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Abstract  

Purpose of Review 

A host of immune modulators are now available in clinical practice. The perioperative period is 

characterised by profound alterations in host immunity, which can result in poor outcomes, which include 

infection, cancer recurrence and organ failure. Manipulation of the peri-operative immune response has 

the potential to improve outcomes. A complete understanding of the mechanisms and clinical 

consequences of altered immune function in this setting is therefore imperative.  

Recent findings 

Recent in vivo data has emerged which furthers our understanding of the interaction between tissue 

damage, immune modulation and clinical outcomes by utilising novel laboratory techniques capable of 

monitoring single cell immune signatures. Traditional gene expression assays have continued to 

demonstrate their utility and have been instrumental in defining the host response to perioperative 

allogeneic blood transfusion. These mechanistic studies are complemented by large clinical studies 

describing associations between anaesthetic modalities and immune-related outcomes.  

Summary 

Laboratory techniques are now available that can monitor the perioperative immune response and could 

be further developed to introduce personalised care pathways. Consideration must also be given to 

anaesthesia techniques and perioperative treatments that, whilst not immediately harmful, may be 

associated with poor outcomes temporally distant from the treatment, secondary to induced 

immunosuppression.   
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Introduction 

Tissue damage is inevitable following major surgery and induces a complex host immune response. This 

is initiated by receptor-mediated detection of specific intracellular compounds released by damaged cells. 

These are collectively referred to as alarmins and they induce an inflammatory cascade, the ultimate aim 

of which is tissue repair and the restoration of homeostasis. However, inter-individual variability exists in 

the host response to alarmin release and a dysregulated, poorly coordinated immune response to tissue 

damage is a major contributor to perioperative organ injury and the development of a state of prolonged 

immunoparesis. Perioperative large-scale alterations in immune and inflammatory pathways are 

associated with many clinically important post-operative complications, which include infections, renal 

injury and cancer recurrence. In addition to tissue damage, many additional factors influence the 

perioperative host immune response. These include the administration of anaesthetic agents, regional 

anaesthesia, analgesics, anti-emetics, blood products and the underlying disease process. This review will 

discuss recent advances in our understanding of this response, potential triggers and the clinical 

consequences of altered perioperative immunity.    

 

The immune response to major tissue damage  

The immune response to major tissue damage has been extensively characterised [1*]. Although severe 

traumatic injury as a model provides information that is highly relevant and applicable to perioperative 

medicine, the picture is clouded by confounding influences such as hypoperfusion and the subsequent 

reperfusion injury, the frequent transfusion of allogenic blood products and neuro-inflammatory mediated 

changes secondary to an often coexisting traumatic brain injury [1*]. The key link between tissue damage 

and subsequent inflammation is the release of alarmins [2].  
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Alarmins, often termed Damage-Associated Molecular Pattern molecules (DAMPs), are a group of 

structurally diverse compounds released following tissue damage as cells undergo physiological stress or 

necrosis [3]. DAMPs are the endogenous equivalent of Pathogen Associated Molecular Pattern molecules 

(PAMPs) that initiate an immune response in the setting of infection.  Indeed, DAMPs such as high-

mobility-group box (HMGB) 1 and mitochondrial DNA (mtDNA) bear significant structural homology to 

their PAMP analogues and often activate the same pattern recognition receptors (PRRs) [3, 4]. This, in 

part, explains why the clinical pictures of severe sterile inflammation and sepsis can be difficult or 

impossible to distinguish. A wide variety of PRRs have been described including the membrane bound 

Toll-like receptors (TLRs) and the cytoplasmic NOD-like receptors (NLRs) [3, 5]. Activation of PRRs 

induces an enzymatic cascade, which results in down-stream phosphorylation of transcription factors such 

as NF-κB, which in turn alters cytokine transcription (Figure 1). Immune cell subtypes are activated 

dependent on their expression of specific PRRs on their cell surface at the time of alarmin release [5]. 

Alarmins not only activate this innate response but also provide a vital link between the innate and 

adaptive immune systems by activating antigen-presenting cells such as monocytes and dendritic cells [6].  

Until quite recently, studies exploring the inflammatory response to major tissue damage have been 

mainly limited to a reductionist approach where correlations have been sought between clinical end points 

and a limited number of candidate mediators. The success of this approach has varied depending on the 

end point chosen and the assay methodology, with quantitative polymerase chain reaction (qPCR) 

quantification of messenger RNA (mRNA) transcripts proving more sensitive than enzyme linked 

immunosorbant assays (ELISA) quantification of protein product. Levels of interleukin 6 (IL-6) and IL-

10 consistently rise in proportion to the extent of the tissue damage and levels are associated with a 

greater incidence of subsequent nosocomial infection [7-10]. As arguably the most potent anti-

inflammatory cytokine it is unsurprising that high IL-10 levels are associated with later infection. 

However, although IL-6 is traditionally considered a pro-inflammatory cytokine it also up-regulates 

suppressor of cytokine signalling (SOCS)-1 expression and inhibits T helper cell type 1 (Th1) 
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differentiation [11]. In this manner, IL-6 could plausibly exert an effect that limits effective host 

bactericidal capacity. Similarly, the expression of Human Leukocyte Antigen DR on the surface of 

monocytes (mHLA-DR) consistently falls following tissue damage and is related to nosocomial infection 

[12, 13]. Again this is unsurprising as the maintenance of adequate Major Histocompatibility Complex 

(MHC) class ΙΙ molecules such as HLA-DR on the surface of antigen presenting cells is crucial to 

maintain immune competence. Others have proposed genomic signatures where higher ratios of anti-

inflammatory to pro-inflammatory cytokines correlate with postoperative infection [14]. What remains 

elusive is the mechanism whereby alarmin release and the subsequent enzymatic cascades lead to an 

immunosuppressed phenotype and the survival advantage, if any, of this trait.  

Advances in technology recently permitted the simultaneous analysis of the leukocyte transcriptome of 

20,720 genes in patients following severe blunt trauma and burn injury in a landmark paper [15]. 

Following these stimuli, which would clearly result in significant alarmin release, 80% of cellular 

pathways and functions were altered. Innate immunity pathways, B-cell receptor signalling and IL-10 

signalling all demonstrated up-regulated gene expression whereas antigen presentation and T-cell 

activation were down-regulated. Importantly, it was the overall magnitude of the genomic alterations that 

correlated with nosocomial infections and organ impairment as opposed to differential activation of 

specific pathways. Although this snapshot of the transcriptome was within 12 hours of injury, in some 

cases patients had undergone extensive resuscitation and therefore this heterogeneous picture should be 

interpreted with caution in the context of the perioperative patient. This paper has however helped to re-

define the previously proposed bimodal inflammatory response model to tissue damage, suggesting 

concomitant activation of pro-inflammatory and anti-inflammatory pathways. 

Further application of advanced technology has seen investigators utilise mass cytometry to detect 

surgery-induced immune perturbations in clinical samples and relate these findings to post-operative 

recovery [16**]. Mass cytometry involves using antibodies to tag cellular components prior to nebulising 

the cells and then using a time of flight mass spectrometer for analysis. This complex technique has 



	
   6	
  

extensively described the immune response in peripheral blood following elective hip arthroplasty and 

has demonstrated a time-dependent and cell type specific activation of immune signalling networks. Over 

the early post-operative period there is an expansion of Natural Killer (NK) cells, neutrophils and CD14+ 

monocytes, which is followed, within 24 hours, by contraction of CD4+ and CD8+ T cells. Most notable 

was a six-fold expansion of CD33+CD11b+CD14+HLA-DRlow monocytes with phenotypic similarities to 

myeloid derived suppressor cells (MDSCs). MDSCs are a heterogeneous group of immunosuppressive 

cells [17] that remain poorly defined in terms of cell surface markers and directly suppress T cell 

functions through a variety of mechanisms including the production of reactive oxygen species (ROS) 

[18] and Arginase-1 [19] as well as IL-10 and TGF-β release [20]. In addition to the monocyte derived 

MDSCs that expand following hip arthroplasty, a distinct subset of CD62Ldim neutrophil-derived MDSCs 

appear shortly after blunt trauma and tissue injury and induce T cell suppression in a Mac-1 (CD11b) 

dependent fashion [21, 22]. Further characterisation of the expansion of MDSCs in the post-operative 

period may provide a vital link between alarmin release and an immunosuppressed phenotype.  An 

analysis of surgery induced changes in the phosphorylation of intracellular signalling proteins in different 

immune subsets provides interesting correlations, particularly in the CD14+HLA-DRlow monocyte clusters 

where immune correlates, such as STAT3 signalling, account for up to 60% of the variability in post-

operative recovery [16]. It is particularly relevant that in another cohort pre-operative differences in 

monocyte STAT signalling pathways correlate to post-operative complications [23*]. 

These data demonstrate that our understanding of the immune response to surgery and tissue damage is 

rapidly expanding in tandem with available technology and provides opportunities for the identification of 

therapeutic targets and predictive biomarkers. 
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Anaesthesia, analgesics & the inflammatory response 

Whilst the presence of significant tissue damage exerts the dominant influence on altered perioperative 

immunity, the administration of anaesthetic agents has additional and complex effects. In the clinical 

scenario it can be very difficult to confidently separate the immune modulating effects of anaesthesia 

from the response to surgery and tissue damage and consequently much of the available mechanistic data 

is generated either from in vitro experimental work or animal models. Broadly speaking, the overriding 

effect of anaesthesia on the immune system is one of suppression and is mediated both directly and 

indirectly. Inhalational and intravenous anaesthetics induce lymphocyte apoptosis and impair neutrophil 

phagocytosis [24]. Secondary immunosuppressive effects are mediated through modulation of the neural 

immune-regulatory circuit and activation of cholinergic anti-inflammatory pathways and also as a 

consequence of altered adrenocortical functions [25]. Opioids are administered frequently during 

anaesthesia and their inhibition of innate and adaptive immunity is well described [26]. Natural killer 

cells, a key facet of innate immunity and host tumour surveillance, are suppressed by both anaesthesia and 

opioids [27]. Clearly, the choice of anaesthetic technique may have important clinical implications 

independent of the surgical procedure. The presence of an anaesthesia-induced immunocompromised 

phenotype may affect outcome in different ways but in the perioperative setting it is the creation of a pro-

tumour and pro-infection cytokine and inflammatory milieu that is of key concern. Cancer and infection 

are intimately linked as both flourish in an environment of T cell exhaustion and lymphocyte anergy, such 

as is observed in the perioperative period [28*]. It is also notable that both conditions themselves also 

induce this phenotype, which has additional implications for those patients with chronic infections and 

malignancies that undergo operative treatment.     

Although the hormonal stress response is not completed ablated by the use of regional anaesthesia, 

avoiding general anaesthesia is associated with a blunted response and lower peak levels of serum cortisol 

[29]. Interestingly, in a large cohort of patients undergoing knee arthroplasty the administration of 

neuraxial anaesthesia alone when compared to general anaesthesia alone was associated with a decreased 
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incidence of post-operative infections [30].  The odds of pneumonia occurrence were 0.51 in those 

patients receiving neuraxial anaesthesia alone when compared to general anaesthesia alone in this cohort. 

Whilst this study was not randomised it is important that the association remained following a propensity-

matched analysis. A strategy of limiting, but not excluding, inhalational and intravenous anaesthetics by 

combining epidural and general anaesthesia has suggested subtle advantages above general anaesthesia 

alone in terms of the duration of post-operative immunosuppression, reduction in absolute T lymphocyte 

count and the relative proportions of Th1, Th2 and Treg cell subsets [31, 32]. However, the clinical benefit 

of this combined approach remains unclear. A meta-analysis of studies comparing a technique of 

combined epidural and general anaesthesia versus general anaesthesia alone failed to convincingly 

demonstrate a benefit in terms of cancer recurrence [33]. However, in a review of nearly 400,000 patients 

undergoing hip or knee arthroplasty, whilst the benefit of neuraxial anaesthesia alone was replicated in 

terms of lesser infection risk any protective effect appeared markedly reduced in the cohort that received a 

combined general and regional anaesthesia technique [34]. In each of the above studies the absence of 

randomisation makes interpretation difficult. Consequently, these studies are prone to inherent biases 

making it impossible to draw definitive conclusions and they should be viewed as hypothesis generating. 

This viewpoint is supported by a recent consensus statement expressing concern that experimental 

evidence suggests a link between anaesthestic technique and cancer recurrence yet accepts that there is 

insufficient clinical evidence to justify any change in practice and calls for the conduct of definitive 

randomised clinical trials [35]. 

 

Common adjunctive perioperative treatments & inflammation  

Dexamethasone is frequently administered during anaesthesia as an effective prophylactic anti-emetic. 

Single doses have additional beneficial effects such as enhanced analgesia and reduced surgical site 

swelling. However, it is a potent glucocorticoid and even single doses can display effects on 
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adrenocortical functions a number of days following administration [36]. Although there is clear 

physiological rationale for implicating dexamethasone in enhancing the risk of postoperative infection the 

clinical data have been conflicting [37-39]. A recent meta-analysis of randomised controlled trials using 

single-dose dexamethasone found no association with post-operative infection [40]. These results should 

however be interpreted cautiously as the dexamethasone group also received less opioids, thereby 

introducing a potential source of bias. 

Other ubiquitously prescribed perioperative treatments with potential immunomodulating properties, such 

as paracetamol, NSAIDs and gabapentinoids, have not demonstrated clear associations with important 

immune outcomes such as infection [41].   

The immunomodulating qualities of perioperative allogenic blood transfusion have long been appreciated 

and have even been exploited to prevent renal allograft rejection in the era prior to the development of 

effective immunosuppressants [42]. The unintended clinical consequences of perioperative immune 

modulation by allogeneic blood, particularly following colorectal surgery, include an increased 

susceptibility to infectious complications and also cancer recurrence [43-45]. More recently, similar links 

between transfusion and cancer recurrence have also been reported following surgery for prostate, 

hepatic, and head-and-neck cancers [46-48]. Progress towards identifying a plausible mechanism has been 

made by our group’s identification of a pattern of gene expression, consistent with immunosuppression, 

associated with blood transfusion in two separate cohorts of patients; those undergoing major elective 

gastrointestinal surgery and also following severe traumatic injury [49*, 50*]. The observed pattern of 

cytokine production could classically be described as both a pro-infection and pro-tumour environment 

and indeed in the trauma cohort an association was also observed between blood transfusion and 

infectious complications [50*]. Interestingly, blood stored for prolonged periods prior to administration 

may be particularly deleterious with in vivo models suggesting that aged red blood cells may exert 

enhanced tumour progression [51]. Our group has also recently demonstrated that the severity of post-

traumatic immunosuppression is related to the duration of storage blood products thereby suggesting a 
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mechanistic link [52]. These data support the hypothesis that aged red blood cells may promote tumour 

recurrence and increase susceptibility to infectious complications through modulation of the immune 

system. 

 

Epigenetics and immune responsiveness 

Epigenetics is an umbrella term that describes host mechanisms of altering gene expression that do not 

require a change in the underlying DNA sequence. The enzymatic conversion of cytosine to 5-

methylcytosine and the methylation or acetylation of chromatin usually causes transcriptional repression 

by impeding access to promoter regions whereas the overexpression of micro RNAs (miRs) can both 

inhibit transcription and target messenger RNA (mRNA) for degradation.  Cancer research has pioneered 

the study of epigenetic modifications that promote an immunosuppressed phenotype thereby facilitating 

immune evasion by cancerous cells and has also been at the forefront of developing epigenetic modifying 

agents that can target these processes [53*]. In the perioperative period epigenetic studies have largely 

focused on acute and chronic pain processes, although data supportive of a key role in inflammation and 

immunosuppression have emerged [54]. For example, the use of opioids in the perioperative period 

promotes global DNA methylation in peripheral blood leukocytes [55]. This is consistent with the 

transcriptional repression of pro-inflammatory genes, which may have longer-term implications as 

epigenetic alterations persist. Furthermore, our group have described the post-traumatic production of 

miRNAs with sequence complementarity to the mRNA transcripts of key cytokines whose expression 

levels change markedly following tissue damage [56]. This may represent an epigenetic regulation of the 

response to tissue damage through the targeted degradation of pro-inflammatory mRNAs by miRs. In this 

setting miR levels also correlate with nosocomial pneumonia. Although the study of epigenetics in the 

perioperative period is in its infancy the therapeutic and diagnostic implications may be substantial.     
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Conclusions 

Rapid advances in our understanding of perioperative inflammatory processes, their causes and 

consequences coincides with development of multiple, clinically applicable immune and epigenetic 

modulators such as growth factors, antibodies, DNA hypomethylating agents, histone deacetylase 

inhibitors and micro RNA mimics. The prospect of manipulating an errant immune response to major 

surgery is no longer aspirational. Personalised medicine has become a reality for many patients suffering 

from a variety of immune related disorders such as myelodysplasia, rheumatoid arthritis and 

inflammatory bowel disease. These patients now routinely benefit from therapies that target specific 

facets of a pathological immune response and the challenge for perioperative medicine is to distinguish 

between protective and pathogenic immune responses in the perioperative period and to identify 

modifiable immune pathways that when altered can impact on important clinical endpoints. 

Uniquely, the elective nature of the majority of surgical procedures introduces the possibility of 

developing a pre-emptive, preventative, immunotherapy strategy that may ultimately prove advantageous. 

The potential for pre-emptive or early therapies for those undergoing scheduled procedures vastly 

increases the prospects of success of any intervention for the perioperative patient. To achieve this 

ultimate aim basic scientists must continue to define pathological inflammatory pathways and collaborate 

with translational scientists identifying interventions suitable for clinical use. Clinical trialists must also 

be engaged with this process so that potential patient benefits are revealed in well-designed clinical trials. 
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Key Points 

 

1. The immunological response to tissue damage is broad but predominately 

immunosuppressive in nature. 

2. Anaesthetic technique plays a key role in modulating the immune response, with 

neuraxial anaesthesia potentially reducing the incidence of nocosomial infections 

through the avoidance of general anaesthetic agents. 

3. The role of allogeneic blood transfusion augments the immune response seen to 

tissue damage. 

4. Laboratory techniques are now available that can monitor the perioperative 

immune response and could be further developed to introduce personalised care 

pathways to manipulate an errant immune response.  
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Legend 

Fig. 1: Pathways of immune activation following tissue damage 

Tissue damage leads to the release of Damage Activated Molecular Patterns (DAMPs) into the 

circulation, in this case illustrated by high-mobility-group box (HMGB) 1 and mitochondrial DNA 

(mtDNA), causing activation of pattern recognition receptors (PRRs). DAMPs also independently 

activate neutrophils, monocytes and dendritic cells.  

Activation of PRRs causes the triggering of signalling pathways and transcription factors such as NF-kB. 

NF-kB then translocates to the nucleus, promoting cytokine gene transcription. Protein translation results 

in the secretion of cytokines and chemokines.  

Postoperatively, increases in neutrophils, monocytes and natural killer (NK) cells are seen along with later 

decreases in CD4+ and CD8+ T-cells. IL-6 and IL-10 consistently increase during this phase and IL-10 is 

associated with downregulation of HLA-DR expression on the surface of circulating monocytes. 

Immunosuppressive Treg cells and myeloid derived suppressor cells (MDSCs) increase postoperatively. 

MDSCs cause T-cells suppression via the secretion of reactive oxygen species (ROS), arginine-1 as well 

as the immunosuppressive cytokines, IL-10 and TGF-β, amongst other mechanisms. Treg cells are known 

producers immunosuppressive cytokines; IL-10, TGF-β and IL-4. 

The transfusion of blood and blood products is known to contribute to this immunosuppressive 

environment, while anaesthetics and opioids cause increase T-cell apoptosis, impair neutrophil 

phagocytosis and suppress NK cells suppression. Anaesthetics mediate secondary effects through altered 

adrenocortical function and central mechanisms. 
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