
Temporal Reasoning for Intuitive Specification of
Context-Awareness

Unai Alegre Ibarra
University of Mondragon

Mondragon, Spain
Email: unai.alegre@alumni.mondragon.edu

Juan Carlos Augusto
Research Group on Development

of Intelligent Environments
Dept. of Computer Science, Middlesex University

London, UK
Email: j.augusto@mdx.ac.uk

Asier Aztiria
University of Mondragon

Mondragon, Spain
Email: aaztiria@mondragon.edu

Abstract—One of the most important challenges of the creation
of intelligent environments is the specifications of what intelligent
behaviours the system will exhibit. The processing of these
situations can be computationally demanding. We report on the
advances of the specification of a rule-based language which
allows for the natural expression of situations of interest as those
which occur on Intelligent Environments. The language focuses
on quasi real-time situations and includes new temporal operators
which allow a natural reference to time instants and to intervals.
We explained how the system is implemented and how the system
was validated within a Smart Office scenario.

Index Terms—ambient intelligence, context awareness; tempo-
ral reasoning

I. INTRODUCTION

There is always a tension within Computer Science for
expressiveness and computational efficiency, and this naturally
happens in the area of Intelligent Environments as well. With
that in mind, we have been exploring different variations of
simple logical languages which can be useful to naturally
express ambient intelligence. A minimal reasoning system to
handle causality introduced by Galton and Augusto [1], let us
call it C, has been extended with uncertainty and applied to
smart homes scenarios in the MTPL language [2]. On the other
hand, temporal notions were in those languages pretty simple
and some situations require richer temporal expressiveness to
be of practical use. It is also desirable that intelligent environ-
ment systems have both reasoning and learning capabilities.
The work presented in this paper provides an extension to
the specification language which facilitates practical reasoning
and prepares the system to be coupled with the learning
system LFUBS [3]. This work focuses on the explanation of
the extended reasoning system, M, which now allows more
comfortable references to time and gives us more natural and
comfortable tools to implement context-awareness. We will
address the connection with LFUBS in another future paper.
Instead we focus here on the following two key principles of
the Intelligent Environments Manifesto [4]:

P1) to be intelligent to recognize a situation where
it can help.
P7) to have autonomous behaviour.

The following sections explains the characteristics of M
(Section II), some examples which help to understand the
behaviour of the system being presented, (Section III), a
current real scenario being used to validate the system, Section
IV, and finally our conclusions (Section V).

II. SPECIFICATION LANGUAGE AND REASONING

We start with a simple system, C, presented in [1] which
allowed to represent and reason with elegant simplicity the
connections between causes and effects. The system had a well
defined language and associated algorithm which we adopt
as a departing point. We also noticed that richer temporal
conditions were needed to deal with some scenarios more
comfortably to make it of practical use. This revised system M,
includes more precise and expressive references to conditions
which have held for a while in the recent past.

The representation of systems will emphasize the dynamic
nature of the scenarios we considered and the importance
of time to represent context-awareness to develop ambient
intelligence. The building blocks of this theory are an atomic
state set S, a rule set R and an event set E, and the next
sub-sections explain each of these in turn.

A. States

The set of all atomic states S is divided into two subsets,
independent (SI) and dependent (SD), where SI ∪SD = S and
SI ∩ SD = ∅. An independent state does not depend causally
on other states holding at the same time. Each state can be
either true or false:

[¬]s

Where s is the state, and ¬ is the boolean operator for
negation. In this context, brackets mean that the operator

is optional. Absence of boolean operator evidences positive
status (s). The status of a state and the time when this happens,
is represented by the predicate:

HoldsAt([¬]s, t)

Where t is the time measured in atomic time units and
represented by a natural number (t ∈ N). For a state s, when
s is true it will be said that the state holds: HoldsAt(s, t)
and for state ¬s, it will be said that holds, when s is false:
HoldsAt(¬s, t).

An important limitation of C is the difficulty to express
conditions which must hold for a while in order for a given
context of interest to be detected. Typical notations to represent
durations range from temporal operators to explicit references
to time intervals, see for example [5]. Here we choose the first
route as it provides a more natural linguistic constructions.
Usually temporal operators are based on the traditional ’G’
operator representing that a certain condition is always true,
and the dual ’F’ operator representing that a certain condition
is sometimes true. This notation has been replaced in the latest
decades with ◻ and ◇ which we adopt here as well. One
problem of these operators which limits their practical use in
certain domains is their lack of precision, even if we consider
their related ’always in the future’ or ’always in the past’,
that does not tell us a great deal about where exactly those
conditions held. To react to specific contextual circumstances
in an intelligent environment we need to be able to refer to
what had happened at specific in the immediate past or to
specific times of the day. Hence we consider specializations of
those operators which are more ’metric’ in nature and allow
us to say with more precision when exactly those relevant
conditions held.

The sustained holding of a state throughout a certain dura-
tion of time in the past can be represented as follows:

[BPOp][¬]s

where BPOp represents one of our ’bounded past’ operators:
1) Immediate past, relative to present:

⊟[µ]
Square brackets used as a sub-index to a bounded past
operator are used to represent an extension of time,
same times relative to present, sometimes absolute. The
sequence of states represented by ⊟[µ][¬]s, referred as
Strong immediate past operator, will be true if and only
if HoldsAt([¬]s, τ) for all possible τ where:
● (t � µ) ≤ τ < t, being t the present time expressed

as absolute.1

● µ > 0

An example is provided in section III-A.

1Symbol � represents a calendar difference function that provides the dif-
ference between a calendar date, including clock time, and a value expressed
in time units.

2) Absolute reference to the past:

⊟[α,β]

Noticing that brackets surrounding α and β do not
mean optionality, the state preceded by the bounded past
operator ⊟[α,β], represented as ⊟[α,β][¬]s, referred as
Strong absolute reference to the past operator, is true if
and only if HoldsAt([¬]s, τ) for all possible τ where2:
● α and β represent absolute time.
● α t τ ⋖ β
● α,β ⋖ t, being t the present time expressed as

absolute.

β in the operator do not indicate optionality. A further
explanation of the possible values of α and β can
be reviewed in the appendix VI. Examples can be
consulted in Section III-B.

Both above introduced operators3 are not reflexive, hence, they
do not include the present. Galton and Augusto [1] introduced
an additional operator to express future that remains in the
extension: ⊕. Where ⊕[¬]s, represents that [¬]s will happen
on the next time unit, unless an external event indicates the
opposite.

The syntax for the use of temporal operators in MTR is
given in the Appendix.

B. Events

Events are used to model impingements on the system
from outside. In here intended applications, sensors triggers
or human commands. An event is represented as:

Occurs(ingr([¬]s), t∗)

indicating the ingression to status, at time t (represented by a
natural number N).

Bounded Past Operators in the antecedent can be used to
explore the history of any type of states s ∈ SD or s ∈ SI .

C. Rules

The rule set R defines two subsets of rules: same-time rules
RS and next-time rules RN . Where RS ∪RN = R and RS ∩
RN = ∅. Same-time rules, are rules that will be applied in
the same iteration where the antecedents are satisfied. Next
time rules are rules which consequence will be applied on the
next iteration than the one where the antecedents are satisfied.
Rules in RN , are those with the symbol ⊕ in front of the
consequence. If the symbol is not present, it will be assumed
that the rule is in RS . The syntax for rules is as follows:

[¬][BPOp][¬]s1 ∧ ⋅ ⋅ ⋅ ∧ [¬][BPOp][¬]sn → [⊕][¬]s

2Symbols t and ⋖, represent a calendar comparison function between two
absolute times.

3These two operators are the ones used on antecedents of rules. The operator
for delayed causation is kept for the consequence.

Where BPOp is either strong immediate past or absolute
reference to the past temporal operator as defied above and
¬ is the boolean operator that indicates the status of the state.
The brackets represent optionality.

Notice we do not allow nested bounded past operators to
keep the language simpler and more efficient. Also notice
that as in traditional temporal logic where ◻ can be linked
to ◇ through ¬◇ ¬p, we also have the possibility to defined
a stronger and weaker versions of our operators, where by
’stronger’ we mean an assertion which reassure us of a state
holding uninterruptedly for a period of time and by ’weaker’
an assertion which only reassure us that certain condition held
for part of a time period. More precise definitions follow.

The negation of the strong bounded past operators can lead
to the weaker expressions:

1) Weak immediate past, relative to present:

x[µ]s = ¬ ⊟[µ] ¬s

Where x[µ][¬]s, is true if and only if
HoldsAt([¬]s, τ) for at least one τ where:
● (t � µ) ≤ τ < t, being t the present time expressed

as absolute.
● µ > 0

An example can be found in Section III-C.
2) Weak absolute reference to the past:

x[α,β]s = ¬ ⊟[α,β] ¬s

Where x[α,β][¬]s, is true if and only if
HoldsAt([¬]s, τ) for at least one τ where:
● α and β represent absolute time.
● α t τ ⋖ β
● α,β ⋖ t, being t the present time expressed as

absolute.

An example can be found in section III-D.

D. Stratification

Same-time rules are required to be stratified. Stratification
eliminates possibilities of loops and structures the algorithm.
This is explained as follows.

1) A Stage 1 rule is a rule s1 ⊓ s2 ⊓ ⋯ ⊓ sn → s, where
s1, . . . , sn are all independent. In this case s is said to
be 1-dependent. (The independent states are called 0-
dependent.)

2) A Stage k rule is a rule s1 ⊓ s2 ⊓ ⋯ ⊓ sn → s, where
each of s1, . . . , sn is at most (k − 1)-dependent, and at
least one of them is (k − 1)-dependent. Then s is said
to be k-dependent. In this case we also say that ¬s is
co-k-dependent.

3) A set of same-time rules is stratified so long as for every
rule in the set there is a number k such that the rule is
a Stage k rule.

A same-time rule s1 ⊓ s2 ⊓⋯ ⊓ sn → s can be triggered at
time t so long as we have

HoldsAt(s1, t) ∧⋯ ∧HoldsAt(sn, t).

The result of triggering it is that we may assert HoldsAt(s, t).
Under the same condition we can also apply a next-time rule
s1 ⊓ s2 ⊓ ⋯ ⊓ sn → ⊕ s, and the result of triggering it is that
we may assert Holds(S, t + 1). If a rule can be triggered, it
is said to be live.

E. Forward Reasoning Algorithm

A same-time rule s1 ∧ s2 ∧ ⋅ ⋅ ⋅ ∧ sn → s of stage k is
considered live at time t (present time), when for any s′k in
the antecedent, either:

1) s′k is [¬]s and HoldsAt([¬]s, t)

2) s′k is ⊟[µ][¬]s and HoldsAt([¬]s, τ) for all possible τ
or is x[µ][¬]s and HoldsAt([¬]s, τ) for at least one τ
where:
● µ > 0
● (t � µ) ≤ τ < t, being t the present time expressed

as absolute.

3) s′k is ⊟[α,β][¬]s and HoldsAt([¬]s, τ) for all possible
τ , or is x[α,β][¬]s and HoldsAt([¬]s, τ) for at least
one τ where:
● α and β represent absolute time.
● α t τ ⋖ β
● α,β ⋖ t, being t the present time expressed as

absolute.

Given a stratified set of same-time rules, a set of next-
time rules, an initial condition, which is specified by deter-
mining the truth value of HoldsAt(s,0) for each s ∈ SI ,
and an event list, which is a set of formulae of the form
Occurs(Ingr(s), t∗), we compute the resulting history as
follows:

1) At t = 0, apply any live same-time rules, in order of
increasing Stage (note that some rules may become live
as a result of applying others). When all possible same-
time rules have been applied, apply any live next-time
rules4. Any positive state s whose value is not already
determined at t = 0 is now assumed to be false, i.e.,
HoldsAt(¬s,0).

2) For t = 1,2,3, . . .,
a) For each occurrence Occurs(Ingr(s), (t−1)∗), if

Holds(¬s, t − 1), assert HoldsAt(s, t).
b) For each co-independent state s, if HoldsAt(s, t−

1) and it has not already been asserted that
HoldsAt(¬s, t), then assert HoldsAt(s, t). This
is called ‘applying persistence’ to the state S.

4It is assumed that the specification of a system is not contradictory, i.e.,
does not represent inconsistent behaviour.

c) For k = 1,2,3, . . .,
i) Apply any live same-time rules of Stage k.

ii) Apply persistence: For any co-k-dependent
state s, if HoldsAt(¬s, t) has not already been
asserted, and HoldsAt(s, t − 1), then assert
HoldsAt(s, t).

d) Apply any live next-time rules.
It has to be noticed that external events have priority over the
result of the system in the last iteration.

III. EXAMPLES

State persistence will be assumed for all the examples.
Additionally, x indicates that the status could be either true
or false, because is not relevant for the example.

A. Strong immediate past, relative to present

Table I shows the result of using strong immediate past
operator, considering that:

● Is required to know if the state s has been true for the
last 3 time units (µ = 3).

● Events:
Occurs(ingr(s),0∗)

Occurs(ingr(¬s),2∗)

Occurs(ingr(s),3∗)

● Initial settings are Ic = {(s,0)}

TABLE I
EXPECTED RESULTS FOR EXAMPLE III-A

t s ⊟[3]s

0 0 0
1 1 0
2 1 0
3 0 0
4 1 0
5 1 0
6 1 0
7 x 1

B. Strong Absolute reference to a bounded durative past

Table II shows the result of using strong absolute past
operator, realising that:

● It is required to know if the state s was true between at
t = 1 and t = 4.

● Occurs(ingr(s),0∗)
As a special case of the use of this operators, a reference

can be done to the minimal duration (instant), where α = β.
The case can be consulted in Table III, taking into account
that:

● It is required to know if the state s was true at instant
t = 2.

● Occurs(ingr(s),1∗)

TABLE II
EXPECTED RESULTS FOR EXAMPLE III-B

t s ⊟[1,4]s

0 x 0
1 1 0
2 1 0
3 1 0
4 1 0
5 x 1
6 x 1
7 x 1

TABLE III
EXPECTED RESULTS FOR EXAMPLE III-B (INSTANT)

t s ⊟[2,2]s

0 x 0
1 x 0
2 1 0
3 x 1
4 x 1

C. Weak immediate past, relative to present

Table IV shows the result of using the weak version of the
immediate past operator, noticing that:

● Is required to know if the state s has been true at least
one time during the last 3 time units (µ = 3).

● Events:
Occurs(ingr(s),0∗)

Occurs(ingr(¬s),2∗)

Occurs(ingr(s),6∗)

● Initial settings are Ic = {(s,0)}

TABLE IV
EXPECTED RESULTS FOR EXAMPLE III-C

t s x[3]s

0 0 0
1 1 0
2 1 0
3 0 1
4 0 1
5 0 1
6 0 0
7 1 0
8 x 1

D. Weak Absolute reference to a bounded durative past

Table V shows the result of using weak immediate past
operator, assuming:

● It is required to know if the state s has been true at least
one time between t = 1 and t = 4.

● Events:
Occurs(ingr(¬s),0∗)

Occurs(ingr(s),1∗)

TABLE V
EXPECTED RESULTS FOR EXAMPLE III-D

t s x[1,4]s

0 x 0
1 0 0
2 1 0
3 x 0
4 x 0
5 x 1
6 x 1
7 x 1

E. Cooker Unattended Example

It is clear we still keep the possibility to use the full syntax
which was allowed in C and we kept the algorithm and
related notions so we can still process with M those scenarios
considered in [1]. Our enriched language for the antecedent
of rules which are capable to refer to specific portions of
the history of the sensor database allows us to deal more
effectively with typical scenarios of intelligent environments.

The scenario used in Lu et al. [2] is used to show how
the extension can also deal more naturally with durative
conditions. Consider the task is to model a kitchen monitored
by sensors in a Smart Home System. Assuming the cooker
is on (cookerOn represents a sensor detecting cooker
being activated), and the presence sensor is not activated
(¬atKitchen, atKitchen is a sensor detecting location of a
person in the kitchen). If no presence is detected after more
than a number of n units of time (it will be assumed that
n = 5), then, is considered that the cooker is unattended (cu).
In this case, the alarm will be on (alarmOn) to notify the
occupant and the cooker will be switched off (¬cookerOn).

• Independent states: cookerOn,±atKitchen
• Dependent states: ±cu,±hazard,±alarmOn,¬cookerOn
• Same Time Rules:

- Stratification Level 1 Rules:
(⊟[5]¬atKitchen ∧ ⊟[5]cookerOn→ cu)
(¬cookerOn→ ¬alarmOn)
(¬cookerOn→ ¬hazard)
(¬cookerOn→ ¬cu)

- Stratification Level 2 Rules:
(cu→ alarmOn)
(cu→ hazard)

• Next Time Rules:
(alarmOn→⊕(¬cookerOn))

• Events
Occurs(ingr(atKitchen),0 ∶ 1)
Occurs(ingr(cookerOn),1 ∶ 2)

Occurs(ingr(¬atKitchen),2 ∶ 3)
• Initial Settings:

Ic = {(cookerOn,0), (atKitchen,0),
(cu,0), (hazard,0), (alarmOn,0)}

TABLE VI
EXPECTED RESULTS FOR EXAMPLE III-E

Time cookerOn atKitchen hazard alarmOn cu

0 0 0 0 0 0
1 0 1 0 0 0
2 1 1 0 0 0
3 1 0 0 0 0
4 1 0 0 0 0
5 1 0 0 0 0
6 1 0 0 0 0
7 1 0 0 0 0
8 1 0 1 1 1
9 0 0 0 0 0

The improvement here presented, also applies to other
examples considered in Lu et al. [6].

IV. CURRENT TESTING SCENARIO

A. Introduction

Consider the task is to develop a smart office. Two main
requirements are presented:

1) Energy saving: The system has to regulate the lamp of
a desk to avoid energy waste.

2) Well-being and comfort of the user:
a) It will be assumed that the only way for the user to

be feed is going to the nearest restaurant. Besides,
this restaurant opens only from 1:00 pm to 3:00
pm, and this the only way of getting food for the
user.

b) Daylight hours are considered from 8:00 am to
4:00 pm. Office hours are considered from 9:00
am to 18:00 pm. If user presence is detected out
from daylight hours and into office hours, and the
lamp is off, the system will automatically switch
the lamp on.

B. System Design

The implementation of a system that uses the extension
proposed is represented in Fig.1 The system is divided into
three main modules: Log Reader, Algorithm and Actuator
Manager. All of them are written in Java programming
language. Additionally, there is a sensor, a couple of actuators,
a database, a file containing the definition of the system rules
and a router.

1) Sensor (S1): A HomePro ZIR010 RF Transmitter PIR
motion sensor that sends sensed information about any
motion activity detected to the router periodically using
a Z-Wave wireless communication protocol (a).

S1 A1 A2

Rules File Reasoner

Log Reader

Router

Database

Actuator
Manager

Sensor Actuator Actuator

(a)

(b)

(c)

(d)

(e)

(f)

(g1) (g2)

(h)

Fig. 1. Global structure of the implemented system.

2) Router: A Vera Router manufactured by Mi Casa Verde,
which provides a framework to control devices working
with Z-Wave.

3) Log Reader: The main function of this module is to read
the log that the router is continuously updating using
Secure Shell (SSH) network protocol to retrieve the
latest information related with the sensors (b). Besides,
it saves the relevant data read from the log into the
database (c).

4) Database: The database used is a PostgreSQL database
that has four tables. Events from the router, previously
interpreted by the log reader module, are inserted into
Events table (Table VII) (c). The algorithm module
retrieves information from that table, relating devices to
states with Sensors table (Table VIII) (d). An Internal
Events table (Table IX) is used to handle internal events
that are triggered every time a next time rule becomes
live (d). Finally, the algorithms saves each iteration
into the Results table (Table X) (d). Information from
bounded past operators is also retrieved from it.

5) Reasoner: This module applies the Forward Reasoning
Algorithm explained in Section II-E, with the time
bounded operators. Before the first step (Section II-E: 1),
it reads the rules and states of the system from a rules file
(h). For the step Section II-E: 2a, latest changes from
Events table (Table VII) are read. Finally, after doing
the last step (Section II-E: 2d), the status of the system
in that precise iteration is saved into the Results table
(Table X).

6) Actuator Manager: This module is used to read data
values from the database continuously (e) and reflect
changes into actuators:

a) Lamp (A1): A lamp connected to an Everspring

AN148-3 On/Off switch. Communication between
the manager and the router (f, g1) is made using
Hypertext Transfer Protocol to access the Web
Services that the router provides for the switch
(f). Finally, the router uses Z-Wave to send the
commands received through the services (g1). Ad-
ditionally, periodic information of its status is sent
(g1).

b) Screen(A2): Based on a JFrame Window, shows an
advise to the user in a screen. Actuator Manager
can open and close the window (g2).

7) Rules file: It is a Microsoft Windows Text File (txt) with
the initial configuration of the system, the rules and the
states (including bounded past operators); expressed in
American Standard Code for Information Interchange
(ASCII). (See Fig. 2).

TABLE VII
EVENTS TABLE FROM THE DATABASE.

id PK Serial
device FK varchar(’50’)
value boolean
date date
time time

TABLE VIII
SENSORS TABLE FROM THE DATABASE.

device PK varchar(’50’)
state varchar(’50’)

TABLE IX
INTERNAL EVENTS TABLE FROM THE DATABASE.

id PK serial

state varchar(’50’)

value boolean

TABLE X
RESULTS TABLE FROM THE DATABASE.

System time millis PK bigint
s1 boolean
s2 boolean
⋮ ⋮

sn boolean

C. System rules

1) Energy saving: It will be assumed that the lamp is on
(lampOn represents the lamp actuator sensor detecting
that the lamp in the desk is on (A1 from Figure 1). If
the motion sensor is not activated (¬atDesk) after more
than a number of n units of time (It will be assumed

n = 30 time units), then the system will switch the lamp
off (¬lampOn).

2) Health and comfort of the user:
a) If the system detects presence (atDesk) for all the

instants between 12:45 pm and 2:30 pm, it will
assume that the user has not eat, and it will display
a reminder message (advise). The advise will be
removed (¬avise) 1 minute after displaying. This
advise will not appear again until the next day.

b) If user presence (atDesk) is detected out from 4:00
pm to 6:00 pm, and the lamp is off (¬lampOn),
the system will switch on the lam (lampOn).

• Independent states: ±atDesk
• Dependent states: ±advise,±adviseEnabled,±lampOn
• Same Time Rules:

- Stratification Level 1 Rules:
(x[60]¬advise→ ¬adviseEnabled)

- Stratification Level 2 Rules:
(⊟[23∶59∶59,23∶59∶59]¬adviseEnabled→ adviseEnabled)

• Next Time Rules:
(x[12∶30,14∶30]atDesk ∧ adviseEnabled→⊕advise)
(x[16∶00,18∶00]atDesk ∧ ¬lampOn→⊕ lampOn)
(⊟[30]¬atDesk ∧ lampOn→⊕¬lampOn)

• Events
• Initial Settings:

Ic = {(atDesk,0), (¬advise,0),
(¬adviseEnabled,0), (lampOn,0)}

D. System Implementation
The results of the case explained in Section IV-A: 1 are

shown in Fig. 3. Letters between brackets correspond to Fig.1,
Section IV-B letters.

1) The image from Fig. 3.I, is the Log Reader, interpreting
the log of the router (b). It can be seen that the device
3 has value 0 (false).

2) Fig. 3.II, shows the values saved into the database (c). It
can be noticed that in the database, the relation with the
device number 3 and the state atDesk is done. The time
from columns date and time is the time from the router
log. The column timestamp saves the value of the time
when the Log Reader module detects the ingression of
the event. There is a time difference between columns,
this is because the router takes the time from the
controller box and the Log Reader module from the
computer is running in. The query that the image shows,
is done against two database tables: Events Table and
Sensors Table. (Table VII and Table VIII respectively,
from section IV-B)

3) Fig. 3.III, shows what happens inside the Reasoner
module. Three different parts can be seen:
● First, the module detects an event into the system

(d).
● Then, after 30 units of time, triggers the next time

rule to switch off the lamp. The consequence is sent
to the database as an event (d) (Fig. 3.IV).

● On the following iteration, this event is read from
the database. Concretely, from the Internal Events
Table (Table IX, from section IV-B)

4) Fig. 3.V, shows that the Results table (Table X, from
section IV-B), that contains all the status of the states
for each time unit (d).

5) Finally in 3.VI, the Actuator Manager module calls the
service in the router to switch off the light (f).

Fig. 2. Rules File for the office example explained in Section IV-A.

Fig. 3. System results.

V. CONCLUSIONS AND FUTURE WORK

This paper introduced a system, M , which includes a
language to define contexts of interest which is based on the
natural characteristics of reactive intelligent environments ca-
pable to track certain environmental conditions and to act upon
those. We have explained the language in detail, especially
the capabilities to intuitively capture previous important states
happening at a particular instant or interval of time by using
metric temporal operators. We kept the simple and elegant
algorithm of a previous system and also the rule based nature.

We have illustrated how the language can be used to intu-
itively capture common situations and we have also explained
our current testing framework which takes real data from
sensors in an office and provides actuation in real-time. We
explained the technological infrastructure of the system and
illustrated its use with a smart office example.

The structure of the rules in M are similar to those produced
as an output by LFPUBS which is a system capable to learn
user behaviour from intelligent environments. Our next step
is to connect these two systems (M and LFPUBS) in a
closed loop so that the reasoner can benefit from the learnt
behaviours.

ACKNOWLEDGMENT

The first author wishes to acknowledge the help from
Mondragon University and the Basque Country for the funding
of his stay at Middlesex University in London.

REFERENCES

[1] A. Galton and J. C. Augusto, “Stratified causal theories for reasoning
about deterministic devices and protocols,” in TIME, 2002, pp. 52–54.

[2] Z. Lu, J. Augusto, J. Liu, H. Wang, and A. Aztiria, “A system to reason
about uncertain and dynamic environments,” International Journal on
Artificial Intelligence Tools, vol. 21, no. 05, 2012.

[3] A. Aztiria, J. C. Augusto, R. Basagoiti, A. Izaguirre, and D. J. Cook,
“Learning frequent behaviors of the users in intelligent environments,”
IEEE T. Systems, Man, and Cybernetics: Systems, vol. 43, no. 6, pp.
1265–1278, 2013.

[4] J. C. Augusto, V. Callaghan, D. Cook, A. Kameas, and I. Satoh,
“Intelligent environments: a manifesto,” Human-centric Computing and
Information Sciences, vol. 3, no. 1, pp. 1–18, 2013.

[5] J. C. Augusto, “The logical approach to temporal reasoning,” Artificial
Intelligence Review, vol. 16, no. 4, pp. 301–333, 2001.

[6] Z. Lu, J. Augusto, J. Liu, and H. Wang, “A linguistic truth-value temporal
reasoning (ltr) system and its application to the design of an intelligent
environment,” International Journal of Computational Intelligence Sys-
tems, vol. 5, no. 1, pp. 173–196, 2012.

VI. APPENDIX

TemporalOperators ::=
ImmediatePast | AbsolutePastReference

ImmediatePast ::=
StrongIP | WeakIP

StrongIP ::=
’[-]’ ’[’ Number ’]’ State

WeakIP ::=
’<->’ ’[’ Number ’]’ State

AbsolutePastReference ::=
StrongAPR | WeakAPR

StrongAPR ::=
’[-]’ Interval State

WeakAPR ::=
’<->’ Interval State

Interval ::=
’[’ AbsoluteTime , AbsoluteTime ’]’

AbsoluteTime ::= ’{’ Date ’.’ Time ’}’

Date ::= Year ’.’ Month ’.’ Day

Year ::=
YearNumber | UndefinedParameter

YearNumber ::=
(a four digit natural number)

Month ::=
’january’ | ’february’ | ...
| ’december’ | UndefinedParameter

Day ::=
’1’ | ’2’ | ...
| ’31’ | UndefinedParameter

Time ::= Hour ’.’ Minute ’.’ Second

Hour ::=
’0’ | ’1’ | ...
| ’23’ | UndefinedParameter

Minute ::=
’0’ | ’1’ | ...
| ’59’ | UndefinedParameter

Second ::=
’0’ | ’1’ | ...
| ’59’ | UndefinedParameter

UndefinedParameter ::= ’_’
Number ::= (a natural number)
YearNumber ::= (a four digit natural number)
State ::= (any state of the system)

