching a small set Im (γ) the speed
of the flow must increase. In particular, if L2 (Im (γ)) = 0 then the velocity
field f must be singular at Im (γ). His second example takes parameters
m, k ∈ N with k ≤ m2, has the above features and the further properties
that
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• the vector field f ∈ Lp (R3) if and only if p < logm
2 logm−log k

+ 1, and

• the set Im (γ) has upper box-counting dimension

dimB (Im (γ)) = log k/ logm.

Aizenman highlights that this two-parameter family of examples provide bor-
derline cases for the avoidance result of Theorem 1.5 as, for the set Im (γ),
the avoidance criterion (9) holds for all p > logm

2 logm−log k
+ 1.

1.6.2. Almost everywhere uniqueness of trajectories

In Theorem 1.3, we recalled the key existence and uniqueness result for
irregular ODEs from the seminal paper DiPerna and Lions (1989). This result
is remarkable due to the generality of the hypotheses, its novel functional
analytic approach and its subsequent extensions in Ambrosio (2004) and
Crippa and De Lellis (2008).

We remark that Theorem 1.3 does not guarantee the stronger claim that
almost every trajectory of the ODE (1) is unique. Indeed, there may be
multiple trajectories of (1) for all initial data but a unique aggregate of these
trajectories (up to equality almost everywhere) that satisfies the condition
(4) and so forms a generalised flow solution. We illustrate this with a simple
example in Robinson et al. (2012). Conversely, if almost every trajectory is
unique then there is clearly a unique aggregate of these trajectories and so a
unique generalised flow if this aggregate satisfies (4).

It is currently unknown if the functional analytic methods of DiPerna
& Lions are able to determine almost everywhere uniqueness of trajectories.
Ambrosio remarks that this problem is open even for autonomous vector
fields with Sobolev regularity, and may be sensitive to the choice of represen-
tative in the equivalence class of f (Ambrosio (2004) pp.231). In fact, as we
illustrate in Robinson et al. (2012), it is trivial to introduce non-uniqueness
of trajectories by choosing a different representative of f .

In the following theorem we return to a more geometric viewpoint for
irregular ODEs to provide a condition that guarantees the almost everywhere
uniqueness of trajectories.

Theorem 1.11. Let X be a generalised flow solution of the ODE (1) and
let S ⊂ Rn × [0, T ] be a compact subset such that the trajectories of the
ODE (1) are unique on sufficiently small time intervals for initial data
(x, s) /∈ S. If the flow X avoids the set S then for almost every x ∈ Rn

the map t 7→ X (t, x, 0) is the unique trajectory of (1) with initial data (x, 0).
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Proof. First we demonstrate that if a trajectory is not unique then it must
intersect the set S. For a fixed x ∈ Rn suppose that there are two trajectories
ξ1, ξ2 to the ODE (1) with initial data (x, 0) and let

τ := sup {t ∈ [0, T ] |ξ1 (u) = ξ2 (u) ∀u ≤ t}

be the latest time that the trajectories are identical. As the trajectories
are distinct it is clear that τ ∈ (0, T ) and further that ξ1 and ξ2 are two
trajectories of (1) with initial data (ξ1 (τ) , τ). Further, as these trajectories
are distinct on each time interval [τ, τ + ε) we conclude that (ξ1 (τ) , τ) ∈ S.

Consequently, if a trajectory does not intersect the set S then the tra-
jectory must be unique. We conclude that if the generalised flow X avoids
the set S then for almost every x ∈ Rn the trajectory t 7→ X (t, x, 0) is
unique.

In particular, we see from the Cauchy-Lipschitz Theorem that almost ev-
ery trajectory is unique if a generalised flow solution avoids the set of points
where the vector field f is not locally Lipschitz. This technique was recently
used in Robinson and Sadowski (2009) (see Robinson et al. (2012) for a sum-
mary of the main ideas) to demonstrate that if f is a suitable weak solution
of the Navier-Stokes equations then almost every trajectory is unique, and
further that almost every trajectory is continuously differentiable. This re-
sult is physically significant as the trajectories describe the evolution of fluid
particles.

2. Non-autonomous avoidance

We consider avoidance in the general non-autonomous case for an ar-
bitrary bounded set S ⊂ Rn × [0, T ]. We assume that the vector field
f ∈ Lp (0, T ;Lq (Rn)) for some p, q ∈ [1,∞] but we make no further as-
sumptions on the regularity of f and in particular we do not assume that
(1)-(3) hold. Consequently, the vector field is not known to be sufficiently
regular to guarantee the existence or uniqueness of a flow solution using the
results of DiPerna and Lions (1989), and further we do not have the addi-

tional regularity f ∈ L1
(

0, T ;L
n/(n−1)
loc (Rn)

)
that follows from (3). Instead,

we assume that a generalised flow solution of (1) exists but we do not require
this solution to be unique.

In the main result of this section, Theorem 2.3, we give an avoidance
criterion in terms of the regularity of f and the r-codimension print of the
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set S. First, we give some trivial conditions for avoidance and non-avoidance
in the following lemmas, where we introduce the notation

Sτ := {x ∈ Rn| (x, τ) ∈ S}

for the temporal sections of a subset S ⊂ Rn × [0, T ].

Lemma 2.1. If S has only a countable number of non-empty temporal sec-
tions, and every temporal section has zero n-dimensional Lebesgue measure
then every generalised flow avoids S.

Proof. Suppose S =
⋃∞
i=1 S

τi × {τi} with τi ∈ [0, T ] and Ln (Sτi) = 0 for all
i ∈ N and let X be a generalised flow. First, from (4), there exists a constant
C ∈ R such that

Ln
(
X (τi, ·, 0)−1 Sτi

)
≤ eTCLn (Sτi) = 0 for all i ∈ N. (18)

Next, the set of initial conditions at time 0 which give rise to trajectories
that intersect a point of S

{x ∈ Rn| (X (t, x, 0) , t) ∈ S for some t ∈ [0, T ]}
= {x ∈ Rn| (X (τi, x, 0) , τi) ∈ S for some i ∈ N}

=
∞⋃
i=1

{x ∈ Rn|X (τi, x, 0) ∈ Sτi} =
∞⋃
i=1

X (τi, ·, 0)−1 Sτi ,

which from (18) is the countable union of null sets and so has zero n-dimensional
Lebesgue measure, so the flow X avoids the set S.

Conversely, if a temporal section of S has positive measure then no gen-
eralised flow avoids S:

Lemma 2.2. If S ⊂ Rn × [0, T ] has a temporal section Sτ of positive
n-dimensional measure for some τ ∈ [0, T ] then no generalised flow avoids
S.

Proof. Suppose Ln (Sτ ) > 0 and let X be a generalised flow. First, from (4)
there exists a constant C ∈ R such that

Ln
(
X (τ, ·, 0)−1 Sτ

)
≥ e−TCLn (Sτ ) > 0. (19)
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Next, the set

{x ∈ Rn| (X (t, x, 0) , t) ∈ S for some t ∈ [0, T ]}

contains

{x ∈ Rn| (X (τ, x, 0) , τ) ∈ S} = {x ∈ Rn|X (τ, x, 0) ∈ Sτ}
= X (τ, ·, 0)−1 Sτ .

which, from (19) has positive n-dimensional Lebesgue measure.

In light of the above lemma no avoidance criterion can be satisfied by a
set with a temporal section of positive measure. Fortunately, such sets have
particular r-codimension prints: in Lemma 3.1 we demonstrate that the print
of these sets does not contain the point (1, 1). This result simplifies the proof
of the following theorem, in which we adapt the avoidance result of Aizenman
(1978b) to the non-autonomous case. As in Cipriano and Cruzeiro (2005) our
proof follows the reasoning of Aizenman (1978b). The proof requires some
further technical results in the geometry of the r-codimension print, which
we delay until Section 3.

Theorem 2.3. Let X : [0, T ]×Rn×[0, T ]→ Rn be a generalised flow solution
of the ODE ẋ = f (x, t) where f ∈ Lp (0, T ;Lq (Rn)) for 1 ≤ p, q ≤ ∞ and let
S be a compact subset of Rn× [0, T ]. If the pair of Hölder conjugates (q∗, p∗)
is in the r-codimension print of S then the flow X avoids the subset S.

Proof. As the pair of Hölder conjugates (q∗, p∗) is in printr (S) and p∗, q∗ ≥ 1
then, from property (viii) of Lemma 3.1, the point (1, 1) is also in printr (S).
Consequently, from property (iii) of Lemma 3.1 the set S does not have
a temporal section with positive n-dimensional Lebesgue measure, and in
particular, Ln (S0) = 0.

For brevity, denote

Ω := {x ∈ Rn| (X (t, x, 0) , t) ∈ S for some t ∈ [0, T ]} \ S0

the set of spatial points at time 0 that do not lie in the time 0 temporal
slice of S but which give rise to trajectories that intersect S. We denote by
Ωcont the set of x ∈ Ω that give rise to absolutely continuous trajectories.
As Ln (S0) = 0 and, from the definition of the flow, Ln (Ω \ Ωcont) = 0 it is
sufficient to demonstrate that Ωcont has zero Lebesgue measure.
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Following Aizenman (1978b), for δ > 0 and x ∈ Ωcont we define

τδ (x) :=

{
sup {u|rS (X (t, x, 0) , t) ≥ δ ∀t ∈ [0, u]} rS (x, 0) > δ

0 rS (x, 0) ≤ δ

the latest time for which the trajectory from x is outside the δ-neighbourhood
of S. Clearly τδ (x) ≤ T for all x ∈ Ωcont as the continuous trajectories
intersect S by time T . Further, from the continuity of the trajectories it is
clear that

rS (X (τδ (x) , x, 0) , τδ (x)) = δ ∀x ∈ Ωcont with rS (x, 0) > δ. (20)

Finally, note that rS (x, 0) > 0 for all x ∈ Ωcont as rS (x, 0) = 0 only if
x ∈ S0. Consequently, for all δ > 0 the set Ωcont is contained in a countable
union of sets of the form

Ωm,δ :=
{
x ∈ Ωcont|rS (x, 0) ≥ 1/m, τδ (x) ≤ T

}
.

Fix r0 > 0 and 0 < δ < r0 and let

F (δ) :=
{
x ∈ Ωcont|rS (x, 0) ≥ r0, τδ (x) < T

}
.

We now show that Ln (F (δ)) → 0 as δ → 0: first, introduce the Lipschitz
function

g (y) =

{
log
(
r0
y

)
δ ≤ y ≤ r0

0 r0 < y

chosen so that g (rS (x, 0)) = 0 for x ∈ F (δ), and from (20),

g (rS (X (τδ (x) , x, 0) , τδ (x))) = g (δ)

so that

Ln (F (δ)) |g (δ)| =∫
F (δ)

|g (rS (X (τδ (x) , x, 0) , τδ (x)))− g (rS (x, 0))| dx. (21)

Next, as

|rS (X (t1, x, 0) , t1)− rS (X (t2, x, 0) , t2)|
≤ |X (t1, x, 0)−X (t2, x, 0)|+ |t1 − t2|
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the map t 7→ rS (X (t, x, 0) , t) is absolutely continuous and∣∣∣∣ d

dt
rS (X (t, x, 0) , t)

∣∣∣∣ ≤ ∣∣∣∣ d

dt
X (t, x, 0)

∣∣∣∣+ 1.

Consequently, the composition g (rS (X (t, x, 0) , t)) is absolutely continuous
in t and so, from the chain rule for almost everywhere differentiable functions
(see Serrin and Varberg (1969)), for almost every t

d

dt
g (rS (X (t, x, 0) , t)) = g′ (rS (X (t, x, 0) , t))

d

dt
rS (X (t, x, 0) , t) .

From (21) we write

Ln (F (δ)) |g (δ)| =
∫
F (δ)

∣∣∣∣∣
∫ τδ(x)

0

d

dt
g (rS (X (t, x, 0) , t)) dt

∣∣∣∣∣ dx
≤
∫
F (δ)

∫ τδ(x)

ρ

|g′ (rS (X (t, x, 0) , t))|
(∣∣∣∣ d

dt
X (t, x, 0)

∣∣∣∣+ 1

)
dt dx

=

∫
F (δ)

∫ τδ(x)

0

|g′ (rS (X (t, x, 0) , t))| (|f (X (t, x, 0) , t)|+ 1) dt dx

≤ eTC
∫
F (δ)

∫ τδ(x)

0

|g′ (rS (x, t))| |f (x, t) + 1| dt dx

where we use the fact that X is a generalised flow satisfying (4) and C ∈ R
is the constant from (4), from which Fubini’s Theorem yields

Ln (F (δ)) |g (δ)| ≤ eTC
∫ T

0

∫
F (δ)

|g′ (r (x, t))| |f (x, t) + 1| dx dt. (22)

Next, as |g (δ)| = log
(
r0
δ

)
and the derivative

g′ (y) =

{
− 1
y

for almost every y ∈ (δ, r0]

0 for almost every y > r0,

the inequality (22) is

Ln (F (δ)) ≤ eTC log
(r0
δ

)−1
∫ T

0

∫
{x|rS(x,t)<r0}

rS (x, t)−1 |f (x, t) + 1| dx dt
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which, after applying Hölder’s inequality, gives

Ln (F (δ)) ≤ eTC log
(r0
δ

)−1

Iq∗,p∗ (S)
∥∥(f + 1) 1Sr0

∥∥
Lp(0,T ;Lq(Rn))

.

This is finite as (q∗, p∗) ∈ printr (S) and f + 1 ∈ Lp (0, T ;Lqloc (Rn)), so
Iq∗,p∗ (S) and

∥∥(f + 1) 1Sr0
∥∥
Lp(0,T ;Lq(Rn))

are both finite. As δ > 0 was arbi-

trary we let δ → 0 whence log
(
r0
δ

)−1 → 0 giving the desired result.

3. Geometry of the r-codimension print

In the previous section we demonstrated that a generalised flow solution
avoids a set S ⊂ Rn × [0, T ] if the r-codimension print of S contains a par-
ticular point. In light of this result we wish to be able to determine the
r-codimension print of a given set. In this section we derive some elementary
properties of the r-codimension print, provide inclusion and exclusion con-
ditions in terms of the more familiar box-counting dimension, and provide
some examples in which we compute the prints of some simple sets.

The elementary properties of the r-codimension print are described in the
following lemma:

Lemma 3.1. Let S, Si ⊂ Rn× [0, T ] be bounded non-empty subsets for i ∈ N,

(i) printr (S) is a subset of the union

{(γ, β) |γβ < γ + βn 0 < γ, β <∞}
∪{(γ,∞) |0 < γ < n}
∪ {(∞, β) |0 < β < 1}

illustrated in Figure 1,

(ii) if Ln+1 (S) > 0 then printr (S) = ∅,

(iii) if Ln (Sτ ) > 0 for some τ ∈ [0, T ] then

printr (S) ⊂ {(γ, β) |0 < β < 1} ,

(iv) if S1 ⊂ S2 then printr (S2) ⊂ printr (S1),

(v) printr (∪∞i=1Si) ⊂ ∩∞i=1printr (Si),
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(vi) S and its closure cl (S) have the same r-codimension print,

(vii) if y ∈ Rn, s ∈ [−T, T ] and λ > 0 are such that the sets

S + (y, s) := {(x+ y, t+ s) | (x, t) ∈ S}
λS := {(λx, λt) | (x, t) ∈ S}

are subsets of Rn × [0, T ] then

printr (S) = printr (S + (y, s)) = printr (λS) ,

and

(viii) if (γ, β) ∈ printr (S) then the rectangle (0, γ]× (0, β] ⊂ printr (S).

Proof. The properties (iv), (vii) and (vi) follow from the observations that
for S1 ⊂ S2

rS1 (x, t) ≥ rS2 (x, t) , rS (x, t) = rcl(S) (x, t) and

rS (x, t) =
1

λ
rλS (λx, λt) = rS+(y,s) (x+ y, t+ s) ,

and an inductive application of (iv) yields (v).
The property (viii) immediately follows from Hölder’s inequality.
From (iv) and (vii) it is clear that printr (S) ⊂ printr ({0}), which is equal

to the union given in (i), although we delay this calculation until Example 3.2.
Next, if Ln+1 (S) > 0 then rS (x, t)−1 is unbounded on a set of positive

(n+ 1)-dimensional Lebesgue measure in which case the integral (14) is in-
finite for all γ, β, yielding (ii).

Finally, suppose that Ln (Sτ ) > 0 for some τ ∈ [0, T ]. Clearly Sτ × {τ} ⊂ S
so from (iv)

printr (Sτ × {τ}) ⊃ printr (S) . (23)

Further,
Sτ × [τ − r0, τ + r0] ⊂ (Sτ × {τ})r0 , (24)

and
rSτ×{τ} (x, t) = |t− τ | for all x ∈ Sτ . (25)
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Consequently,

I∞,β (Sτ × {τ}) =

∫ T

0

 ess sup
{x|rSτ×{τ}(x,t)<r0}

rSτ×{τ} (x, t)−1

β

dt


1
β

≥

(∫ τ+r0

τ−r0

(
ess sup
x∈Sτ

rSτ×{τ} (x, t)

)β
dt

) 1
β

from (24), which from (25),

=

(∫ τ+r0

τ−r0
|t− τ |−β dt

) 1
β

,

which diverges for all β ≥ 1. Consequently, from (viii) no point (γ, β) with
β ≥ 1 is in printr (Sτ × {τ}). We conclude from (23) that

printr (S) ⊂ printr (Sτ × {τ}) ⊂ {(γ, β) |0 < β < 1} ,

yielding (iii).

Our use of the term ‘codimension’ is justified by the reversal of inclu-
sions (iv), which is a property shared by the more familiar codimensions
n− dim (A).

The following lemma provides necessary and sufficient conditions for the
integral ∫

Ar0

rA (x)−γ dx

to be finite for a bounded set A ⊂ Rn. This allows us to include some points
and exclude others from the r-codimension print of a set S ⊂ Rn × [0, T ],
which is the content of Corollary 3.3. The sufficient condition, due to Aizen-
man (1978b), is in terms of the upper box-counting dimension of A, while
the necessary condition is in terms of the lower box-counting dimension.

Lemma 3.2. For a bounded set A ⊂ Rn and any r0 > 0 the integral∫
Ar0

rA (x)−γ dx (26)

21



1

n

β

γ

γβ = γ + βn

Figure 1: The r-codimension print of the singleton {0} ⊂ Rn × [0, T ].

• is finite if 0 ≤ γ < n− dimB (A), and

• is infinite if n− dimLB (A) < γ.

Proof. We split the integral into the minimum value for rA (x)−γ and the
difference between the minimum and actual value∫

Ar0

rA (x)−γ dx =

∫
Ar0

r−γ0 dx+

∫
Ar0

[
rA (x)−γ − r−γ0

]
dx

The second integral we rewrite as∫
Ar0

[
rA (x)−γ − r−γ0

]
dx =

∫
Ar0

∫ rA(x)−γ

r−γ0

1 du dx

which, from Fubini’s Theorem,

=

∫ ∞
r−γ0

∫

x

˛̨̨̨
rA(x)<u

− 1
γ

ff 1 dx du

=

∫ ∞
r−γ0

Ln
(
A
u
− 1
γ

)
du,
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so we rewrite the integral (26) as∫
Ar0

rA (x)−γ dx = r−γ0 Ln (Ar0) +

∫ ∞
r−γ0

Ln
(
A
u
− 1
γ

)
du. (27)

First, we assume that 0 ≤ γ < n − dimB (A) and let ε > 0 be sufficiently
small that γ + ε < n − dimB (A). From Lemma 1.6 there exists a constant

C > 0 such that Ln
(
A
u
− 1
γ

)
≤ C

(
u−

1
γ

)γ+ε
for all u−

1
γ < r0. Consequently,

the integral (26) is bounded above∫
Ar0

rA (x)−γ dx ≤ r−γ0 Ln (Ar0) +

∫ ∞
r−γ0

Cu−(1+ ε
γ )du,

which is finite as 1 + ε
γ
> 1.

Next, we assume that n− dimLB (A) < γ. Again from Lemma 1.6 there

exists a constant C > 0 such that Ln
(
A
u
− 1
γ

)
≥ 1

C

(
u−

1
γ

)γ
for all u−

1
γ < r0.

Consequently the integral (26) is bounded below∫
Ar0

rA (x)−γ dx ≥ r−γ0 Ln (Ar0) +

∫ ∞
r−γ0

1

C
u−1du,

which is infinite as the final integral diverges.

Corollary 3.3. For a bounded subset S ⊂ Rn× [0, T ] every point of the open
square (0, n+ 1− dimB (S))2 is in r-codimension print of S. Further, every
point of the square (n+ 1− dimLB (S) ,∞]2 is not in the r-codimension print
of S. These points are illustrated in Figure 2.

Proof. Follows from the previous corollary and property (viii) of Lemma 3.1.

It is immediate from Figure 2 that there is a gap between the inclusion
and exclusion criteria of Corollary 3.3: indeed, we are unable to determine
from the corollary if the point (γ, γ) is in printr (S) for γ in the range

n+ 1− dimB (S) ≤ γ ≤ n+ 1− dimLB (S) .

As there are sets for which dimLB (S) = 0 and dimB (S) = n (see Robinson
and Sharples (2012)), this gap can be large. In the following section we sup-
plement the inclusion and exclusion criteria of Corollary 3.3 by considering
the box-counting dimensions of the projections of S.
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n+ 1− dimB S

n+ 1− dimLB S

n+ 1− dimB S n+ 1− dimLB S

β

γ

∈ printr (S)

/∈ printr (S)

Figure 2: A subset of points (γ, β) that are in printr (S) and a subset of points (γ, β) that
are not in printr (S).

3.1. Product sets

We now consider sets of the form S := A× T where A ⊂ Rn is bounded
and T ⊂ [0, T ]. With this product structure we can write the distance
rS (x, t) in terms of the distance from x to A and the distance from t to T :
we introduce the notation rA (x) and rT (t) for these respective distances and
note that

rS (x, t)2 = rA (x)2 + rT (t)2 . (28)

In the following theorem we provide conditions for points to be in the
r-codimension print of a product set. Conditions (i) and (ii) are consequences
of Lemma 3.2; our interest is in conditions (iii) and (iv).

Theorem 3.4. Let A ⊂ Rn be bounded, T ⊂ [0, T ] and let S := A×T . The
point (γ, β) is in printr (S) if one of the following conditions holds:

(i) γ < n− dimB (A)

(ii) β < 1− dimB (T )

(iii) γβ < γ (1− dimB (T )) + β (n− dimB (A)) .
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Further, the point (γ, β) is not in printr (S) if the following condition holds

(iv) γβ > γ (1− dimLB (T )) + β (n− dimLB (A)) .

These points are represented in Figure 3.

1− dimB T
1− dimLB T

n−dimB A n−dimLB A

β

γ

∈ print (A× T )

/∈ print (A× T )

γβ = γ (1− dimLB T ) + β (n− dimLB A)

γβ = γ (1− dimB T ) + β (n− dimB A)

Figure 3: The result of Theorem 3.4: the region below the lower hyperbola consists of
points (γ, β) ∈ printr (A× T ); the region above the upper hyperbola consists of points
(γ, β) /∈ printr (A× T ). The theorem provides no information about points on the hyper-
bolas themselves or in the region between them.

Proof. Note that in light of the equality (28)

Iγ,β (S) =


∫ T

0

 ∫
{x|rA(x)2+rT (t)2<r20 }

(
rA (x)2 + rT (t)2)− γ2 dx


β
γ

dt


1
β

, (29)

where again the appropriate integrals are interpreted as essential suprema if
γ =∞ or β =∞.
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First we assume that condition (i) holds. Consider

Iγ,∞ (S) = ess sup
t∈[0,T ]

 ∫
{x|rA(x)2+rT (t)2<r20}

(
rA (x)2 + rT (t)2)− γ2 dx


1
γ

≤ ess sup
t∈[0,T ]

 ∫
{x|rA(x)<r0}

rA (x)−γ dx


1
γ

=

(∫
Ar0

rA (x)−γ dx

) 1
γ

<∞

from Lemma 3.2 as γ < n− dimB (A). Consequently, from property (viii) of
Lemma 3.1, (γ, β) ∈ printr (S) for all β ∈ (0,∞].

Next we assume that condition (ii) holds. Consider

I∞,β (S) =

∫ T

0

 ess sup
{x|rA(x)2+rT (t)2<r0}

(
rA (x)2 + rT (t)2)− 1

2

β

dt


1
β

≤

∫ T

0

(
ess sup
{x|rT (t)<r0}

rT (t)−1

)β

dt

 1
β

=

(∫
Tr0

rT (t)−β dt

) 1
β

<∞

from Lemma 3.2, as β < 1−dimB (T ). As above, it follows that (γ, β) ∈ printr (S)
for all γ ∈ (0,∞].

For conditions (iii) and (iv) both γ and β are finite. We write (29) as

Iγ,β (S) =

∫
Tr0

∫
A√

r20−rT (t)2

(
rX (x)2 + rT (t)2)− γ2 dx


β
γ

dt


1
β
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and for each t ∈ Tr0 we define

J (t) :=

∫
A√

r20−rT (t)2

(
rA (x)2 + rT (t)2)− γ2 dx

so that

Iγ,β (S) =

(∫
Tr0

J (t)
β
γ dt

) 1
β

. (30)

Fix t ∈ Tr0 and, proceeding in a similar fashion to the proof of Lemma
3.2, we write J (t) as the sum

J (t) =

∫
A√

r20−rT (t)2

r−γ0 dx (31)

+

∫
A√

r20−rT (t)2

(
rA (x)2 + rT (t)2)− γ2 − r−γ0 dx. (32)

The second integral (32) is equal to

∫
A√

r20−rT (t)2

(rA(x)2+rT (t)2)
− γ2∫

r−γ0

1du dx =

rT (t)−γ∫
r−γ0

∫
Ar

u
− 2
γ −rT (t)2

1dx du

from Fubini’s Theorem. Consequently,

J (t) = r−γ0 Ln
(
A√

r20−rT (t)2

)
+

rT (t)−γ∫
r−γ0

Ln
(
Aq

u
− 2
γ −rT (t)2

)
du

so from (30)

Iγ,β (S) =

∫
Tr0

(
r−γ0 Ln

(
A√

r20−rT (t)2

)

+

rT (t)−γ∫
r−γ0

Ln
(
Aq

u
− 2
γ −rT (t)2

)
du

) β
α

dt


1
β

. (33)
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Next, we assume that condition (iii) holds. In light of the previous two cases,
we assume additionally that γ ≥ n − dimB (A) and that n − dimB (A) > 0
as condition (iii) reduces to (ii) if dimB (X) = n. With these assumptions
there exists an η such that 0 ≤ η < n− dimB (A) and

γβ < γ (1− dimB (T )) + βη. (34)

Consequently, from Lemma 1.6 there exists a constant C such that
Ln (Aδ) ≤ Cδη for all 0 < δ ≤ r0. From (33),

Iγ,β (S) ≤
∫ T

0

[
r−γ0 C

(
r2
0 − rT (t)2) η2 +

rT (t)−γ∫
r−γ0

C
(
u−

2
γ − rT (t)2

) η
2

du

]β
γ

dt

] 1
β

≤ C
1
γ

∫ T

0

rη−γ0 +

rT (t)−γ∫
r−γ0

u−
η
γ du


β
γ

dt


1
β

and, as γ > η,

≤ C
1
γ

∫ T

0

(
rη−γ0 +

1

1− η
γ

(
rT (t)η−γ − rη−γ0

))β
γ

dt


1
β

≤

(
C

1− η
γ

) 1
γ [∫ T

0

(
rT (t)η−γ

)β
γ dt

] 1
β

=

(
C

1− η
γ

) 1
γ [∫ T

0

rT (t)
β(η−γ)

γ dt

] 1
β

<∞

from Lemma 3.2 as it follows from (34) that 0 ≤ (βγ − βη) /γ < 1−dimB (T ).
Next, assume that condition (iv) holds so there exists an η such that

η > n− dimLB (A)

and γβ > γ (1− dimLB (T )) + βη. (35)
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From Lemma 1.6 there exists a constant C such that Ln (Aδ) ≥ C−1δη for
all 0 < δ ≤ r0 and consequently, from (33),

Iγ,β (S) ≥ C−
1
γ

∫
Tr0

 rT (t)−γ∫
r−γ0

(
u−

2
γ − rT (t)2

) η
2

du


β
γ

dt


1
β

.

By restricting the domain of the first integral to Tr0/√2 and the domain of

the second to u such that r−γ0 ≤ u ≤
(√

2rT (t)
)−γ

, we write

Iγ,β (S) ≥ C−
1
γ


∫

Tr0/
√

2


(
√

2rT (t))
−γ∫

r−γ0

(
u−

2
γ − rT (t)2

) η
2

du


β
γ

dt


1
β

and for u in this range, u−
2
γ ≥ 2rT (t)2 so that

Iγ,β (S) ≥ C−
1
γ


∫

Tr0/
√

2


(
√

2rT (t))
−γ∫

r−γ0

rT (t)η du


β
γ

dt


1
β

= C−
1
γ

 ∫
Tr0/

√
2

(
2−

γ
2 rT (t)η−γ − r−γ0 rT (t)η

)β
γ

dt


1
β

≥ C−
1
γ 2−

1
γ

 ∫
Tr0/

√
2

rT (t)
β(η−γ)

γ dt


1
β

=∞

from Lemma 3.2 as it follows from (35) that (βγ − βη) /γ > 1− dimLB (T ).

Note that the conditions are related by the implications (i) ⇒ (iii) and
(ii)⇒ (iii) for finite γ, β, so the condition (iii) is sufficient for finite γ, β.
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3.2. Examples

We compute the r-codimension print for some subsets of Rn×[0, T ]. While
the calculations are straightforward, we find that computing the r-codimension
print of even the most elementary subset is quite involved. Fortunately, the
result of Theorem 3.4 greatly simplifies these calculations.

Example 3.5. The singleton set S = {0} ⊂ Rn × [0, T ] has r-codimension
print the union

printr (S) = {(γ, β) |γβ < γ + βn 0 < γ, β <∞}
∪ {(γ,∞) , 0 < γ < n} ∪ {(∞, β) , 0 < β < 1} ,

illustrated in Figure 1.
Indeed, as S can be written as the product set {0}×{0} and dimB ({0}) = 0

conditions (i), (ii) and (iii) of Theorem 3.4 guarantee that the print contains
this union. Further, as dimLB ({0}) = 0, condition (iv) guarantees that no
point of {(γ, β) |γβ > γ + βn 0 < γ, β <∞} is in the print.

In this case, Theorem 3.4 yields the majority of the structure of printr (S)
as only the borderline cases remain: we now show that points on the hyperbola
γβ = γ + βn, the points (γ,∞) for γ ≥ n and the points (∞, β) for β ≥ 1
are not in printr (S):

For simplicity we assume that T ≥
√

2. The distance function is given by

rS (x, t) =
√
|x|2 + |t|2 and by taking r0 =

√
2 the rectangular set

[−1, 1]n × [0, 1] ⊂ Sr0 .

Consequently, by reducing the domain of integration, for 0 < γ, β <∞ such
that γβ = γ + βn

Iγ,β (S) ≥

∫ 1

0

 ∫
{x||x|<|t|}

(
|x|2 + |t|2

)− γ
2 dx


β
γ

dt


1
β

≥

∫ 1

0

 ∫
{x||x|<|t|}

(
2 |t|2

)− γ
2 dx


β
γ

dt


1
β

≥
[∫ 1

0

2−
β
2 |t|−β Ln{x| |x| < |t|}

β
γ dt

] 1
β
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which, as Ln{x| |x| < |t|} = ωn |t|n where ωn is the volume of the unit ball in
Rn,

=

[
ω
β
γ
n 2−

β
2

∫ 1

0

|t|n
β
γ
−β dt

] 1
β

=

[
ω
β
γ
n 2−

β
2

∫ 1

0

|t|−1 dt

] 1
β

which diverges, so (γ, β) /∈ printr (S).

Next, as sup{x|rS(x,t)<r0}
(
|x|2 + |t|2

)− 1
2 = |t|−1,

I∞,1 (S) =

∫ √2

0

ess sup
{x|rS(x,t)<r0}

(
|x|2 + |t|2

)− 1
2 dt

=

∫ √2

0

|t|−1 dt

which diverges, so (∞, 1) /∈ printr (S). Consequently, from property (viii) of
Lemma 3.1, (∞, β) /∈ printr (S) for all β ≥ 1.

Finally, the domain
{
x
∣∣ |x|2 + |t|2 < r2

0

}
and the integrand

(
|x|2 + |t|2

)−n
2

are both largest at t = 0 so we clearly have

I1,∞ (S) = ess sup
t∈[0,T ]

∫

x

∣∣|x|2+|t|2<r20

ff (|x|2 + |t|2
)−n

2 dx

=

∫
{x||x|<r0}

|x|−n dx

which diverges, so (n,∞) /∈ printr (S). Again, property (viii) of Lemma 3.1
yields (γ,∞) /∈ printr (S) for all γ ≥ n.

In the following example we demonstrate that Theorem 3.4 does not nec-
essarily capture the entire r-codimension print, even for product sets:

Example 3.6. Let A ⊂ Rn and T ⊂ [0, T ] be such that

dimB (A× T ) < dimB (A) + dimB (T )

(see Robinson and Sharples (2012) for an example of such sets). From this
inequality there exists γ for which

n+ 1− dimB (A)− dimB (T ) < γ < n+ 1− dimB (A× T )
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Consequently, the point (γ, γ) is in the print of S from Lemma 3.2. However
this point is not captured by Theorem 3.4 as

γ2 ≥ γ (n− dimB (A)) + γ (1− dimB (T ))

and so does not satisfy condition (iii).

4. Conclusion

Theorem 2.3 allows us to determine if a generalised flow solution of the
non-autonomous ODE (1) avoids a specified subset S ⊂ Rn × [0, T ] knowing
nothing more than the regularity of f and the anisotropic detail of S encoded
in its r-codimension print. Although calculating the r-codimension print if
a set S is quite involved, a large amount of the structure of the print can be
determined from the box-counting dimensions of S and its projections. By
combining this geometric result with the avoidance criterion we arrive at the
following corollary:

Corollary 4.1. Let X be a generalised flow solution of the ODE (1) with
vector field f ∈ Lp (0, T ;Lq (Rn)) for some 1 ≤ p, q ≤ ∞. If S is a compact
subset of Rn × [0, T ] such that at least one of

(i) q∗ < n− dimB (Px (S)),

(ii) p∗ < 1− dimB (Pt (S)), or

(iii) q∗p∗ < q∗ (1− dimB (Pt (S))) + p∗ (n− dimB (Px (S))),

holds, where Pt (S) ⊂ [0, T ] is the projection of S onto the temporal compo-
nent and Px (S) ⊂ Rn is the projection of S onto the spatial component, then
the flow X avoids the subset S.

We remark that the condition (ii) is vacuous as the Hölder conjugate p∗

is not less than 1.
This corollary gives sufficient but not necessary conditions for avoid-

ance. Indeed, for each ε ∈ (0, 1) we can find3 a closed set A ⊂ Rn with
dimB (A) = n− ε and a countable, closed set T ⊂ [0, T ] with dimB (T ) = 1− ε

3For example let A be a generalised Cantor set (see Robinson and Sharples (2012)) and
let T := {0}

⋃∞
k=1 {k−α} with α = ε/ (1− ε) (see Example 13.4 of Robinson (2001)).
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and consider the product S := A × [0, T ]. Clearly for a given vector field
f we can choose ε sufficiently small that none of the conditions (i)-(iii) are
satisfied. However, it follows from Lemma 2.1 that every generalised flow
solution avoids the set S as T is countable and A has zero Lebesgue mea-
sure (the Hausdorff dimension of A satisfies dimH (A) ≤ dimB (A) < n, see
Falconer (2003) pp.46).

In Section 1.6 we saw that it is possible to use the avoidance property
to determine stronger uniqueness properties for irregular ODEs than those
currently provided by the general theory of DiPerna & Lions. Further, in
Robinson and Sadowski (2009) the avoidance property is used to give im-
proved regularity of the flow: in this case the generalised flow avoids the
discontinuities of f so almost every trajectory is continuously differentiable
in time. It would be interesting to see if geometric tools such as the avoidance
property can further supplement the powerful functional analytic approach
to irregular ODEs of DiPerna & Lions.

Finally, it is of interest to determine if the avoidance criterion of Theo-
rem 2.3 is sharp by attempting to produce examples similar to those in Aizen-
man (1978a), as described in Section 1.6. While Aizenman’s autonomous
examples could simply be recast as non-autonomous ODEs, it would be
interesting to find similar borderline cases for vector fields with arbitrary
temporal regularity.
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