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Abstract 

 
The impacts of misconnections on the organic and nutrient loadings to surface waters are 

assessed using specific household appliance data for two urban sub-catchments located in the 

London metropolitan region and the city of Swansea. Potential loadings of biochemical 

oxygen demand (BOD), soluble reactive phosphorus (PO4-P) and ammoniacal nitrogen (NH4-

N) due to misconnections are calculated for three different scenarios based on the measured 

daily flows from specific appliances and either measured daily pollutant concentrations or 

average pollutant concentrations for relevant greywater and black water sources obtained 

from an extensive review of the literature. Downstream receiving water concentrations, 

together with the associated uncertainties, are predicted from derived misconnection discharge 

concentrations and compared to existing freshwater standards for comparable river types. 

Consideration of dilution ratios indicates that these would need to be of the order of 50-100:1 

to maintain high water quality with respect to BOD and NH4-N following typical 

misconnection discharges but only poor quality for PO4-P is likely to be achievable. The main 

pollutant loading contributions to misconnections arise from toilets (NH4-N and BOD), 

kitchen sinks (BOD and PO4-P) washing machines (PO4-P and BOD) and, to a lesser extent, 

dishwashers (PO4-P). By completely eliminating toilet misconnections and ensuring 

misconnections from all other appliances do not exceed 2%, the potential pollution problems 

due to BOD and NH4-N discharges would be alleviated but this would not be the case for 

PO4-P. In the event of a treatment option being preferred to solve the misconnection problem, 

it is shown that for an area the size of metropolitan Greater London, a sewage treatment plant 

with a Population Equivalent value approaching 900000 would be required to efficiently 

remove BOD and NH4-N to safely dischargeable levels but such a plant is unlikely to have the 

capacity to deal satisfactorily with incoming PO4-P loads from misconnections. 

 

Keywords 
Misconnections; stormwater sewers; urban surface waters; pollutant (BOD, PO4-P, NH4-N) 

loadings); remediation schemes 
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1. Introduction 
 

Surface water misconnections occur when sewage or wastewater, arising from household 

appliances such as toilets and washing machines, are incorrectly connected. Such 

misconnections have become a significant water management issue in the UK (Environment 

Agency, 2013a), with the national environmental regulatory agency estimating that as many 

as one in five properties may have misconnections discharging wastewater effluent directly to 

receiving waters via separate sewer systems (Environment Agency, 2007).  National estimates 

of the total numbers of properties in the UK possessing offending misconnections vary 

between 130,000 and 1.25 M (Royal Haskoning, 2010; Dolata et al., 2013; Ellis and Butler, 

2015) and the illicit wastewater discharges from misconnected properties can directly impact 

on receiving water quality potentially prejudicing the achievement of relevant environmental 

quality standards (EQSs).  Total numbers of officially recorded pollution incidents attributed 

to misconnections only amount to about 250 per year (Environment Agency, 2012), but 

pressure analysis of water bodies in England and Wales failing Water Framework Directive 

(WFD) “good status” during 2012 showed that the urban and associated transport sectors 

were directly responsible for a total of nearly 1500 failures.  Excess concentrations of 

phosphate, ammonia and BOD were identified as the source of 29%, 9% and 4% respectively 

of these urban diffuse pollution failures (Environment Agency, 2013a). It is therefore highly 

likely that misconnections can exert a detrimental impact on urban receiving water quality 

although the scale and severity of such impacts remains to be adequately quantified (Ellis and 

Butler, 2015).  The development of effective river basin management plans (RBMPs) under 

the statutory requirement of the EU WFD (CEC, 2002) depends on adequate quantification of 

such illicit urban diffuse pollution inputs and their potential impacts on receiving water 

quality (Ellis and Mitchell, 2006). 

 

There is only limited field evidence to clearly link the long term chronic attribution and 

impacts of household wastewater misconnections on receiving water pollutant loadings and 

environmental quality standards.  Modelling therefore becomes an essential approach in both 

quantifying the specific sources affecting daily discharges from domestic premises 

(particularly the potential contribution of individual domestic appliances), and in exploring 

their potential receiving water impacts (Environment Agency, 2013b).  Generic source 

apportionment modelling of urban wet weather discharges on a catchment scale have been 

developed (Crabtree et al., 2009; Crabtree et al., 2010) based on Monte Carlo simulations to 

predict receiving water responses to such effluent inputs.  However, there has been very little 

quantified consideration of attributions for specific wastewater sources associated with 

separate surface water (stormwater) systems. Wastewater flows have been traditionally 

measured in terms of per capita consumption and concentrations, but such average-based 

determinations can be misleading given the diversity and complexity of domestic water usage 

as reflected in differing technological and socio-demographic household water practices 

(Pullinger et al., 2013).  Despite continued national regulatory insistence that UK water 

companies develop their forward water management planning based on per capita water use, 

there have been increasing arguments for a more detailed analysis of usage micro-components 

to explore and explain the inherent variability contained within the “average” data (Makki et 

al., 2011; Parker and Wilby, 2012). 

 

This paper attempts to identify the potential effect of misconnections on the organic and 

nutrient loadings to urban surface waters through the disaggregated quantification of BOD, 

ammonia (NH4-N) and phosphate (PO4-P) loads discharged from various domestic sources 

and appliances. Specific household micro-component data drawn from surveyed urban 
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catchments in London and Swansea (South Wales) are used to provide detailed calculations of 

misconnection loadings and dilution ratios and as a basis for extrapolation to wider catchment 

situations. The adopted approach is based on simple, well recognised generic volume-

concentration and mass balance determinations rather than on any more complex, blackbox 

process-based procedures. Despite the simplicity of the applied methodological approach, it is 

acknowledged that the basis for the derivation is data-rich and the robustness of the procedure 

is an essential consequence of the density of information acquired by the micro-component 

analysis. The described approach has not been previously attempted and in this respect it 

represents an innovative procedure which would support planning-level strategies for better 

management of urban drainage discharges and future improvement of in-stream urban water 

quality.  The novelty of the proposed method is in its simplicity and capability for ready field 

verification through a rapid low-cost, screening-level application which permits the work-up 

of draft risk assessment and catchment management plans for heavily modified waterbodies 

(HMWBs) in urbanised areas and as a basis for further priority study. 

 

2. Methodology and Study Sites 
 

The application of a simple volume-concentration approach for determining pollutant loads 

from urban discharges has been widely used (Marsalek, 1991; Ellis and Viavattene, 2014).  

Such procedures have been tested by various workers against annual load estimates derived 

from deterministic multi-parameter hydrologic methods and have been found to either match 

or even outperform the more complex modelling algorithms (Van Buren et al., 1997). The 

functionality of complex operational modelling can be confounded by definitions of boundary 

conditions as well as process dynamics and kinetics which often make them difficult to 

calibrate and unwieldy to implement and collect reliable real-time data. Such complex 

research-type models are better suited to process-knowledge improvement rather than 

simplified management tools (Wainwright and Mulligan, 2003).   
 
The available volume and concentration data for domestic appliance discharges is not usually 

expressed as event mean concentrations (EMCs) but either as specific unique (one-off) values 

or sample averages.  Whilst individual appliance volumes and pollutant concentrations should 

not be inherently random in nature, catchment greywater outputs can be expected to be 

influenced by culture, life style, dietary and other personal factors. Thus the extension of 

international appliance volume-concentration data to geographically differing urban locations 

needs to be applied with caution.  

 

2.1. Appliance Pollutant Loading to Surface Waters 

 

Abel (2008) proposed a formula to calculate the misconnection daily domestic appliance 

BOD loading (kg day
-1

) to receiving waters and a similar relationship also applies to other 

pollutants such as phosphate and ammonia.  The formula considers the pollutant loading as a 

function of the total population served in the catchment (Ptot), the number of occupants per 

property or dwelling (Np), the total number of properties investigated (Nprop), the number of 

each type of individual appliances misconnected (Napmis) and the appliance loadings (kg capita 

day
-1

; Al).  In the case of BOD the equation is: 

                         BOD  =  [Ptot / Np] x [Napmis / Nprop] x Al x Np                  Eq.1  

But Ptot / Np = the number of properties (Nprop) and so this equation simplifies to: 

                          BOD  =  Napmis  x Al  x  Np                                               Eq.2 

 

2.2. Pollutant Concentration Downstream of a Misconnection Discharge 
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Assuming efficient mixing, a basic mass balance approach can be applied to determine the 

pollutant concentration downstream of a dry weather misconnection discharge from a separate 

sewer outfall. In the case of BOD, this can be represented by: 

                        (BOD1 x Q1) + (BODx x Qx)  =  (BOD2 x Q2)                                      Eq.3 

 Where BOD1 = upstream BOD concentration (mg L
-1

) 

  BODx = misconnection flow BOD concentration (mg L
-1

) 

  BOD2 = downstream BOD concentration (mg L
-1

) 

  Q1 = upstream flow rate (L s
-1

) 

  Qx = flow rate due to misconnections (L s
-1

) 

  Q2 = downstream flow rate (L s
-1

) 

If the dilution ratio = n and the misconnection flow rate (Qx) is set to 1, the mass balance 

equation becomes: 

 (n + 1) BOD2 = n BOD1 + BODx                                                   Eq.4                                           

 

This basic equation can be applied to the outfall point of the misconnection discharge to a 

receiving water assuming that there are no other inputs to the surface sewer system such as 

infiltration baseflow, cross-connections, septic tank or landfill seepage etc.  The mixing 

concentrations within the receiving water can be determined for differing levels of the 

dilution ratio (n) and varying ambient receiving water concentrations and the results 

compared with threshold freshwater standards as a basis for assessing potential compliance 

with receiving water standards. Table 1 shows percentile BOD, NH4-N and reactive 

phosphorus standards which have been set for the achievement of good ecological potential 

(GEP) as specified under the EU WFD for differing types of receiving water (Defra, 2014).  

Types 3, 5 and 7 refer to lowland rivers having high alkalinity (>50 mg L
-1

 CaCO3) typical of 

urban rivers in the metropolitan Midlands and SE England regions.  The majority of HMWBs 

in UK urban areas are designated as either Type 5 or Type 7.  

 

Table 1.  Freshwater standards according to river type (Defra, 2014). 

 
 BOD 

 (99%ile; mg L
-1

) 

NH4-N  

(99%ile; mg L
-1

) 

Reactive Phosphorus 

(95%ile; µg L
-1

) 

Types 

1,2,4,6 

Types 

3, 5, 7 

Types 

1,2,4,6 

Types 

3, 5, 7 

Lowland 

(Low 

alkalinity) 

Lowland 

(High 

alkalinity) 

High 7 9 0.5 0.7 26 50 

Good 9 11 0.7 1.5 52 91 

Moderate 14 14 1.8 2.6 140 215 

Poor 16 19 2.6 6.0 918 1098 

 

2.3.Study Sites 

 

The developed methodology has been applied to surface water misconnection discharges from 

two urban sites located in the London metropolitan region and the city of Swansea in South 

Wales (Figure S1) and which have contrasting climate and receiving water characteristics. 

The 9065 ha Ching Brook catchment is located in the suburban fringe of NE London and 

receives an annual rainfall of just below 600 mm. The area consists of predominantly low to 

medium density housing built prior to 1930 with terraced and detached dwellings set in tree-

lined streets. The Ching, a tributary of the River Lee, is classified as being of “poor” 

ecological and chemical status and subject to both extreme event flooding and pollution 

resulting from suspected household misconnections (Environment Agency, 2013c). 2D 

modelling for the 1:100 year, 6 hour duration storm event predicts a peak flow rate of 22 m
3
 s

-
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1
 producing a total volume of 0.81M m

3
 of which 20% would spill out of channel over the 

adjoining flood plain (PBA, 2009).  In 2009, Thames Water introduced a drainage initiative to 

survey a 100 ha sub-catchment having 2068 properties in the lower reaches of the Ching 

Brook which was characterised by persistent poor water quality resulting in its designation as 

a heavily modified water body (HMWB) under the WFD.  Sampled dry weather surface water 

outfalls have indicated that BOD, NH4-N and PO4-P concentrations can vary between 9.8 and 

275.6 mg L
-1

, 0.04 and 6.55 mg L
-1

 and 0.85 and 1.4 mg L
-1

 respectively. (Environment 

Agency, 2010).  The primary purpose of the Thames Water investigation was to identify the 

distribution, extent and source of pollution contributions from the separately sewered housing 

sub-catchment to the receiving water (Dunk et al., 2012).  

 

The 2000 ha River Clyne catchment lies in the westernmost suburbs of the city of Swansea, 

South Wales and discharges into Swansea Bay at Blackpill (or “black stream”). The annual 

average rainfall is approximately 1000 mm. The spring-fed, 8 km long stream drains via a 

steep-sided channel through a historic 20
th

 century industrial landscape with the densely built-

up ribbon terraces of Dunvant representing a mix of Victorian and 1960s brownfield housing 

estates. The receiving water is contaminated by acid mine water drainage and associated 

elevated heavy metal concentrations, especially iron compounds, with upstream PO4-P 

concentrations varying between 0.01 and 0.2 mg L
-1 

(Mestre, 2009).  The river status is 

classified as being of “poor” to “moderate” chemical and ecological quality. Persistent 

bathing beach failures adjacent to the Blackpill discharge into the bay prompted the Swansea 

city authorities and Welsh Water to undertake, during 2011/12, a joint investigation of 936 

properties on the Dunvant estate to determine potential contamination sources of surface 

water outfalls to the receiving water (King et al., 2014). 

 

Measurements of individual appliance discharges and concentrations were taken at each 

property identified from the field surveys as possessing a misconnection (see Section 3) 

although in the case of the Swansea Clyne catchment only appliance discharge was 

monitored.  The concentrations of the measured parameters (BOD and PO4-P) for effluents 

from appliances in the Ching Brook catchment are discussed in Section 4. In addition, final 

discharge outfall rates from the surveyed catchment to the main receiving waters were 

monitored. 

 

3. Domestic Appliance Misconnections and Outputs 
 

The drainage surveys undertaken in the urbanised Chingford and Dunvant sub-catchments of 

the Ching Brook and River Clyne commenced by detection of polluted surface water outfalls 

(PSWOs) to the receiving streams followed by sewer tracer backtracking to offending laterals 

and individual contaminated household discharges. Details of the marker pollutants and other 

indicators used to identify the presence and sources of illicit greywater and black water 

substances in the surface water sewers are fully described elsewhere (Ellis and Butler, 2015). 

The general misconnection distribution pattern is similar for both urban catchments with 

approximately half being associated with washing machines and kitchen sinks; together with 

hand basins and dishwashers, these four appliances account for 70% to 80% of all 

misconnections.  These results confirm the findings of previous studies where appliance 

outputs were expressed as proportional to instantaneous discharge (Butler et al., 1995). 

 

3.1. Appliance Water Consumption 
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Over the past decade there have been a number of studies which have measured the daily 

water consumption of domestic appliances and Table 2 summarises reported international per 

capita daily usage data.  It is assumed that the consumption rates represent discharges over the 

full operational cycle of the appliance, but the geographic variability in the data is 

nevertheless quite considerable although the UK studies are more compatible. The variability 

can be at least partly explained by whether the appliance (e.g. hand basin, kitchen sink, bath 

etc.) is operated on a “fill-and-empty” or “run-to-waste” mode (Friedler et al., 2013). 

 

Table 2.  Water consumption rates associated with domestic appliances 
 

       1www.cieau.com;  2www.eaudeparis.fr;   3www.sedif.com; 4compilation of literature data 

 

3.2. Appliance Flow Quality 

 

Table 3 summarises reported international data for individual appliance (other than toilet) 

concentrations for BOD, NH4-N and PO4-P and demonstrates the variability which is  

influenced by supply characteristics, household life style, behaviour and hygiene, differing 

appliance chemicals etc. Clearly composition and concentration vary not only in terms of 

geographic location but also in time due to diurnal and seasonal changes in water usage 

patterns which affect the pollutant characteristics (Eriksson et al., 2002). Despite the data 

variability, it can be seen that both BOD and PO4-P concentrations are an order of magnitude 

or more greater than the receiving water standards shown in Table 1 indicating the potential 

problems associated with discharging untreated effluents from these sources.  

 

 

  

Water Production (L capita
-1 

day
-1

) 

 Shower  

Bath 

Toilets Washing 

Machine 

Dish 

washer 

Hand Basin Kitchen 

Sink 
France 

CIEAU (2012)1 

Eau de Paris 

(2012)2 

SEDIF (2013)3 

 

49 

46.8 

 
57 – 78 

 

25 

24 

 
30 – 40 

 

25 

14.4 

 
18 – 24 

 

12 

- 

 
15 – 20 

 

 

 

 

Greece 

Antonopoulou et al 
(2013) 

 

33.9 ±33.2 
21.9 (median) 

 

59.4±29.6 
54 (median) 

 

21.3±19.9 
14.6 (median) 

 

6.6±7.2 
4.1 (median) 

 

8.6±7.2 
4.1 (median) 

 

12.2±14.3 
7.5 (median) 

Israel 

Penn et al (2012) 

Friedler (2004) 

 

39.2 

20 (shower) 
20 (bath) 

 

37.7 

 

16.6 

13 

 

- 

5 

 

26.6 

15 

 

26.6 

25 

Oman 

Jamrah et al (2008) 

 

64 – 85 

 

37.7 

 

18 – 30 

 

- 

 

18 – 30 

 

38 – 51 

USA 
Mayer et  al  (1999) 

 
47 – 55 

 
35 – 73 

 
45 – 64 

 
4 

 
- 

 
- 

International 

Literature 

Friedler (2004)4 

 

 
12 – 20 

(shower) 

16 (bath) 

 

 
 

 

 
17 – 60 

 

 
2 – 6 

 

 
8 – 13 

 

 
13 – 19 

UK 

POST (2000) 

Anglia Region 
Ellis & Butler 

(2015) Thames 

Region 

 
5.9 (shower) 

19.5 (bath) 
 

22 (shower) 

36 (bath) 

 
39.4 

 
 

56.1 

 
24.2 

 
 

12 

 
0.2 

 
 

6 

 
- 

 
- 

 
29.2 

 
 

24 
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Table 3. Daily pollutant concentrations (mg L
-1

) in the effluents produced by domestic appliances (other than toilets) 

 

 

 

 

Shower/Bath Washing Machine Dishwasher Hand Basin Kitchen Sink 

BOD NH4-N PO4-P BOD NH4-N PO4-P BOD NH4-N PO4-P BOD NH4-N PO4-P BOD NH4-N PO4-P 

Greece 

Antonopoulou et al 

(2013) 

  

8.4±12.6 

4.5(Median) 

 

0.4±0.6 

0.2 (Median) 

        

2.6±2.9 

1.2(Median) 

 

0.7±0.9 

0.3(Median

) 

  

4±4.8 

1.2 

(Median) 

 

0.4±0.4 

0.3(Median) 

Israel 

Friedler (2004) 

 

 

424±219 

(Shower) 

173±218 

(Bath) 

 

1.2±0.83 

(Shower) 

0.89±1.49 

(Bath) 

 

10±13.7 

(Shower) 

4.6±5.3 

(Bath) 

 

462 

 

4.9 

 

169 

 

699 

 

5.4 

 

537 

 

205±43 

 

0.39±0.29 

 

15±13.8 

 

890 

±480 

 

0.8±0.81 

 

22±27 

Oman 

Jamrah et al 

(2008) 

 

380 

 

242 

  

296 

      

100 

     

USA 

Laak (1974) 

Siegrist et al 

(1976) 

Rose et al (1991) 

 

192 

170 

 

 

2 

 

0.11-0.37 

 

0.94 

1 

 

282 

380 

 

11.3 

0.7 

 

0.1-3.47 

 

171 

15 

 

 

1040 

 

 

4.5 

 

 

32 

 

236 

 

1.15 

 

48.8 

 

676 

1460 

 

5.44 

6 

 

12.7 

31 

Australia 

Boyjoo et al 

(2013) 

Christove-Boal et 

al (1998) 

 

23-300 

 

 

 

 

 

<0.1-15 

  

48-472 

 

48-290 

 

 

 

<0.1-1.9 

          

International 

Literature 

Friedler (2004) 

 

Li et al (2009) 

Eriksson et al 

(2002) 

Almeida et al 

(1999) 

 

 

 

 

50-300 

170 

 

 

1.2(Shower) 

1.1(Bath) 

7-505 

 

 

1.2(Shower) 

1.1(Bath) 

 

 

 

 

 

 

 

19.2 (Shower) 

5.3 (Bath) 

 

 

280-470 

 

48-472 

48-472 

 

 

0-11 

 

 

 

 

2 

 

 

4-170 

 

 

 

 

21 

 

 

390 

 

 

4.5 

 

 

32 

 

 

33-236 

 

 

0.3-1.2 

 

 

 

 

0.3 

 

 

13-49 

 

 

 

 

13.3 

 

 

530-1450 

 

 

8 

 

 

 

 

0.3 

 

 

13-31 

 

 

 

 

26 

 

UK 

Ellis & Butler 

(2015) 

 

Jefferson et al 

(2004) 

 

 

Surendran & 

Wheatley (1998) 

 

22 

(Shower) 

38(Bath) 

146±55 

(shower) 

129±57 

(Bath) 

216 

 

 

 

 

 

 

 

 

1.56 

 

14 (Shower) 

101 (Bath) 

 

0.3±0.1 

(Shower) 

0.4±0.4 (Bath) 

1.63 

 

 

41 

 

 

 

 

 

 

472 

 

 

 

 

 

 

 

 

10.7 

 

 

35 

 

 

 

 

 

 

101 

 

31 

  

44 

 

 

 

 

155±49 

 

 

 

252 

 

 

 

 

 

 

 

 

0.53 

 

 

 

 

0.4±0.3 

 

 

 

45.5 

 

44 

 

 

 

 

 

 

536 

 

 

 

 

 

 

 

 

4.6 

 

28 

 

 

 

 

 

 

15.6 
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4. Results and Discussion  
 

The methodological approach given above has been applied to misconnection data obtained 

for the two described sub-catchments. In each case it has been assumed that there is an 

average of 2.48 inhabitants occupying each property (ONS, 2014) and three working 

scenarios are developed. Two of these scenarios refer to the Ching sub-catchment and the 

other to the Clyne sub-catchment as identified below: 

 

Scenario A: applies to the Ching sub-catchment using the measured daily pollutant 

concentrations (BOD and PO4-P) in the effluents (mg L
-1

) from specific appliances (see Table 

4) and the measured daily flows (L cap
-1

)  from each of the appliances for the homes surveyed 

(see Table 5). 

Scenario B: applies to the Ching sub-catchment using the measured daily flows (L cap
-1

) from 

specific appliances for the homes surveyed in this catchment (see Table 5) and derived mean 

daily pollutant concentrations (BOD, PO4-P and NH4-N) in the effluent (mg L
-1

) from each of 

the appliances as reported in the literature (see Table 4 for greywater values and Box 1 for 

black water [toilet] values). The Ryan-Joiner test for normality has been applied to the data to 

confirm that the mean values presented in Table 4 provide a realistic estimate of the central 

tendency of the data given in Table 3. 

Scenario C: follows the same approach as for Scenario B but applies to the Clyne sub-

catchment; the measured daily flows (L cap
-1

) from specific appliances for the homes 

surveyed in this catchment are shown in Table 6.  

 

Table 4, Mean daily greywater concentrations in effluents produced by domestic appliances 

either measured directly (for Ching sub-catchment) or derived from the international literature 

database (contained in Table 3). 

 
  Shower Washing 

Machine 

Dishwasher Kitchen Sink Hand Basin 

BOD  

(mg L
-1
) 

Measured value 30 41 31 44 38 

Literature mean 

value 

181 ±114 336 ±145 710 ±325 773 ±205 181 ±60 

PO4-P 

(mg L
-1
) 

Measured value 14 35 44 28 101 

Literature mean 

value 

4.8 ±7.3 94.0 ±68.1 200.3 ±291.6 18.4 ±2.1 15.6 ±19.8 

NH4-N 

(mg L
-1
) 

Literature mean 

value 

2.5 ±3.0 5.2 ±4.7 5.0 ±0.6 3.5 ±2.5 1.0 ±0.9 

 

 

4.1. Appliance Discharges Due to Misconnections 

 

The daily volumetric outflows from individual appliances have been calculated as illustrated 

by the following example for shower data in respect of the Ching sub-catchment. Measured 

daily water volumes due to shower usage of 22 L cap
-1

 (Table 5) equate to daily household 

water volumes of 54.6 L (22 x 2.48) and daily volumes produced by the 2068 homes in the 

sub-catchment of 112830.1 L (Table 5).  Given that 4.7% of showers have been estimated to 

be misconnected, the daily contributory misconnection volumes due to shower usage will be 

5303.0 L (Table 5). Similar calculations for the other contributing appliances provide the total 

daily volumes due to misconnections shown in Table 5. The corresponding values for the 

Clyne sub-catchment are given in Table 6.  
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Box 1. Determination of pollutant concentrations in black water derived from toilets 

Daily toilet flush volumes: 

Waterwise (2016) identifies the flush volumes associated with dual flush toilets as being 4 L (low flush) and 6 L 

(high flush) with the traditional single flush systems using 13 L. For the Chingford catchment, it has been 

assumed that 30% of the homes surveyed are fitted with dual flush toilets and that the ‘high flush’ option will be 

selected for faeces flushing with the ‘low flush’ option being used for urine flushing. On the basis that each 

person performs a faeces flush once a day and urine flushing four times a day, the daily flush volume for faeces 

averaged over the catchment would be 

                               (6 x 0.3) + (13 x 0.7) = 10.9 L cap
-1 

and the daily flush volume for urine would be: 

                                (4 x 4 x 0.3) + (4 x 13 x 0.7) = 41.2 L cap
-1 

giving a total daily flush volume of 52.1 L cap
-1 

This value is similar to those determined for the Ching and Clyne sub-catchments of 56.1 L cap
-1

 day
-1

 and 50.5 

L cap
-1

 day
-1

 for toilet flushing. 

BOD concentration in toilet flush water: 

For the Ching sub-catchment, Ellis and Butler (2015) report a daily concentration of 120 mg L
-1

. 

Alternatively, Butler et al. (2013) quote average BOD loadings in urine and faeces of 5.8 g cap
-1

 day
-1

 and 12 g 

cap
-1

 day
-1

 producing a total organic loading due to BOD of 17.8 g cap
-1

 day
-1

.  Given a daily toilet flush volume 

of 52.1 L cap
-1

, this equates to a daily BOD concentration discharged from domestic premises due to toilet 

flushing of 341.7 mg L
-1 

PO4-P concentration in toilet flush water: 

For the Ching sub-catchment, Ellis and Butler (2015) report a daily concentration of 26 mg L
-1

. 

Alternatively, Tervahaute (2014) reports PO4-P loadings in urine and faeces of 0.3 g cap
-1

 day
-1

 and 0.2 g cap
-1

 

day
-1

 producing a total orthophosphate loading of 0.5 g cap
-1

 day
-1

.  Given a daily toilet flush volume of 52.1 L 

cap
-1

, this equates to a daily PO4-P concentration discharged from domestic premises due to toilet flushing of 9.6 

mg L
-1 

NH4-N concentration in toilet flush water: 

de Graaff et al. (2010) report average combined NH4-N loadings due to urine and faeces in the black water 

influent to a UASB reactor of 6.82 g cap
-1

 day
-1

. Given a daily toilet flush volume of 52.1 L cap
-1

, this equates to 

a daily NH4-N concentration discharged from domestic premises due to toilet flushing of 130.9 mg L
-1

. 

 

 

Table 5. Contributing volumes due to appliance misconnections in the Ching sub-catchment. 

 Measured 

daily volume 

for individual 

use (L cap
-1

 

day
-1

) 

Daily 

Volume (L) 

% 

Misconnection 

Daily Discharge Volume 

Due to Misconnection (L) 

Shower 22 112830.1 4.7 5303.0 

Toilet 56.1 287716.7 4.1 11796.4 

Washing 

machine  

12 61543.7 25.7 15816.7 

Dishwasher 6 30771.8 11.7 3600.3 

Kitchen sink 24 123087.4 22.5 27694.7 

Hand basin 10 51286.4 8.6 4410.6 

TOTAL 130.1 667236.1  68621.7 
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Table 6. Contributing volumes due to appliance misconnections in the Clyne sub-catchment. 

 

 Measured 

daily volume 

for individual 

use (L cap
-1

 

day
-1

) 

Daily 

Volume (L) 

% 

Misconnection 

Daily Discharge Volume 

Due to Misconnection (L) 

Shower 7.6 17641.7 8.4 1481.9 

Toilet 50.5 117224.6 3.2 3751.2 

Washing 

machine  23.5 54550.1 31.6 17237.9 

Dishwasher 2 4642.6 2.1 97.5 

Kitchen sink 21.6 50139.6 21 10529.3 

Hand basin 11.8 27391.1 15.8 4327.8 

TOTAL 117 271589.8  37425.5 

 

 

4.2. Appliance Pollutant Outflows Due to Misconnections 

4.2.1. Pollutant loadings 

The calculation of the daily pollutant loadings arising from shower usage is demonstrated 

below using BOD data relevant to Scenario B of the Ching sub-catchment. A mean daily 

BOD concentration in shower water of 181 mg L
-1 

is predicted by a review of literature data 

(Table 4) and at a daily water flow of 22 L cap
-1

 (Table 5) this equates to a daily BOD loading 

due to shower usage of 3.98 g cap
-1

. Therefore the daily BOD loading due to shower usage for 

each household would be 3.98 x 2.48 = 9.88 g which increases to 20.4 kg for the 2068 homes 

in the sub-catchment (Table 7). Given that 4.7% of showers have been estimated to be 

misconnected, the daily contributory BOD loadings due to misconnected showers in the 

Ching sub-catchment will be 0.96 kg (Table 7). Similar calculations for the other contributing 

appliances enable the total daily BOD loadings both prior to and after misconnections to be 

calculated for the Ching sub-catchment as shown in Table 7. The daily BOD loadings for 

Scenario A (48.7 kg) and Scenario B (265.8 kg) equate to values of 9.5 g cap
-1

 and 51.8 g cap
-

1
, respectively. The latter value is consistent with that of 60 g cap

-1
 for average daily BOD 

production (British Water, 2009) and gives confidence in the reliability of the Scenario B 

data. Table 7 also lists the calculated PO4-P and NH4-N loadings arising from appliance 

misconnections according to Scenario B and the BOD and PO4-P loadings arising from 

appliance misconnections according to Scenario A. The results for BOD, PO4-P and NH4-N 

loadings for the Clyne sub-catchment (Scenario C) are reported in Table 8 indicating an 

average daily BOD production of 46.8 g cap
-1

. 

 

4.2.2. Pollutant discharge concentrations 

 

For each scenario the discharged pollutant concentrations due to misconnections is obtained 

from the total pollutant loading (Tables 7 and 8) and the total volume entering the receiving 

stream (Tables 5 and 6). The predicted concentrations are shown in Table 9 together with 

estimated downstream pollutant concentrations using Equation 4 and based on a dilution ratio 

of 8:1. The upstream pollutant concentrations have been taken as 2 mg L
-1

 for BOD, 0.8 mg  
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Table 7. Contributing loadings due to appliance misconnections in the Ching sub-catchment 

(Scenarios A and B). 

  Shower Toilet Washing 

Machine 

Dishwasher Kitchen 

Sink 

Hand 

Basin 

Totals 

Scenario 

A 

BOD daily loadings 

(kg) 

BOD loadings due to 

misconnections (kg) 

 

3.4 

 

0.16 

 

34.5 

 

1.42 

 

2.5 

 

0.65 

 

0.95 

 

0.11 

 

5.4 

 

1.22 

 

1.9 

 

0.17 

 

48.7 

 

3.72 

 

Scenario 

B 

BOD daily loadings 

(kg) 

BOD loadings due to 

misconnections (kg) 

20.4 

 

0.96 

98.4 

 

4.03 

20.7 

 

5.31 

21.8 

 

2.56 

95.1 

 

21.4 

9.3 

 

0.80 

265.8 

 

35.1 

Scenario 

A 

PO4-P daily loadings 

(g) 

PO4-P loadings Due 

to Misconnections (g) 

1579.6 

 

74.2 

7480.6 

 

306.7 

2154.0 

 

553.6 

1354.0 

 

158.4 

3446.4 

 

775.4 

5180.0 

 

445.4 

21194.6 

 

2313.9 

Scenario 

B 

PO4-P daily loadings 

(g) 

PO4-P Loadings due 

to misconnections (g) 

535.9 

 

25.2 

2762.1 

 

113.2 

5785.1 

 

1486.8 

6154.4 

 

720.1 

2264.8 

 

509.6 

800.1 

 

68.8 

18302.4 

 

2923.7 

Scenario 

B 

NH4-N daily loadings 

(g) 

NH4-N loadings due 

to misconnections (g) 

277.6 

 

13.0 

37690.9 

 

1545.3 

321.3 

 

82.6 

152.3 

 

17.8 

429.6 

 

96.7 

52.8 

 

4.54 

38924.4 

 

1760.0 

 

 

Table 8. Contributing loadings due to appliance misconnections in the Clyne sub-catchment 

(Scenario C). 

 

  Shower Toilet Washing 

Machine 

Dishwasher Kitchen 

Sink 

Hand 

Basin 

Totals 

Scenario 

C 

BOD daily loadings (kg) 

BOD loadings due to 

misconnections (kg) 

3.2 

0.27 

40.1 

1.28 

18.33 

5.79 

3.3 

0.07 

38.8 

8.14 

4.96 

0.78 

 

108.6 

16.3 

 

Scenario 

C 

PO4-P daily loadings (g) 

PO4-P loadings due to 

Misconnections (g) 

83.8 

0.007 

1125.4 

36.0 

5127.7 

1620.4 

928.5 

19.5 

922.6 

193.7 

427.3 

67.5 

8615.2 

1944.2 

Scenario 

C 

NH4-N daily loadings (g) 

NH4-N loadings due to 

misconnections (g) 

43.4 

0.004 

15356.4 

491.4 

284.8 

90.0 

23.0 

0.001 

175.0 

36.7 

28.2 

0.005 

15910.8 

626.7 

 

 

L
-1

 for PO4-P and 0.5 mg L
-1

 for NH4-N.  Snook and Whitehead (2004) and Edmonds-Brown 

and Faulkner (1995) report background PO4-P and NH4-N concentrations of 0.8 mg L
-1

 and 

0.5 mg L
-1

 for rivers in the Lower Lee catchment where the Ching Brook is located and the 

characteristics of the urban lowland rivers are not dissimilar to the River Clyne.  

 

The different scenarios predict similar misconnection discharge concentrations for PO4-P and  

NH4-N and hence similar downstream river concentrations. However, in the case of BOD, 

these values are seriously under-predicted for Scenario A in comparison to Scenarios B and 

C. This can be explained by the low BOD concentrations, often by an order of magnitude, 

reported for the greywater discharges from the appliances in the Ching sub-catchment 

compared to the corresponding average values derived from international data (Table 4) and 

which have been used in Scenarios B and C. 
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Table 9. Predicted downstream pollutant concentrations (mg L
-1

) due to misconnection 

discharges. 

Pollutant Sub-

catchment/scenario 

Calculated mean 

concentration in 

misconnection discharge 

Predicted downstream 

concentration 

BOD Ching/Scenario A 54.2 7.8 

Ching/Scenario B 511.1 58.6 

Clyne/Scenario C 436.5 50.3 

PO4-P Ching/Scenario A 33.7 4.5 

Ching/Scenario B 42.6 5.5 

Clyne/Scenario C 51.9 6.5 

NH4-N Ching/Scenario B 25.7 3.3 

Clyne/Scenario C 16.7 2.3 

 

 

Defra (2014) recommends that BOD should not exceed 99 percentile concentrations of 9, 11, 

14 and 19 mg L
-1

 to respectively maintain high, good, moderate or poor quality waters in a 

lowland river with a high alkalinity (Table 1). The dilution ratios to achieve these 

requirements based on a discharge containing the highest calculated BOD levels for the Ching 

and Clyne sub-catchments of 511.1 mg L
-1

 and 436.5 mg L
-1

 and an upstream BOD 

concentration of 2 mg L
-1

 would be 61-72, 47-56, 35-41 and 22-29 respectively. Therefore, 

based on a calculated misconnection discharge volume for the Ching sub-catchment of  68621 

L day
-1

, the upstream flows would need to be 57 L s
-1

 (0.057 m
3
 s

-1
), 45 L s

-1
 (0.045 m

3
 s

-1
), 

33 L s
-1

 (0.033 m
3
 s

-1
) or 23 L s

-1
 (0.023  m

3
s

-1
). Snook and Whitehead (2004) report dry 

weather flows in tributaries of the R Lea varying between 0.14 m
3
 s

-1
 and 0.53 m

3 
s

-1
 and 

therefore the level of dilution required to achieve high quality waters with respect to BOD is 

feasible. However, under low flow conditions this may be more difficult to achieve and it is 

possible that only moderate or poor quality waters may be obtainable if BOD discharges due 

to misconnections are not either totally or partially eliminated.  

 

The different scenarios yield predictions of between 4.5 and 6.5 mg L
-1

 for the PO4-P river 

concentrations downstream of a misconnection discharge assuming dilution at a rate of 8:1 

(Table 9). These are all in excess of the 95 percentile soluble reactive phosphorus levels of 

0.05 mg L
-1

, 0.091 mg L
-1

, 0.215 mg L
-1

 or 1.098 mg L
-1

 which should not be exceeded to 

maintain high, good, moderate or poor quality waters in a lowland river with alkalinity in 

excess of 50 mg L
-1

 (as CaCO3) (Defra, 2014). Given an upstream PO4-P concentration of 0.8 

mg L
-1

 for the Ching catchment, the only receiving water quality achievable with respect to 

this pollutant would be within the poor category and to reach the cut-off concentration for this 

category (Table 1) would require dilution of the misconnection discharges in ratios of 

between 109:1 (for Scenario A) and 139:1 (for Scenario B). Therefore there is clearly a need 

to reduce the background phosphate levels in urban lowland rivers and additionally to 

eliminate phosphate discharges due to misconnections in order to improve the water quality 

status with respect to PO4-P. For the Clyne sub-catchment, it has been reported that 

background PO4-P concentrations vary between 0.01 and 0.2 mg L
-1 

(Mestre, 2009). For the 

highest of these values, only the moderate and poor categories are attainable and would 

require dilutions ratios of 3446:1 and 52:1 respectively, and only the moderate water quality 

can be expected. On the other hand, for a background PO4-P concentration of 0.01 mg L
-1

, 

high water quality would be theoretically possible but, in practice, only moderate quality 

(dilution ratio of 252:1) or poor quality (dilution ratio of 47:1) would appear to be feasible. 
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Concentrations of NH4-N in misconnection discharges from the Ching and Clyne sub-

catchments are predicted to be 25.7 mg l
-1

 and 16.7 mg L
-1

,
 
respectively (Table 9).  Snook and 

Whitehead (2004) and Edmonds-Brown and Faulkner (1995) report background NH4-N 

concentrations for rivers in the Lower Lee catchment of the order of 0.5 mg L
-1

. Therefore, 

based on an upstream NH4-N concentration of 0.5 mg l
-1

 and a dilution ratio of 8:1, the 

resulting NH4-N concentration in the receiving water due to a discharge containing 25.7 mg 

L
-1

 would be 3.3 mg l
-1

. Assuming the same background NH4-N concentration for the Clyne 

sub-catchment, the downstream concentration would be 2.3 mg L
-1

 (Table 9). Defra (2014) 

recommends that NH4-N should not exceed 99 percentile levels of 0.7, 1.5, 2.6 and 6.0 mg L
-1

 

to maintain high, good, moderate or poor quality waters in a lowland river with a high 

alkalinity. Given an upstream NH4-N concentration of 0.5 mg L
-1

, all of these water quality 

standards are achievable and would require dilution ratios of 4, 11,  24, or 125 (for the Ching 

sub-catchment) and dilution ratios of 2, 7, 15 or 83 (for the Clyne sub-catchment) to achieve 

the poor, moderate, good or high water quality conditions. The ranges of upstream flows to 

achieve these conditions would be 5 to 99 L s
-1

 (for the Ching sub-catchment) and 0.9 to 35 L 

s
-1

 (for the Clyne catchment). Based on the dry weather flows of between 0.14 m
3
 s

-1
 and 0.53 

m
3 

s
-1

 in tributaries of the R Lee reported by Snook and Whitehead (2004), the highest quality 

downstream water is attainable in the Ching sub-catchment but this could be jeopardised by 

the misconnection discharges in times of low background flows.  

 

4.2.3. Identifying appropriate remedial actions  

The contributions made to BOD, PO4-P and NH4-N loadings due to the different appliances, 

both at source (e.g. A app) and as a result of misconnection discharges (e.g. A misc) for all 

scenarios are shown in Figure 1. Scenarios B and C represent the worst outcomes for 

receiving water quality in terms of pollutant discharges due to misconnections and will be 

considered in more detail. Although the main source contributions of BOD are from toilets 

(37-38%) and kitchen sinks (36%), when the percentages of appliances misconnected is 

accounted for it is the kitchen sink contribution which predominates reaching 61% for 

Scenario B and 50% for Scenario C. Due to their high percentage misconnection rates (26-

32%) washing machines also pose a problem regarding illicit BOD discharges. 

 

In the case of PO4-P, showers and hand basins consistently make negligible contributions at 

both the source and misconnection level for scenarios B and C. Washing machines are clearly 

important contributors to PO4-P loadings and this effect is magnified in the misconnection 

discharges reaching over 80% for Scenario C. Kitchen sinks provide relevant inputs in both 

scenarios with dishwashers (24.6%) being a significant contributor to potential discharges for 

Scenario B. The picture for NH4-N is clear cut with toilets being consistently the predominant 

source of this pollutant and contributing between 78% and 88% of the total load discharge 

through misconnections. The only other appliances contributing to NH4-N discharges are 

washing machines (14%) in Scenario C.  

 

To reduce the impacts of the three considered pollutants on receiving waters due to 

misconnections, the appliances which need to be targeted are toilets, kitchen sinks and 

washing machines with dishwashers also of concern regarding PO4-P loadings. For Scenarios 

B and C, it is washing machines (25.7-31.6%) and kitchen sinks (21.0-22.5%) which 

demonstrate the highest misconnection rates and therefore provide the greatest scope for 

remediation. Three different remediation schemes are proposed as identified below. The  
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Figure 1.  Percentage contributions to appliance and misconnection pollutant loadings 

objective of remediation scheme 1 is to assess the impact of targeting the serious 

misconnection problems associated with washing machines and kitchen sinks by reducing 

both to 5%. Although toilet misconnections are below 5% for both sub-catchments, they 

contribute substantially to the NH4-N loadings and to a lesser extent to BOD loadings and 
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hence remediation scheme 2, in which the toilet misconnections are completely removed, has 

been proposed. Remediation scheme 3 additionally considers the reduction of misconnections 

from all other appliances to 2% and represents a realistic goal given the current problems 

which are being encountered with misconnections in urban areas. 

 

The criteria associated with the three different remediation schemes are summarised below: 

 Remediation 1: percentage misconnections associated with washing machines and 

kitchen sinks both reduced to 5% 

 Remediation 2: as for remediation 1 with toilet misconnections completely removed 

 Remediation 3: no toilet misconnections and misconnections from all other appliances 

reduced to 2% 

4.2.4 Impact of remedial actions on misconnection pollutant loads 

The impacts of carrying out the three different remediation schemes with respect to pollutant 

loads in the sub-catchment misconnection discharges are identified in Figure 2. Consistent 

profiles are observed for Scenarios B and C. Following the initial large BOD reductions 

achieved by Remediation 1, there are progressive increases in removal to over 90% for 

Remediation 3. The same remediations are also most effective at reducing the misconnection 

emissions of PO4-P but with less discrimination between remediations 1 and 2 where toilet 

misconnections have been eliminated. In contrast, remediations 1 and 3 have limited impact 

on NH4-N loadings and it is the elimination of toilet misconnections (remediation 2) which is 

the critical controlling factor.  

 

 

 
 

Figure 2. Pollutant load reductions resulting from the application of different remediation 

schemes for Scenarios B and C. 
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4.2.5 Assessment of uncertainty and impact of remedial actions on water quality 

 

To enable a realistic assessment of the pollutant concentrations in the misconnection 

discharges and hence to predict downstream concentrations it is important to derive the 

uncertainty associated with these parameters. The origins of the main sources of uncertainty 

are within the pollutant concentrations in the effluents deriving from each type of 

misconnected appliance and within the effluent volumes arising from the misconnected 

appliance. To broaden the applicability of the concentrations used in this study, pollutant 

concentrations determined from extensive published datasets have been utilised in Scenarios 

B and C. The resulting values provide a realistic overall assessment of the pollutant 

concentrations in the effluents from different appliances. The variability associated with these 

values arises from differences in climate, dietary and lifestyle characteristics and therefore is 

not considered appropriate to be included at the local level associated with this study. 

 

The most important factor influencing the uncertainty associated with the results at a local 

scale is the variability in the effluent volumes from the different appliances in each sub-

catchment. For individual appliances these will be subject to advances in technology (e.g. the 

advent of low flush toilets; progressive installation of power showers; introduction of energy 

saving programmes for washing machines) and variations in consumer behaviour (e.g. 

appliance usage on a daily basis). Misconnected volumes represent a key driver for the 

predicted downstream pollutant concentrations due to their influence on dilution 

characteristics. By conducting a thorough survey of the data available for the effluent volumes 

produced by individual appliances, the variabilities shown in Table 10 have been established.  

 

Table 10. Variabilities in effluent volumes (l cap
-1

 d
-1

) arising from individual appliances 

for Scenarios B and C. 

 

 Scenario B Scenario C 

Shower 22.0±7.9 7.6±2.7 

Toilet 56.1±2.1 50.5±1.9 

Washing machine 12.0±3.5 23.5±6.9 

Dishwasher 6.0±0.1 2.0±0.03 

Kitchen sink 24.0±2.8 21.6±2.5 

Hand basin 10.0±1.2 11.8±1.4 

 

The variabilities in effluent volumes have been used to calculate the uncertainties in pollutant 

concentrations in misconnection discharges and predicted pollution concentrations in 

receiving waters and the results are presented in Table 11 for Scenarios B and C. Although 

the maximum uncertainty in the calculated values is of the order of 25%, it is generally lower 

than this, providing confidence that the determined concentrations are realistic and can be 

confidently compared with published data, where this exists. In general, the remediation 

schemes do not greatly influence the pollutant concentrations in the misconnection discharges 

as both pollutant load and effluent volume are simultaneously reduced. In some instances 

there are increases in concentrations for BOD and PO4-P and only remediation 2 clearly has a 

beneficial impact on NH4-N concentrations due to the elimination of toilet sources. However, 

although there is often no decrease in pollutant concentration the pollutant loads arising from 

misconnections are decreased as shown in Figure 2. Consequently, there will be an increased 

dilution following discharge to a receiving stream compared to the 8:1 dilution assumed for 

the misconnection discharge not subjected to remediation. The progressive lowering of 
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predicted receiving stream concentrations as the different remediation schemes are imposed is 

clearly shown in Table 11.    

 

Table 11. Comparisons (with uncertainties) of the impacts deriving from the application of 

different appliance remediation strategies to Scenarios B and C. 

 

 

Scenario B Scenario C  

Concentration 

in 

misconnection 

discharge (mg 

L
-1

) 

Concentration 

in receiving 

water 

(mg L
-1

) 

Concentration 

in 

misconnection 

discharge (mg 

L
-1

) 

Concentration 

in receiving 

water 

(mg L
-1

) 

BOD No 

remediation 

511.1±105.4  58.6±11.7 436.5±116.2 50.3±12.9 

Remediation 1 411.7±70.7 26.1±4.2 353.1±73.7 18.6±3.5 

Remediation 2 448.2±123.4 19.6±4.9 356.8±92.1 14.7±3.3 

Remediation 3 441.0±114.2 8.0±1.6 444.0±117.1 6.5±1.2 

PO4-P No 

remediation 

42.6±10.2 5.5±1.1 51.9±5.7 6.5±0.6 

Remediation 1 38.7±10.4 3.0±0.6 29.1±7.6 2.1±0.4 

Remediation 2 54.0±11.3 2.9±0.5 35.6±10.6 2.0±0.4 

Remediation 3 40.9±10.6 1.4±0.1 48.5±14.8 1.3±0.2 

NH4-N No 

remediation 

25.7±4.3 3.3±0.5 16.7±3.6 2.3±0.4 

Remediation 1 47.1±6.7 3.2±0.4 35.1±5.6 2.1±0.3 

Remediation 2 3.2±0.8 0.61±0.03 2.8±0.8 0.59±0.03 

Remediation 3 3.3±0.9 0.54±0.01 3.6±1.0 0.53±0.01 

 

Remediation schemes are shown to be essential if BOD levels are to approach the required 

river quality objectives and only remediation scheme 3 has the capability of achieving the 

high river water quality for both scenarios when compared to the 99 percentile standards for 

lowland rivers with high alkalinity (see Table 1). Remediation scheme 3 is also most effective 

at reducing the predicted receiving water concentrations of PO4-P but these fail to comply 

with the water quality standards and only poor quality is achievable mainly due to the high 

background PO4-P concentration (0.8 mg L
-1

) which has been applied. Remediation 1 has 

little impact on NH4-N concentrations as it is the elimination of toilet misconnections 

(Remediations 2 and 3) which is the critical controlling factor. The receiving water 

concentrations, and low associated variabilities, following reductions in misconnections 

arising from both these remediations result in predicted high water qualities for NH4-N when 

compared to the standards for lowland rivers (Table 1). 

 

4.3.  Extrapolation to Catchment Scale 

 

Few attempts have been made to estimate the wider catchment scale impact of pollutant 

loadings on urban receiving waters based on the extrapolation of site-based household 

misconnection data. Table 7 identifies the total daily pollutant loadings predicted to arise 

under different scenarios from misconnected appliances associated with 2068 houses in the 

100 ha Ching sub-catchment.  The average household BOD misconnection loading based on 

Scenario B criteria (using international concentration data) would be 17.0 g day
-1

.  Upscaling 
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this site-based value to the 3.27M households (ONS, 2014) within the 1572 km
2
 Greater 

London metropolitan area would indicate a total daily BOD loading to urban receiving waters 

of 55590 kg day
-1

. This is comparable with the daily BOD load (52630 kg) arriving at 

Deephams STW, a large treatment works in NE London serving a population approaching 1 

million. Converted to Population Equivalent (PE) values (using 1 PE = 60 g BOD cap
-1

) the 

predicted value of 925024 for the misconnections arising from the Greater London 

metropolitan area equates to that  for Deephams STW (877167). The similarity of both the 

BOD loadings and the PE values indicate that, based on the not unreasonable assumption 

(Dunk et al., 2008) that the misconnection distributions found in the Ching sub-catchment 

prevail across the wider metropolitan area, the equivalent of at least one major treatment 

works would be required to fully minimise the organic loading arising from misconnections 

deriving from an area with similar size and population density to that of Greater London. For 

this conurbation, a commonly quoted figure for average household misconnection rates is 3% 

(Dunk et al., 2008; Ellis and Butler, 2015).  Combining this with the commonly accepted 60 g 

cap
-1

 average daily household BOD production (British Water, 2009), produces a total daily 

BOD load for the Greater London area of 14597 kg day
-1

, which is considerably lower than 

the predicted value (55590 kg day
-1

) based on site survey upscaling. The use of average per 

capita and misconnection data can therefore result in a significant under-estimation of 

potential receiving water loadings from illicit surface water discharges.  

 

The scale of the treatment facilities required is emphasised by the data available for daily 

PO4-P loadings which for misconnections over an area the size of Greater London are 

predicted to be far in excess (4623 kg day
-1

 for an extrapolated Scenario B situation) 

compared to those typically received by Deephams STW (1131 kg day
-1

; assuming that PO4-P 

constitutes 70% of TP in raw sewage). Therefore to eliminate the potential PO4-P problems 

arising from misconnections would require a state-of-the-art treatment works employing 

phosphate stripping techniques. This is not the case for NH4-N loadings as a treatment works 

of an equivalent size to Deephams (incoming NH4-N loading 6805 kg day
-1

) employing 

activated sludge would be expected to possess over double the capacity needed to deal with 

the daily NH4-N loads (2783 kg) expected to arise from misconnections in an area similar to 

Greater London. Similarly, there would not be a problem with the incoming volume capacity 

which at a predicted value for misconnections of >110000 m
3 

day
-1

 is less than half that of a 

large sewage treatment works such as Deephams (>280000 m
3 

day
-1

). 

  

4.4 Limitations of this study and recommendations for future work 

 

Evidence derived from two field studies has been used to assess the impacts of household 

wastewater misconnections on receiving water pollutant loadings and environmental quality 

standards. Ideally, more extensive databases are required covering a range of sub-catchments 

to provide greater confidence in the analysed data and to support the ability to up-scale the 

results to larger catchments and eventually to a national scale. A greater breadth of completed 

surveys should enable identification of regional variations for in-stream loadings arising from 

differences in appliance implementation and consumer behaviour/usage characteristics in 

order to contribute to the provision of a more representative picture at national level. 

Catchment size is a critical parameter with limitations imposed by economic and logistical 

factors needing to be balanced by the necessity to eliminate bias which may result from non-

standard individual household behaviours. It is considered that surveys involving sub-

catchments containing between 1000 and 2000 households provides a realistic compromise. 
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The monitoring requirements within a selected sub-catchment need to be carefully matched to 

the data needed to apply the described methodological approach. The only measured pollutant 

concentrations were for BOD and PO4-P in the greywater deriving from appliance emissions 

in the Ching Brook sub-catchment. Ideally, such measurements should be available for all 

considered pollutants from both sub-catchments and should be extended to include the 

analysis of black water deriving from toilets. Given the limited availability of measured 

pollutant concentrations it has been necessary to source toilet flush values from available 

published data and greywater concentrations from international literature data. Both these 

approaches result in realistic pollutant loading and concentration predictions but confirmation 

through site monitoring would be beneficial. It would also be desirable to have an on-site 

measurement of the receiving water flows at the misconnection discharge outfall to enable a 

more accurate calculation of the dilution ratios and to support a more sophisticated modelling 

procedure to compare with the simple but practical approach described. Similarly, direct 

measurements of the upstream receiving water pollutant levels would assist in more accurate 

interpretations of the downstream concentrations after surface water sewer inputs and thus 

allow more precise interpretations of the impacts of reducing upstream pollutant sources. This 

is particularly important in the case of PO4-P where there is a need for further definition and 

impact of urban and rural diffuse sources and mitigation strategies for phosphate levels in 

urban rivers. 

 

In the described methodological approach, only the contributions of misconnections to the dry 

weather flows to surface water sewers have been considered. In practice, supplementary flows 

relating to groundwater baseflows, mains leakage, land drainage sources (e.g. golf courses, 

rail track discharges), septic tank/landfill plumes, cross-connections etc. may exist and further 

work needs to be done to discriminate these from misconnections. Groundwater infiltration 

(and rainfall inflow) into a sewer pipe is generally considered to be of the order of 10% of the 

dry weather flow and being clean water this would effectively dilute the pollutant 

concentration due to misconnections. Estimates of the impacts of such infiltrations could be 

deduced using the described methodological approach and integrated into the determination 

of the uncertainty associated with the predicted downstream receiving water pollutant 

concentrations. The currently estimated uncertainties in these values would be most strongly 

influenced following the instigation of remediation practices due to a greater impact on the 

effluent volumes arising due to misconnections. To overcome these uncertainties there is a 

need to conduct in-stream water quality and ecological status surveys for both acute 

(individual storm events) and chronic (long term accumulative) conditions to experimentally 

confirm the predicted influence of misconnection remediation strategies. 

 

5. Conclusions 
 

Illicit household discharges to surface water sewer systems present a ubiquitous problem for 

urban receiving water quality and one which will not be readily resolved as it requires 

considerable organisational, manpower and financial resources. The discharged organic and 

nutrient loads from such misconnections even under least-impact conditions are likely to 

prejudice receiving water standards and require substantial dilutions in the order of 50-100:1 

to conform to ecological criteria. Even at these elevated dilution ratios, PO4-P is only 

expected to achieve a poor quality status in the receiving water confirming this pollutant as a 

major reason for urban diffuse pollution failures. Remediation options for specific offending 

source appliances would need to reduce their discharge loads by values approaching 98% to 

achieve appropriate water quality conditions although this would still be insufficient to 

address the pollution problems posed by PO4-P for which the major sources are kitchen sinks, 
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washing machines and dishwashers.  Adopting a treatment option would require a large 

treatment works with a population equivalent value of 900000 to effectively minimise the 

pollution loads arising from the misconnections associated with an urban population 

equivalent to that of Greater London but specialist phosphate removal facilities would need to 

be installed to achieve PO4-P compliance. The micro-component approach to water usage and 

household misconnection loadings emphasises the need for targeted measures based on the 

identification and quantification of specific
 
diffuse pollution measures to in-stream urban 

quality objectives.  

 

The innovative methodological approach outlined in the paper is simple and rapid to apply as 

well as being readily understandable and provides a robust procedure for the quantification of 

surface water misconnections loadings to urban receiving waters.  It further offers a baseline 

for the extrapolated quantification of large catchment-scale loads utilising evidence-based 

surveys of domestic micro-component occurrence and operation. This micro-component 

approach allows small (but detailed) sub-catchment data to be used for screening purposes in 

the initial strategic policy decisions on risk assessment for urban diffuse discharges. 
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