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Background Differential analysis techniques are commonly used to offer scientists a dimension
reduction procedure and an interpretable gateway to variable selection, especially when confronting
high-dimensional genomic data. Huang et al. used a gene expression profile of breast cancer cell lines
to identify genomic markers which are highly correlated with in vitro sensitivity of a drug Dasatinib.
They considered three statistical methods to identify differentially expressed genes and finally used
the results from the intersection. But the statistical methods that are used in the paper are not
sufficient to select the genomic markers.

Methods: In this paper we used three alternative statistical methods to select a combined list of
genomic markers and compared the genes that were proposed by Huang et al. We then proposed to
use sparse principal component analysis (PCA) to identify a final list of genomic markers. The sparse
PCA incorporates correlation into account among the genes and helps to draw a successful genomic
markers discovery.

Results: We present a new and a small set of genomic markers to separate out the groups of
patients effectively who are sensitive to the drug Dasatinib. The analysis procedure will also encourage
scientists in identifying genomic markers that can help to separate out two groups.

Keywords: Differential gene expression; area under receiver operating characteristic curve;
principal component analysis; sparse principal component analysis, clustering.

Statistics

1. Introduction

Until recently genomic study is seen to expand quite rapidly through the ongoing devel-
opment of science and technologies and today this helps us to uncover many scientific
questions and to understand complexities of research problems. In medical research the
discovery of genomic markers opens the eyes of scientific community. It is important to
identify genomic markers accurately to predict a patients response to the therapies in
development. Dasatinib is a novel, oral, multi-targeted kinase inhibitor that is used for
the treatment of chronic myelogenous leukemia and Philadelphia chromosome-positive
acute lymphoblastic leukemia. It has been also used in clinical trials for treating patients
with tumors [1].

To support the clinical development of Dasatinib, Huang et al. sought to identify
molecular markers predictive of response to this drug that could be used for patient se-
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lection during clinical development and beyond [2]. They used three statistical methods
to identify the molecular markers: (1) signal to noise ratio (S2N), (2) Pearson correla-
tion coefficients between expression values and another covariate (IC50), and (3) Welch
t-statistic. These three statistical methods were used independently to get three lists
of genes. Later, the probesets (i.e., variables) that overlapped between these three lists
were considered significantly correlated with the Dasatinib sensitivity /resistance classifi-
cation. Genes are found from these probsets after annotation. However, the use of these
three methods may exclude highly variable genes, for which large changes in expression
values can fail to enter into the list, thereby eliminating potential important biological
information. Figure 1(a) presents the variances corresponding to the treatment effect
(i.e. absolute mean) for the expression values of cell lines (i.e., samples) where the data
is taken from the Gene Expression Omnibus (GEO)[2]. It appears that few of the prob-
sets have low variability with high treatment effects which cause S2N or ¢-statistic high
and increases the chance of selecting false positive genes. Figure 1(b) also confirms the
presence of a number of probsets which have high variances compared to the mean (i.e.,
coefficient of variation in denominator). Again, correlation coefficients are highly affected
by these highly variable expression values. Moreover, Huang et al. did not consider the
correlation among the probsets instead they considered correlation coefficient between a
single gene expression values and the values of IC50. These limitations in the analysis
by Huang et al. motivate us to apply alternative approaches to prioritize genes based on
three popular statistical methods and a method of sparse principal component analysis
(PCA).

The statistical methods used to detect differentially expressed genes (DEGs) can be
classified into two broad categories: parametric and nonparametric methods. The most
commonly used parametric methods are the two-sample ¢-test and its variations which
are based on Wald statistics. Tusher et al. proposed a method called significance analysis
of microarray (SAM) for detecting DEGs|[3]. Smyth suggested the moderated t-statistic,
which generalized the sample standard deviation and are found to be robust against out-
liers [4, 5]. The moderated t-statistic is available in the R package LIMMA and the SAM
is available in the R package siggenes. Alternatively, Hossain and Beyene considered
skewed distribution instead of assuming normal distribution for expression data to iden-
tify the genomic markers [6]. All statistical tests were corrected for multiple hypotheses
by using the Benjamini-Hochberg method to determine the false discovery rate (FDR)
[7]. Among nonparametric methods the Wilcoxon rank sum test and area under the re-
ceiver operating characteristic curves (AUC) are widely used in gene expression analysis
[8—10]. In this paper, we applied three popular methods of LIMMA, SAM and AUC.

Principal Component Analysis (PCA) is a multivariate dimension reduction and vi-
sualization technique that produces a new set of variables called principal components
(PCs), constructed as linear combinations of the original variables. The limitation of
PCA is that PCs are comprised of all original variables, which is unrealistic in high-
dimensional genomic data and confusing, since the interpretation of PCs near impossible
with large number of genomic markers. A new extension to classical PCA, sparse prin-
cipal component Analysis (Sparse PCA), that systematically forces all original variables
with residual contribution to have O-valued loadings, therefore attaining a more concise
and realistic group structure of the data, and a more interpretable set of PCs for further
analysis [11, 12]. Hastie et al. proposed the popular gene shaving techniques using PCA
to cluster highly variable and coherent genes in microarray datasets [13]. The lasso is
a promising variable selection technique, simultaneously producing accurate and sparse
models [14]. Zou and Hastie proposed the elastic net, a generalization of the lasso, which
has some advantages [15]. In this paper, we applied the Sparse PCA using elastic net to
summarize a gene expression profile of breast cancer cell lines (sparse PCs) for a subset
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Figure 1: (a) Scatter plot presents Variability corresponding to treatment effect for each
of the probsets from the Dasatinib dataset (b) Histogram for coefficient of variation (cv)
presents high cvs for a number of probsets.

of the data.

2. Data and Methods

2.1 The data

The data is obtained from Gene Expression Omnibus (GEO), accessible through GEO
series accession number GSE6569. The data contains expression of 22283 probsets (i.e.,
variables). Twenty-three breast cancer cell lines (i.e., samples) were used to identify
candidate markers that may predict response to Dasatinib. There were 7 of them are
sensitive to the drug and 16 are resistant to the drug. Thus, the matrix to be analyzed
has 22283 rows of probsets and 23 columns of conditions corresponding to each sample.
Details about the dataset can be found in the paper of Huang et al. [2]. They proposed a
list of 161 genes that can be used to classify patients with sensitive and resistant to the
drug Dasatinib. Starting with the 22283 probsets collected from GEO, we filtered out the
bottom 75 percent in terms of Inter-Quartile Range (IQR), retaining only the 5571 most
variable probsets. We removed probsets that have very little variation to begin with,
since they won’t provide much chance for difference detection anyway. We transformed
all gene expression values using log base 2 to achieve distributions closer to normal.
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2.2 Statistical Methods

We used three commonly used methods to identify differentially expressed genes and later
we applied sparse PCA method. Perhaps uncovering an underlying genetic structure in
terms of variances and correlations with a Sparse PCA method will allow for a more
concise analysis. The methods are descibed briefly as follows:

2.2.1 t-test and its variation

The simplest method to detect differential gene expression is by ranking based on the
fold change (FC) or ratio in expression means between the two conditions. A widely
used alternative method is a ¢-test. The ¢-test is very close to signal to noise ratio that
was used in the Huang et al. paper. Because of the large number of genes included
in this experiment, there are some genes with a very small variances across cell lines
(Figure 1), so that their ¢-values are large regardless of whether or not the differences in
their averages are large. These turn out to be false positives for the ¢-statistic. Several
alternative statistics have been proposed to overcome this problem, and many of them
are influenced by the theory of shrinking the variance [3, 4, 7].

In this paper, we statistically tested marginal associations between each probset and
the sensitivity /resistance to the drug Dasatinib by using moderated-t statistics (LIMMA)
and SAM method. We took top 400 ranked probsets after adjusting for false-discovery
rate (FDR). Huang et al. also considered top 400 genes considering p-values at 1% signif-
icance level. Moderated-t statistics, p-values, and FDR~adjusted p-values were calculated
using the LIMMA package in R v3.26.0 [16]. SAM statistic was calculated by using
siggenes Bioconductor package [17].

2.2.2  Area under Receiver Operating Characteristic Curve

Troyanskaya et al. applied the Wilcoxon rank sum test (RST) to gene expression analy-
sis [24]. The RST is a nonparametric alternative to the two-sample ¢-test which is based
solely on the rank of the expression values in which the observations from the two groups
fall. An assessment of the expression of a gene can be made through the use of a re-
ceiver operating characteristic (ROC) curve. The ROC approach allows us considering
the agreement between expression values and the presence of different thresholds simul-
taneously. Pepe et al. argue that two measures related to the ROC curve are suitable for
ranking genes in regards to DE between two conditions: the Area under the ROC curve
(AUC) and the partial AUC (pAUC) [8]. The AUC can be interpreted as the probability
that a randomly selected subject from treatment group has greater expression values
than a randomly selected subject from control group. For continuous genomic data, the
nonparametric ROC curve may be preferred since it passes through all observed points
and provides unbiased estimates of sensitivity, specificity, and AUC in large samples [9].
We calculated the nonparametric AUC for the expression data by using the R package
WLpAUC downloaded from SIGMA website (http://beyene-sigma-lab.com/). We
considered the top 400 probsets considering AUC values greater than 0.81.

2.2.8  Sparse principal components analysis

Principal components analysis (PCA) is a popular dimension reduction technique for
determining the key variables in a multidimensional data set that explains the differences
in the observations, and can be used to simplify the analysis as well as visualization
of multidimensional data sets [18, 19]. The main focus of PCA is to investigate data
patterns through the variance-covariance structure. The only downfall from a regression
standpoint is the interpretation. For a particular PC (linear combination), the loadings
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Figure 2: Venn diagram of the top ranked genes by SAM, LIMMA, AUC and Huang et
al.. It appears that 28 genes are commonly found by these methods.

(coefficients) represent the contribution of each original variable but if there are a large
number of variables, it could be very hard to determine exactly what the PC represents.
The application of PCA to a genomic data doesn’t allow summarizing the ways in which
gene expressions vary under two biological conditions. The variance accounted for by each
of the components is its associated eigen value; it is the variance of a component over all
genes. Consequently, the eigenvectors with large eigen values are the ones that contain
most of the information; eigen vectors with small eigen values are uninformative [19].
PCA suffers from the fact that each principal component is a linear combination of all
the original variables, thus it is often difficult to interpret the results. In this circumstance
we apply the sparse PCA using the lasso (or elastic net) to produce modified principal
components with sparse loadings [12, 15].

3. Results

We apply the SAM, moderated-t statistic (LIMMA), and AUC and get 3 different lists
of top ranked 400 probsets. After having gene annotation of these probsets we get the
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Figure 3: Cluster analysis: Heatmap with 28 concordance genes.

gene list by each of these methods. The Venn diagram in Figure 2 consists of the top
ranked genes by each of the method and the genes list from Huang et al. It appears
that all the methods produce 28 concordance genes. Concordance genes are those which
are commonly found in the gene lists by the methods. In attempt to visualize some
block-structure, we use a clustering algorithm to align these genes as would be needed
to draw a dendrogram [21, 22]. We apply the hierarchical clustering technique to predict
the sensitive/resistance of the Dasatinib and it is presented as a heatmap in Figure 3.
It appears that the 28 genes can separate the samples clearly though 4 of the cell lines
are misclassified. The heatmap shows patterns of color where the cell lines and genes are
associated and therefore attempt to accomplish one of the missions Sparse PCA sets out
to do; find natural groupings of genes.

Moving to joint associations of genes, we build 6 sparse PCs from the correlation ma-
trix of the Dasatinib data by using the sparse PCA method. The “spca()” function in
the R-package elasticnet was used to get the 6 sparse PCs [15]. We defined the number
of sparse loadings to be obtained as 22, 22, 22, 12, 12 and 12 for the 6 sparse PCs re-
spectively. These numbers are approximately found after testing the penalty parameters.
Therefore, we found 22 non-zero loadings in the first sparse principal component and 12
non-zero loadings in the 6th sparse principal component. The non-zero elements of the
loading vectors are presented in Table 1. Of the first 6 sparse PCs we investigate, the total
percentage of genes variance explained by first PC is 11.2%. This is a substantial amount
considering almost 96.5% of the loadings were forced to 0, validating the ability of sparse
PCA as a dimension reduction technique. As one can see, the genes from SPC1 comprise
a tightly-packed, high-variance group and the probsets from SPC2 and SPC3 comprise
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Figure 4: Cluster analysis: Heatmap with final 43 genes.

groups of lesser variance. It would now be convenient for researchers to use these SPCs
to try and detect differences between sensitivity/resistent group of Dasatinib. In this
regard, we fitted logistic models to the list of genes that are found in each of SPCs and
estimated the prediction of a probability of a “success” (here, resistant group samples
are being in case or success group). Though fitting the logistic regression model with 22
genes and 23 cell lines is a bad idea because of over-fitting problem, we did it to get an
idea of comparing SPCs. These models are evaluated by receiver operating characteristic
(ROC) curves and the area under the ROC curve (AUC) is calculated for each of the 6
SPCs. The results of AUC is not shown here because of over-fitting results, but we found
first sparse PCs (SPC1) provide better discrimination between the resistant /sensitivity
of Dasatinib after investigating the AUC values.

We found 7 concordance genes with the list of 28 genes comparing the gene list of SPC1.
We suggest using these 22 genes from SPC1 because of the strength of relationship among
them. Therefore we suggest a total of 43 genes, which are listed in Table 2. To further
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Figure 5: Flowchart of Analysis plan to get the 43 genes.

highlight potential blocks of variables, the same image strategy by a heatmap in Figure 4
is used on the sample correlation matrix and a more intensifying color scale is attempted.
Though the cluster analysis is not enough to validate the results, it is necesasry to do
a validation with other cell lines. It is often more beneficial to narrow down only a few
genetic variants to aid researchers in further exploration; in this regard we give a very
concise list of 43 genes.

In addition, we presented an analysis plan in Figure 5. The analytical procedures that
applied in the study to get the 43 genes can also be used as a guideline to analyze other
similar type of genomic data.
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Table 1.: Genes with nonzero loadings for the first 6 sparse principal components.

SPC1 SPC2 SPC3 SPC4 SPC5 SPC6

1 ABCA3 CCDC102B PCCA GPR20 PARD6B JAG1
2 LAMBS3 TPD52 IL15RA ELOVL2 IGF1R BAMBI
3 F2RL1 ITGA5 CADM1 FRY KCNK15 PTPN21
4 PLCB4 VAMP5 ANXAG6 TAS2R13 GSDMB SLC16A5
5 PTRF KRTS81 SCCPDH KRT7 PDE4A HLA-DQBI1
6 TNFRSF21 NR2F2 CTAG2 CACNB4 ARIH2 MAOA
7 FXYD5 VGLL1 DNAJC28 DDX43 PDE4DIP EGR2
8 STRN3 ENO2 MMRN1 KIR3DL1 IL13RA2 ZNF37BP
9 SLC16A6 HNRNPL LIMA1 AP1S1 RHOBTB3 SAT1

10 FSTL1 ITPKA LAMB1 NR5A2 RGS12 GPX1

11 TGFBI RASGRF1 LINCO00339 OGDHL  EIF5A CPS1

12 IRX5 EPOR SETDBI1 MBTD1  DEFA4 TGMI1

13 ARLI14 KCNN4 LY6G6E

14 ANXAI1 BCL11A TRPM2

15 APOL1 DSC2 ENC1

16 RGS20 ARL3 MAGEB3

17 COL4A2 BACE2 L3MBTL1

18 SLC35A1 AGAP2 ECRP

19 CLN3 TRPM2 SGCD

20 TLR3 TLX2 POUG6F1

21 GCH1 ARL4D Cl1orf80

22 EGFR ANK3 CAST

Concordance genes! 7 0 0 0 0 1
PEV? 11.21 8.79 4.82 4.94 4.10 2.86

! Concordance genes (bold) with the 28 common genes that were presented in Figure 3.
2 Percentage of explained variance.

4. Discussion and Conclusion

Statistical genomics is a field to convert the high-dimensional data into knowledge. It is
often more beneficial to narrow down only a few genetic variants to aid researchers in
further exploration. The Sparse PCA method provides a new insightful way to detect
important features of the data using correlation among genes into account. The study
demonstrates the results of sparse PCA that helps identifying a new set of genes com-
pared the results of Huang et al. We proposed a gene list that involves only a few genes,
so researchers can focus on these specific genes for further analysis. The analysis helps
determining which genes have changed significantly in terms of their expression between
sensitivity and resistant of the Dasatinib drug. To deliver small subsets of genes, we take
advantage of the computational efficiency of the three popular marginal methods and a
sparse principal component analysis. The analysis also reveals classification of important
groups and their associations within genes. Overall, the results have given us a better
understanding in classifying groups of genomic markers that are associated with sensitiv-
ity/ resistant of Dasatinib for the breast cancer patients. However, the paper presented
as a research proposal of the genomic markers that are correlated with sensitivity in solid
tumors in Dasatinib and clinical applications are pending of future research.

This research is motivated by the belief that the Sparse PCA method might lead
to robust results in taking correlation among genes with the Dasatinib breast cancer
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cell lines data since correlation among genes are very common. We discussed the steps
to use the Sparse PCA method as well as other commonly used methods to identify
the differntially expressed genomic markers. Therefore, in this study we provide a new
set of genes that may have more biological relevance. We anticipate that the present
study will help adding scientific knowledge in medical research especially the use of the
drug Dasatinib to cancer patients by taking consideration of the new set of gene list.
In addition, the analytical procedures that applied in the study can also be a useful
guideline to analyze other similar type of genomic data.
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Table 2.: 43 Genes that are highly correlated with the sensitivity/ resistant of 23 breast
cancer cell lines to dasatinib

Gene symbols logFC? P.Value? FDR? SAMd* AUC’®

1 JAGI 3.51  3.20e-06  0.008 1.02 0.97

2 ABCA3 -2.76  2.74e-05  0.019 -1.98 0.96

3 IFI16 4.63 4.56e-05 0.024 1.16 0.91

4 ICA1 -2.65 9.16e-05 0.032 -1.10 0.89

5 LEPREL1 4.37  9.40e-05 0.032 1.14 0.86

6 F2RL1 3.62 1.37e-04 0.042 1.19 0.95

7 CA12 -3.95  1.72e-04  0.047 -2.01 0.87

8 PTRF 4.33 1.94e-04 0.050 1.11 0.85

9 SLC16A6 -3.15  3.11e-04  0.062 -1.39 0.88
10 F3 3.88 3.62¢-04 0.067 1.59 0.88
11 RAC2 2.35 4.45e-04 0.072 1.38 0.90
12 PSMB9 2.31 6.15e-04 0.084 1.13 0.91
13 PSMBS8 3.70  6.34e-04 0.084 1.40 0.87
14 MSN 450 6.68e-04 0.086 1.06 0.86
15 CAV1 5.14 7.78e-04 0.088 1.37 0.88
16 TGFBI 3.18  8.34e-04 0.089 1.19 0.87
17 UPP1 3.45 8.86e-04 0.089 1.25 0.81
18 BTN3A2 246 1.08e-03  0.093 1.52 0.88
19 ABCGI1 -1.71  1.11e-03  0.093 -1.05 0.94
20 CDC42EP3 292  2.03e-03 0.109 1.81 0.87
21 IGFBP2 -2.67  3.52e-03 0.136 -1.25 0.82
22 INPP1 1.57  3.65e-03 0.136 1.06 0.88
23 MET 3.22  4.56e-03 0.142 1.40 0.90
24 MAPT -1.79  5.99e-03  0.165 -1.29 0.88
25 SLC35A1 -1.27  6.86e-03  0.170 -1.01 0.94
26 ARHGAP29 1.51  9.48e-03  0.190 1.35 0.84
27 PRNP 1.65 1.10e-02  0.199 1.08 0.81
28 EGFR 1.91 1.36e-02 0.219 1.55 0.82
29 LAMBS3 3.25  4.67e-05 0.024 0.82 0.93
30 PLCB4 -2.61 1.44e-04 0.042 -0.72 0.92
31 TNFRSF21 249 2.00e-04 0.050 0.87 0.93
32 FXYDb 2.70  2.63e-04 0.061 0.95 0.94
33 STRN3 -1.88  3.06e-04 0.062 -0.76 0.95
34 FSTL1 3.06 5.80e-04 0.082 0.55 0.84
35 IRX5 -2.57 1.08e-03  0.093 -0.66 0.88
36 ARL14 224  1.30e-03  0.099 0.68 0.88
37 ANXA1 3.83  1.44e-03 0.100 0.66 0.81
38 APOL1 1.91 2.06e-03 0.109 0.56 0.87
39 RGS20 225 27203 0.128 0.42 0.86
40 COL4A2 2.33  3.15e-03 0.135 1.11 0.80
41 CLN3 -1.24  8.14e-03 0.181 -0.67 0.90
42 TLR3 1.72 1.07e-02 0.197 0.66 0.84
43 GCH1 -1.38  1.31e-02 0.215 -0.49 0.81

1og 2 fold change between sensitive and resistant group expressions.

2p-value from moderated-t statistic.

3p-value adjusted with Benjamini and Hochbergs method to control the False Discovery Rate.
4 Significance analysis of microarray d statistic

5 Area under receiver operating characteristic curve.
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